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1. Introduction

In this paper we are concerned with three major problems of statistical inference, namely those of testing homogeneity,
testing symmetry and testing for independence. Specifically, and in the context of each problem, we will formulate a
population measure which characterizes the underlying stochastic property of homogeneity, symmetry or independence
in the sense of taking value zero under the corresponding null hypothesis while being strictly positive otherwise. We
also propose empirical versions of the three population measures and study several aspects of the resulting test criteria
including asymptotic as well as finite-sample behavior. The common theme of the aforementioned population measures
is that they are expressed as weighted L,-type distances involving the characteristic function (CF) of the underlying
law. Particular instances of these population measures have appeared as characterizations earlier in the literature and
corresponding test statistics have gained considerable popularity. We will show that most of these special cases result
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from choosing a particular member of the spherical stable family of distributions in the aforementioned weighting scheme.
In this connection we will make repeated use of the fact that the CF of a spherical stable law is given by

or(t) = / cos(t T2 p(2)dz = exp(—[IE[). (1)
RP

where f, , stands for the density of a spherical stable law in RP with characteristic exponent « € (0, 2], and ¢z(t) denotes
the CF of a given random variable Z, || - || denotes the Euclidean norm. When clear from the context we will suppress
the dimension and simply write f,. The spherical stable family includes the multivariate standard Gaussian and Cauchy
distributions as special cases, for « = 2 and o« = 1, respectively. Further information regarding these distributions,
including expressions for corresponding distribution functions and densities, may be found in [32,48].

The remainder of the paper is as follows. In Section 2 we introduce the three null hypotheses separately and in each
case we deduce the appropriate distance measure and the corresponding characterization; we also provide connections
between these quantities and the existing literature. Section 3 provides interpretations of these distance measures in terms
of density deviations. In Section 4, three test criteria are computed, each for the respective null hypothesis considered
and it is seen that earlier test criteria are particular instances of our quantities. A Bayesian type interpretation for the
choice of the weight function and affine invariant versions of the tests statistics are also discussed. Asymptotic results
can be found in Section 5, while the results of a series of Monte Carlo trials are presented and discussed in Section 6.
The paper concludes in Section 7 with a summary of findings. All proofs of the theoretical results are presented in the
Appendix.

2. Population distances
2.1. Homogeneity distance

Let X and Y be two independent random vectors of dimension p and suppose that we wish to test the null hypothesis
Ho:X=4qY, (2)

where =4 stands for equality in law.
The approach followed here is based on the uniqueness property between a given distribution and its CF, stating that
the null hypothesis H, in (2) holds if and only if

Vierr  @x(t) = @y(t). (3)

The natural L,-type distance corresponding to (3) is then given by

Dy = f lox() — ey (O w(t)de, (@)
RP

where w > 0, a.e., is a weight function the role of which we will emphasize in this work. To begin with we note that
in (4) as well as in the other distance measures that follow, a weight function is necessary when the CFs involved are
non-integrable. In any case w is an indispensable part of the sample versions considered in Section 3 even with integrable
population CFs.

On the basis of w, two types of homogeneity criteria have been considered in the literature. The first is based on a
certain non-integrable weight function initially suggested by Székely and Rizzo [40]. Subsequently this approach gained
considerable popularity, and the test criterion was later followed up by several authors, and for different problems;
see, e.g., [26,36]. The second type of CF-based two-sample test statistics involves an integrable weight function and was
suggested in the univariate case in [27], and later extended to vectorial observations in [22].

Here we will show that the two aforementioned approaches are intimately related, with the connecting element being
a very special type of weight function. To see this, first recall from [40] that (3) is equivalent to

E{cost' (X — X;)+cost' (Y —=Y;)—2cost' (X —Y)} =0, (5)

where X; =4 X (resp. Y; =4 Y) with X; (resp. Y1) independent of X (resp. Y).

The approach based on integrable weight functions admits an interesting specification whereby we replace the weight
function w by the density, say fr, of a random variable T with corresponding CF ¢r. We assume that fr is positive with
probability 1. Based on this specification we have the following novel characterization.

Proposition 1. Let X and Y be two arbitrary independent vectors in RP. Then for any density fr, which is positive with
probability 1, with CF ¢r, the quantity Dy defined by

Dy = E[Re{pr(X — X1) + or(Y — Y1) — 201(X — Y)}], (6)
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where Re(z) denotes the real part of a complex number z, is equal to zero if and only if X =4 Y, and it is otherwise strictly
positive.

Note that the distance Dy is a (squared) maximum mean discrepancy distance in the sense of [17], with associated
kernel k(x, y) = Re{pr(x — y)}.

Now if we replace fr by the density of the spherical stable distribution f,, then in view of (1) we can write the distance
resulting from (6), say Dy, as

Dy = E(e~ XX | o=V V1" _ 5= IX-YI) 7)

which leads to the following result.

Corollary 1. Let X and Y be two arbitrary independent vectors in RP. Then for any fixed a € (0, 2], the quantity D, defined
in (7) is equal to zero if and only if X =4 Y, and it is otherwise strictly positive.

An application of the approximation e* ~ 1 + x, to (7) leads to
Do = E2|X = Y[I¥ = [X = X4 |* — [IY = 1[I}, (8)

with D, being precisely the generalized two-sample energy statistic of Székely and Rizzo [42]. Note that this energy
statistic makes use of the integral

1—cos(t'z) "
/ — s 2=t 9
e Clzf|**P

where « € (0, 2) and C denotes a constant depending only on « and p.

There exist two more directions leading from (7) to (8) which provide further insight. The first comes from the fact
that the Székely and Rizzo distance D, results by means of the integral in (9) if in (A.1) in the Appendix we replace
cos(-) by 1— cos(-) and the weight function w by ||t||~(“*P). In this connection, recall that the density of a spherical stable
distribution satisfies f, (t) & ||t||~**?) as t — oo; see [32]. Hence D, may be viewed as resulting by way of approximation
from D, when the density f, which is used as weight function is replaced by its approximation for large arguments t.

The other direction leading from D, to Dy, is as follows. Choose, instead of f,,, the density of the random variable T/} /¢
as weight function in (6), for some y > 0, and note that the CF corresponding to this density is given by e~I“I*/7, This
yields a corresponding distance, say A, ,, analogous to that in (7) but with || - ||* being replaced by || - ||*/y throughout
Eq. (7). Now if we take a two-term expansion e~ ¥I*/7 = 1 —||x||*/y 4+ 0(1/y), as y — oo, in the new distance A, ,, this
will lead to

lim y Ay, = D,. (10)
)/—)OO

Eq. (10) shows that the energy population distance in (8) is a limiting instance of the distance in (4), in the case
when the density of a properly scaled spherical stable density is used as weight function. Specifically this special case is
recovered in the limit as the aforementioned scale parameter involved grows large.

The connections given above bring together two seemingly different approaches for two-sample testing: The approach
utilizing (1) which employs an integrable weight function and the approach of employing the non-integrable weight
function figuring in (9). However we must stress that D, is defined for any pair of random vectors without the moment
condition E||X||%, E|Y||* < oo, which is implicit in the definition of D,. Also while in B,, the value & = 2 is excluded
from the characterization, it is clear that this restriction no longer applies to D,.

2.2. Symmetry distance

Suppose that X is an arbitrary random vector of dimension p, and that we wish to test the null hypothesis
Ho : X =4 —X, (11)
of symmetry around the origin. In the Fourier domain, the null hypothesis (11) is restated as
Viere Im{gpx(t)} =0, (12)

with a corresponding distance

/ [m{gx (0} w(t)dt,
RP

where Im(z) denotes the imaginary part of a complex number z. Now observe that (12) holds if and only if

E{costT(X —X;) —cost' (X +X;)} =0, (13)
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where X is defined below (5), while the same quantity is positive otherwise. This observation leads us to the following
characterization.

Proposition 2. Let X € RP be an arbitrary random vector. Then for any density fr, which is positive with probability 1, with
CF @r, the quantity Dy defined by

Dy = E[Re{gr(X — X1) — or(X + X1)}1, (14)
is equal to zero if and only if X is symmetric around zero, and it is otherwise strictly positive.

Now if we replace f; by the density of the spherical stable distribution f,, then in view of (1) we can write the distance
resulting from (14), say D,, as

D, = E(e”IX=X11" _ o= IX+X11y. (15)

which leads to the following result.

Corollary 2. Let X € RP be an arbitrary random vector. Then for any fixed « € (0, 2], the quantity D, defined in (15) is equal
to zero if and only if X is symmetric around zero, and it is otherwise strictly positive.

By following the approximation arguments of Section 2.1, we can see that D, in (15) may be approximated by the
distance D, = E(||IX + X1]|“ — IX — X1[|*), analogously as in (10). In turn the last distance results (apart from sign) by
means of (9), if we write 1 — cos(-) instead of cos(-) and replace w(t) by (C||t||)‘(°‘ff) in (A.3) in the Appendix.

Hence here we have two levels of generalization. At the first level, the distance D,, generalizes the symmetry distance
and the corresponding characterization in [7,39,44], from D; = E(|IX + Xq|| — [IX — X1||) to D, with arbitrary o € (0, 2],
while at the second level D, is obtained from D, by means of a simple limiting argument.

2.3. Independence distance

Suppose now that X and Y are two arbitrary random vectors, of dimensions p and g, respectively, and that we wish
to test the null hypothesis

Ho:X LY, (16)
where L stands for independence in law. In the Fourier domain (16) may be stated as
Yieserrta  ox, (L, $) = @x(t)ey(s),

with corresponding distance given by

D, = / Ixr(t, $) — ox(Opy(s)Pult, s)deds. (17)
RPH4

Unlike in Sections 2.1-2.2, we will elaborate here more since the derivations are slightly more involved. Specifically,
compute

lox,v(t,s) — px(O)py ()1 = {px.v(t, s) — ex(Opy($)Hex.v(t. ) — ex(ODpy(s)) (18)
= lox.v(t, $)1* + lox(t)Ploy(s)* — 2Re{px v (¢, S)ex(Opr(s)},

where z denotes the conjugate of a complex number z, and further notice that

lox.v(t, ) = E[cos{t (X — X1) +s" (Y — Y1)}, (19)
lox(0)*|gy(s)]* = Efcost " (X — X1)}E{coss' (Y — Y1)}, (20)
Re{ox v(t, S)ox(Dpy(s)} = E[cos{t T (X — X1) +sT (Y — Y2)}1, (21)

with (X1, Y1), (X2, Y3) being independent copies of (X, Y).

We will also assume that the weight function may be decomposed as w(t,s) = wp(t)wqy(s), where wy, and w, are
functions defined in the corresponding dimensions. We note in passing that while the product decomposition is not
formally essential, it considerably simplifies expressions without giving up much generality, and therefore has been
typically followed by researchers dating back to [37], and was later adopted in [12,43], among others.

With these observations, we are led to the following novel characterization.
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Proposition 3. Let X € R” and Y € R? be two arbitrary random vectors. Then for any pair of densities fr, and fr,, which are
positive with probability 1, with corresponding CFs ¢r, and ¢r,, the quantity Dy defined by

Dy = E [Re{er, (X — X1)}Re{pr,(Y — Y1)}] + E [Re{er, (X — X1)}] E [Re{er, (Y — Y1)}] (22)
— 2E [Re{gr, (X — X1)}Re{gr, (Y — Y2)}],
is equal to zero if and only if X and Y are mutually independent, and it is otherwise strictly positive.

Now if replace fr, by fyp and fr, by fu 4. i€, the densities of spherical stable distributions (in the corresponding
dimensions), we can write the distance resulting from (22), say D,, as

D, = E(e—(HX—Xl % +1Y=Yq H“)) + E(e—llx—Xl 1 )E(E—I\Y—YH\“) _ ZE(e_(”X_X‘ ||°'+\|Y—Y2||°‘)), (23)

which leads to the following result.

Corollary 3. Let X € RP and Y € RY be two arbitrary random vectors. Then for any fixed o € (0, 2], the quantity D, defined
in (23) is equal to zero if and only if X and Y are mutually independent, and it is otherwise strictly positive.

We note that for « = 1, the distance measure D, may be heuristically described as an “exponentiated” version of the
distance covariance of [43] given by

E(IX = X1 [IY = Yall) + ECIX — X3 [DECIY — Y1 [1) — 2E(IX = X [[IY — Y2 ).

At the same time our approximation techniques of Section 2.1 do not lead in this case to any sort of formal relation
between D, and the distance covariance of [43] or its generalized version in [42] being defined for arbitrary « € (0, 2].

3. Interpretations

While L, distances based on CFs are by all means formally acceptable, it would be interesting to related these distances
with distances involving more traditional statistical quantities. To this end we will make use of the Parseval-Plancherel
identity which states that

lox — eyl = @ Plf — f Il (24)

where
lox — oIl = / lox() — oy (OPt, fi — o2 = / (D) = fr(OPdt,
RP RP

for any given pair of CFs and corresponding densities, provided that both sides of (24) exist.

Now for the distance D,, in (4), consider as a tentative weight function the density f, and assume that this density
is proportional to go%, where ¢; is the CF of some symmetric around zero distribution. Prominent examples of this
formulation will be given in the last paragraph of this section. Then replace the weight function in (4) by g0§, and apply
(24) to the resulting quantity to get

2 2
Dy =D,z = loxsz — @vazll” = R Pllfxaz — frazll®,

where » denotes convolution. Hence the weighted L, distance between the CFs of a pair of variables X and Y may be
equivalently interpreted as an L, distance between two densities: The density of the convolution X xZ and the density of
the convolution Y = Z, where Z is the random variable, the CF of which we have used as weight function in formulating
the distance D,, as Dwf'

Along the same lines, expressions involving distances between densities may be obtained in the case of symmetry and
independence but these are not so straightforward and illuminating to interpret. For example the interpretation for the
symmetry distance D,, in (A.3) is recovered by noting that

{Im(ex ()} = Hex (O — {¢(6) + p(—1)}/21/2.

In turn if we observe that |gx(t)|? is the CF of X » (—X;) and {p2(t) + @2(—t)}/2 is the CF of a random variable which
is equal to X » X; and (—X) » (—X;), each with probability 1/2, this interpretation ultimately rests on the fact that a
given random variable X is symmetrically distributed around zero if and only if it satisfies X =4 Y, where Y is such that
Pr(Y =X)=1-Pr(Y = —X;) = 1/2.

We now go back to the original formulation and consider the question of which members of the spherical stable family
qualify for the interpretation given here. The most prominent example is the multivariate standard normal density which,
recall, is a special case of the spherical stable family for « = 2, and could serve both as a density as well as a CF within
the multivariate normality class. The other, less well-known member, is the multivariate standard Cauchy distribution,
resulting from the same family for « = 1, which after scaling has a density that coincides with the CF of a symmetric
multivariate generalized Laplace distribution; see [24]. Note finally that both the normal and the generalized Laplace are
infinitely divisible distributions so that their CFs have squares that are also CFs and belong to the same family.
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4. Sample distances: Computations and affine invariance
4.1. Computations and related issues

In this section we will provide sample analogs of the distance measures introduced in Sections 2.1-2.3, in the form of

V-statistics. To begin with the symmetry statistic, suppose that X, ..., X, are independent copies of the random variable
X. Then the test statistic corresponding to the symmetry distance measure D, in (15) is given by
1 — o o _ . [*3
DS, = = 37 (e I e, (25)
1<j,k<n
Likewise suppose that Yy, ..., Y, are independent copies of the random variable Y. Then the test statistic corresponding
to the homogeneity distance measure D, in (7) is given by
1 _ g o _ g o — g o
D, = = Z (e G=Xel o IY=Yel® _ o= IX=Yel®y, (26)
1<j,k<n

In turn the test criterion corresponding to the independence distance measure D, in (23) is given by

1 X 1YY [ 1 x| 1 v
D= {e—(u)g—xku HIY =Yl )}+ = 3 e = 3 et 27)
» n2 n2 n2
1<j,k<n 1<j,k<n 1<j,k<n
_2 37 (e XAy,
n3
1<j,k.l<n

The symmetry statistic D} , dates back to the criterion of [13] for univariate symmetry, and was later generalized to
arbitrary dimension in [15, 20] see also [30]. In fact D}, , is a extended version of the statistic of [20] from « = 2 to any
a € (0, 2], and, with proper standardization, contmues to satisfy several nice properties of that statistic such as affine
invariance. Particular cases of the homogeneity statistic in (26) have appeared in [1,2,4,22,34]. Most of these statistics
are special cases of Dn ,» most often for « = 2 but also for « = 1. Finally, and beyond the already mentioned heuristic
connection with the distance covariance, various authors, e.g., [6,10,21,23,28,38,42], have used statistics analogous to ]D) o
for testing independence of the components of a given random vector. Their statistics are often special cases of ID)’ , for
«a = 2. By contrast, Bilodeau and Guetso Nangue [5] make use of the full spectrum of values « € (0, 2], while Fan et al.
[11] propose several weight functions, including the Gaussian as well as the Székely-Rizzo weight function.

Remark 1. Here we define the test criteria in terms of V-statistics as it is common with most researchers working with
CF-based statistics; see, e.g., [1,4,6,22,26,34,40]. Clearly though, there is an analogous formulation using a corresponding
U-statistic. We illustrate this U/V dichotomy only for the homogeneity statistic, but similar arguments apply to the other
two test criteria. To this end, assume that the null hypothesis #q : X =4 Y is true, and observe that

(2= 2B Y1) n 4 0,(1/n),

where Uﬁ.a is the corresponding U-statistic. Hence when multiplied by the normalizing constant n, the V-statistic differs
from the U-statistic asymptotically by the constant 2 — 2E(e~!X=YI*), In this connection, and although the U-statistic is an
unbiased estimate of its target, we note that the corresponding V-statistic is asymptotically equivalent and is expected
to achieve the same power, at least for large sample size n.

We now provide an interesting Bayesian-type interpretation of the weight function. Specifically, replacing in Section 2
the weight function w(t) by a density is like treating the argument t as a random quantity with the density fr(t) acting
as a Bayesian prior on it. In this context the hitherto popular choice « = 2 currently dominating the literature may be
interpreted as choosing the multivariate standard normal density, which is a medium-tailed prior. This is equivalent to
emphasizing values of the underlying CF for t close to the origin. In contrast « < 2 yields a heavy-tailed density (and
progressively more so as o decreases towards zero), which amounts to putting considerable emphasis also on values of the
argument t away from zero. Recall, however, that the behavior of a given CF around the origin reflects the tail-properties
of the underlying law, while the same behavior for large t is related to the smoothness of the corresponding density. Hence
taking a smaller « is like shifting the emphasis from the tail properties of the underlying distribution to the smoothness
properties of its density.

This observation invites a possible data-dependent choice of the weight function, whereby « is first estimated
from the data and then from this estimate we choose the weight function in (1) with « replaced by &. Such an
estimator could be either parametric (i.e., imposing a stable distribution on the data) or entirely nonparametric as in
our context. Parametric/nonparametric tail-index estimation is a widely studied problem in the univariate setting (see
for instance [8,29,33], but definitely less so in the vectorial context; nevertheless see [9,32]. In either case though the
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asymptotics of such data-driven test criteria will be different from those presented in Section 5, and need to be studied
separately, but we anticipate that this problem will be far from trivial.

We close this section by pointing out that while, due to its popularity, the case in point here is the spherical stable
density as weight function, our approach is nevertheless quite general. Specifically, Propositions 1-3 of Section 2 apply
and yield corresponding characterizations and test statistics for any appropriately chosen CF. In this regard (6), (14), and
(22) are the key equations here that are characterization-producing, in the sense that by replacing the corresponding CFs
involved therein (¢r, in (6) and (14), and ¢r, and ¢r, in (22)) by specific instances leads to corresponding characterizations
which in turn then, and by proper estimation, render new test criteria. In particular mixtures of spherical stable
distributions, mixtures of normal distributions, as well as multivariate generalized Laplace distributions would yield
qualitatively much the same results if used as weight functions, only with aggravated computational formulae.

4.2. Affine invariance

When proposing measures of goodness-of-fit, affine invariance is one of the important features that should be taken

into account. In this connection recall that conditionally on a set of available data, say Xi, ..., X, € RP, an arbitrary test
statistic T, = Tp(Xy, ..., X;) is affine invariant if
TW(AXi +a,...,AXy +a) =Ty(Xq, ..., Xa), (28)

for each nonsingular p x p matrix A and each vector a € RP. Property (28) with a = 0 is termed scale invariance while
the same property with A replaced by the identity matrix is termed location invariance. Clearly a test statistic should be
affine invariant only if the corresponding null hypothesis is also affine invariant, and in this sense, as it will be seen below,
the property is specific to the null hypothesis being tested. For instance, Henze [19] shows that any affine invariant test

for multivariate normality should depend on the original observations Xi, ..., X, only via the corresponding Mahalanobis
squared radii D)(ék) =X-X )TS; (X, — X), where X and Sy stand for the sample mean and the sample covariance matrix,
respectively, of X1, ..., X,,. In what follows we discuss this aspect of the new statistics.

It should be stated right from the outset that our test statistics as formulated in the previous subsection are
not affine invariant, although the homogeneity statistic in (26) as well as the independence statistic in (27) are by
construction location invariant. In this connection the aim of the following discussion is to investigate whether specific
data transformations, such as the usual location/scale standardization, may result to affine invariant versions of the test
criteria figuring in Eqgs. (25)—(27).

We begin with the symmetry statistic by first noting that the null hypothesis in (11) of symmetry around zero is scale
equivariant but not location invariant. So it only makes sense to talk about a scale invariant test statistic. To this end, the
test statistic in (25) will be scale invariant if instead of the original observations we compute the test criterion based on

the standardized data defined, forallj € {1,...,n},by Z; = S;l/z)g'. Analogous considerations apply in the case of testing
the null hypothesis of symmetry around an unknown center.

Turning to the case of homogeneity testing, we note first that the corresponding null hypothesis in (2) is affine invariant
and therefore we require that our test criterion satisfies

Tn(AXI +a,...,AX; +a, AY; +a7"'7AYn+a):TH(X17-"7XnaY11-~'7Yn)7

for each vector a and matrix A. However, the homogeneity statistic in (26) depends solely on distances between
observations and hence it is clearly location invariant. Hence without loss of generality we may take a = 0 in the above
equation, so that no data centering is necessary.

There exist two approaches to affine invariance of the homogeneity statistic. First we could use the standardized data
Ixj = 5;1/2)9 and Zy; = S;]/ij with j € {1,...,n}, by estimating the covariance matrix separately for each of the
two samples. This approach however leaves the terms ||X; — Yi|| in (26) non-invariant, with the degree of non-invariance
depending on the size of discrepancy between the two sample covariance matrices Sy and Sy. Then again if we use a
pooled covariance matrix estimator, say Sxy = S(Xi,...,Xs, Y1, ..., Yy), affine invariance requires that this estimator
satisfies S(AX; +a, ..., AXn +a,AY; +a, ..., AYn+a) = AS(X1, ..., Xn, Y1, ..., Yo)AT.

Clearly both approaches leave something to be desired, with the first leading to a test criterion that is really not affine
invariant while the second approach may be viewed as imposing a common covariance structure on the two samples
which would not make sense if the vectors are incommensurable. Nevertheless if the user is interested in shape differences
between the two populations, i.e., in differences beyond location/scale, the latter standardization may seem a reasonable
approach.

We finally consider the independence criterion in (27), by first noting that in the context of the corresponding null
hypothesis in (16), affine invariance generalizes to

Tn(AXl+a’---sAXn+a7BYl+bs---,BYn+b):Tn(xl;--~,Xn,yl7---sYn),

for each pair of constants a and b and each pair of nonsingular matrices A and B, in the corresponding dimensions. Clearly
though, the test statistic in (27) is invariant under arbitrary location shifts of the vectors Xi,...,X, and Yy, ..., Y}, so
for affine invariance it suffices to consider a = b = 0, in the above equation. In this connection if instead of the original
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observations we employ the standardized data Zy ; = S;”ZX]» and Zy j = S;”ZYj with j € {1, ..., n}, then it may readily
be shown that the test criterion resulting from (27) satisfies the above affine invariance equation, i.e., this type of scale
standardization renders affine invariance.

We close this section by noting that the asymptotic properties in the case of the affine invariant versions of our
test criteria will be different from those presented in the next section. Specifically although these limit distributions are
obtained without any moment conditions on the underlying random vectors, this is not the case for their affine invariant
versions. In particular, and as already discussed, such versions require proper standardization, and this standardization
proves to be asymptotically influential. In this connection, the limit null distribution of the resulting affine invariant test
statistic is obtained only under suitable moment conditions which relate to the specific standardization involved; see for
instance [20,21,35].

By way of example consider the affine invariant version of the symmetry statistic. If in (30) instead of the original

observations we employ the standardized data Zx ; = s;”zxj with j € {1, ..., n}, the resulting sample distance measure
now equals
2 2
1 1 o
f =D osin(tTZy) ¢ ow(e)de = f =Dz w(oe, (29)
re | 1 = re | N o h

where Z; (t) = sin(t "X;)+t " Aj cos(t " Xj)+enj(t) with A; = (S¢ /> —1,)X;. Note that due to affine invariance, and without
loss of generality, we have assumed that the covariance matrix of X; is equal to the identity matrix I,. We then need to
impose the condition that E||X||* < oo in order to proceed as in Theorem 3.1 in [20] and show that the part of the test
criterion in the right-hand side of (29) involving the errors €, j(t) is asymptotically negligible. However by the same token,
the part of the same quantity involving Sy has an effect on the null distribution, which differs from the one figuring in
(31) in the covariance matrix of the limit process. In this connection, if an affine invariant version of the test statistic
is desired then it is probably advisable to use instead of permutation tests, bootstrap tests which are more appropriate
when parameters are being estimated; see for instance [14].

5. Asymptotic behavior

In this section, we will study the asymptotic behavior of our test statistics under both the null hypotheses as well as
under general alternatives. To this end let

Do = / [ (6) — ony(6)Pw(t)dt,
RP

Do = / [Imi{gnx (6} Pw(t)de, (30)
RP

Drw = [ 100xs6:5) = ons(Opn (e, s,
RPHq
denote the sample analogs of the distance measures introduced in Section 2, where ¢, z(t) = 21'7:1 eit's /n, denotes the
empirical CF computed on the basis of independent copies Z, ..., Z, of a given random variable Z. A convenient setting

for asymptotic theory is the separable Hilbert space of measurable real-valued functions defined on RY; we use the generic
notation d for dimension, with d varying depending on context. In this context we impose the following assumptions.

Assumption (C). Let w(t) be a measurable non-negative function on R? such that, for all t € R%, w(t) = w(—t) and
0< / w(t)dt < oo.
RrA

Now denote by £? the separable Hilbert space of measurable real-valued functions on R? that are square integrable with
respect to w(t)dt, with the inner product and norm in £2 respectively defined by

172
F.8)w = f F(Og(Ow(t)dt and ||f||w={ / fz(t)w(t)dt} .
R R

We now formulate the asymptotic distribution of the homogeneity test statistic under the null hypothesis in the
following theorem.

Theorem 1 (Limit Null Distribution of the Homogeneity Statistic). Let Xy, ..., X, and Y1, ..., Y, be independent copies of X
and Y. Under H,, suppose @x(t) = py(t) = ¢(t), then under Assumption (C), as n — oo,

h 2
nDn,w ~ “Z (t)”wv
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where ~ means the convergence in distribution, and {Z"(t) : t € RP} is a zero-mean Gaussian process with covariance kernel
defined, for all s, t € RP, by

E{Z"(5)2"(6)) = 2[Refg(s — £)} + Im{g(s + )} — Re{g(t)}Refp(s)} — Im{p(s)}Refp(t)} — Im{e(t)}Im{g(s))].

The next results show that the test based on D, ,, is consistent against general alternatives.

Theorem 2 (Stochastic Limit of the Homogeneity Statistic). Let X1, ..., X, and Yy, ..., Y, be independent copies of X and Y.
Then under Assumption (C), as n — 09,

wpl
Dpw —> D02

w?

where pl means convergence with probability 1, and D'(t) = |x(t) — @y(t)

If the weight function is positive with probability 1, then in view of Proposition 1, the quantity ||D”(t)||ﬁ) is equal to
zero if and only if the null hypothesis of homogeneity figuring in (2) holds true, which implies the consistency of the test
that rejects this hypothesis for large values of D, ,,. As a particular case, Corollary 1 implies the consistency of the test
based on D’,}’a which results by replacing w(t) by the spherical stable density.

Now we give the analogous asymptotic results for the symmetry test and the independence test.

Theorem 3 (Limit Null Distribution of the Symmetry Statistic). Let X1, ..., X, be independent copies of X. Under Hy and
Assumption (C), as n — oo,

nDn,w ~ ||Zs(t)”2uw (3])

where {Z5(t) : t € RP} is a zero-mean Gaussian process with covariance function given, for all s, t € RP, by E{Z%(s)Z5(t)} =
E{sin(s"X)sin(t " X)}.

Theorem 4 (Stochastic Limit of the Symmetry Statistic). Let X1, . .., X, be independent copies of X. Then under Assumption (C),
asn— oo,

wpl
Dynw —> IID(D)I3,

where D*(t) = Im{qpx(t)}.

Theorem 5 (Limit Null Distribution of the Independence Statistic). Let X1, ..., X, and Y1, ..., Y, be independent copies of X
and Y. Under Hy and Assumption (C), as n — oo,

Dy, ~ 1Z'(E, )17,

where {Z'(t,s) : (t,s) € RP*9} is a zero-mean Gaussian process with the same covariance kernel as the process {Z(’)(t, s) :
(t,s) € RPTY} defined as

Zy(t,s) = [cos(s"Y) — Refgy(s)}] [cos(t"X) + sin(t X) — Refgx(t)} — Im{gx(t)}] (32)
+ [sin(s"Y) — Im{gy(s)}] [cos(t "X) — sin(¢"X) — Re{gx(6)} + Im{px(0)}] -

Theorem 6 (Stochastic Limit of the Independence Statistic). Let X1, ..., X, and Yy, ..., Y, be independent copies of X and Y.
Then under Assumption (C), as n — 00,

wpl [ 2
Dpw —> D, S)Il3.

where D'(t, s) = |ox y(t, s) — @x(t)py(s)].

The asymptotic null distribution of each test criterion is obtained by means of the Hilbert space Central Limit Theorem
coupled with the continuous mapping theorem, while the corresponding stochastic limit makes use of the point-wise
consistency of the empirical CF and dominated convergence. Detailed proofs are given in the Appendix.

The asymptotic null distributions obtained in this section are highly non-standard. Typically the test criteria have
the same limit distribution as an infinite linear combination of independent chi-squared distributions. The coefficients
though of this linear combination are the eigenvalues of a complicated integral operator, and thus they are extremely
hard to solve for analytically. The only fully analytic representation of the limit null distribution is by Baringhaus [3];
it corresponds to the special case of the fixed-location symmetry statistic in (25) with « = 2. Otherwise one possible
way for directly approximating this distribution is to numerically approximate a finite number of coefficients, replace
the infinite sum by a finite one involving these numerically produced coefficients, and finally simulate by Monte Carlo
the resulting (finite-sum) distribution of independent chi-squared variates; see, e.g., [11,30]. However, such a numerical
approximation is a formidable task, and therefore most authors have resorted to properly chosen resampling techniques,
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tailored to each testing situation, in order to compute critical points and actually carry out the tests. These resampling
techniques will be discussed in the next section.

6. Simulations

One of the most generally accepted strategies of comparing different tests is by studying their relative efficiency via
comparison of Bahadur slopes; see [31]. This approach allows comparison of any given test against the likelihood ratio test,
which is the best possible test in the direction of any specific alternative. However, the related theory is highly technical
since it requires the study of large deviations which is a formidable task in its own right. This line of research was carried
out by Tenreiro [45], thereby producing some technical guidance for the efficiency of a CF-based statistic for multivariate
normality against certain types of skewed alternatives. It should be emphasized though that Tenreiro’s analytical results
apply in the very specific parametric context of normality testing and were obtained only in the univariate case, and that
the corresponding multivariate case was investigated by means of a Monte Carlo study.

In view of the above discussion, and while a theoretical investigation of test efficiency is certainly an interesting subject
for further research, here we resort to a Monte Carlo study in order to investigate the power properties of our tests. In the
simulation studies, all tests are performed at the 5% significance level using 2000 trials. Since, as was shown in Section 5,
the asymptotic behavior under the null hypothesis is not distribution-free in any of the three cases, we perform the tests
via permutation resampling schemes. In this connection we point out that permutation tests are applicable and can be
exact if the randomization hypothesis holds. For the hypotheses of homogeneity and independence in (2) and (16), this
hypothesis reads as

T2 = T@m)  apd M =4 T(””), (33)

respectively, where Y®" = (X;, ..., Xn, Y1, ..., Ys), Y™20) denotes the vector produced by an arbitrary permutation of
all elements of 73", while 70 denotes the vector produced by an arbitrary permutation of only the last n elements of
7@, Clearly under (2) (resp. (16)), the left-hand (resp. right-hand) side of (33) holds true. As for the symmetry hypothesis,
the randomization hypothesis holds true under a different group-transformation. Specifically we have

xm =4 X(m),

where X™ = (X;,...,X,) and Xt = (Xq), ..., Xz(m), Where X, = UjX; with U; being iid and independent of
(X1, ..., Xy), and taking values +1 with equal probability 0.5. This type of resampling is often labeled as wild bootstrap.
See [25] for more information on the randomization hypothesis, and [16] for a book-length treatment of permutation
tests.

Our Monte Carlo approximation uses N = 1000 permutations, which is a good surrogate for the exact permutation
distribution. The characteristic exponent values for the spherical stable density weight function are « € {0.5, 1.0, 1.5, 2.0}.

(i) Permutation-based homogeneity testing: We follow the permutation resampling scheme described above which has
also been used in [22].
(ii) Permutation-based symmetry testing: We follow the wild bootstrap resampling scheme which has also been used
in [20,47].
(iii) Permutation-based independence testing: We follow the permutation resampling scheme described above which
has also been adopted in [43].

The Monte Carlo results are produced using the R software on the Windows platform. The average CPU time for a
single Monte Carlo trial using 1000 permutations was 0.37 s, 0.94 s, and 5.12 s, for sample size n = 20, 40, and 100,
respectively, using an Intel(R) Core(TM) i5-2500 CPU, at 3.30 GHz.

6.1. Comparison with energy statistics

For comparison purposes, we present three examples that compare the empirical size and power of our proposed
tests with those of the energy statistics of [42]. The latter statistics are based on (6.1), (6.2) and (7.11) in [42] for
testing homogeneity, symmetry and independence, respectively. All tests are implemented as permutation tests, with
the software for the application of the energy statistics being available in the energy package for R.

The distributions considered are: The uniform distribution ¢/(a, b) in the interval (a, b); the Fisher-Snedecor distri-
bution F(nq, ny, §) with degrees of freedom (nq,n,) and non-centrality parameter §; the Pareto distribution P(a, s)
with shape parameter a and scale parameter s; the Student t-distribution t(m) with degrees of freedom m; the Cauchy
distribution C(¢, s) with location parameter £ and scale parameter s. In this notation, C,(¢, s) denotes a p-dimensional
Cauchy distribution, and analogously for other distributions.

Example 1. Homogeneity test: We consider three scenarios in this example. In Example 1(a), X ~ U(—1,1) and
Y ~ Uy(—1, 14+C), the notation 24,(—1, 1) stands for the coordinates of X € R are independent and identically distributed
as uniform distribution ¢/(—1, 1). In the following, we just suppose that the coordinates of X € R? and Y € R? are iid. We
choose C =0:0.25: 1, here 0: 0.25 : 1 means a vector of evenly spaced points in the interval [0, 1] with spacing equal
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Fig. 1. Simulation results for Example 1. Rejection rates of the homogeneity test against the value of C at the 5% significance with dimensions
p = q =5 and sample size n € {20, 40}. Characteristic exponent « = 0.5 (solid line), « = 1.0 (dashed line), « = 1.5 (dash dot line) and @ = 2.0
(dotted line), energy statistics (thick line).

to 0.25, so that the choice of C = 0 corresponds to the null hypothesis, while with C > 0 we are in the alternative. The
dimensions of X and Y considered are p = q = 5, with sample size n € {20, 40}. In Example 1(b) we repeat Example 1(a)
under identical conditions except that the coordinates of the random variables X and Y are independently generated from
F(1,2)and F(1,2,C),and C = 0: 0.5 : 2. In Example 1(c), X ~ Pp(1,1), Y ~ Py¢(1,1+C)and C = 0:0.25 : 1. Note that
the expectations of F(nq, ny, §) and P(a, s) exist only when n, > 2 and a > 1 respectively, hence X and Y do not have
finite expectation in the latter two scenarios.

Example 2. Symmetry test. We consider two scenarios in this example, with finite (resp. infinite) expectation in the
first (resp. second) scenario. That is, X comes either from i{,(—1, 1) or from ¢4,(—1, 1 — C) with equal probability 0.5
in Example 2(a), while X comes either from C,(0, 1) or from C,(C, 1) with equal probability 0.5 in Example 2(b). The
dimension is p = 5 with sample size n € {20,40},C =0:0.25: 1.

Example 3. Independence test: We generate two independent column vectors Xo ~ 1,(0,1),Yy ~ 1(0,1) in
Example 3(a) and Xo ~ tp(1), Yo ~ t4(1) in Example 3(b), with X, and Yy not having finite expectation in the latter
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Fig. 2. Simulation results for Example 2. Rejection rates of the symmetry test against the value of C at the 5% significance with dimension p =5
and sample size n € {20, 40}. Characteristic exponent « = 0.5 (solid line), « = 1.0 (dashed line), « = 1.5 (dash dot line) and « = 2.0 (dotted line),
energy statistics (thick line).

case. We set X = Xg+ XYy and Y = X "Xy + Yy, where X is a p x g matrix with all elements equal to p. Thus p quantifies
the dependence between X and Y. We take p = 0: 0.05 : 0.2, hence p = 0 means X and Y are independent and p > 0
means the opposite. The dimensions are p = g = 5 with sample size n € {20, 40}.

Figs. 1-3 display the comparative results of the tests for homogeneity, symmetry and independence, respectively.
The following conclusions can be drawn. Both groups of tests have better performance with increasing sample size and
distance from the null hypothesis. This shows the consistency of the tests. As expected, all proposed tests in this paper as
well as the energy tests in [42] control the size well in lower dimension. It is concluded that the three tests are robust with
respect to the choice of the characteristic exponent « in keeping the nominal size in lower dimensions. At the same time,
however, the power varies considerably with the value of the characteristic exponent «, with higher power achieved for
smaller values of « in almost all cases. This is a most interesting finding given the fact that, as already mentioned, most
test criteria in the literature are confined to the value ¢ = 2. In addition, our proposed test criteria of homogeneity and
symmetry have better empirical power when the random variables do not have finite expectation, such as in Example 1(b),
(c) and in Example 2(b). Figs. 1 and 2 suggest this clearly.

6.2. Simulation experiments in high dimension

In this subsection, we concentrate on the behavior of our proposed tests in high dimension. Although the three
distance-based weighted test criteria can be applied to test multivariate homogeneity, symmetry and independence
in arbitrary dimension, an interesting phenomenon in high dimension appears in the numerical study. With higher
dimension the power gets lower, and even degenerates to zero, especially with characteristic exponent « = 2. To
illuminate this phenomenon, we compute the empirical size and power in the following three examples, and present
the plots of power curves with varying dimensions. The dimensions considered are p = q = 1, 10 : 10 : 100, with sample
size n = 40.
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Fig. 3. Simulation results for Example 3. Rejection rates of the independence test against the value of p at the 5% significance with dimensions
p = q =5 and sample size n € {20, 40}. Characteristic exponent « = 0.5 (solid line), @ = 1.0 (dashed line), « = 1.5 (dash dot line) and « = 2.0
(dotted line), energy statistics (thick line).

Example 4. Homogeneity test: X and Y have iid components respectively following the multivariate normal distributions
Np(0, 1) and Ny(u, o2). The notation Np(ue, o?) stands for a p-dimensional normal distribution with all the components
of the mean vector equal to u, and a diagonal covariance matrix with all diagonal elements equal to o2.

Example 5. Symmetry test: The distribution of X is the mixture of N,(0, 1) and N, (u, 1), denoted by MNp(u, 1). We
consider a balanced mixture whereby an observation comes either from A,(0, 1) or from ANp(u, 1) with equal probability
0.5.

Example 6. Independence test: The distribution of X is N},(0, 1), while Y is taken to have the same dimension as X,
with three scenarios. (a) Y ~ A(0, 1), cov(X;, Yi) = p x §i forall j, k € {1, ..., p}. (b) Yij = Xjjeij for all k € {1,...,n}
and j € {1,..., p}, where g are independent N/(0, 1) variables and independent of X (the subscript kj denotes the jth
component of the kth observation). (c) Yy = ln(X,fj) forallke {1,...,n}andje {1,...,p}.

Figs. 4-6 display the results of the tests for homogeneity, symmetry and independence, respectively. It can be seen
clearly from the figures that the empirical size and power decrease, and often degenerate to zero. This phenomenon is
more pronounced with characteristic exponent « = 2, but this tendency definitely persists even if @ < 2, but for larger
dimension p. Note that Székely and Rizzo [41] have already noticed this phenomenon when their distance correlation
was used to deal with independence test. That is, even under independence, the empirical distance correlation coefficient
approaches unity as the dimension tends to infinity when the sample size is fixed. It seems our version of distance-based
statistics also have such a problem; i.e., the suggested criteria are biased in high dimension.

In order to further investigate this phenomenon, we repeated the experiment with Example 6, but with sample size
n = 100. The results displayed in Fig. 7 obviously show that the empirical size and power still degenerates to zero in
most cases, despite the increase of the sample size n.

As a final point we focus on the behavior of the sample distances as the dimension tends to infinity but the sample
size is held fixed. Consider for instance the homogeneity test and write the sample homogeneity distance in the following



138 F. Chen, S.G. Meintanis and L. Zhu / Journal of Multivariate Analysis 173 (2019) 125-144

(a):Y ~ N,(0,1) (b):Y ~ N,(0.3,1)
0.1 : : : - : : : :
» 0.08
9
g
- 0.06 5
o
5 3
— 004 \ a
(0] . ———— Y
o \ \
— 0.02 \ \
\ \
N N
O .......................... 0 e
20 40 60 80 100 20 40 60 80 100
p p
(d):Y ~ N0, 1.5?)
""""" B i
!
!
!
— — \
) ) \
2 2 \
) ) :
o o \
\ \
: \ : i
0.2 : v o2y : \
: \ : \
O ........................... - 0 LT
20 40 60 80 100 20 40 60 80 100
p p

Fig. 4. Simulation results for Example 4. Rejection rates of the homogeneity test against dimension p at the 5% significance with sample size n = 40.
Characteristic exponent « = 0.5 (solid line), « = 1.0 (dashed line), « = 1.5 (dash dot line) and o = 2.0 (dotted line).

form:
ph = lz 37 (I I g il
n 1<j,k<n
1 1
- — Z(e—nxj—xkn“ 4 e Yl _ o= IX—Yill®y 1 Z(z — 2e~ %Y%),
n? 4 n? 4
Jj#k Jj=1

Now as an Associate Editor kindly pointed out to us, the quantity ||X||* behaves like {p+0,(/p)}* = p*{1+0,(1//P)},
and hence our homogeneity statistic contains sums of terms each of which is of the order exp(—p*) or equal to 2. When
the sample size n is fixed, we have, as p — oo.

h
nb,, — 2.

Likewise we find, as p — oo,

nD)  — 1, nbD — 1/n.

n,o na
This is clearly the reason why our tests degenerate in high dimension, especially when the characteristic exponent «

is equal to two, in which case exp(—p®) approaches zero at the fastest possible rate. This observation calls for proper
high-dimensional modifications of the test criteria, which is definitely a worthwhile subject for future research.

7. Conclusions
In this paper, we introduce three L,-type distance measures for distance between distributions, distribution asymmetry,

and variable dependence. All three distances are in the Fourier domain, i.e., they are expressed in terms of population
characteristic functions, and require no moment condition, but we also provide interpretation in the domain of densities.
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Fig. 5. Simulation results for Example 5. Rejection rates of the symmetry test against dimension p at the 5% significance with sample size n = 40.
Characteristic exponent « = 0.5 (solid line), « = 1.0 (dashed line), « = 1.5 (dash dot line) and o = 2.0 (dotted line).

These measures lead to novel characterizations which generalize corresponding statements encountered earlier in the
literature. Empirical counterparts of the characterizations are given yielding generalized versions of already existing test
criteria, for which we study the asymptotic null distribution and consistency.

One interesting finding of our Monte Carlo study is that the hitherto emphasis on such test statistics with weight
function the density of the normal distribution cannot be supported on the basis of our Monte Carlo results. In fact with
this choice of weight function, the CF-test criteria exhibit size distortions as well as low power. Another interesting finding
that requires further research concerns testing for homogeneity, symmetry and independence with increasing dimension.
It seems the dimensionality is still a very serious issue even with our method. Thus, some more theoretical and numerical
investigation on our test criteria should be conducted in the future.
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Appendix

Proof of Proposition 1. Clearly one has, for all t € RP?, d"(t) = |gx(t) — @y(t)]> > 0, and also notice that d"(t) may
equivalently be written as the left-hand side of (5). Hence for any weight function w which is positive with probability 1,
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we have

Dy = f E{cost (X — X;)+cost' (Y —Yy)—2cost (X — Y)lw(t)dt > 0. (A1)

RP

Replace now the weight function w by the density fr and invoke Fubini’s Theorem to get

D = E/ {costT(X —X1)+cost™ (Y —Yy) —2costT (X — Y)}fy(t)dt (A.2)

RP
= E[Re{or(X — X1) + or(Y — Y1) = 2¢r(X = Y)}] = 0.

The uniqueness of the CF entails that Dy is positive unless (3) holds, and the proof is complete. O

Proof of Proposition 2. Observe that, for all t € R?, d(t) = |gx(t)> — [Re{gx(t)}]% > 0, with equality holding if and only
if [Im{gx(t)}]> = 0, i.e., only under symmetry, and also notice that d*(t) may equivalently be written as the left-hand side
of (13) up to a factor of 1/2. Hence for any weight function w which is positive with probability 1, we have

D, = / E{cost (X — X;) — cost ' (X + X1)}w(t)dt > 0. (A.3)
RP
As in (A.2), replace the weight function w by a density fr and invoke Fubini’s theorem to deduce
Dy = E/ {costT(X — X;) — cost (X + X1)}fr(t)dt
RP

= E[Re{pr(X — X1) — or(X + X1)}] = 0.

Clearly Dy is positive unless d* = 0, which only holds under symmetry. Thus the proof is complete. O
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Fig. 7. Simulation results for Example 6. Rejection rates of the independence test against dimension p at the 5% significance with sample size
n = 100. Characteristic exponent o = 0.5 (solid line), « = 1.0 (dashed line), « = 1.5 (dash dot line) and « = 2.0 (dotted line).

Proof of Proposition 3. Clearly, for all t € R?,
d'(t) = lox.y(t, s) — ex()gy(s)]* = 0, (A4)

with equality holding if and only if X and Y are mutually independent, and also notice that from (18)—(21) it follows that
d'(t) may equivalently be written as

d'(t) = E[cos{t " (X — X1) + s (Y — Y1)} + E[cos{t "(X — X1)}]E[cos{s " (Y — Y1)}]
— 2E[cos{tT (X = X1)+ 5" (Y — Y5)}]. (A5)

Now observe that X — X7, Y —Y; and Y — Y, are symmetrically distributed around zero, and hence if we use the expansion
cos(a + b) = cosacosb — sinasinb, in (A.5) the terms containing E{sin(-)} vanish. Proceed further and assume the
factorization w(t, s) = wp(t)wgy(s), with w,, wy satisfying

wp : R? > [0,00), wq:RI— [0, 00),

and in turn replace w, and wq by fr, and fr,, respectively, in (17). Then the proof is completed by using (A.4) and (A.5)
and working analogously as in Propositions 1 and 2. O

Proof of Theorem 1. The proof follows by adapting the arguments in [22,27]. Under H,, straightforward algebra yields

D = / (onx() — gy (E)Pw(t)dt
RP

n n 2
= / [:: > “fcos(t X)) — cos(t"Y))} + % > fsin(t X)) — sin(tTYj)}:| w(t)dt
CU R

j=1
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1 n
= / [n D _lcos(tX;) + sin(t X)) — Re{g(t)} — Im{p(0)}]
RP

j=1

n 2
- % Z [cos(t"Y;) + sin(t"Y;) — Re{g(t)} — Im{(p(t)}]] w(t)dt
j=1

= f {Zh(6) = 20 ()P w(t)dt,
RP

1 . 1
Zix(t) = ;j [cos(e7X)) + sin(t X)) — Re{p(0)} — Imiy(0)}] = — ; h(;. ).

1w 1«
Zh(t)y = - cos(t"Y;) + sin(t"Y;) — Re{o(t)} — Im{p(t)}] = = ) h(Y;, t),
() nj_Zl[ (£7Y)) + sin(tTY;) — Refg(t)} — Im{g(0)}] "]-_Zl (Y, 1)
where h(X;, £), ..., h(Xy, t) and h(Yy, t), ..., h(Yy, t) are centered iid random elements of £2, with E||h(X, t)llﬁ} = E||h(Y4,
t)||5} < o0. Note that this process involves the continuous sine and cosine functions and thus is continuous in the Hilbert
space. Then, by the Hilbert space Central Limit Theorem (see, e.g., Section 1.8 in [46]), as n — oo,

VZP ()~ Z0(),  VnZl(6) ~ Z3(0),

where {Z{l(t) :t € RP} and {Zg(t) : t € RP} are independent Gaussian processes with zero mean and identical covariance
function given, for all s, t € RP, by

E(Z0(s)Z0(t)} = E(Z2(s)Z0(t)} = Re{g(s — )} + Im{g(s + t)} — Re{p(s)}Re{p(t)} — Re{p(s)}Im{p(t)}
— Im{gp(s)}Re{o(t)} — Im{e(s)}Im{p(t)}

Then, as n — oo, /I {Z!(t) — Z!' ()} ~ Z{(t) — ZJ(t) = Z"(t), where {Z"(t) : t € RP} is a zero-mean Gaussian process
with covariance function given, for all s, t € RP, by

E(Z"(s)Z"(t)} = E(ZX(s)Z(t)) + E(Z(s)Z2(t))

= Z[Re{w(s — 1)} + Im{g(s + t)} — Re{p(s)}Re{p(t)} — Re{p(s)m{p(t)}

— Im{g(s)}Refe(t)} — Im{(ﬂ(s)}lm{w(t)}}

Since nDy ,, = ||/ {Zr?,x(t) —Zr’:,y(t)}Hi, and by invoking the Continuous Mapping Theorem analogously as in [18] or [27],
we find that, as n — 00, nDy,, ~ [IZ(t)]2. O

Proof of Theorem 2. Observe that, for all t,
2
lonx(t) = @ny(O)* < {leax(t)l + leny (DI} < 4,

and owing to the consistency of the empirical characteristic function, we find that, as n — oo and for any fixed t,

|0 x(£) = Gy (D 22> Jox(t) — py(0).

2
w?

. 1
So by Lebesgue’s Dominated Convergence Theorem, we have D, ,, 0 ID"O)%, as n — oc. O

Proof of Theorem 3. Straightforward algebra yields

1 n 2
Dy = - in(t"X; t)dt.
, /}Rp{n;sm( ) e

Now note that under #o, E{sin(t "X)} = 0, and hence sin(t " X;), . .., sin(t " X,) are centered iid random elements of £2, with
E|| sin(t "X1)||?, < oo. The proof can be completed similarly to the proof of Theorem 1 without additional difficulty. O

Proof of Theorem 4. Note that, for all t,
2

1 n
- > sin(tx)p <1,
=1
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and hence by the Strong Law of Large Numbers we have, for fixed t, as n — oo,

_l n
- 3 sin(e"X;) 22 Efsin(tX)).
j=1

The proof can be completed similarly to the proof of Theorem 2. O

Proof of Theorem 5. Straightforward algebra yields

1¢ 1
Dp = = > " cos(sTY;) {cos(tTX;) + sin(t X))} + — Y sin(sTY;){cos(t "X;) — sin(t"X;
" /I;P‘Fq n] ; ( ]){ (X)) ( ’)} nZ (s Yj){cos(t " X;) (t" X}

p
_ %gcos(s%);{cos(ﬂxk) +sin(tTX,)) — % gsin@yj) g{COS(tTXk) — sin(t X))} 2w(t, s)dtds
- fR N %]anj[cos(sﬁc) — Relpy(s)}] x {cos(t X)) + sin(¢ X))
o LS tsn(s ) — Il x feost ™) — sintt )
i

- % Xn:[COS(STYj) — Re{py(s)}] Xn:{cos(thk) + sin(t " X)}

pa p
_ % Xn;[sm@ Y)) — Im{py(s)}] ki{cos(tTXk) — sin(t X)) 2w(t, s)dtds

. =

1 n
= f q EZ[COS(STY,-)—Re{wy(S)}][COS(tT&)+sin(tTX,-)—Re{wx(t)}—lm{wx(t)}]
RP+ =1

. 2
+ % Z[sin(sTYj) — Im{gy(s)}1[cos(t " X;) — sin(t ' X;) — Re{gx(t)} + Im{gx(£)}] | w(t, s)dtds + o,(1/n).
=1

The rest of the proof is similar to the proof of Theorem 1. O

Proof of Theorem 6. The proof can be carried out similarly to the proof of Theorem 2. O
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