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a b s t r a c t

Chen et al. (2010) [1] propose a unified method – coordinate-independent sparse
estimation (CISE) – that is able to simultaneously achieve sparse sufficient dimension
reduction and screen out irrelevant and redundant variables efficiently. However, its
attractive features depend on the appropriate choice of the tuning parameter. In this note,
we re-examine the Bayesian information criterion (BIC) in sufficient dimension reduction
and provide a heuristic derivation. Furthermore, the CISE with BIC is shown to be able to
identify the true model consistently.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the regression of a univariate response y on p random predictors x = (x1, . . . , xp)T ∈ Rp, with the general
goal of inferring about the conditional distribution of y|x. Sufficient dimension reduction (SDR) in regression, which reduces
the dimension by replacing original predictors with a minimal set of their linear combinations without loss of information,
is very helpful when the number of predictors is large [2]. Many SDR methods, including both moment-based and model-
based, can be formulated as a generalized eigenvalue problem in the following form [7,1]

Mnδni = λniNnδni, for i = 1, . . . , p, (1)

where Mn ≥ 0 is a method-specific symmetric kernel matrix; For example, the population versions of Mn for principle
component analysis and sliced inverse regression (SIR) are cov(x) and cov[E{x − E(x)|y}], respectively (see Table 1 in [1]
for more examples); Nn > 0 is symmetric, often taking the form of the sample covariance matrix 6n of x; δn1, . . . , δnp are
eigenvectors such that δTniNnδnj = 1 if i = j and 0 if i ≠ j, and λn1 ≥ · · · ≥ λnp are the corresponding eigenvalues. We
use the subscript ‘‘n’’ to indicate that 6n,Mn,Nn and λni are the sample versions of the corresponding population analogs
6,M,N and λi. Under certain conditions that are usually imposed only on the marginal distribution of x, the eigenvectors
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{δn1, . . . , δnd} that correspond to the nonzero eigenvalues λn1 ≥ · · · ≥ λnd form a consistent estimator of a basis for the
central subspace. The dimension d, usually far less than p, is assumed to be known in this article.We also assume throughout
that n > p.

Based on (1), the standard sufficient dimension reduction estimation (SSDRE) can be expressed as [7]V = argmin
V∈Rp×d

−tr(VTMnV), subject to VTNnV = Id. (2)

The SSDRE often suffers because the estimated linear combinations usually consist of all original predictors, making it
difficult to interpret [10,7]. By using the coordinate independent penalty function, Chen et al. [1] proposed a unifiedmethod
– coordinate-independent sparse estimation (CISE) – that can simultaneously achieve sparse sufficient dimension reduction
and screen out irrelevant and redundant variables efficiently. Formally, the CISE is defined by

Ṽ = argmin
V∈Rp×d

{−tr(VTMnV) + ρ(V)}, subject to VTNnV = Id, (3)

where ρ(V) is defined by ρ(V) =
p

i=1 θi∥vi∥2, vi is the ith row of V and θi ≥ 0 are penalty parameters. This CISE is
subspace oriented and thus finding Ṽ results in a Grassmann manifold optimization problem. A fast algorithm is suggested
by Chen et al. [1]. Under mild conditions, they also established the oracle property of CISE in the sense that it would perform
asymptotically as well as if the true irrelevant predictors were known.

The above features of the CISEmethod rely on the proper choice of tuning parameters, or called regularization parameter,
which is usually selected by some criteria, such as cross-validation, Cp and generalized cross-validation [5,19]. Chen et al. [1]
recommended using a Bayesian information criterion (BIC; [14]) to determine the tuning parameters by mimicking the
classical BIC in the context of multiple regression. In this paper, we revisit the definition of BIC for the SDRmethods and give
a heuristic but formal Bayesian derivation. Then we prove that the CISE with the BIC identifies the true model consistently.

2. The BIC in SDR

We need the following notation and definition for ease of exposition. Define the Stiefel manifold St(p, d) as St(p, d) =

{0 ∈ Rp×d
: 0T0 = Id}. Denotes ⌊0⌋ as the subspace spannedby the columns of0, then ⌊0⌋ ∈ Gr(p, d)whereGr(p, d) stands

for the Grassmann manifold. Define the matrix norm ∥V∥t =

tr(VTV). The projection operator R : Rp×d

→ St(p, d) onto
the Stiefel manifold St(p, d) is defined to be R(0) = argminW∈St(p,d) ∥0 −W∥

2
t . The tangent space T0(p, d) of 0 ∈ St(p, d) is

defined by

T0(p, d) =

Z ∈ Rp×d

: Z = 0A + 0⊥B,A ∈ Rd×d,A + AT
= 0, B ∈ R(p−d)×d , (4)

where 0⊥ ∈ Rp×(p−d) is the complement of 0 which satisfies [0 0⊥]
T
[0 0⊥] = Ip.

2.1. Definition

Let s be a subset of {1, . . . , p}. Denote by Vs the parameter V with those rows outside s being 0, that is, ∀i ∉ s, vi = 0.
Denote byVs = argmin

{Vs∈Rp×d:VT
s NnVs=Id}

−tr(VT
s MnVs)

the SSDRE given model s, and by dfs the effective number of parameters. The BIC criterion in SDR methods is presented in
the following proposition.

Proposition 1. The generalized BIC in SDR methods chooses the model that yields the smallest value of

− tr(VT
s MnVs) + dfs · log(n)/n, (5)

where dfs = (ps − d) · d and ps is the number of non-zero rows of Vs.

In fact, the degree of freedom (ps−d) ·d comes from the fact that we need (ps−d) ·d parameters to describe a d-dimensional
Grassmann manifold in Rps [4]. In what follows, without loss of generality, we assume that only the first q < p predictors
are relevant to the regression. Next we will give a formal derivation of this criterion.

2.2. A heuristic Bayesian derivation

In the Bayesian framework, model comparison is based on posterior probabilities. Consider a candidate model s ∈ S
where S is the model space under consideration. Assume that model s has a prior probability π(s), and the prior density of
its parameter αs is π(αs|s). Then the posterior probability of model s given data D satisfies

p(s|D) ∝ π(s)


p(D|αs, s)π(αs|s)dαs.
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Under the Bayes paradigm, a model s∗ that maximizes the posterior probability is selected, say s∗ = argmaxs∈S π(s)
p(D|αs, s)π(αs|s)dαs. In practice, an implicit assumption underlying is that the candidate models are equally likely so

that π(s) is constant over S. Consequently, model assessment mainly depends on the integral term

p(D|αs, s)π(αs|s)dαs

which is usually referred to as marginal likelihood for model s.
The classical Schwarz’s BIC is an approximation to the logarithmof themarginal likelihood, and there is a similar heuristic

derivation for the generalized BIC in SDR. We consider a pseudo-likelihood [16]

L(D|Vs, s) ∝ exp{−ng(Vs;Mn)/2}, (6)

where g(Vs;Mn) is the generalized eigenvalue loss function in (5) corresponding to model s. The main motivation for using
(6) as a pseudo-likelihood is two-fold: on one hand, minimizing g(Vs;Mn) gives the SSDRE which works like maximizing a
log-likelihood function (cf., [7]); on the other hand, g(Vs;Mn)/2 happens to be the log-likelihood by ignoring some constants
with respect to Vs, under the PFC-model and the normality assumption [3]. Note that g(Vs;Mn) = −tr(VT

s(s)Mn(s)Vs(s)) in
which VT

s(s)N(s)Vs(s) = Id. Here, given a p × d matrix K,K(s) indicates the sub-matrix which consists of all rows of K whose
indices are in s. If K is p × p then the notation indicates the sub-matrix which consists of all rows and columns of K whose
indices are in s.

Next, we consider approximate the integral pseudo-likelihood,
exp{−ng(Vs(s);Mn(s))/2}π(Vs(s)|s)dVs(s)

by using the Laplace method [15]. As we know, the basic idea of Laplace approximation is that in large samples, the
integral is largely determined by the value of the integrand in a region close to Vπ ∈ Rps×d, the value of Vs(s) that
maximizes g̃(Vs(s);Mn(s)) = −ng(Vs(s);Mn(s)) + log(π(Vs(s)|s)) subject to VT

s(s)Nn(s)Vs(s) = Id. For Schwarz’s BIC, the Laplace
approximation is performed by a second-order Taylor expansion of g̃(Vs(s);Mn(s)) aroundVπ , but the same approach is not
directly feasible here because Vs(s) must satisfy the constraint VT

s(s)Nn(s)Vs(s) = Id. As mentioned before, the priors used for
model s are typically the unit information prior [12]. Hence, in such cases, we haveVπ ≈ V(s), the SSDRE defined in (1) with
Mn(s) and Nn(s) instead. We will give an approximation of g(Vs(s);Mn(s)) in a small neighborhood ofV(s).

Following Proposition 2 in [1], wework under the following equivalent unitary constraints optimization problemswhich
will facilitate our exposition, i.e.,V(s) = N−1/2

n(s)
0s, where

0s = argmin
0∈Rps×d

−tr(0TGn(s)0), subject to 0T0 = Id,

and Gn(s) = N−1/2
n(s) Mn(s)N

−1/2
n(s) . For an arbitrary matrix W ∈ Rps×d and scalar δ ∈ R, the perturbed point around ⌊0s⌋ in the

Grassmann manifold can be expressed by ⌊R(0s + W)⌋, whereW can be uniquely decomposed as [8, Lemma 8]

W = 0sA +0s⊥B +0sC,

in which A ∈ Rd×d is a skew-symmetric matrix, B ∈ R(ps−d)×d is an arbitrarymatrix, and C ∈ Rd×d is a symmetric matrix. Let
Z = 0sA+0s⊥B. Obviously,Z ∈ T0s(ps, d). By Chen et al. [1], themovement from ⌊0s⌋ in the near neighborhood only depends
on0s⊥B. In otherwords, to obtain an expansion around0s, it suffices to only consider perturbed points like R(0s+δZ), where
∥B∥t = C for some given C . Let λn1(s) ≥ · · · ≥ λnps(s) ≥ 0 be the eigenvalues of Gn(s), 3n(s) = diag{3n1(s), 3n2(s)} with
3n1(s) = diag{λn1(s), . . . , λnd(s)} and 3n2(s) = diag{λnd+1(s), . . . , λnps(s)}. By using Lemma 1-(ii) in [1], we have

g(R(0s + Z);Gn(s)) (7)

≈ g(0s;Gn(s)) − 2tr(ZTGn(s)0s) − tr(ZTGn(s)Z) + tr(ZTZ0T
s Gn(s)0s)

= g(0s;Gn(s)) − 2tr(ZT0s3n1(s)) + tr(ZTZ3n1(s)) − tr(ZTGn(s)Z)
= g(0s;Gn(s)) + tr(ATA3n1(s)) + tr(BTB3n1(s)) − tr(BBT3n2(s)) − tr(AAT3n1(s))

= g(0s;Gn(s)) + tr(B3n1(s)BT ) − tr(BT3n2(s)B) := g(0s;Gn(s)) + nh(B), (8)

where the first equality follows from Proposition 2 in [1], the second equality holds because tr(ZT0s3n1(s)) = 0 by Lemma
1-(i) in [1], and the last equality comes from the fact tr(ATA3n1(s)) − tr(AAT3n1(s)) = 0 because A is skew-symmetric.
Consequently, in a small neighborhood around0s, say0s + Z, the loss function g(0) can be approximated by the function
g(0s;Gn(s)) + nh(B).

It is easily seen that h(B) can be equivalently represented as the vector form h(β) = βT 3̃β, where β = Vec(B) and 3̃ is
a [(ps − d)d]-dimensional symmetric matrix only depending on 3n1(s) and 3n2(s). Note that if λnd(s) > λnd+1(s), we will
have

h(B) ≥ (λnd(s) − λnd+1(s))∥B∥
2
t > 0, for any B ≠ 0,
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which follows from basic properties of the trace operator for a semi-positive definite matrix. Thus, it can be concluded that
3̃ is a positive definite matrix. Now, applying Laplace approximation we obtain

exp{−ng(0;Gn(s))/2}π(0|s)d0 ≈ exp{−ng(0s;Gn(s))/2 + log(π(0|s))}


exp{−nh(B)/2}dB

= exp{−ng(0s;Gn(s))/2 + log(π(0|s))}


exp{−nβT 3̃β/2}dβ

= exp{−ng(0s;Gn(s))/2 + log(π(0|s))}(2π)(ps−d)d/2
|n3̃|

−1/2.

We immediately obtain

log


exp{−ng(0;Gn(s))/2}π(0|s)d0


≈ −ng(0s;Gn(s))/2 + log(π(0|s)) + [(ps − d)d/2] log(2π) − (1/2) log |n3̃|

= −ng(0s;Gn(s))/2 − [(ps − d)d/2] log n + O(1).

If we ignore terms of O(1) order, finding the model that gives the highest posterior probability based on the pseudo-
likelihood (6) leads to minimizing the generalized BIC defined in (5).

2.3. Consistency of the CISE with BIC

Schwarz’s BIC is consistent in the sense that it selects the true model with probability approaching one if such a true
model is in the class of candidate models. In practice, when p is large, we cannot afford to calculate the BIC values (5) for all
possible s. Instead, we prefer to combine this criterion with the coordinate-independent penalized technique developed by
Chen et al. [1], which leads to

BICθ = −tr(ṼT
θMnṼθ) + [(pθ − d)d] · log n/n, (9)

where Ṽθ denotes the solution of (3) for V given θ = (θ1, . . . , θp)
T and pθ denotes the number of non-zero rows of Ṽθ . The

estimator Ṽθ naturally defines a candidate model sθ = {i : ṽθi ≠ 0}, where ṽθi denotes the ith row of Ṽθ . Under some mild
conditions, the BIC estimator (9) is consistent. Let an = max{θj, j ≤ q} and bn = min{θj, j > q}, where the θj’s are the
penalty parameters defined in Section 1. The true model is indexed by sT .

Theorem 1. Let θn = argminθ BICθ . If Assumptions 1–3 in Appendix hold,
√
nan

p
−→ 0 and

√
nbn

p
−→ ∞, then as n → ∞,

Pr(sθn = sT ) → 1.

Theproof of this theorem is given inAppendix. Themain idea of the proof is to compare the values between the considered
model and the true model in two different cases according to whether the model is underfitted or overfitted. For penalized
type estimators, Wang et al. [18], Wang and Leng [17] respectively established the consistency of SCAD and adaptive lasso
estimators with the tuning parameter chosen by a BIC-type criterion. Unfortunately, their results were developed for the
multiple regression model and thus are not directly applicable for (9) because the focus here is on subspaces rather than on
coordinates. In practice, to avoid the p-dimensional tuning parameter selection [1], we usually let θi = θ∥vi∥−r

2 , wherevi is
the ith row vector of the SSDREV defined in (2), θ is a scalar tuning parameter, and r > 0 is some pre-specified parameter. As
demonstrated in Appendix C, with this choice of tuning parameters, the result in Theorem 1 still holds. In the next section,
this strategy is considered and r = 0.5 is used for illustration.

As a referee pointed, the problem (3) can be recovered as the MAP-solution based on the Multi-Laplacian prior [13].
Accordingly, it is possible to give a Bayesian treatment of the penalized SDR, allowing us to select the tuning parameters in
a full Bayesian way (cf., [11]). This is beyond the scope of this paper but should definitely be a subject of future research.

3. Simulation study

In the simulation studies, we generated 500 datasets with different sample sizes n using models stated as follows:
Model 1

y = x1/{0.5 + (x2 + 1.5)2} + σϵ,

where ϵ ∼ N(0, 1), x = (x1, . . . , x10)T ∼ N(0, 6) with Σij = ρ|i−j| for 1 ≤ i, j ≤ 10, and x and ϵ are independent. The
scale parameter σ controls the signal-to-noise ratio and the parameter ρ is used to control the correlation among x. In this
model, the central subspace is spanned by the directions β1 = (1, 0, . . . , 0)T and β2 = (0, 1, . . . , 0)T .

Model 2

x = 10(y, y2)T + τ11/2ϵ,
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Fig. 1. The rate of selecting the true model versus n under Model 1 with ρ = 0.5 and σ = 0.25 (the left) or σ = 0.5 (the right). Solid and dashed lines
represent the rates with BIC and AIC respectively. Lines marked with circles and squares indicate the solutions using PFC and SIR, respectively.

Fig. 2. The rate of selecting the true model versus n under Model 2 withω = 0.5 and τ = 1 (the left) or τ = 2 (the right). Solid and dashed lines represent
the rates with BIC and AIC respectively. Lines marked with circles and squares indicate the solutions using PFC and SIR, respectively.

Fig. 3. The rate of selecting the true model versus n: Model 1 with ρ = 0.75 and σ = 0.25 (the left) and Model 2 with ω = 0.75 and τ = 1 (the right).
Solid and dashed lines represent the rates with BIC and AIC respectively. Lines marked with circles and squares indicate the solutions using PFC and SIR,
respectively.

where ϵ ∼ N(0, I10), y ∼ N(0, 1), ∆ij = ω|i−j| for 1 ≤ i, j ≤ 10, and y and ϵ are independent. The first column of
0 is (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)T and the second column of 0 is (0.5, −0.5, 0.5, −0.5, 0, . . . , 0)T . The scale parameter τ
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controls the signal-to-noise ratio and the parameter ω is used to control the correlation among x. In this model, the central
subspace is the column space of 0.

We used SIR [6] and PFC [3] to generate Mn and Nn for CISE. Six slices were used for the SIR method. We calculated Mn
in the PFC setting using fitted components (|y|, y, y2)T for all simulation studies. Figs. 1–3 show the rate curves of selecting
the true model (against the sample size n) using BIC under different model settings. For comparison, the corresponding rate
curves with the AIC are also plotted in those figures. From Figs. 1–3, we can see the consistency of the CISE (PFC or SIR) with
BIC in all settings, while the selection with AIC seems inconsistent for Model 2.
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Appendix

Throughout this appendix, we use the following additional notations. Let 3n1 = diag{λn1, . . . , λnd}. The corresponding
3n2 and the population analogs 31 and 32 can be understood. Since we use thematrix V to denote the basis of the subspace
spanned by the columns of V in this paper, we use Chen et al.’s [1] definition of distance, D(Vn,V), which is defined as the
largest eigenvalue of (PVn − PV)T (PVn − PV), where P(·) represents the projection matrix with respect to the standard inner
product.

Appendix A. Assumptions

Assumption 1. Let V0 denote theminimizer of (2) when the populationmatricesM andN are used instead. Then V0(scT ) = 0,
where scT is the complement of sT in S.

Assumption 2. Mn = M + Op(n−1/2) and Nn = N + Op(n−1/2).

Assumption 3. λd > λd+1.

These assumptions imposed here are all used for obtaining the oracle property of the CISE Ṽ. They are mild and typically
hold in many SDR methods. We refer to Chen et al. [1] for detailed discussions.

Appendix B. Lemmas

In order to prove Theorem 1, we firstly state two necessary lemmas.

Lemma 1. Under Assumptions 1 and 2, for any s ⊃ sT ,V0(s) is the minimizer of

argmin
V∈Rps×d

−tr(VTM(s)V), subject to VTN(s)V = Id. (B.1)

Proof. Denote the solution of the minimization problem

argmin
{Vs∈Rp×d:VT

s NVs=Id}
−tr(VT

s MVs) (B.2)

as V̌. Note that V̌(sc ) = 0 and V̌(s) is the solution of (B.1) since V̌T
(s)N(s)V̌(s) = Id and tr(VT

s MVs) = tr(VT
s(s)M(s)Vs(s)). On the

other hand, because

min
{V∈Rp×d:VTNV=Id,V(sc )=0}

−tr(VTMV) ≥ min
{V∈Rp×d:VTNV=Id}

−tr(VTMV), (B.3)

and V0 satisfies the constraints in the left side of (B.3), we know V0 = V̌. Then, the lemma immediately follows. �

Lemma 2. Under Assumptions 1 and 2, for any s ⊃ sT , we have λi(s) = λi for i = 1, . . . , d and λd(s) > λd+1(s), where
λ1(s) ≥ · · · ≥ λp(s) ≥ 0 are the eigenvalues of G(s).

Proof. By the definition of the generalized eigenvalue problem, we have MV0 = NV0Λ1. Since V0(sc ) = 0,M(s)V0(s) =

N(s)V0(s)31. Also, by Lemma 1,M(s)V0(s) = N(s)V0(s)Λ1(s), where31(s) = diag{λ1(s), . . . , λd(s)}. Thus, we have31(s) = 31.
Since G is a symmetric matrix, it follows from the well-known Sturm Theorem (Theorem 4.4.14; [9]) that λd+1(s) ≤ λd+1 <
λd by Assumption 3. �



254 C. Zou, X. Chen / Journal of Multivariate Analysis 112 (2012) 248–255

Appendix C. Proof of Theorem 1

According to whether the resulting model sθ is underfitted, correctly fitted, or overfitted, we can partition Rp+ into the
following three mutually exclusive regions:

Rp+
U = {θ ∈ Rp+

: sθ ⊉ sT },

Rp+
T = {θ ∈ Rp+

: sθ = sT }, and

Rp+
O = {θ ∈ Rp+

: sθ ⊃ sT , sθ ≠ sT }.

Moreover, for the purpose of proof, we could readily define a reference tuning parameter sequence θ∗ ∈ Rp+ which satisfies
the conditions in Theorem 1. For instance, if we use Chen et al.’s [1] recommendation, say the adaptive-LASSO-type penalty,
we could set the ith component of θ∗ as θ∗i = βn∥vi∥−r

2 with a scalar sequence of tuning parameters βn satisfying
√
nβn → 0

and n(1+r)/2βn → ∞, where r > 0 is some pre-specified parameter. By Theorem 2-(i) in [1], sθ∗
∈ Rp+

T with probability
tending to 1. Thus, to prove the theorem, it suffices to show that Pr(inf

θ∈Rp+
U ∪Rp+

O
BICθ > BICθ∗) → 1. The following proof

consists of two steps.
Step 1. Let us firstly consider θ ∈ Rp+

O . We then have pθ − pθ∗
≥ 1. We shall show that with probability approaching

one, the BIC favors sθ∗
. Before proceeding, to facilitate our proof we need another definition, the unpenalized SDRE under

the model identified by Ṽθ , sayVsθ = argmin
{V∈Rp×d:V(sc

θ
)=0}

−tr(VTMnV), subject to VTNnV = Id.

By this definition, we must have g(Ṽθ;Mn) ≥ g(Vsθ ;Mn). Thus, write

n(BICθ − BICθ∗
) = n[g(Ṽθ;Mn) − g(Ṽθ∗

;Mn)] + d(pθ − pθ∗
) · log n

≥ n[g(Vsθ ;Mn) − g(Ṽθ∗
;Mn)] + d(pθ − pθ∗

) · log n

≥ n[g(Vsθ ;Mn) − g(Ṽθ∗
;Mn)] + log n. (C.4)

Next, we will show n[g(Vsθ ;Mn) − g(Ṽθ∗
;Mn)] = Op(1). By Theorem 1 in [1], we know that n[g(Ṽθ∗

;Mn) − g(V0;Mn)] =

Op(1). It remains to examine n[g(Vsθ ;Mn) − g(V0;Mn)].
By using similar arguments in Section 2.2, findingVsθ is equivalent to the minimization problem0sθ = argmin

0∈Rpsθ ×d
−tr(0TGn(sθ)0), subject to 0T0 = Id.

Then Vsθ(sθ) = N−1/2
n(sθ)

0sθ and Vsθ(s
c
θ
) = 0. Denote 0∗ as an orthonormal basis matrix of the subspace spanned by the

columns of N1/2
n(sθ)

V0(sθ). Thus, there exists a positive definite matrix O ∈ Rd×d so that 0∗ = N1/2
n(sθ)

V0(sθ)O. It suffices to
prove D(0sθ , 0∗) = Op(n−1/2). By Assumption 1, we have VT

0(sθ)
N(sθ)V0(sθ) = Id since sT ⊂ sθ . In addition, by Assumption 2,

OTO = Id + Op(n−1/2).
Similar to the techniques in the proof of Theorem 1 in [1], it suffices to show, for any arbitrarily small ε > 0, there exits

a sufficiently large constant C , such that

lim
n

inf Pr


inf
Z∈T0∗ (psθ ,d):∥B∥t=C

g(R(0∗ + n−1/2Z);Gn(sθ)) > g(0∗;Gn(sθ))


> 1 − ε. (C.5)

By using Lemma 1-(ii) in [1] again, for Z ∈ T0∗
(psθ , d) we have

n

g(R(0∗ + n−1/2Z);Gn(sθ)) − g(0∗;Gn(sθ))


=


−tr(ZTGn(sθ)Z) − 2

√
ntr(ZTGn(sθ)0∗) + tr(ZTZ0T

∗
Gn(sθ)0∗)


(1 + op(1))

:= (∆1 + ∆2 + ∆3)(1 + op(1)).

Denote 00(sθ) = N1/2
(sθ)

V0(sθ). Based on Lemma 1 and Assumption 2, using similar arguments as in the proof of Theorem 1
in [1], it can be verified that

∆1 + ∆3 ≥ [λd(sθ) − λd+1(sθ)]∥B∥
2
t + op(1),

∆2 =
√
ntr{BT0T

0⊥(sθ)[Gn(sθ) − G(sθ)]00(sθ)}(1 + Op(n−1/2)).

As a consequence, by the Cauchy–Schwarz inequality for a trace operator,∆2 is uniformly bounded by ∥B∥t ×∥
√
n[Gn(sθ)−

G(sθ)]00(sθ)∥t . Therefore, as long as the constant C is sufficiently large, ∆1 + ∆3 will always dominate ∆2 with arbitrarily
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large probabilities by Lemma 2. This implies the inequality (C.5), and as a consequence we will have n[g(Vsθ ;Mn) −

g(Ṽθ∗
;Mn)] is of order O(1). As a result, Pr(BICθ − BICθ∗

> 0) → 1 for any θ ∈ Rp+
O since the last term in (C.4) diverges to

infinity as n → ∞.
Step 2. Now consider θ ∈ Rp+

U . In this case, there at least exists i ∈ sT so thatVsθ(i) = 0. Thus, D(Vsθ ,V0) = C for some
constant C . Consequently, D(V̌,V0) = C + Op(n−1/2), where V̌ is defined in (B.2). Similar to Step 1, we have

BICθ − BICθ∗
≥ g(Vsθ ;Mn) − g(Ṽθ∗

;Mn) − dpθ∗
· log n/n

= g(Vsθ ;M) − g(V0;M) − dpθ∗
· log n/n + Op(n−1/2)

p
−→ g(V̌;M) − g(V0;M) > 0,

in which the last inequality comes from the fact that V0 is the minimizer of minV −tr(VTGV) subject to VTNV = Id by
definition. Thus, it follows immediately that Pr(BICθ > BICθ∗

) → 1 for any θ ∈ Rp+
U .

Combining the two cases together implies that any θ failing to identify the true model cannot be selected as the optimal
parameter. Say, the model associated with the optimal θ must be the true one which completes the proof. �
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