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Abstract

Partially linear single-index models are flexible dimension reduction semiparametric tools yet still retain ease of
interpretability as linear models. This paper is concerned with the estimation and variable selection for partially
linear single-index quantile regression models. Polynomial splines are used to estimate the unknown link func-
tion. We first establish the asymptotic properties of the quantile regression estimators. For feature selection, we
adopt the smoothly clipped absolute deviation penalty (SCAD) approach to select simultaneously single-index
variables and partially linear variables. We show that the regularized variable selection estimators are consistent
and possess oracle properties. The consistency and oracle properties are also established under the proposed linear
approximation of the nonparametric link function that facilitates fast computation. Furthermore, we show that the
proposed SCAD tuning parameter selectors via the Schwarz information criterion can consistently identify the
true model. Monte Carlo studies and an application to Boston Housing price data are presented to illustrate the
proposed approach.

Keywords: Asymptotics, check loss minimization, oracle properties, polynomial splines, quantile regression,
SCAD.

1. Introduction

This paper is partly motivated by the famous Boston Housing Price data used in Harrison and Rubinfeld [10].
One important issue in that study was the identification of the key variables that affect housing prices in Boston.
The response variable of interest, median housing price, is skewed and truncated due to possible outliers. Quantile
regression introduced by Koenker and Bassett [17] is a robust alternative to least squares to analyze these data.
Nonparametric quantile regression, in contrast, can unveil important nonlinear features; see, e.g., [18, 34, 35].
Cai and Xu [1] also discovered that some interaction effect exists besides nonlinearity and suggest that a further
investigation of a semiparametric model and significant variables to include is warranted.

In this paper, we focus on estimation and variable selection for quantile partially linear single-index models (Q-
PLSIM), where the conditional quantiles take the form g(X[y)+Z]B. By projecting the g-dimensional covariates
X to a univariate single index X"y for the nonparametric part and allowing partially linear terms Z 8, the partially
linear single-index models can overcome the curse of dimensionality yet preserve model flexibility.

Partially linear single-index models have been widely studied in the mean regression context. For example,
Carroll et al. [2] worked on generalized PLSIM using local methods. Yu and Ruppert [36] proposed penalized
spline estimation for PLSIM, and Yu et al. [37] extended it to generalized exponential families with a computa-
tionally expedient approach. Liang et al. [22] proposed a profile least squares procedure with kernel estimation
for PLSIM and studied estimation, variable selection, and testing. Ma et al. [25] investigated PLSIM for repeated
measurements. Unlike additive models, interactions among the single-index variables can be modeled due to the
nonparametric link function on the index [2, 36].

Partially linear single-index quantile regression models also include various models as special cases. For
example, with no partially linear terms, the Q-PLSIM reduces to the single-index quantile models. Wu et al. [34]
first proposed single-index quantile regression models. Kong and Xia [18] investigated the Bahadur representation.
Most recently, Ma and He [24] studied inference with profile optimization. When the single-index parameter is
known or X is univariate, the estimation reduces to a partially linear quantile problem. For example, He and
Liang [11] investigated errors-in-variables partially linear quantile models. Chen and Khan [4] examined censored
partially linear quantile models.
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We estimate the unknown link function g by polynomial splines nonparametrically. As noted in Wang et
al. [30], polynomial splines, as a global smoothing method without involving large systems of equations, are
advantageous in computational expedience compared with local methods. Penalized splines may also offer great
computational advantages. However, their theory is still the object of ongoing research and a fixed knot assumption
often has to be used [32, 36]. In computation, we adopt linear approximation to the nonparametric link function
g to further facilitate fast computation. Specifically, we propose an efficient iterative algorithm for estimation,
where in each iteration a linear quantile regression algorithm can be readily applied. This can avoid solving a
high-dimensional nonlinear optimization, unlike in a direct one-step estimation.

Variable selection is often of vital interest in applications, where many predictors are often collected but
insignificant variables should be left out for a final model. In this paper, we select significant single-index variables
in X and partially linear variables in Z simultaneously using a regularization method with the popular smoothly
clipped absolute deviation (SCAD) penalty proposed by Fan and Li [8]. In this paper, the variable dimension
is considered fixed as in the seminal papers of Tibshirani [28] (1996, Lasso) and Fan and Li [8] (2001, SCAD).
There is a vast literature on penalized variable selection with fixed-dimensional predictors following these seminal
papers, such as Zou and Hastie [41] (2005, Elastic Net), Zou [40] (2006, Adaptive Lasso), Yuan and Lin [38]
(2006, grouped lasso), etc. Please refer to these for further reading on penalized/shrinkage variable selection.

Schwarz’s information criterion is used to choose SCAD tuning parameters. We adopt the difference convex
algorithm from Wu and Liu [33] to transform the non-convex SCAD penalty into two convex functions. We
discuss detailed algorithms in Section 4. We then conduct various simulation studies for the proposed Q-PLSIM
estimation and variable selection and examine the Boston housing price data in Section 5. Our findings shed some
new light on the important variables for Boston housing prices.

Finally, we make the following contributions to the theoretical literature: (i) we establish the existence, conver-
gence rate, and asymptotic normality for the estimation of Q-PLSIM parameters; (ii) for variable selection using
the penalized check-loss function, we establish the existence, convergence rate, and asymptotic normality of the
penalized estimators; more importantly, we prove their oracle properties; (iii) with the linear approximation of the
nonparametric link function g, we again prove their oracle properties for variable selection; (iv) we formally es-
tablish the variable selection consistency when the tuning parameters for regularization are chosen by the Schwarz
information criterion.

We note that even though partially linear single-index quantile regression models are appealing in practice,
theoretically dealing with single-index models is more challenging than some other semiparametric models, in-
cluding partially linear varying coefficient models (see Fan and Zhang [9] for a survey on mean regression; Kim
[16], Wang et al. [29] on quantile regression) and partially linear additive models [7, 14, 35]. Since the single-
index parameters y are nested within the unknown link function g, this makes higher order terms in the quadratic
approximation of the check-loss functions more complicated. Techniques used in the proof of oracle properties for
quantile semiparametric regression are also different from least squares models due to the fact that the check-loss
function is not differentiable. Instead, we rely on the convexity of the check-loss function and use the subgradient
of the check-loss function in our proofs. This gives a linear lower bound for differences in the loss function, in-
stead of the usual quadratic approximation, which is nevertheless sufficient for the proof of the oracle properties.
In addition, even though spline smoothing is computationally expedient, theorems for spline-based smoothing are
generally more challenging to establish than those for local methods. We hope that some of our proof techniques
can be useful for establishing asymptotic properties for other model estimation and variable selection problems.

The rest of the paper is organized as follows. In Section 2, we introduce the partially linear single-index
quantile regression model. We propose polynomial spline estimators minimizing a quantile check-loss function.
We establish the rate of convergence and asymptotic properties of the proposed estimators. In Section 3, we
describe the variable selection procedures for the single-index and partially linear terms via a penalized check-
loss function. We establish their asymptotic properties and prove that they possess oracle properties along with
theoretical results under Schwarz’s Information Criterion. In Section 4, we elaborate the iterative algorithm for
estimation and penalized variable selection in detail. Numerical studies and an application to the Boston Housing
data are presented in Section 5. Lemmas and proofs of the main theorems are relegated to the Appendix. Detailed
proofs of all lemmas are given in the Online Supplement.

2. Quantile partially linear single-index models

2.1. Estimation

Suppose a random sample (Y, X, Zy), ..., (Y, X,,Z,) is observed. We consider the quantile partially linear
single-index model (Q-PLSIM) defined, for eachi € {1,...,n}, by

2



Y, = g(X,'TV()) + Z,'Tﬂo + e,

where g is an unknown link function and (y,], B;)" is the unknown parameter vector, such that Pr(e; < 0 | X;, Z;) =
7, and X; and Z; are g-dimensional and p-dimensional covariates, respectively. For identifiability, according to Yu
and Ruppert [36] and Lin and Kulasekera [23], we impose ||y|| = 1 with its first nonzero element positive.

Note that when the data are actually generated from a linear model in which all the coefficients associated with
the predictors X are trivial, the function g would then be constant in a partially linear single-index model but then
this model, and in particular the single-index coefficients y, would no longer be identifiable. In such a case, the
partially linear single-index model reduces to a linear model.

In the even more extreme case where the data are actually generated from a constant where all of the coef-
ficients associated with all the predictors are trivial, the function g would be constant and all the partially linear
coefficients § would be zero in a partially linear single-index model. In such a case, the partially linear single-index
model reduces to a constant. In other words, if no variable is actually needed in the model, the quantiles would
be trivially constant. The situation would be very similar to the usual linear models when all coefficients reduce
to zero. The corresponding estimates of g would be expected close to a constant and estimates of the partially
linear coefficients B close to zero in a large sample. Again the single-index coefficients ¥ would be unidentifiable.
In practice we usually first fit a linear model to the data and would further resort to PLSIM if some standard
diagnostic procedure suggests nonlinearity is present.

Here we model the rth conditional quantile of Y by Q. (Y | x,z) = m(x,z) = g(x"y) + z' B, where (x,z) € S.
Note that we can rewrite our model as Q.(Y | v) = m(v) = g0 @) + v'¢, where v = (x,z) € § C RI*P,
¢ = (y,0,) and ¥ = (0,,8). Since we use different variables for the single-index part and the partially linear
part, the covariates v are naturally divided into distinct groups x and z. Consequently, parameter vectors ¢ and ¢
are perpendicular to each other. Therefore, following the argument in the proof of Case 4 of Theorem 2 in Lin
and Kulasekera (2007), we can prove that for all (x,z) € S, m(x,z) = g1(x"y1) + 2'B1 = g2(x"y2) + 2" B, for
some continuous nonlinear functions g1, g», and for k € {1,2}, Br € R” and y, € D ={y € R? : |ly|| = 1 with
first nonzero element positive}. Then y; = ¥», 81 = B> and g; = g». Hence, the conditional quantile model
0.(Y | x,2) = g(x"y) +z" B is identifiable under these assumptions. See Lin and Kulasekera [23] for more details.

To take into account the unit norm constraint, we use the popular “delete-one-component” method [5, 36]. We
can write y = (1 = [y V)2, ya, ..., 7,)T where ¥V = (y,,...,9,)7 is ¥ without the first component. Thus y
is a function of . The ¢ x (¢ — 1) Jacobian matrix is

_ Y A
J= _6Z1) - ( Ty R )
d Lig-1xg-n

where I;_1)x(4-1) is the (g — 1) X (¢ — 1) identity matrix. In what follows, we use J = diag(j, I,x,). We also use
polynomial splines to approximate the nonparametric function g.

Letfy =a <t <--- <tg <b = tg, be apartition of [a, b] into subintervals [#, #x+;) with k € {0,..., K’}
with K’ internal knots. We only restrict our attention to equally spaced knots although data-driven choices can be
considered such as putting knots at certain sample quantiles of the single-index values u. A polynomial spline of
order s is a function whose restriction to each subinterval is a polynomial of degree s — 1 and globally s — 2 times
continuously differentiable on [a, b]. The collection of splines with a fixed sequence of knots has a B-spline basis
Bi(u), ..., Bx(u) with K = K’ + 5. In the empirical implementations, we use the minimal and maximal values of
u; = X[y as a and b to generate B-spline basis functions for a given y.

We assume that the B-spline basis is normalized to have Bj(u) + --- + Bg(u) = VK. Such a normalization
is not essential and is just imposed to simplify some expressions in subsequent theoretical derivations. Let B =
(B1,...,Bg)". With the given single index u; = X[y, g can be estimated by B-spline expansion, viz. g(u;) =~
BT (u;)8, where ¢ is the spline coefficient vector of dimension K. Throughout this paper, we use cubic B-spline
basis functions, i.e., the order s of B-splines is 4. Using the spline smoothing, we will minimize

Ly(y.B.6) = ) plY; =B (X[ )6 - Z] B} (1)
i=1

over (y, B, 6) with the constraint ||y|| = 1 and y; > 0, or equivalently regarding y = ¥(y") as a function of "
and optimize over (Y, B,6). p:(s) = Ts — s1(s < 0) is the check loss function for quantile regression. The
resulting estimators are denoted by (3, B, 6).



2.2. Large-sample properties

To establish asymptotic normality and the convergence rate, we need to “orthogonalize” the parametric part
with respect to the nonparametric part using the following projection. Let M = {m : m(x) = f(x"y), E{m*(X)} <
oo} be the space of single-index functions. In this paper, the projection of any random variable W onto M, denoted
by Ep(W), is defined as m(X), m being the minimizer of

E[£(0 | X, Z){W — m(X)}*],

with m € M. This definition can be extended trivially to the case where W = (W1, ..., Wq)T is a random vector
by EmM(W) = Em(W1), ..., Em(W,)T. We impose the following assumptions.

(A1) The covariates Z, X are bounded.

(A2) Let f(- | X}, Z;) be the conditional density of ¢;. We assume that f(- | X;, Z;) is bounded and bounded away
from zero in a neighborhood of 0, uniformly over the support of X;,Z;. The derivative of f(- | X;,Z;) is
uniformly bounded in a neighborhood of 0 over the support of X;, Z,.

(A3) The function g is in the Holder space of order d > 2, i.e., | (x) — g ()| < Clx — y|" ford = m + r and m
is the largest integer strictly smaller than d, where g is the mth derivative of g.

(A4) Suppose EM{ng(l)(XT'yO)} = fi(XTy,) forall j € {1,...,q}. The functions f; are in the Holder space of
order d’ > 1. The order of the B-spline used satisfies s > max(d, d”") + 1. The same smoothness condition is
satisfied by the component functions of E »((Z).

(A5) The matrix

T X V(X y0) — EpiT Xg "Xy} ™
E{f(01X.2) Ay, A

is positive definite, where for any matrix A, A®? = AA™.

Boundedness of Z is assumed mainly for convenience of proof; it could possibly be replaced by moment
conditions with lengthier arguments. Boundedness of X is tied to our estimation approach, typically assumed when
using regression splines. Assumption (A2) on conditional density is commonly used in quantile regression [12,
29]. Smoothness of g is required to establish the convergence rate. Smoothness of functions in the representation of
EAdX;8"(XTy,)} is typically used in semiparametric models to show the asymptotic normality of the parametric
part. Finally (A5) can be regarded as an identifiability assumption for semiparametric models [2, 19, 30, 31].

Theorem 1. If conditions (Al)~(AS5) hold, K — oo, and K“*3/*Inn/n — 0, then there exists a local minimizer of
(1) with A .
7 = 7ol + 1B = Boll + 116 = 8oll = Op(VK/n + K.
In particular, ||g— ooll = O,(VK/n + K9 implies that |[g — gl = O,(VK/n+ K™, withg = B7S.
The convergence rate above takes a familiar form as in nonparametric regression with the two terms corre-
sponding to bias and variance, respectively. The optimal choice of K is obviously K ~ n!/?¢*D_In Theorem 2,
stronger assumptions on the choice of K and smoothness of nonparametric functions allow us to establish the

asymptotic normality of the single-index parameter estimates 3 and partially linear parameter estimates E Note
that when 4’ is large enough (e.g., d’ = d), K ~ n'/4*1 is still contained in the permissible range.

Theorem 2. If conditions (Al)—(A5) hold, K — co, K™**d3/0 \npn/n — 0, \n K=243/2 5 0, and \n K~+¢ —
0, then

\/;{( 7 )_( 7 )} - N10JATON " I EIAT ORI,

B Bo
where o
_ gV XTyp)X - EpdgV X y)X}
Q‘E{f(o'x’z)( Zi-En2) ’
_ gVXTy9)X - EmlgVXTy0)X) \*
F=rd -k {( OZi - Em(Zy) ' ’

and the Jacobian matrix J is evaluated at the true single-index parameter 7y,
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3. Penalized variable selection

When the number of predictors is relatively large, it is desirable to select the relevant predictors both in the
parametric and nonparametric part. We use a penalization method for variable selection. More specifically, given

the estimated spline coefficients 8, we find the penalized estimators 7, ﬂ through minimization of

q P
0.r.B) = Ly.B+ an,(lyjl) * nzpb(w)

ZpT Yi-B' (X[ - Z[B)+n Z pa(ly) +n Z (B, )

J=1 J=1

where A; and A, are two regularization tuning parameters. There are more than one way to specify the penalty
function and here we only focus on the SCAD penalty function [8], defined by its first derivative, viz.

(al—v),
(a—1a

with @ > 2 and p,(0) = 0. We will use a = 3.7 as suggested in [8]. Other choices of penalty, such as an adaptive
lasso [40] or minimax concave penalty [39], are expected to produce similar results in both theory and practice.

For theoretical purposes, we assume that only the first g; components of y and the first p; components of
B are nonzero. Let ¥V = (y1,...,7,)7 and BV = (B1,....B,,)7. The following theorem presents the oracle
properties [8] of the penalized estimator. That is, the asymptotic normality property is the same as when the
nonzero components in y and B are known.

P = {l(v <D+ —— > /1)}

Theorem 3. Under the conditions of Theorem 2, and A1, A = o(1), VK(VK/n + K9/, = o(1), VK(VK/n +
K/ = o(1), there exists a local minimizer 7,B) of (2) such that

Py O]
\/ﬁ {[ g(l) ]_( 7%: )} ~ N[O’J(l)(J(l)T(D(l)J(l))—lJ(l)TE(I)J(1)(J(l)T(I)(l)J(l))—lJ(l)T]’
0

where JV, @V and £V are defined in a similar way as in Theorem 2, using only the first q components of y,,
as well as the first g1 components of X and the first p; components of Z. In addition, Yg,+1 = -+ = Y4 = Bp+1 =
-+ = B, = 0 with probability approaching 1.

For fast computation, we employ a linear approximation of g in the loss function, so that g(X"y) is replaced
by its linear approximation, viz.

gXy) = gXyp) + & X v)X] (7 = 7).

By the spline smoothing, g(Xy,) can be represented by BT (X ¥,)d and g'(X;y,) is analogously represented
by BYT(XTy()8, in which B is the first derivative of B-spline basis functions. Given the initial unpenalized

estimates (y, E,E), we can solve the following optimization problem:

0,r.B) = L(7ﬂ)+anl(I)f,)+anz(V3,|)
J=1 J=
- ZpT Yi - BT(X[7)6 - BT (X[7)6X] (v - 7) - 2] B} +an4,<|y,>+anm<w,|> (3)

j=1 Jj=1
Next we show that the minimizer of (3), still denoted by (y, B), again satisfies the oracle properties.

Theorem 4. Under the same conditions assumed for Theorem 3, the minimizer of (3), still denoted by ()7,5),
satisfies the same oracle properties as those stated in Theorem 3.

Finally, we can choose the penalty parameters A, A, using the Schwarz Information Criterion (SIC), viz.

-1 _
SIC(41,4) = In{L,(7.p)} + 2, nm(p + q)
5



n . . . 1 _
= In| ) pel¥; - B'(X[9)6 - BT X[ 7)0X] 7 -7) - Z] B} | + 5 @+, &

i=1

where ()75) are the estimates based on a given pair of values of (11, 4>) and ¢ and p are the number of nonzero
coefficients in y and B, respectively [14, 20]. The Schwarz information criterion is consistent in this context.

Theorem 5. The SIC defined in (4) is consistent in the sense that using the (11, A2) selected by SIC, with probability
approaching 1, we have yg,+1 = --+ =¥, = Bp+1 = - -+ = B, = 0 while other components are not estimated as
zero.

In the above, we use the loss function from (3) with linear approximation of g. We can also similarly define
SIC based on the loss function L,(y, B) in (2)

n . _ 1 _
SIC(A;, 4,) = In Z pelY; =BT X[)8 ~ Z]B) | + 5-(nn)(p +7).

i=1

We show in the Appendix that Theorem 5 also holds.

4. Algorithms and computation

There are a number of approaches to minimizing the objective function (1). One could use a direct “one-step”
estimation by minimizing L,(y, B, 6) over all parameters (y, 8, ). This might be challenging due to the nonlinear
optimization over a possibly high-dimensional space. A natural alternative is through an iterative approach, where
the estimation for the spline coefficients ¢ versus the estimation for the single-index parameters y and partially
linear B are iteratively updated until convergence. This is especially appealing because under the linear approx-
imation of g, each iteration is essentially a linear quantile problem. Furthermore, given the spline coefficient
estimates 8, the penalized estimators of 7 and E can then be obtained via a penalized linear quantile regression
using some existing algorithms, such as the Difference Convex Algorithm (DCA).

In particular, given the single-index parameters y and partially linear parameters 3, the estimates of the spline
coeflicients d can be obtained by minimizing

D oY= Z] B~ BT (X[ y)d),

i=1

which is a univariate quantile smoothing problem. If we view Y; — Z 8 as a response and the B-spline basis as a
design matrix at given knots, this may even be regarded as a linear quantile problem in computation.

Given the estimated spline coefficients 5, under the linear approximation to the nonparametric function g, the
loss function L; (y, B) for ¥ and B is

D pelYi - BT (X6 - BT (X[9)6X] (v - 7) - Z] B).
i=1

Let Y* = Y, - BT(X[9)6 + BOT(X79)6X[7 and X! = (BT (X7%)6X;,Z,). Thus, the unpenalized estimator of
E=(T,BN7T will be
£ =argmin )" p.(¥; - X;7§),
i=1
again a linear quantile problem. Consequently, we propose the following iterative algorithm.
0 0

Algorithm. Initialize € = G, B ).

m—1 m—1
Step 1. Given? - (f(m_l),ﬁ ))T, the spline coeflicients are estimated by

m ! m—1
6" =argmin Y potvi - Z7B" - BTXTF )60,

i=1
. . . . —(m)
Step 2. Given the estimated spline coefficients § , compute

e =¥ - BT 8"+ BOTXTF N XTF Y and X7 = BOTXTF 08 "X, Z,),
6



and the estimated ?nl) can be obtained by minimizing L;(§) = X, p-(Y] = XIT€).

Repeat Steps 1 and 2 until convergence.

For initializing the iterative algorithms, we may simply use mean linear regression or quantile linear regression
estimates from the model Q,(Y) = X"y + Z"B. Normalize y such that ||y|| = 1 and its first nonzero element
is positive for identifiability. This type of initial values works well in both our simulation studies and in the
application to the Boston Housing Price data. Estimates from partially linear single-index mean regression models
can also be used. In general, we further recommend trying different random starting values as discussed in Yu and
Ruppert [36]. In particular, we recommend using some random starting values and choosing the initial estimate
that gives the minimum value of the objective function

a 0
> petvi - 278 - BTXT7 )00,
i=1

Note that we may consider extending the profile approach in Ma and He [24] to Q-PLSIM. Here we would
treat 8 as a function of y and B and then optimize one objective function L,(y, B) over & = (7, B87)T. However, it
is easy to see that this will involve solving the nonlinear optimization problem over a possibly high-dimensional
space &€ = (y7,B87)T. Another difficulty lies in the absence of an explicit solution for 6 as a function of parameters
v and B, unlike that in the mean regression context as in Liang et al. [22]. In fact, our iterative algorithm combined
with the linear approximation of nonparametric function g can be viewed essentially as iterating over two linear
quantile estimations and thus can further accelerate the variable selection procedure via penalized estimation.

With the unpenalized estimates 7, E, and § from the above iterative algorithm, the penalized estimators 7, E
can be obtained by minimizing the penalized objective function (3). In the empirical studies, we choose the tuning
parameters A;, A, using the SIC as defined in (4).

One of the most appealing features of the proposed iterative algorithm, along with the linear approximation of
g, is that given the spline coefficient estimates d, estimation and variable selection by minimizing the penalized
objective function (3) can reduce to estimating and selecting relevant variables in a linear quantile model. We
therefore can directly adopt the Difference Convex Algorithm (DCA) as in Wu and Liu [33] for variable selection
in linear quantile models. DCA transforms the non-convex minimization of the penalized objective function
Q5 (y,p) to alinear programming problem by decomposing the SCAD penalty function into two convex functions.
In fact, the SCAD penalty p,(v) with v > 0 can be represented as p,(v) = p1a(v) — p2a(v), in which p;,(v) and
p2.(v) are both convex with derivatives p{,(v) = A and p},(v) = {1 — (a2 — v),/A(a — D}1(v > 1), respectively.
With the second function p;,(|&]) approximated by a linear function, DCA solves the optimization problem

qtp qtp

min > pe(¥; = X;TE) +n )" plgh —n Y. ph (€ Nsign@ ") - &)
i=1 j=1 j=1

at each (m + 1)th step when minimizing Q;(y, ). Further, by introducing some slack variables, the above mini-
mization can be formulated as a linear programming problem, viz.

n qtp qtp
min > frg; + (1= D) +nd Y t;=n > ps, (8" Dsign@)E; - &),
i=1 j=1 j=1

subjectto ¢; > 0, ¢; > 0, ¢; —¢y; = Y = X:T&forie(l,...,n}and t; > |¢] for j € {1,...,q + p}. For notational
simplicity, here A refers to the penalty parameters A;, A, with respect to y and 8. The unpenalized estimates ’g‘\can
be used for initialization. The resulting minimizer is the penalized estimatorg = @T,ET)T.

Besides the difference convex algorithm, approximation to the SCAD penalty is commonly used to handle its
non-convexity. There are several approaches available in the literature. For example, Fan and Li [2001] proposed
a quadratic approximation and Zou and Li [42] developed a linear approximation for the penalty function. Here
the difference convex algorithm is readily available through a penalized linear quantile estimation and thus it is
implemented in our numerical studies.

5. Numerical illustrations

In this section, we conduct Monte Carlo studies to assess the finite-sample performance of the proposed es-
timation and variable selection approaches. The first example shows the effectiveness of the proposed iterative
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estimation procedure and the second example illustrates how the variable selection performs with SCAD penalty.
As an illustration, we then look for the most important variables affecting the Boston housing prices using the
proposed Q-PLSIMs.

5.1. Simulation

Example 1. (Estimation for Q-PLSIMs with polynomial splines.) We generate the sample with n = 200 observa-
tions from the sine-bump model defined, for all i € {1, ..., n}, by

Y; = sin{X]y —a)n/(b-a)} + ZB +0.1e,

where the true parameters are y, = (1/ V3,1/V3,1/V3)T and S8, = 0.3. a and b are taken as V3/2 - 1.645/ V12
and V3/2 + 1.645/ V12, respectively. This model is widely used in the semiparametric modeling literature, e.g.,
[2, 22]. X consists of three covariates X, X, and X3 that are independent and uniformly distributed as U/(0, 1),
while Z takes O for the odd observations and 1 for the even observations. We consider different distributions for
the error terms, namely, the standard Gaussian distribution, the Student ¢ distribution with 3 degrees of freedom,
and the Laplace distribution with location 0 and scale 1. For each scenario, 500 data sets are generated. Estimation
results at different quantile levels, i.e., median (7 = 0.5), first quartile (z = 0.25) and third quartile (v = 0.75) are
reported.

We discuss in Theorem 1 the order and the optimal choice of spline dimension K = K’ + s, where K’ is the
number of interior knots and s is the order of spline basis function. In practice given  and E, we choose the
number of spline basis functions using the smallest Schwarz-type information criterion [13, 29], viz.

n . 1
SICyK) =In| Y plY; — BT (X[ )6 ~ Z] B | + LS
£ 2n

i=1

For the spline smoothing, one needs to determine the degree of the splines, the number of knots, and the
location of these knots. Cubic splines are most commonly used to estimate a smooth function [6, 26]. Usually
the spline knots are taken to be equally spaced or at the equally-spaced quantiles; see, e.g., [15, 36]. Throughout
our empirical studies, we follow the common practice and use cubic splines (s = 4) with equally spaced knots.
This choice works well in our numerical study. To determine the number of knots, we implement the following.
For each random sample, 0 to 10 possible interior knots were used to estimate the nonparametric function and the
number of knots with the smallest S /C(K) considered as the optimal. Over different quantile levels and different
error distributions, the number of interior knots is frequently selected to be 1, in which case the number of spline
basis functions K is 5.

For each generated sample with sample size n = 200, we can obtain the single-index estimates y and partially
linear estimates E In Monte Carlo studies with 500 replicates, we evaluate the performance of our estimation
approach by computing the Monte Carlo mean, standard error, and bias of the parameter estimates over 500
Monte Carlo samples. Table 1 summarizes the results. Overall, the estimates are close to the true parameters,
while the standard errors are slightly larger for the models with #-distributed errors and Laplace-distributed errors
than those with Gaussian errors. Boxplots for parameter estimates with Gaussian errors are displayed in Figure 1
at quantile levels 0.5, 0.25 and 0.75. The fitted curves for median regression with Gaussian errors are presented in
Figure 2.

In addition, we find that the proposed iterative approach based on essentially two linear quantile regressions
yields fast computation compared with a profile approach. In this simulation study, we observe that the profile
approach produces similar parameter estimates. However, the profile approach takes noticeably longer com-
putation time than the proposed iterative algorithm even in this moderate 4-dimensional nonlinear optimization
problem. For the profile approach, R function optim is used for nonlinear optimization over the parameter space
&= (y7,BN)T. All numerical studies were completed using Macbook Pro with 2.4 GHz Intel Core 2 Duo under
OS X Version 10.9.5.

Example 2. (Penalized Variable selection via SCAD for Q-PLSIMs.) We further investigate the performance of
variable selection using SCAD penalty for quantile partially linear single-index models, simultaneously selecting
the single-index variables and partially linear variables. We simulate the data from the sine-bump design as in
Example 1, viz. ¥; = sin{(XlT'y —ayt/(b—a)} + ZlTﬂ +0.1¢;forallie{l,...,n}, where X; e R® and Z; € R'? are
generated from the uniform distribution (0, 1), and three distributions are used for random errors e: ¢ ~ N(0, 1),
e ~ t3,and e ~ Laplace(0, 1). Again, 500 realizations are sampled for each case and each realization consists of
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Table 1: Summary of parameter estimates from Q-PLSIMs in Example 1. True y, is (0.5774,0.5774,0.5774)7 and true B, is 0.3. The sample
mean (“mean”), standard error (“se”, in parentheses), and bias (“bias”) of the parameter estimates are calculated over 500 simulations across
different quantile levels (7 € {0.25,0.5,0.75}) and different error terms.

T =0.25 =05 T =0.75
Mean(se) bias Mean(se) Bias Mean(se) Bias
e~ N(,1)
vy 0.5777 (0.0139) 0.0003 0.5774 (0.0117) 0.0000 0.5772 (0.0126) —0.0001
vy 0.5765(0.0149) -0.0008 0.5766 (0.0135) -0.0007 0.5766 (0.0146) —0.0007
v 0.5773 (0.0141) 0.0000 0.5777 (0.0123) 0.0003 0.5777 (0.0135) 0.0004
v 0.3028 (0.0199) 0.0028 0.3016 (0.0172) 0.0016  0.3038 (0.0184) 0.0038
e~ 13
vy 0.5776 (0.0099) 0.0002 0.5775 (0.0083) 0.0001 0.5773 (0.0096) —0.0001
v, 0.5769 (0.0104) -0.0005 0.5767 (0.0086) —0.0007 0.5764 (0.0105) —0.0009
vs  0.5774 (0.0097) 0.0000 0.5777 (0.0078) 0.0003  0.5781 (0.0094) 0.0008
B 0.3032 (0.0156) 0.0032 0.3015 (0.0122) 0.0015 0.3021 (0.0137) 0.0021
e ~ Laplace(0,1)
vy 0.5778 (0.0126) 0.0004 0.5770 (0.0085) —0.0004 0.5765 (0.0107) —0.0009
v, 0.5774 (0.0130) 0.0000 0.5773 (0.0095) —0.0001 0.5775 (0.0131) 0.0002
ys  0.5765 (0.0127) -0.0009 0.5776 (0.0093) 0.0002 0.5777 (0.0128) 0.0003
B 0.3029 (0.0174) 0.0029 0.3012 (0.0115) 0.0012  0.3023 (0.0167) 0.0023

Table 2: Summary of variable selection results from Q-PLSIMs for Example 2. SCAD penalty is used to select relevant variables in “SCAD”,
while only true variables are used in “Oracle”. “C” is the average number of correctly detected zero components in the single-index part (y)
and partially linear part () over 500 simulations. “I” is the average number of nonzero components that are incorrectly set to zero. “MSE” is
the mean squared error of the parameter estimates. “MRME” is the median relative model error.

4 B
Quantile Method C I MSE MRME C I MSE MRME
e~ N(,1)

0.5 SCAD 3.89 0 0.0008 0.2989 5.78 0.068 0.0122 0.4645
Oracle 4 0 0.0006 0.1909 6 0 0.0077  0.2983

0.75 SCAD 383 0 0.0010 04162 577 0.002 0.0112 0.3976
Oracle 4 0 0.0007 0.2812 6 0 0.0081 0.1992

0.25 SCAD 3.80 0 0.0013 0.2607 5.73 0.004 0.0141 0.4498
Oracle 4 0 0.0007 0.1255 6 0 0.0150 0.6501

e~ 13

0.5 SCAD 394 0 0.0003 0.2958 5.90 0 0.0039 0.4768
Oracle 4 0 0.0003 0.2377 6 0 0.0044 0.7672

0.75 SCAD 3.85 0 0.0005 03556 5.72 0 0.0073  0.4390
Oracle 4 0 0.0004 0.2307 6 0 0.0046  0.1453

0.25 SCAD 3.84 0 0.0007 0.2448 5.57 0 0.0139  0.5965
Oracle 4 0 0.0004 0.1137 6 0 0.0121  0.5859

e ~ Laplace(0,1)

0.5 SCAD 394 0 0.0004 02943 592 0.002 0.0045 0.4445
Oracle 4 0 0.0003 0.2137 6 0 0.0052 0.7004

0.75 SCAD 3.86 0 0.0007 0.3851 5.67 0.002 0.0100 0.4805
Oracle 4 0 0.0005 0.2257 6 0 0.0063 0.1359

0.25 SCAD 3.84 0 0.0010 0.2272 5.58 0.002 0.0157 0.5616
Oracle 4 0 0.0006 0.1076 6 0 0.0136  0.6270

n = 200 observations. The true values for the single-index parameter y are (1,3,1.5,0.5,0,0,0,0)7/ V12.5 and
(3,2,0,0,0,1.5,0,0.2,0.3,0.15,0,0)7 for the partially linear parameter 8. There are four zero components in the
single-index part and six zero components in the partially linear part.
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Figure 1: Boxplots of estimates from Q-PLSIM in Example 1 for the Gaussian error case. The left panels are for estimates of single-index
parameters ¥ and the right panels are for the estimates of partially linear parameter 8 at quantile level 0.5, 0.25 and 0.75.

Table 2 reports the penalized variable selection results. “SCAD” gives the estimation and variable selection
results for our proposed Q-PLSIMs using SCAD penalty. The “Oracle” only uses the exact nonzero components
in the single-index part as well as the partially linear part. Overall, Q-PLSIMs with “SCAD” penalty can identify
the irrelevant variables by setting zero parameters to zeros but still keep relevant variables. For median regression
when 7 = 0.5, we observe correctly identified zeros (C) are more than 3.8 out of 4 in the single-index part and more
than 5.7 out of 6 in the partially linear part, i.e., more than 95% of the zero components are correctly identified.
For quantile levels at 7 = 0.25 and 7 = 0.75, correctly identified zeros are slightly fewer than those in the median
regression but at least 92% of the zeros are correctly detected. In the single-index part, almost all those nonzero
components are kept, namely, the average number of nonzero components that are incorrectly set to zero (I) is
almost uniformly O for different quantiles and different error terms. Nonzero components in the partially linear
part are occasionally set to zero, but on average no more than one nonzero component is incorrectly set to zero.

To assess the estimation accuracy, we compute the mean squared errors (MSE) defined as

— > ¥ -l
500 £

for the penalized single-index parameter estimates y and

500

1 —_
== 0BG = Bl
500 J:Zl
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for the penalized partially linear parameter estimates E over 500 simulations. Similar measures are used in Ma
et al. [25], and by Liang and Li [21]. Furthermore, in order to show the effectiveness of penalized variable
selection procedure, we also compute the median relative model errors [MRME, Fan and Li [8]; Liang et al. [22]]
over 500 repetitions. The relative model error (RME) is defined as ME/MEg,;;. ME for the single-index part
can be calculated by (¥ — y,)"XX" (¥ — ¥,), while the model error for the partially linear part is calculated by
(ﬁ - ,BO)TZZT(ﬁ —PBy). M Egy stands for the model error under the full model without variable selection. In Table 2,
MSEs and MRME:s are also computed under Oracle models (“Oracle”). We observe that MSEs and MRMEs from
the proposed penalized variable selection procedure for Q-PLSIMs using SCAD penalty (“SCAD”) are close to
those from oracle models.

5.2. An application to the Boston Housing Price data

We apply the quantile partially linear single-index models to the Boston Housing Price data and examine
important variables that affect housing prices. The data set can be downloaded from R package MASS (https:
//cran.r-project.org/web/packages/MASS). It consists of 506 observations and 14 variables, among which
medv (median value of owner occupied homes in $1,000s in Boston suburb area in 1970s) is the dependent variable
of interest, and 13 independent variables are crim (per capita crime rate by town), zn (proportion of residential land
zoned for lots over 25,000 squared feet), indus (proportion of non-retail business acres per town), chas (Charles
River dummy variable taking 1 if tract bounds river, 0 otherwise), nox (nitric oxides concentration, parts per 10
million), rm (average number of rooms per dwelling), age (proportion of owner-occupied units built prior to 1940),
dis (weighted distances to five Boston employment centers), rad (index of accessibility to radial highways), fax
(full-value property-tax rate per USD 10,000), ptratio (pupil-teacher ratio by town), black (= 1thou(B — 0.63)?
where B is the proportion of blacks by town), and Istat (percentage of lower status of the population).

The Boston Housing Price data have been widely studied using nonparametric quantile regressions because
of important nonlinear features and the fact that the median housing price has a ceiling at $50,000 and the distri-
butions of medv and the major covariates such as Istat are skewed. Pre-specified important covariates are usually
adopted. For example, Yu and Lu [35] and Wu et al. [34] included four covariates (rm, In(tax), ptratio, In(Istat))
using an additive and a single-index quantile model, respectively; Kong and Xia [18] considered all 13 covariates
in a single-index quantile model. Cai and Xu [1] examined a smooth coefficient quantile regression where the
smooth coeflicient is a function of Istat along with two variables (rm, In(crim)). They stressed the need for a more
careful study of significant variables to include using a semiparametric model incorporating some interactions.

0.0 0.5 1.0 1.5
|

-0.5

I I I I I I I I I I I I
02 04 06 08 10 12 14 0.4 0.6 0.8 1.0 1.2

single index XBo single index u

Figure 2: Fitted curves from Q-PLSIM in Example 1 for median and Gaussian error. The solid lines are true sinusoidal function when Z = 1
and Z = 0. The dot-dash lines in the left panel are the fitted curve from one simulation sample. In the right panel the dotted lines are the
average fitted curves over 500 simulations and the dashed curves are the corresponding 2.5% and 97.5% confidence bands.
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The proposed estimation and penalized variable selection for quantile partially linear single-index models
can enable simultaneously estimating and selecting important variables in both the single-index part (SI) and the
partially linear part (PL). It is natural to keep the two categorical variables chas and rad in the partially linear part.
Harrison and Rubinfeld [10] claimed that the proportion of blacks by town (B) should have a quadratic relationship
with the response variable, hence we also keep black in the PL part. Next, we use the proposed penalized variable
selection for Q-PLSIMs with the remaining 10 continuous covariates into SI part and the three partially linear
covariates to screen whether other continuous variables are significant in the single-index part. As in the previous
studies, we take the logarithm of fax and Istat. Since crim is severely skewed to the left, we use In(crim). All
continuous covariates are standardized after the aforementioned transformations.

We consider the simultaneous estimation and variable selection for Q-PLSIMs over different quantile levels
at 0.1, 0.25, 0.5, 0.75, and 0.9. First we run the penalized variable selection procedure and find that In(crim), zn,
indus, and age are not selected in the SI part over all quantile levels. We therefore include these four continuous
covariates into the PL part rather than stopping at this point. Then we will focus on the following Q-PLSIM:

Q:(medv) = glyirm + v In(tax) + ysptratio + y4 In(lstat) + ysnox + yedis}
+ B1 In(crim) + Barzn + Bzindus + Byage + Bsblack + Bechas + Brrad.

Table 3 summarizes the estimation and penalized variable selection results of Q-PLSIMs across different
quantile levels. The selected number of interior knots is 2 for T € {0.1,0.25,0.5}, 1 for r = 0.75, and O for 7 = 0.9
based on the smallest S /C;. Equivalently, the number of spline basis functions K is 6, 5, and 4, respectively. Not
surprisingly, the remaining variables in the single-index part show significant effect on housing prices. However,
there is some variation at lower or upper quantiles; for example, the air pollution factor nox appears negligible at
more extreme quantiles 7 € {0.1,0.75, 0.9}; also, In(zax) has little effect on upper quantiles of housing prices.

Only a few variables in the partially linear part are selected by the penalized variable selection procedure. It
is interesting to find that In(crim) considered in the smooth-coefficient quantile model of Cai and Xu [1] is not
selected across all quantiles here. The partially linear coefficients for age are negative and significant at high quan-
tiles 7 € {0.75,0.9}. Older houses seem not attractive to high-income households that can afford more expensive
properties. The partially linear coefficients for black are mostly positive and significant. This is consistent with
the previous findings that the lower the proportion of blacks in a town, the higher house prices are in that town.

Figure 3 displays the single-index parameter estimates at nine quantile levels 7 € {0.1,0.2,0.25,0.4,0.5, 0.6,
0.75,0.8,0.9}. The dots are estimated values of singe-index parameters, and the blank squares are corresponding
5% and 95% confidence limits over 200 bootstrap samples. To obtain the standard errors, one might use the asymp-
totic variance formulas derived in Theorems 2—-3. However, they may be quite complicated to compute. Instead,
we rely on the bootstrap, as Wu et al. [34]. The asymptotic variances of Theorems 2-3 involve several unknown
quantities, such as the conditional density function f(0 | X,Z) and conditional expectation E M{g(l)(XiT'yo)X},
etc. We may use estimates and proceed with the estimated conditional density and sample averages. However,
estimating the unknown multivariate conditional density may be quite challenging; see Stone [27].

We did not include zero estimates in the estimation of bootstrapping samples. Therefore, no confidence limits
are shown for those. Based on Figure 3, we found that the number of rooms per house (rm) has a positive
effect uniformly across different quantiles. This matches the intuition that people usually like more space and
multi-functional rooms. The effect of rm on housing prices seems less stronger at lower quantiles. Relatively
lower-income households may need to balance their budge and size of the house. One would expect the property
tax rate In(fax) to have a negative impact on housing prices. It is worth noticing that the tax rate is not significant
at higher quantile levels 7 € {0.75,0.8,0.9}. Higher-income households may be less concerned with the tax rate
when they can afford better houses. Both the pupil-teacher ratio (ptratio) and the percentage of lower (educational)
status of the population In(/stat) show negative influence on housing values. People care about the educational
environment for their children and also have safety concerns related to adults without higher education degrees.
It appears that air pollution (nox) tends to affect moderate-income households decision of buying a house more,
while those luxury houses purchased by higher-income households are usually well located with better natural
environment. Figure 3 also shows that the weighted distance to five industrial areas (dis) is negatively related to
housing values. As mentioned in Harrison and Rubinfeld [10], housing prices tend to be higher near employment
centers according to traditional theories of urban land rent gradients.

To compare our selected quantile partially linear single-index models with Wu et al. [34], Chaudhuri et al. [3],
and Yu and Lu [35], we compute the average sum of check loss function defined as

1< _ -
Re =~ ;pf{yi —8(Xiy) - Z,B)
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Table 3: Estimation and variable selection results for Boston Housing Price Data. Estimates (“est”) are from quantile partially linear single-
index models with SCAD penalty. Bootstrap standard errors (“se”) are only evaluated for selected variables.

7=0.1 7=0.25 =05 7=0.75 =09

Variable est (se) est (se) est (se) est (se) est (se)
Single-index terms
rm 0.4054 (0.04) 0.5399 (0.03) 0.6622 (0.02) 0.7496 (0.03) 0.6890 (0.10)
In(tax) —0.4595 (0.04) —0.3387(0.02) —0.1857 (0.02) 0 - 0 -
ptratio -0.3507 (0.02) —-0.3256 (0.02) —0.2834 (0.01) —0.1774 (0.01) 0 -
In(Istat)  —0.6320 (0.04) —-0.6322(0.03) -0.5750(0.02) -0.5385 (0.02) —0.6604 (0.10)
nox 0 (- -0.2181 (0.02)  -0.2070 (0.02) 0 (- 0 -
dis -0.2523 (0.02) —-0.2012(0.02) -0.2706 (0.02) —0.3180(0.02) -0.2261 (0.04)
Partially linear terms

In(crim) 0 ) 0 ) 0 ) 0 () 0 )
zn 0 ) 0 ) 0 ) 0 () 0 ()
indus 0 ) 0 ) 0 ) 0 =) 0 ()
age 0 (- 0 (- 0 (- —1.1371 (0.11) —0.8378 (0.25)
black 0.5805 (0.08) 0.8549 (0.07) 1.2718 (0.08) 1.3216 (0.06) 0 -
chas 0 =) 0 ) 0 ) 0 ) 0 )
rad 0.0422 (0.03) 0 - 0 (- 0 - 0 -

in Table 4 as in Wu et al. [34] (WYY). WYY-1 in Table 4 refers to the first single-index model of WYY using
four pre-specified variables rm, In(tax), ptratio and In(Istat). WYY-2 in Table 4 refers to the second single-index
model of WYY using three variables rm, Istat, and dist. The last row ADE refers to the average derivative methods
(ADE) of Chaudhuri et al. [3] using variables rm, Istat, and dist. Additive refers to Yu and Lu [35] using local
linear additive models Q. (medv) = gi(rm) + g>{In(tax)} + g3(ptratio) + g4{In(Istar)}. Note that all these papers use
pre-specified variables without formal variable selection. We see from Table 4 that the Q-PLSIM models perform
consistently best across the five quantile levels in terms of model errors measured by the check loss function.

It is a bit surprising that the Q-PLSIM even gives smaller check loss than those from additive model of Yu and
Lu [35] at most quantile levels except for quantile level 0.9. Unlike in the mean regression context, Carroll et al. [2]
found mixed results in their applications where generalized additive models sometimes have better performance
but with larger “effective” model degrees freedom, i.e., more complex model. Note that a model complexity
measure is not considered in the check loss function R;. As pointed out in Wu et al. [34], the theory on model
complexity measure for quantile regression, especially for nonparametric/semiparametric quantile regression, is
very limited. This may deserve more research.

In summary, quantile partially linear single-index models reduce dimensionality and are flexible. We find that
the proposed estimation and penalized variable selection for Q-PLSIMs using polynomial splines are effective.
They can also give some natural guidance in partitioning variables into the single-index (nonparametric) part
versus partially linear (parametric) part. Our findings also shed some new light in the Boston Housing Price
application. Besides commonly considered variables such as rm, In(tax), ptratio, In(Istat) in the literature, we
find in the single-index part air pollution nox are negative and significant in the middle quantile levels; and the
weighted distances to five Boston employment centers dis are negative and significant across all quantile levels.
However, In(crim) is not selected across all quantiles.

Table 4: Model comparison for Boston Housing Price Data. The averages of check loss function are calculated for different models at the
quantile level 0.1, 0.25, 0.5, 0.75 and 0.9.

T 0.1 0.25 0.5 0.75 0.9
PLSIM 0504 0.954 1249 1.147 0.769
WYY-1 1.102 2.105 2.845 2577 1.749
WYY-2 1228 2229 2874 2490 3.320

ADE 1.559 2.696 3.042 2430 3.126
Additive 0.544 1.011 1336 1.185 0.744
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Figure 3: Single-index parameter estimates for Boston Housing Price Data over Different Quantile Levels from Q-PLSIM with SCAD Penalty.
Quantile levels considered are 0.1, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, and 0.9. The solid dots are the estimates at each quantile and the blank
squares are point-wise 2.5% and 97.5% confidence limits for non-zero components.

Appendix: Technical proofs

In this appendix, we give proofs of the five main theorems. First, the following seven lemmas need to be
established. To save space, detailed proofs of all lemmas are relegated to the online supplemental resources.

Let & be spline coefficients in the best spline approximation of g with sup, |g(t) — BT ()| < CK -4 which is
possible by (A3). Let F(- | X, Z) be the conditional cdf of e given the covariates. We also write g(XiT'yO) as g; and
let m; = g; + ZBy. In the proofs C denotes a generic positive constant which may assume different values even
on the same line.

Lemma l. Letr, = VK/n + K4

sup D pelYi = BTX[ )6 = Z]B) = > pelYi = BT (X[ y)80 - Z] By)
1Y =¥ I+IB=BylI+10-8oll<Cr, i=1 P
+ ) BTX[y)8 - BT (X[ y0)d0 + Z] (B - Bp)Hr — 1(e; < 0)}

i=1

—E > pelY; =B (X[ 78 = Z[B) + B )" pel¥i = BT (X[ y)0 — Z] By} = 0,(nr}),
i=1 i=1
where the expectations are over Y; conditional on X;, Z; (all expectations below are also such conditional expec-

tations).

Now to show the convergence rate of the estimator, suppose ||y —yll + 18— Boll + |0 — 6ol| = Lr, for sufficiently
large L > 0.

Lemma 2.
inf Ep-fe; + mi — B (X[ y)6 —Z] B} — Ep-fe; + mi — BT (X v0)00 — Z] By} > L2Cnri.
Y=Y, Il+1B-Byl+10-8oli=Lr, ; ;
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Lemma 3. The eigenvalues of

o[ T BOX y) 80X,
n

Z ](Bm(X?yo)T&oXﬁ, Z! . B"X[yy)
B(X[ )

i=1
are bounded and bounded away from zero with probability approaching 1.

The following lemma deals with one of the terms in the statement of Lemma 1. For models with single-index
structure, its proof is more complicated than for additive or varying coefficient models (due to the fact that for the
latter models the parametric part and nonparametric part are added up to give the regression function).

Lemma 4.

sup Z{BT(XiTy)é - BT(XiTyO)éo + ZiT(,B —BHT —1(e; <0)} = LO,,(nrf).
1Y~ I+1B-B,I+10-0lI=Lr, =1

Proof of Theorem 1. Combining Lemmas 1, 2, 4, we get, for sufficiently large L > 0,

pelY; - BT (X[ )6 - Z] p) >

Pr inf
[ Y=Y ,ol+1B-Byl+16-8oll=Lr, ,Z‘ P

n n

pelYi = BT (X[ y)d0 — Z] o}] = 1.

and thus there is a local minimizer of (7, 8) with [[7 = yoll + 1B = Boll + 116 = Soll = O, (1. O

Now we consider asymptotic normality. The challenge here is the need to perform orthogonalization appro-
priately. Since the parametric part is nested within the spline basis, orthogonalization is more complicated than
partially linear models as studied in [29, 30].

Let IT; = B(Xy,) and IT be the n X K matrix with rows II]. The empirical version of the minimization
problem corresponding to the projection is

min > (0| X, Z)(W; - I} 6)%,
with the minimizer (I' BIT)~'II" BW where B is the diagonal matrix with diagonal elements f(0 | X;, Z;) and
W = (Wy,...,W,)". Define P = IAI" BI) "' I 8. We write
petei +m; — BT (X[ y)6 - Z; B}
= peler = BT(X[70)(6 = 60) = BT (X[ y0)60X] (¥ = ¥9) — Z{ (B = By) — Ri(y, )}
= plei =T (8 — 60) = U/ (¥ = v9) = Z] (B~ By) — Ri(y., 6)},
where we define U; = B(I)T(XiTyo)éoX,- and
Ri(y.6) = (BX[y) - BX[7)}76 - BV (X[ 70)60X] (¥ — %) + (B" (X[ ¥0)60 — gi} = Rit(7.6) + Rn(7. 6).

Let V = U — PU with the ith row of V denoted by V[ = U’ —P/U. Let W = Z — PZ with the ith row
of W denoted by W = ZT — P/Z. Let Q = (V,W) with rows Q = (V/, W) and denote £ = (y7,87)",
& =0y B;)". To carry out orthogonalization, we further write

pelei =T (6 = 80) = U/ (¥ = ¥0) = Z] (B~ By) — Ri(y., )}
= peler — I (6 — 8o) + (" BI) ' T BQ(¢ - £))) — Q] (£ — &) — Ri(y. b))
= p-fe; — I — Q[ (€ - &) — Ri(¥,6)),

with p = 6 — 8o + (I" BI) "' I BQ(€ — £,). The proof of the following lemma is similar to Lemma 1, but requires
finer analysis of R;(y, 6).
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Lemma 5.

n

sup D pele =T - Q[ (€ - &) - Ri(y. 6))
IE-E,lI<C/ VrmlI<Cr, | i=1

= > pelei =T = Ry, ) + ) Q1 (€ - £y)e
i=1

i=1

“E ) pelei =T n = Q[ (¢ — £) — Ry, O} +E ) pele; = T = Rz, )} = 0,(1).
i=1 i=1
Lemma 6.
sup D Epele; 1] - Qi — &) — Ri(. 8))
Ii<Cri IE—-€,l<C/ v |i=1
N - SO0 X, Z .
=3 Epdder~ - Riyo, o) - 3 LB 6 20,07 (6 - £0)] = 0,1,
i=1 i=1
Lemma 7.
" (HxT _ MxT ®2
! Z fO1X,Z2)QQ - E|f(0]X, Z)[ g X 7’0))Z( EM{g (X 70)X} } in probability,
n & - Em(Z)
1, o D(XTy)X - Epdg"XTy)X} 7] . .
- ;Q,Qi - EH g VO)Z B EAA:%;) X 70X} ] in probability.

Proof of Theorem 2. Let7 = 85— 80+ (M"AM) ' BQ(£ - &,). By Lemmas 5, 6, and 7,

n

D pelei ~I - Q€ ~ &) ~ Ri7.9))
i=1

sup
I€E-&,ll<C/ v

= D pelei~ TG - Riyg. 8} + ) Q)€ — )es =5 (€ = £0) @ = §)| = 0,(1).
i=1 i=1

Let £ = (DT, BT (as before we regard & as a function of £1), the above easily implies

n

sup | Y. pelei — T — Q] (€ — &) — Ri(. )}
IE-E,li<c/ v [i=1
= > pelei I = R, O} + ) QTIE" £ Ve
i=1 i=1
S E g T RIE - g7 = 0D (AD)
Denote .
06) = 5E " - £, ITRIE -6 - 3 QIIE T — e
i=1
and define

e oy 1 N
EV =g+ JTon T ) I Qe

i=1
It follows from the Central Limit Theorem that
Vi@V D)~ N[O, TN TTEIAT O,
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and thus
Vi (& = £y) ~ N[0, JJTONH ' TTZIJ D)) J7).

Note that € = (77, ET)T is the minimizer of Q(&) (we think of £ as a function of £~ when appropriate) and
0(&) is equal to (€70 — E")TJT @)Y — ) plus a term that does not involve £.

For any € = (y7,B7)T with |ly]l = 1 and ||€ — €| = v/ v/n with some small v > 0. By the quadratic form of Q,
we have Q(€) — Q(€) > Cv? and thus by (A.1),

Pr

D pelei — TG - QT (6 - &) — Ry, 8)) >ZpT i =T - Q& - &) - Ri¥.8)}| - 1
i=1

Since v is arbitrarily small, we get ||E— &l = 0p(1/ y/n) and the proof is complete. Il

Proof of Theorem 3. We first show that there is a root-n consistent local minimizer of (2). As in the proof of
Theorem 2, for = 6 — 8y + (I" BI) "' BQ(€ — &), we have

n

plei =T — Q] (£ — &) — Ri(y, 6))

i=1

sup
1E-&,lI<C/vn

n . . n n
= Do prde T = Riyo. ) + ) Q1 € ~ Godei =5 (€ — £0) ®(E ~ £9)| = 0,(1).
i=1 i=1
For ||€ — &l = L/ v/n with L > 0 sufficiently large, the quantity
4 n
=D QTE~Egei+ 5 (€~ £)T®E &)
i=1
is bounded away from zero with probability approaching 1, and thus
D pedei — T - Q] (¢ — &) — Ry, 0)} - pr ei =TT - Ri(7,,0))
i=1

is bounded away from zero with probability approaching 1. For the penalty terms, when j < gy, with |y;—yp;l <
L/ +/n, by the property of the SCAD penalty, we have p;, (Iyj1) = pa,(lyo;l) since A4; = o(1) and both |y;| and |yy,|
are bounded away from zero. For j > g, we have p,, (ly;]) = pa,(Iyo;1) = 0. Similarly, p,,(8;]) = pa,(|Bo,I) for
J < prand py,(1Bi)) = pa,(IBojl) = 0 when j > p;. Summarizing, we get

q P q 4
n Yy +n ) paB = n > palyoh +n )" pa(BoiD-

=1 =1 =1 =1
Combining the two displayed equations above, we get uniformly for ||§ — &l = L/ /n, for L sufficiently large,

q

n p
D oY= BTX[Y)8 — Z7 B} +n Y pa(yh+n ) pa(BiD

i=1 Jj=1 j=1

n q P
> pel¥i =BT (X[ 70)6 = ZT B + 1 )" pa,(yosh) + 1 Y pas(1Bos).

=1 =1 j=1

This implies there is a root-n consistent local minimizer of (2).
Next, we show the root-n consistent local minimizer in the proof above, denoted by (v, B) satisfies part (ii) of
Theorem 3. By way of contradiction, suppose ﬂ + # 0 for some j* > p;. Let ﬂ be the same as ﬂ except that we

replace ﬁ - by ,8 = 0. Using the convexity of the check loss function, we have p(x) —p:(y) = {t—1(y < 0)}(x—y),
which leads to

S Y~ B PR~ ZTF = Y pulYi~ B (X[ 78 - Z]F

i=1 i=1
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\%

_ Z[T - 1Y, < BT(X[9)6 + Z,TF 11218
i=1

- Z T—1(e; < 0))Zj-B; — Z[l(e, <0) - e <B (X[ 76+ Z] B — mNZ;-Bj. (A2)

For the first term above, we easily find that

D (T =1 < 0)Z;;Bj = Op(Nw(B; .

i=1

For the second term above, we have, using IBT(X?7)§+ ZITF —my| = 0,( VKr),

|

D (e <0) - Ue; <BT(X[7)8+ Z] B — milZiB;
i=1

n 2
< E (Z [1(e; < CVKr,) = 1(e; < —C VKr,)| x |zij*ﬁj*|) ]
i=1
= E|) 1(-CVKr, < e; < CVKr,) X |Zip By
i=1
+ Y E[1-CVKr, < e; < CVKr)U(-=C VKr, < ey < CVKr)\Zij: Zy | % 1B P
il
< CmVKr, + nzKri)E?*,

and thus the second term of (A.2) is O,(n VK r,,)ﬁjv |. Furthermore, the difference of the penalty terms is
q p _ q P _ _ _
n Y o@D +n ) pu@B —n ) pa@h=n )" puBD = npa(Byl) = nalBy|, (A3)
=1 =1 =1 =1

where the last equality is due to that p,;(|x]) = A|x| when |x| < A. Combining the bound for (A.2) and (A.3), we
have

n q P
D oY =BT X786~ Z7B} +n Y pa (T +n ) pa(BiD
i=1 Jj=1 j=1

n q P
= oY =BT X[ 96 - Z]B V= n Y pi(Fh =1 (B >0
i=1 =1 j=1
with probability approaching 1, if VKr, = o(1,). This leads to a contradiction. Similarly we can show that y;i=0
when j > q;.
Finally, to show part (i) of the theorem, we only need to note that given part (ii) and within a root-n neighbor-
hood, the penalty

q1 D1
n Y pa i +n ) pa(Bi
=1 =1
remains a constant, and thus local minimizer of
> pel¥i - BTX[ )6 - 2] B)
i=1
without penalty is also a local minimizer of the objective function with penalty. Then the asymptotic normality
directly follows from Theorem 2. U
Proof of Theorem 4. The arguments are similar to that used in the proof of Theorem 3 with some modifications,
dealing with approximated loss function as well as approximated penalties. We have

18



We first show that results similar to Lemmas 5 and 6 hold with the approximated loss function.

pelY; = BT(X[9)8 - BUT(X[7)6X] (y - 7) - Z] B}
= pee; + m; — BT(X]7)6 - BV (X[ 7)6X] (y - 7) - Z] B}
= pele; = BT (X y0)(® - 60) - BT (X[ 70)80X] (v = y0) — Z] (B = Bo) — Ri(y))
= prle; = T (8 - 60) = U] (v — y0) — Z] B~ By) — Ri»)),
where U; = B(l)T(Xl.TyO)(SOXi as before and

Ri(y) = (BX[7) = BX[ 7)) 76 + BYT(X[7)6 — BVT (X 70)80)X] (¥ - %)
—BOTXTy0)80X] 7 — 7o) + BT (X[ ¥0)60 — &) = Ru(¥) + Ri,

where Eiz = BT(XI.T)/O)(SO — gi (this is the same as what we have previously denoted R (y,6) = Ri(yy,6)) and
R;1(7y) contains the remaining three terms above. We have

Ri() = (BX]7) = BXX 7)) 7@ - 80) + (BT (X[7)8 - BT (X y)80)X] (¥ = 7)
+{BT(X[7)80 = BT (X[ 70)80 = BYT (X[ 70)80X] 7 = 7))
= (B(X[%) - BXX[70))"(@ - 60) + (B (X796 - BV (X[ 70)0)X] (v - 7)
+ BT Xy )6XT 7 — 7o)l
Comparing Ri1(y) with R;1(y, 6) used in the proof of Theorem 1 and Lemma 5, although the two expressions are

different, it is easy to see that we still have |I?,¢| < C+K3/nr,and )1, ﬁlzl = Op(r,%Kz), which are the only bounds
required in the proof of Lemma 5. Thus the latter holds with R;(y, 8) replaced by Ri(y). That is, we have

n

D e~ - QI ¢~ )~ R} = ) pelei ~ M- Rilyo)h + )| Q1 (€ - £p)ei
i=1 i=1

i=1

sup
IE-E,li<C/ vn

B ) pele; -7 - Q[ (€~ £) — Ry} + E ) pele; = T = Rilyg))| = 0,(1),
i=1 i=1

where i = - 8o + ("B "I BQ(£ — &;). It is also straightforward to see that a result similar to Lemma 6
holds, following exactly the same arguments:

n

> Epelei - 77 - Qu(€ — &) — Ri(y))

i=1

sup
IE-E,li<C/ Vn

- — = o 01X, 2,
=3 Eodde - - Rl - 3, LB 6 £)Qi07 (€ - £0)| = 0,01,
i=1

i=1

Thus as in the proof of Theorem 3, we see that for || — &Il = L/ y/n with L > 0 sufficiently large,
D e~ - Q] (¢ — £9) — Ry} = ), pele = I = Rily))
i=1 i=1

is bounded away from zero with probability approaching 1.
For the penalty terms in the proof of Theorem 3, we had

q P q P
n Y palyD+n ) paB = n )" palyo +n ) pa(BoD.
j=1 j=1 j=1 j=1
Here, when A;, 1, = o(1), we still have
q )4 . q P .
n P @Dl +n Y P (BB = n Y. Py (Fiblyojl + 1 Y Pl (BoslBoj)
j=1 j=1 j=1 j=1
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since P'A,(WJ’D =0for j<gq, p’b(IZi'\jI) = 0 for j < pi, while |yg;| = 0 for j > g1, |Bo;l = 0 for j > p;. These results
imply the minimizer of (3) is root-n consistent.

Next, we show the root-n consistent mlmmlzer 7, ﬂ) satisfies part (ii) of Theorem 4. By way of contradiction,
suppose ﬁ + # 0 for some j* > p;. Let ﬂ be the same as B except that we replace ﬁ] by /3’ = 0. Using the
convexity of the check loss function, we have p.(x) — p.(y) > {T — 1(y < 0)}(x — y), which leads to

ZpT Yi-BT(X79)6-BVT (X[ 9)6X] (7-7)-Z] B} ZpTY, B (X[ 7)6-BVT (X 9)6X] 7-7)-Z] B

> - Z[T ~1{Y; < B"(X]9)6 + BV (X[3)6X] 7 - 7) + Z] B NZ;-Bj»
i=1
and the right-hand side can be rewritten as

n

- Z = 1(e; < 0)ZipBj — ) [1(e; < 0) — He; < BT(X[9)6 + BT (X]7)0X] 7 - 7) + L[ B — m)\Zip B

i=1

The rest of the proof follows exactly the same lines of the proof of Theorem 3, except that (A.3) is replaced by
p —_ — — —~ —_—
Z P, (T +n Z P, (BiDIB} - Z P DT = n Y 2, (BB} = npl, (BjDIBj| = naalBy-I.
=1

This completes the proof of Theorem 4. (]

Proof of Theorem 5. We consider the approximated penalized problem (3), and (2) can also be dealt with
similarly. Let S¢ be the set of indices of the nonzero components of (y, ;) in the true model. Let S be the
set of indices of the nonzero components of ()7,5) using 4, A, selected by SIC. As usual, the proof is split into
two cases. First we introduce the following notations. Let

0.7.8) = ) pel¥i = BT(X[7)8 - BT (X[7)6X] (v - 7) - Z] B)
i=1

Define Q,5(y, B) similarly with X;, Z; replaced by their subvectors containing only components in S. In the
following, such subvectors of X;, Z; are still denoted by X;, Z; for simplicity of notation. Let (¥, Bs) be the
minimizer of Q,5(y,B), (¥5.B5) be the minimizer of EQ,5(y, B).

Case 1. So ¢ S (underfitted). Obviously, by definition, we have Qn(i,ﬁ) > Qg (75,55). Proceeding as in the

proof of our theorems above, it can be shown that (¥ ,ES) is a root-n consistent estimator of (y§,B5). Similar to
the proof of Lemma 5, we have

Qs Fs>Bs) = Qus 75, Be) = EQus T, Bs) + EQus (75, B5) = O,(1).

The above is O,(1) instead of 0,(1) since we now do not need the linear term & — &, as in Lemma 5. Similar to
Lemma 6, we have

[EQ,s . Bs) — EQus (75, B5)l = O,(1).
Furthermore, by the Law of Large Numbers, we can also show that |Q,s (¥, Bs) —EQs (s, Bl = op(n). Thus

Qus Fs5.Bs) = EQus (75, B85) + 0,(n). (A4)

Similar bounds hold when S is replaced by S above, i.e.,

Qus, s, Bs,) = EQus, (75, B5,) + 0p(n). (A5)

Next, comparing EQ,s (¥§, By) with EQ,s 75, Bs,), we have
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1 * K 1 * K
0 EQ,s (75, B5) — 0 EQ,s ('}’so»ﬁso)

F(r 1 X5, Zi) = O X, Zy)dr

1 fBWX? VOB PIOK] V-V 12 B

n = JBr PO YI0X 5, V2 By

(BN 01X,Z TWTAAY T () * * T(R* o
= 3 TO 0 (R0 xT536X] (75— 75,) + 2 85 = B3 ) PL1 + 0,
i=1

Using Lemma 3, the above is bounded away from zero. Combining this fact with (A.4) and (A.5), we see that
Qs Vs, Bs)/n—Qus, (¥ ,»Bs,)/n is bounded away from zero. Let (do;, Ao2) be the theoretically optimal (satistying

the conditions of Theorem 3) tuning parameters with the corresponding estimator (y O’Bs ,)- Finally, we get

SIC(A1, A2) = SIC(Ao1. A2) 2 In Qs 5. Bs) — In Qus, s, Bs,) + Op(Inn/n)
Qus s, Bs)In — Qus, s, . Bs, ) /n

=In<s1 + —
Qnsg(yso,ﬁso)/n

+ O,(Inn/n).

Case 2. Sy C S (overfitted). In this case, both (¥, ,ES) and (yg O,ES ,) are root-n consistent estimators of (yy, By)-
Using results similar to Lemma 6 again, we get Q5 (¥, Bs)/n — Qnso(fso,ﬂso)/n = 0,(1/n). Thus

Qs G;S’ES)/n S QnSOGS()’ESO)/n

SIC(Ay, A2) — SIC(Ap1, Apz) = In< 1 + = +1Inn/(2n)
Qnso(fso,ﬂso)/”
= 0p,(1/n) +Inn/(2n) > 0,
which is again in contradiction to the fact that (1, 4,) minimizes SIC. O
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