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Least absolute deviations regression resists outliers in the response variable but
is relatively sensitive to outlying observations in the explanatory variables. In this
paper a simple solution is proposed to overcome this problem. This is achieved by
minimizing the absolute values of vertical and horizontal deviations in turn. Two
algorithms are proposed: one for the simple and one for the multiple regression
case. The methods presented have been tested on a variety of data and have proven
to be quite effective. � 1997 Academic Press

1. INTRODUCTION

The classical linear model assumes a relation of the form

yi= :
p

j=0

%j xij+ei for i=1, ..., n, (1)

where n is the number of observations and where xij is the j th explanatory
variable, yi the response variable, and ei the error for the observation i. Let
% be the column vector of parameters (%0 , ..., %p)$ and let xi be the row
vector of explanatory variables (xi0 , ..., xip) for the observation i. A purpose
of multiple regression is to estimate the vector of unknown parameters % by
%� =(%� 0 , ..., %� p)$ from observations (xi0 , ..., xip , yi), i=1, ..., n.

To obtain the estimated values ŷi we multiply x i by %� which yields

ŷi=xi0%� 0+ } } } +xip %� p=xi %� .

The residual ri of the observation i is the difference between what is
actually observed and what is estimated:

ri=yi&ŷi .
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The most popular method for estimating the parameters is the celebrated
least squares (LS). The usual assumption for using this method which goes
back to Legendre (1805) is that the errors ei are distributed normally with
mean 0 and variance _2. The least squares criterion is

min
%

:
n

i=1

r2
i .

In this setting, we usually considers the yi as observed values and the
xi0 , ..., xip as fixed numbers. Hence, an observation (xi0 , ..., xip , yi) is called
an outlier whenever yi lies far away from the bulk of the observations.
However, the explanatory variables x0 , ..., xp are also observed quantities
subject to random variability particularly when the design has not been
given in advance. Therefore, in fitting a regression line we have to confront
outlying xij as well as outlying yi . In this connection, a data point that has
an extreme value for the response variable is called a vertical outlier and a
data point that has an extreme value for one of the explanatory variables
a leverage point.

While the least squares method enjoys well known properties within
Gaussian parametric models, it is recognized that outliers, which arise
from heavy-tailed distributions, have an unusually large influence on the
resulting estimates. Outlier diagnostics have been developed to detect
observations with a large influence on the least squares estimation. For
excellent books related to such diagnotics the reader is refered to Cook and
Weisberg (1982, 1994) and Chatterjee and Hadi (1988).

Parallel to diagnostics techniques, robust methods with varying degrees of
robustness and computational complexity have been developed to modify the
LS method so that the outliers have much less influence on the final estimates.
Among others are the bounded influence estimators, the repeated median, the
least median of squares method and the regression quantiles.

One of the simplest robust alternative to the LS is the least absolute
deviations (LAD) method which was introduced in 1757 by Roger Joseph
Boscovich. The least absolute deviations or L1-norm criterion is

min
%

:
n

i=1

|ri |.

The LAD method is particularly well-suited to longer-tailed error distri-
butions (e.g., Laplace or Cauchy). Other advantages of LAD method in
robust regression are explained by Huber (1987). However, although
robust to vertical outliers, this method is relatively sensitive to large
leverage points. See, for example, Ellis and Morgenthaler (1992) and
Gutenbrunner et al. (1993). In this paper we propose the following idea to
overcome this problem.
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At first outlying yi are detected by regressing the response variable y on
the explanatory ones x0 , ..., xp using the LAD method. Now suppose there
are outlying xij for some j. Interestingly, these leverage points can be
detected by regressing the j th explanatory variable xj on x0 , ..., xj&1 , y,
xj+1 , ..., xp using again the L1-norm criterion. In effect as variables xj and
y have ``switched'' places, the leverage points turn to be vertical outliers.
Since LAD regression protects efficiently against vertical outliers, outlying
xij can be now identified.

It should be noted that for the estimation of the parameters, the fixed
variables xj should not be treated as random quantities or as a function of
the response variable. Therefore in this setting it is inappropriate to deter-
mine a regression of xj on y since such a pseudo regression would give
spurious results. However, when the xij are themselves observed quantities,
outliers can occur in these explanatory variables. In such a case with
observed explanatory variables subject to outlier occurences, a regression
of xj on y is justifiable.

An algorithm is presented for the case of simple linear regression in
Section 3 along with an example to clarify the algorithm. The multiple
regression is treated in Section 4, and in Section 5 some remarks related to
the proposed methods are discussed.

2. METHOD

A demonstration of the robustness of the LAD method to vertical out-
liers is given by the following theorem.

Theorem 1. Suppose %* is a minimizer of F(%)=�n
i=1 | yi&x i%|. Then

%* is also a minimizer of G(%)=�n
i=1 |zi&xi %|, provided zi�x i%* whenever

yi>xi%* and zi�xi%* whenever yi<x i%*.

Proof. F is a convex function and so %* is a minimizer of F if and only
if the zero vector is a subgradient of F at %*, that is, 0 # �F(%*) (Osborne,
1985, Theorem 5.1, p. 23). It suffices to show that �F(%*)��G(%*).
Write F=�n

i=1 Fi and G=�n
i=1 Gi , where Fi (%)=| yi&xi %| and Gi (%)=

|zi&xi %|. By Lemma 4.7 on page 20 in Osborne (1985), �F=�n
i=1 �Fi and

�G=�n
i=1 �Gi , so it suffices to show �Fi (%*)��Gi (%*). From Lemma 1.1

on page 182 in Osborne (1985), we see that

[&xi] if yi>xi%*,

�Fi (%*)={[&xi , xi] if yi=xi%*,

[xi] if yi<xi%*,
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where [&xi , xi] denotes the line segment joining &xi and xi . If yi>x i%*
and zi>xi%*, then �Fi (%*)=[&xi]=�Gi (%*). If yi>xi%* and zi=x i%*,
then �Fi (%*)=[&xi]�[&xi , xi]=�Gi (%*). The other cases can be
verified similarly. Hence the proof.

The theorem says that the LAD fit is completely unaffected by any
change in yi whenever the sign of the residual remains the same. Thus the
LAD regression method is robust to vertical outliers. Such robustness is
independent of the number of independent variables for p<n.

We can therefore identify outlying yi as points that lie far from the LAD
fit, that is, the observations with large positive or negative residuals. The
units of measurements must be taken into account, and so in order to
decide if a residual ri is large, we standarize the residuals by dividing them
by an estimate of the standard deviation of the population of errors. Such
an estimate _̂ must be robust itself and hence must depend only on good
points and should not be affected by the outliers. One such estimate is

_̂=1.4826 MAD, (2)

where MAD is the median of the absolute values of the nonzero residuals.
Sometimes MAD is computed using all the residuals (including the

zeros). Hill and Holland (1977) and McKean and Schrader (1987) have
found that estimates based on all the residuals tend to be too small.
Otherwise if more than 500 of the points lie on the LAD regression line,
_̂ can be computed by 0.4 } min[ |ri |, ri{0].

The multiplier 1.4826 ensures that, if a population of errors is assumed
to have a normal distribution, then _̂ is a consistent estimate of _.

We identify an observation i as an outlier if and only if |ri �_̂|�2.5. The
value of 2.5 is of course arbitrary but it is chosen so that for Gaussian
errors only about 10 of the observation will be qualified as outliers.

3. SIMPLE LINEAR REGRESSION CASE

We first consider the case of simple linear regression where n observa-
tions (xi , yi) are related by

yi=%0+%1xi+ei . (3)

This model is obtained from (1) by letting p=1, xi0=1, and xi1=xi .
According to Theorem 1, vertical outliers can be detected once the
parameters %0 and %1 are estimated by %� 0 and %� 1 that minimize

:
n

i=1

| yi&%� 0&%� 1 xi |.
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Now suppose there are leverage points in the data set. By switching in (3)
the explanatory variable x and the response variable y, we obtain the new
model

xi='0+'1 yi+ fi , (4)

where fi is the error for the observation i and where '0 and '1 are
parameters estimated by '̂0 and '̂1 that minimize

:
n

i=1

|xi&'̂0&'̂1 yi |.

The leverage points in (3) turn to be vertical outlier in (4) and can be
hence identified according to Theorem 1. The algorithm is thus the
following.

Algorithm 1.

Step 1. Regress y on x using all observations by applying the LAD
method. In addition to the parameters %0 and %1 , the scale parameter _ has
to be estimated by _̂ as in (2).

Step 2. For all observations i compute the standard residuals ri �_̂,
where ri is the residual of the observation i with repect to the LAD fit.
Remove all observations i for which |ri �_̂|�2.5.

Step 3. Regress the original explanatory variable x on the original
response variable y using the remaining observations by applying the LAD
method. Compute _̂ as in step 1.

Step 4. For each of the remaining observations i compute the standard
residuals ri �_̂ as in step 2. Remove all observations i for which |ri �_̂|�2.5.

Step 5. Regress y on x using the remaining observations by applying
the LAD method.

The removed observations found in steps 2 and 4 are respectively vertical
outliers and leverage points.

Remark 1. When we apply the Algorithm 1 to obtain the estimates of
the regression coefficients and to identify the outliers in both directions we
may find different results depending on which variable is chosen first to
play the role of the dependent variable. With the proposed algorithm the
vertical outliers are removed in Step 2. If it is desired to obtain an invariant
solution under ordering, we can remove the vertical outliers found in
Step 2 only after Step 4 so that the regression in Step 3 is computed with
all the n observations. However, since the vertical outliers are more
frequent than leverage points in a regression problem, it is perhaps natural
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TABLE I

Data for the Hertzsprung�Russell Diagram of the Star Cluster CYG OB1

Index Index
of Star log Te log[L�L0] of Star log Te log[L�L0]

(i ) (xi) ( yi ) (i ) (xi ) ( yi)

1 4.37 5.23 25 4.38 5.02
2 4.56 5.74 26 4.42 4.66
3 4.26 4.93 27 4.29 4.66
4 4.56 5.74 28 4.38 4.90
5 4.30 5.19 29 4.22 4.39
6 4.46 5.46 30 3.48 6.05
7 3.84 4.65 31 4.38 4.42
8 4.57 5.27 32 4.56 5.10
9 4.26 5.57 33 4.45 5.22

10 4.37 5.12 34 3.49 6.29
11 3.49 5.73 35 4.23 4.34
12 4.43 5.45 36 4.62 5.62
13 4.48 5.42 37 4.53 5.10
14 4.01 4.05 38 4.45 5.22
15 4.29 4.26 39 4.53 5.18
16 4.42 4.58 40 4.43 5.57
17 4.23 3.94 41 4.38 4.62
18 4.42 4.18 42 4.45 5.06
19 4.23 4.18 43 4.50 5.34
20 3.49 5.89 44 4.45 5.34
21 4.29 4.38 45 4.55 5.54
22 4.29 4.22 46 4.45 4.98
23 4.42 4.42 47 4.42 4.50
24 4.49 4.85

to clean up the dependent variable in Step 2 from the contaminated data
points.

Example 1. This example comes from the field of astronomy. The data
in Table I from the Hertzsprung�Russell diagram of the star cluster CYG
OB1, which contains 47 observations (stars) in the direction of Cygnus
(Rousseeuw and Leroy, 1987, p. 27).

Let us see how Algorithm 1 works with this data set. Steps 1 to 5 are
illustrated by Figs. 1 and 2.

Step 1. By regressing y on x with all the 47 observations using the
LAD method, we obtain as equation ŷi=8.149&0.693xi with _̂=0.624.

Step 2. All standard residuals fall inside the range [&2.5, 2.5].

Step 3. By regressing x on y with all the 47 observations using the
LAD method, we obtain as equation x̂i=3.687+0.143yi with _̂=0.106.
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Fig. 1. Steps 1�4 for Example 1.

Fig. 2. Step 5 for Example 1 (final LAD fit without outliers).
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Step 4. Standard residuals of observations 7, 11, 20, 30, and 34 are
situated outside the range [&2.5, 2.5]. Thus we remove these five observa-
tions from the data set.

Step 5. By regressing y on x with the remaining 42 observations
using the LAD method, we obtain as final equation ŷi=&8.586+3.075xi

with _̂=0.425.

Comparison. The least median of squares identifies observations 11, 20,
30, and 34 as leverage points with ŷi =&12.298+3.898xi . The application
of LS yields ŷi =6.793&0.413xi . The LS also identifies observations 11, 20,
30, and 34 as leverage points using the diagonal elements hii of the projec-
tion matrix H=X(X $X )&1 X $ (hat matrix). In fact the hii for these obser-
vations are larger than the cutoff value 2p�n=0.085. By applying the
method of LS on the remaining 43 observations, we obtain the equation
ŷi=&4.057+2.048xi . At this stage the observations 7 and 14 are identified
as outlying points. If we continue to apply the method of LS on the
remaining 41 observations, we obtain the equation ŷi=&8.208+2.984xi .
Here the observation 9 is identified as outlying point. The final LS equa-
tion with the remaining 40 observations is ŷi=&9.835+3.347xi .

4. MULTIPLE LINEAR REGRESSION CASE

We now consider the case of multiple linear regression, where n observa-
tions (xi1 , ..., xip , yi) are related by

yi=%0+%1xi1+ } } } +%pxip+ei . (5)

This model is obtained from (1) by letting xi0=1. According to
Theorem 1, vertical outliers can be detected once the vector of parameters
%=(%0 , ..., %p)$ is estimated by %� =(%� 0 , ..., %� p)$, that minimizes

:
n

i=1
} yi&%� 0& :

p

j=1

%� j xij } .
Now suppose there are outlying xij in data set for some j. By switching

in (5) the j th explanatory variable xj and the response variable y, we
obtain the new model

xij='0+'1xi1+ } } } +'j&1 xij&1+'j yi+'j+1xij+1+ } } } +'p xip+ fi , (6)
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where fi is the error for the observation i and where '=('0 , ..., 'p)$ is the
vector of parameters estimated by '̂=('̂0 , ..., '̂p)$ that minimizes

:
p

i=1
}xij&'̂0&'̂j yi& :

p

k=1
k{ j

'̂kxik } .

As in the simple linear regression case, the leverage points in (5) turn to
be vertical outliers in (6) and hence can be identified according to
Theorem 1. Repeating this procedure for each explanatory variable xj , we
obtain the following algorithm.

Algorithm 2.

Step 1. Regress y on x1 , ..., xp using all observations by applying the
LAD method. In addition to the vector of parameters %, the scale
parameter _ has to be estimated by _̂ as in (2).

Step 2. For all observations i compute the standard residuals ri �_̂,
where ri is the residual of the observation i with respect to the LAD fit.

Step 3. Remove all observations i for which |ri �_̂|�2.5.

Step 4. For j=1, ..., p, regress xj on x1 , ..., xj&1, y, xj+1 , ..., xp , using
the remaining observations by applying the LAD method. Compute _̂j as
in Step 1.

Step 5. For j=1, ..., p and for each remaining observation i, compute
the standard residuals rij �_̂j as in Step 2. Let D be the union of all observa-
tions i for which there is at least one j where |rij �_̂j |�2.5. Observe that
order in which xj becomes response variable does not affect the set D.

Step 6. Remove all observations found in D.

Step 7. Regress y on x1 , ..., xp using the remaining observations by
applying the LAD method.

Remark 2. As in the simple linear regression case, results may differ
depending on which variable is chosen in Step 1 to play the role of the
dependent variable. An alternative algorithm for which the outcome is not
affected by the ordering on which variable to regress first is to replace
Steps 3 and 6 by Steps 3b and 6b defined as follows:

Step 3b. Let G be the set of observations for which |ri �_̂|�2.5.

Step 6b. Remove all observations found in G _ D.

Example 2. The data in Table II concern the incidences of fires in a
residential area. We want to see how the incidence of fires is related to
three characteristics of the area: the age of its houses, its incidence of theft,
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TABLE II
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and the income of its families. The data are for 47 predominantly residen-
tial areas in Chicago for the year 1975. The column labeled FIRE lists the
number of fires per 1000 housing units in the area; the column labeled
AGE list the proportion of housing units built before 1940; the column
labeled THEFT list the number the thefts per 1000 residents; and the
column labeled INCOME lists the median family income as a multiple of
81000 (Andrews and Herzberg, 1985, p. 409).

Let us see how Algorithm 2 works with this data set. Steps 2 and 5 are
illustrated by Fig. 3.

Step 1. By regressing y on x1 , x2 , x3 with all the 47 observations
using the LAD method, we obtain as equation ŷi=3.994+0.319xi1+
0.007xi2&0.209xi3 with _̂=0.508.

Step 2. Standard residual of observation 7 is 4.5 and hence is
situated outside the range [&2.5, 2.5].

Step 3. We remove observation 7 from the data set.

Fig. 3. Steps 2 and 5 for Example 2.
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Step 4. By regressing x1 on y, x2 , x3 with the 46 remaining
observations using the LAD method, we obtain the equation x̂i1=1.21+
0.006yi+0.0002xi2&0.058xi3 with _̂1=0.1375. By regressing x2 on
x1 , y, x3 we obtain the equation x̂i2=18.48+10.57xi1+5.969yi&0.908xi3

with _̂2=9.385, and by regressing x3 on x1 , x2 , y we obtain the equation
x̂i3=15.8&1.239xi1+0.0008xi2&2.02yi with _̂3=1.098.

Step 5. Standard residuals of observations [14, 37, 45], [6, 24, 29],
and [13, 30] are outside the range [&2.5, 2.5] for j=1, 2, and 3, respec-
tively. Thus D=[6, 13, 14, 24, 29, 30, 37, 45].

Step 6. We remove the eight observations found in D from the data
set.

Step 7. By regressing y on x1 , x2 , x3 with the 38 remaining observa-
tions using the LAD method, we obtain as final equation ŷi=
4.205&0.021xi1+0.015xi2&0.238xi3 with _̂=0.485.

Note that if we use the alternative algorithm which replaces Steps 3
and 6 by Steps 3b and 6b, we obtain the following results for the same
example:

Step 1. By regressing y on x1 , x2 , x3 with all the 47 observations using
the LAD method, we obtain as equation ŷi=3.994+0.319xi1+0.007xi2&
0.209xi3 with _̂=0.508.

Step 2. Standard residual of observation 7 is 4.5 and hence is
situated outside the range [&2.5, 2.5].

Step 3b. Let G=[7].

Step 4. By regressing x1 on y, x2 , x3 using the LAD method (with all
the 47 observations!), we obtain the equation x̂i1=0.688+0.079yi+
0.001xi2&0.025xi3 with _̂1=0.179. By regressing x2 on x1 , y, x3 we obtain
the equation x̂i2=&3299+11.43xi1+14.15yi+2.344xi3 with _̂2=13.74,
and by regressing x3 on x1 , x2 , y we obtain the equation x̂i3=16.11&
2.201xi1+0.002xi2&1.952yi with _̂3=1.161.

Step 5. Standard residuals of observations [45], [24, 29], and
[7, 13, 30] are outside the range [&2.5, 2.5] for j=1, 2, and 3, respec-
tively. Thus D=[7, 13, 24, 29, 30, 45].

Step 6b. We remove six observations found in G _ D=[7, 13,
24, 29, 30, 45].

Step 7. By regressing y on x1 , x2 , x3 with the 40 remaining observa-
tions using the LAD method, we obtain as final equation ŷi=3.75+
0.182xi1+0.024xi2&0.237xi3 with _̂=0.408.
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Comparison. The least median of squares identifies observations 7, 13,
30, and 43 as outlying points with ŷi=6.373&0.024xi1+0.008xi2&
0.422xi3 . The application of LS yields ŷi=2.930+0.536xi1+0.013xi2&
0.134xi3 . The LS identifies observations 7 and 24 as leverage points
using the diagonal elements of the hat matrix. After we delete these two
observations from the data set and repeating the LS method on the 45
remaining observations, we obtain the equation ŷi=4.102+0.269xi1+
0.010xi2&0.223xi3 . At this stage observations 6, 13, and 45 are identified
as outlying points. By repeating once again the LS method on the
remaining 42 observations, we obtain the equation ŷi=4.360+0.397xi1+
0.007xi2&0.251xi3 . Here the observation 29 is detected as leverage
point. The final LS equation with the remaining 41 observations is ŷi=
4.027+0.345xi1+0.013xi2&0.233xi3 .

5. FINAL REMARKS

An attempt has been made in this paper to provide a robust method of
regression analysis that only uses the LAD criterion. This is achieved by
taking into account the resistance of the LAD regression method to vertical
outliers. That is, if there are leverage points, we have simply to switch the
role of the response variable with the explanatory one. The effectiveness of
the proposed method for finding a robust fit have been tested on a wide
range of problems. It is to be noted, however, as seen in our examples,
that the method of repeated least squares (after deleting outlying points),
although not a common practice, produces results very comparable to
robust methods such as the least median of squares or the LAD method
introduced in this paper.

From the computational point of view, the LAD method is extremely
simple and it requires only a routine to fit the LAD regression. There are
several computer programs available for calculation of LAD estimates. See,
for example, Sadovski (1974) and Farebrother (1988). Sadovski's code is
based on Karst's (1958) algorithm. Farebrother (1988) gives a label-free
Pascal translation of Sadovski's algorithm and a Pascal implementation of
an improved variant of Sadovski's algorithm. For the case of multiple
regression we can use, for example the modified simplex algorithm of
Barrodale and Roberts (1973) approach that exist in the IMSL library
under the name RLLAV. The LAD regression estimates are also obtainable
from the function l1fit in the computer language S-Plus and from the
robust regression package ROBSYS (Marazzi, 1993). Minimization of
LAD can be formulated as a linear programming problem, as in Arthanari
and Dodge (1993, Section 2�7). A recent discovery by Portnoy and
Koenker (1997) on the computation of L1 and other regression quantiles
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in linear regression models, which involves the application of interior point
linear programming methods, provides computational methods that are
faster than least sequences for large n.

The statistical inference procedure to LAD estimation is quite similar to
the classical analysis of variance. The Wald, likelihood ratio, and Lagrange
multiplier tests were suggested by Koenker and Bassett (1982) for hypo-
thesis testing in the context of LAD estimation. They showed that the three
tests are asymptotically equivalent. For testing a general linear hypothesis
the procedure is to replace the classical reduction in sum of squared
residuals by the reduction in sum of absolute residuals. Using such direct
analogy we can produce an LAD analysis of variance table which sum-
marizes the LAD test of hypothesis. McKean and Schrader (1987)
provided an estimate of the scale parameter that is used as a standardizing
constant in the LAD analysis. This estimate is not only used for standardiz-
ing test statistic, but is also used in confidence intervals and multiple com-
parison procedures based on LAD estimates. Dielman and Rose (1995,
1996) compared the three approaches proposed by Koenker and Bassett
(1982) for assessing the significance of coefficients in LAD. The results of
their study suggest that the likelihood and Lagrange multiplier tests are
preferable to the Wald test for multiple regression situation. For a complete
treatment on LAD regression the reader is refered to Chapter 4 of Birkes
and Dodge (1993).
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