
Accepted Manuscript

Conditional estimation for dependent functional data

Heather Battey, Alessio Sancetta

PII: S0047-259X(13)00063-8
DOI: http://dx.doi.org/10.1016/j.jmva.2013.04.009
Reference: YJMVA 3537

To appear in: Journal of Multivariate Analysis

Received date: 2 August 2012

Please cite this article as: H. Battey, A. Sancetta, Conditional estimation for dependent
functional data, Journal of Multivariate Analysis (2013),
http://dx.doi.org/10.1016/j.jmva.2013.04.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmva.2013.04.009


Conditional estimation for dependent functional data

Heather Batteya, Alessio Sancettab

aSchool of Mathematics, University of Bristol, University Walk, Clifton, BS8 1TW. Email: h.s.battey@bristol.ac.uk

bDepartment of Economics, Royal Holloway, University of London, Egham, TW20 0EX. Email: asancetta@gmail.com

Abstract

Suppose we observe a Markov chain taking values in a functional space. We are interested in exploiting the time series
dependence in these in�nite dimensional data in order to make non-trivial predictions about the future. Making use of
the Karhunen Loève (KL) representation of functional random variables in terms of the eigenfunctions of the covariance
operator, we present a deliberately over-simpli�ed nonparametric model, which allows us to achieve dimensionality
reduction by considering one dimensional nearest neighbour (NN) estimators for the transition distribution of the
random coe�cients of the KL expansion. Under regularity conditions, we show that the NN estimator is consistent
even when the coe�cients of the KL expansion are estimated from the observations. This also allows us to deduce
consistency of conditional regression function estimators for functional data. We show via simulations and two
empirical examples that the proposed NN estimator outperforms the state of the art when data are generated both
by the functional autoregressive (FAR) model of Bosq (2000) and by more general data generating mechanisms.

Keywords: functional data analysis, Karhunen-Loève expansion, dimension reduction, nearest neighbour estimator.

AMS (2000) subject classi�cations: primary: 62G20, 62M05; secondary: 62H25

1. Introduction

The statistical analysis of functional data has attracted substantial attention over the last �fteen years or so. Aside

from the dramatic improvements in data collection technologies, which have allowed data to be collected over a denser

collection of points, the increased popularity of functional data analysis has stemmed from its ability to exploit some

assumed smoothness in the sample paths of the random process of interest. Much of the early work on functional

data analysis (FDA) focussed on i.i.d. functional random variables, but recently there has been heightened interest in

dependent functional data. The need to take account of dependence is particularly evident in cases where functional

data arise from segmenting a long time series into natural consecutive intervals (e.g. days, weeks, etc.) of equal

length, as discussed by Hörmann and Kokoszka (2010) and Bathia et. al. (2010). Electricity load curves, pollutant

concentration curves and tra�c volumes across the day are just a few examples of time series functional data studied

in the literature (e.g. Cavallini et al., 1994, Besse and Cardot, 1996, Besse et al., 2000, Damon and Guillas, 2002).

More generally, we are interested in dependent random functions whose domain is a higher dimensional set like V ⊂ Rk
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(k ≥ 1), which is a case particularly relevant in �elds such as brain imaging and geophysics (see e.g. Cohen and Jones,

1969). In these examples and others, it is not appropriate to assume functional data are generated independently of

one another.

Much of FDA is based on variants of functional principal components analysis (FPCA) (see e.g. Ramsay and Silverman,

2005), a technique that permits dimensionality reduction by restricting attention to random functions taking values in

a separable Hilbert space and decomposing in terms of orthogonal basis functions. More precisely, this basis consists

of the eigenfunctions of the covariance operator. The random coe�cients of this basis function expansion are termed

factor loadings or component scores, and the principal factor loadings or component scores are those corresponding

to the �rst few selected basis functions of the expansion; more details are provided in subsequent chapters.

Although many studies deal with estimation of principal factors using FPCA (see e.g. Silverman, 1996; Ramsay and

Silverman, 2002; Lin and Carroll, 2000; Yao et al, 2005a; 2005b; Hall et al., 2006; Li and Hsing, 2010), there is

relatively little research devoted to using the estimated factor loadings for prediction purposes. In this paper, we

use the estimated factor loadings to propose an estimator of the transition distribution of functional observations,

consistent in some suitable topology. In particular, predictions are based on the estimated factor loadings using

nearest neighbour estimators for their transition distributions. Many other nonparametric approaches to functional

data analysis are proposed in Ferraty and Vieu (2006).

Mean prediction of functional data has been studied before for the V ⊂ R case; Bosq (2000) provides a comprehensive

account of the linear functional autoregressive process of order 1, Bosq and Blanke (2007) provides a general de�nition

of the the functional autoregressive process (see page 243), whilst Kargin and Onatski (2008) develop the predictive

factors procedure for one-step prediction under the same assumption. Although the theoretical properties obtained

by Kargin and Onatski (2008) can be used to justify their procedure, the recent study of Didericksen, Kokoszka and

Zhang (2012) shows that in �nite samples, the predictive factors procedure never outperforms the approach of Bosq

(2000), and in some cases performs poorly, even when the data are generated arti�cially as a functional autoregressive

process of order 1, which we henceforth refer to as FAR(1). Even more concerning, the same authors found that

predictions based on the functional autoregression are often no better than those based on the mean function. These

observations motivate a procedure that is able to outperform these procedures and handle more complex dependence

structures. In this paper, we restrict attention to stationary ergodic Markov chains (MC), not necessarily linear; see

Hörmann and Kokoszka (2010) for general weak dependence conditions on functional data. We propose a deliberately

over-simpli�ed nonparametric model based on the transition distributions of the unobservable factor loadings and

present an estimator for these transition distributions based on the estimated factor loadings. We show that the

consistency properties of this estimator are una�ected by the use of the estimated factor loadings rather than the true

unobservable ones. In characterising the dependence structure in terms of the transition distributions, we avoid the

need to parameterise the time series dynamics of the functional data. Although the deliberate over-simpli�cation will

induce unquanti�able bias if it fails to accurately describe the data generating mechanism, it allows us to signi�cantly

reduce the dimensionality of the problem, thereby reducing the estimation error that would otherwise be incurred.

This paper provides several new contributions. From a methodological perspective, we present a new estimator for the

prediction of functional time series and functionals thereof. We establish the consistency of the proposed estimator

and provide guidance on the rates at which tuning parameters should be allowed to grow or shrink with the sample

2



size. Our simulation study and real data examples illustrate the comparative gains of our procedure.

This paper proceeds as follows. Section 2 provides background material and established results that are used to

motivate the methodology developed in subsequent sections. In Section 3, methodology for the estimation of several

objects is elaborated, which ultimately allows us to propose a consistent estimator for the conditional expectation of

Lipschitz functionals of our functional random variables. These methods are presented, in the �rst instance, using a

general consistent estimator for the eigenfunctions that form our orthonormal projection subspace. In Section 4 we

discuss estimation of the eigenfunctions further, elucidating estimators that satisfy the consistency and orthogonality

requirements in the case of V ⊂ R and discussing the conditions under which certain estimators may be preferred to

others. The main contributions of this paper appear in the theorems of Section 3. Section 5 discusses in detail the

results derived and the conditions imposed in previous sections. Sections 6 and 7 provide, respectively, simulation

evidence for the performance of our proposed procedure and two empirical examples using geophysical data and

electricity demand data. Finally, Section 8 gives details of the proofs.

2. Background

Suppose that (Yi)i∈N is a weakly stationary sequence of random functions, each taking values in real separable Hilbert

space H. We suppose that Yi is mean zero and has jointly continuous covariance function C0(u, v) := E(Yi(u)Yi(v))
for u, v ∈ V where V is a compact subset of Rk (k ≥ 1), and by stationarity the covariance function does not depend

on i. The mean zero condition is simply equivalent to assuming that the mean function is known. In practice, the

mean function can be estimated by e.g. the empirical mean and subtracted o�; for independent or weakly dependent

functional observations

E
∥∥∥ 1
n

n∑

i=1

Yi − EYi
∥∥∥

2

= O(n−1).

Mercer's Theorem (Adler and Taylor, 2007) provides the following convergent series expansion,

C0 (u, v) =
∑

s∈N
λsϕs(u)ϕs(v), (2.1)

where convergence is uniform in u and v by the above continuity. Above, (ϕs(v))s∈N is a collection of orthonormal

real valued eigenfunctions of the integral operator with kernel C0(u, v) such that λs ≥ λs+1 . . . are the corresponding

real ordered eigenvalues. By the L2-separability of H, the process admits the following Karhunen-Loève expansion

with equality in L2

Yi(v) =
∑

s∈N
Zi,sϕs(v) (2.2)

where, for each i, (Zi,s)s∈N is a sequence of uncorrelated random variables such that EZi,s = 0 with variance λs.

Equation (2.2) is readily obtained from Mercer's Theorem with Zi,s :=
∫
V Yi(v)ϕs(v)dv = 〈Yi, ϕs〉 (see e.g. Adler and

Taylor, 2007).

The goal is to estimate the transition distribution of Yi, under the condition that (Yi)i∈N is a positive recurrent MC.

A prototypical example is the following formal generalization of a multivariate stochastic di�erence equation to the
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functional case (see Babillot et. al. (1997) for regularity conditions for positive recurrence in the multivariate case),

Yi (v) =
∫

V
Ai (v, u)Yi−1 (u) du+Bi (v) , (2.3)

where, using the same notation for an operator and its kernel function, (Ai)i∈N is a sequence of i.i.d. linear random

operators and (Bi)i∈N are i.i.d random variables with values in H. Bosq (2000) provides details on this class of linear

models when Ai = A is a nonrandom linear operator. By allowing Ai to be a random linear operator, we incorporate

a great deal more �exibility. As an example, consider the functional generalisation of the ARCH(1) model as de�ned

in Hörmann et al (2012) as

Yi = εiσi

σ2
i = δ + β(Y 2

i−1)

where {εi} is a sequence of independent and identically distributed random functions in H, β : H+ → H+ is a non-

negative operator and δ ∈ H+; H+ denotes the set of non-negative functions in H. The functional ARCH(1) model

is of the form (2.3) with Ai = ε2iβ(Y 2
i−1) and Bi = ε2i δ.

We shall assume that for each i ∈ N, (Zi,s)s∈N are not only uncorrelated, but also independent. For example, in (2.3),

independence of the principal component scores implies

Ai (v, u) =
∑

s∈N
Wi,sϕs(v)ϕs(u),

where
{

(Wi,s)i∈N ; s ∈ N
}
are independent collections of i.i.d. random variables. A thorough discussion of this

independence assumption is provided in Section 5.

Throughout the paper we shall use the following notation. For a (non-random) operator A from H into itself,

we shall also use A to denote its kernel, so that we may switch between operator notation and integrals using

the kernel, e.g. Af =
∫
V A (v, u) f (u) du. We use the Frobenius (Hilbert-Schmidt) norm as the operator's norm,

|A|F = (trace (A∗A))1/2
where A∗ is the adjoint of A. The operators considered in this paper are all Hermitian

(symmetric) hence, trace (A∗A) = trace (AA) =
∫ ∫
|A (u, v)|2 dudv. Moreover, H is equipped with the inner product

〈y, x〉 =
∫
y (u)x (u) du, x, y ∈ H, and the distance between elements is given by |y − x| = (〈y − x, y − x〉)1/2

. It

should be clear by the context when |•| is the absolute value or the norm for H. I1{·} is the indicator function of a set.

Finally, . is inequality up to a �nite absolute constant (i.e. the left hand side is big O of the right hand side).

3. Conditional estimation

Suppose initially that we observe n realisations of the random functions (Yi)ni=1 over the whole of the domain V. In
light of equation (2.2), the objects of interest are the eigenfunctions, (ϕs(v))s∈N, of the integral operator with kernel

C0(u, v), from which one can construct the random variables, (Zi,s)ni=1, i.e. the factor loadings.
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Condition 1. (i) For each s ∈ N (Zi,s)ni=1 is a strictly stationary Markov chain with strong mixing coe�cients

αs (i) := sup {|Pr (A ∩B)− Pr (A) Pr (B)| : A ∈ σ (Z0,s) , B ∈ σ (Zi,s)}

bounded by α (i) . i−a, a > 1. (ii) For each i = 1, . . . , n, (Zi,s)s∈N is a sequence of independent mean zero random
variables.

Referring to Chapter 1.8 of van der Vaart and Wellner (2000) the Markov process, (Yi)ni=1, with stochastic repre-

sentation in (Zi,s)s∈N, independent across s for every i (Condition 1), exists in a Hilbert space under Condition

2.

Condition 2. For some ν ≥ 2, E |Yi|ν <∞.

Condition 3. C0 (u, v) has d ≥ 2 mixed partial derivatives which are Lebesgue square integrable, and the eigenvalues
of the covariance operator C0 are distinct.

Suppose we are interested in estimating the transition distribution of (Yi (v))ni=1, say PY , for Lebesgue almost all v.

By virtue of equation (2.2),

PY (y(v)|x) := Pr (Yi (v) ≤ y (v) |Yi−1 = x) = Pr
(
Yi (v) ≤ y (v) |

∫

V
|Yi−1 (u)− x (u)|2 du = 0

)

[equality in L2]

= Pr (Yi (v) ≤ y (v) | 〈ϕs, Yi−1〉 = xs, s ∈ N) ,

which follows by function representation in H and orthonormality of the eigenfunctions, de�ning xs := 〈ϕs, x〉. Let

Ps(zs|xs) := Pr(〈ϕs, Yi〉 ≤ zs| 〈ϕs, Yi−1〉 = xs), i.e. the transition distribution of (〈ϕs, Yi〉)i∈{1,...,n}, s ∈ N. Using

independence of the (Zi,s)s∈N for any i,

PY (y(v)|x) = lim
S→∞

∫

RS
I1

{
S∑

s=1

ϕs (v) zs ≤ y (v)

}
S∏

s=1

dPs (zs|xs) ,

hence

E [g (Yi) |Yi−1 = x] =
∫

R
g(y(v))dP (y(v)|x) = lim

S→∞

∫

RS
g

(
S∑

s=1

ϕs (v) zs

)
S∏

s=1

dPs (zs|xs) ,

The symbolic representation above emphasises the important quantities in the estimation procedure to be discussed.

By independence, we only need S one dimensional estimators for Ps, rather than a multivariate one. We also require

an estimator for the orthogonal eigenfunctions {ϕs(·), s = 1, . . . , S} of the covariance operator, C0. The next condition

places very general requirements on the eigenfunction estimator. In practice, we will want to know the details of how

to estimate {ϕs, s = 1 . . . , S}, and this issue is addressed in Section 4.

Condition 4. {ϕ̂s(·), s = 1, . . . , S} are orthonormal estimators of {ϕs(·), s = 1, . . . , S} such that supv |ϕ̂s(v)| < ∞
for any s ≥ 1, and which ful�ll

|ϕ̂s − ϕs| = Op(Λ−1
s n−τ )
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τ > 0, where the {Λs : s = 1, . . . , S} depend on spacings between the eigenvalues. More speci�cally Λs � |λs − λs−1|+
|λs − λs+1|, Λ1 � |λs − λs+1|.

Let Ψδ,s := {ψ : |ψ − ϕs| ≤ δ, |ψ| = 1}. Throughout the rest of this paper, we shall work with Zi (ψ) := 〈ψ, Yi〉 and
just drop the subscript s in Ψδ,s unless needed. Note that (Zi (ψ))i∈N is also a Markov chain, as Zi (ψ) is just a linear
functional of (Yi (v))v∈V . Condition 5 places more structure on the time series dependence of the factor loadings than

that provided by Condition 1 and is discussed further in Section 5.

Condition 5. There is a β ∈ (0, 1] and a δ > 0, such that for any r small enough, all z ∈ R and almost all z′,

max
s>0

sup
ψ∈Ψδ,s

|Pr (Z1 (ψ) ≤ z|Z0 (ψ) = z′ − r)− Pr (Z1 (ψ) ≤ z|Z0 (ψ) = z′ + r)| . rβ .

Conditioning on Z0 (ψ) = z′, for almost all z′, Z1 (ψ) (ψ ∈ Ψδ,s) has a tight measure absolutely continuous with respect
to the Lebesgue measure.

Let Ps(z|xs) = Pr(Zi,s ≤ z|Zi−1,s = xs). Let B(xs, rs) be an interval of Lebesgue measure rs centered at xs ∈ R. We

de�ne our nearest neighbour estimator of Ps(zs|xs) as

Psn (zs|Bs(〈x, ϕ̂s〉, rs)) :=
∑n
i=2 I1 {〈ϕ̂s, Yi−1〉 ∈ B(〈x, ϕ̂s〉, rs), 〈ϕ̂s, Yi〉 ≤ zs}∑n

i=2 I1 {〈ϕ̂s, Yi−1〉 ∈ B(〈x, ϕ̂s〉, rs)}
. (3.1)

Note that xs = 〈x, ϕs〉 is unknown if the eigenfunction ϕs is unknown, hence we must also account for this in the

estimator. It is tacitly assumed that rs is taken large enough to ensure that the denominator in (3.1) does not vanish.

We shall show that, in some suitable topology,

Psn (zs|B(〈x, ϕ̂s〉, rs)) = Ps (zs|〈x, ϕs〉) + op (1) ,

s ≤ S, for large n under suitable conditions on S = S (n) and rs = rs (n), increasing and decreasing sequences

respectively. This result is enough to consistently estimate Ei−1g (Yi) under regularity conditions on g, where Ei−1 is

expectation conditional on the previous observation Yi−1 (e.g. Sancetta, 2009; Linton and Sancetta, 2009).

3.1. Summary of the estimation procedure

1. Estimate the �rst S orthonormal eigenfunctions {ϕs(·), s = 1, . . . , S} of the covariance operator; estimators

satisfying Condition 4 are presented and discussed in Section 4.

2. Use the estimated eigenfunctions {ϕ̂s : s = 1, . . . , S} to obtain
{

(Zi,sn)i∈{1,...,n} ; s = 1, ..., S
}
, where Zi,sn :=

Zi,s,n = 〈Yi, ϕ̂s〉;
3. Use

{
(Zi,sn)i∈{1,...,n} ; s = 1, ..., S

}
to derive the formal estimator

Pn (y (v) |x) :=
∫

R
I1

{
S∑

s=1

ϕ̂s (v) zs ≤ y (v)

}
S∏

s=1

dPsn (zs|Bs (〈x, ϕ̂s〉 , rs)) (3.2)
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of PY (y|x). In equation (3.2) we use the usual linear functional notation in which integration over the empirical

distribution is just summation over a �nite set of zs values corresponding to the points at which we observe the

data. With this notation, our estimator of the conditional expectation of any Lipschitz function g : R→ R can

be written as

∫
g(y(v))Pn(y(v)|x) =

n∑

i=2

[
S∏

s=1

I1 {Zi−1,sn ∈ Bs(xs,n, rs)}∑n
i=2 I1 {Zi−1,sn ∈ Bs(xs,n, rs)}

]
g

(
S∑

s=1

Zi,snϕ̂s (v)

)
, (3.3)

where xs,n := 〈x, ϕ̂s〉.

Remark 1. When g (y) = y, the estimator is simply

∫
y(v)dPn(y(v)|x) =

S∑

s=1

Zsnϕ̂s (v) , (3.4)

where

Zsn =
n∑

i=2

Zi,sn
I1 {Zi−1,sn ∈ Bs(xs,n, rs)}∑n
i=2 I1 {Zi−1,sn ∈ Bs(xs,n, rs)}

.

The following results show that the procedure is expected to provide results as good as if the {Ps(zs|xs) : s = 1, . . . , S}
were known.

Theorem 1. Suppose rs → 0 such that rsΛsnτ →∞, where τ and Λs are those of Condition 4. Under Conditions 1
- 5, for almost all x ∈ H, for any S <∞, and all s ≤ S,

sup
z∈R
|Psn(z|B (〈x, ϕ̂s〉 , rs))− Ps (z|xs)| = Op

(
n−1/2r−1

s + rβs

)
= op (1) .

If rs is chosen optimally as rs � n−1/(2β+2) , the above display is Op
(
n−β/(2β+2)

)
.

Using Theorem 1, we also prove the following result for the conditional expectation of Lipschitz functionals of Yi (v).

Theorem 2. Let rs � n−1/(2β+2) and let g : R → R be bounded Lipschitz with Lipschitz constant one. If
S
(
n−β/(2β+2) + n−2τ mins≤S Λ−2

s

)
→ 0, under Conditions 1 - 5, for Lebesgue almost all v,

∫

R
g (y (v)) dPn (y (v) |x) =

∫

R
g (y (v)) dP (y (v) |x) + op (1) .

Remark 2. Despite o�ering some guidelines on the choice of S, Theorem 2 does not provide the practitioner with a
concrete rule. In Section 6 we simply choose S to be �xed at some small value, which is seen to be reasonable from
an empirical point of view. As an alternative, S may be chosen by cross validation.
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4. Eigenfunction estimation

We present a class of estimators satisfying Condition 4 under Condition 3 and the additional Condition 6, which is

presented below. This result is formally stated in Lemma 1. In this section, we restrict attention to the closed interval

V = [a, b] and without loss of generality we work with V = [0, 1]. Our proposed procedure involves expanding the

eigenfunctions in the Fourier basis and estimating the coe�cients of that expansion. Write the covariance function in

terms of the bivariate Fourier basis, as

C0(u, v) =
∑

r,p∈Z
c(r, p) exp{i(ru+ pv)} (4.1)

where c(r, p) is the (r, p)th Fourier coe�cient of C0(u, v). A natural estimator of the coe�cients of the Fourier basis

expansion of the eigenfunctions is thus obtained by truncating the above Fourier expansion between −S and S;

estimating the Fourier coe�cients of an estimator, Cn(u, v), of C0(u, v); and deriving an estimator for the Fourier

coe�cients of interest based on Mercer's Theorem. In particular, our proposed estimator is

ϕSs,n(v) =
S∑

r=−S
as,n(r) exp{irv} (4.2)

where as,n(r) is the rth entry of the sth eigenvector of CSn where CSn is the S×S matrix of Fourier coe�cients cSn(r, p)
of the truncated bivariate Fourier expansion of the estimated covariance function, i.e.

CSn (u, v) =
S∑

r=−S

S∑

p=−S
cSn(r, p) exp{i(ru+ pv)}, (4.3)

which is the truncated Fourier representation of Cn(u, v).

Remark 3. Any other atomic representation C0 =
∑
r,p≥1 c (r, p) erep where are orthonormal functions can be used

in place of the complex exponential. For the direct application of the results of Lemma 1 it is only necessary that
the coe�cients decay at the same rate as the Fourier coe�cients of smooth functions as in Condition 3. Hence, for
numerical calculations, if V = [0, 1], one may use the trigonometric basis

e1 = 1; e2r (v) = 21/2 cos (2πrv) ; e2r+1 (v) = 21/2 sin (2πrv) ; r ≥ 1.

Remark 4. When Cn is the empirical covariance function (e.g. Bosq, 2000, p.9), CSn is just the covariance matrix of
the �rst S frequencies of the Fourier transformed data. This follows by the orthonormality of Fourier basis functions
and corresponds to steps 1 and 3 in Silverman (1996) p. 6.

Condition 6. The sequence (Cn)n≥1 satis�es |Cn − C0|F = Op (n−τ ), τ > 0.

We denote by
{
ϕSsn : s ∈ N

}
the set of eigenfunctions of CSn . {ϕSs,n : s = 1, . . . , S} are clearly orthogonal, hence satisfy

Condition 4 for an appropriate choice of S; furthermore ϕSsn := 0, for s > S. The error in the truncation of the

Fourier expansion is well known and its implications in the present context is summarised in Lemma 1.
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Lemma 1. Under Conditions 3 and 6, for any s ≥ 1, for V = [0, 1], and for S & n−τ/d,
∣∣ϕSs,n − ϕs

∣∣ = Op
(
Λ−1
s n−τ

)
,

and supv
∣∣ϕSs,n (v)

∣∣ < ∞, for any n, where τ is that of Condition 6 and Λs � |λs − λs−1| + |λs − λs+1|, Λ1 �
|λs − λs+1|.

5. Remarks on conditions and results

Condition 1

The polynomial rate of decay for the strong mixing coe�cients of the Markov chain is weak (Bradley, 2005, for a

review of mixing coe�cients). Many stochastic processes satisfy this condition and actually geometric decay. For

example GARCH models can be embedded into a multivariate version of the stochastic recurrence equation

Zi = AiZi−1 +Bi,

which is the matrix version of (2.3). Under regularity conditions, the above is geometrically ergodic, hence strongly

mixing with geometric decay (Basrak et al., 2002, Theorem 2.8). ARMA processes of any �nite order are also

strong mixing with geometric decay when the error distribution is absolutely continuous w.r.t. the Lebesgue measure

(Mokkadem, 1988, Theorem 1). This allows us to easily control the time series dependence. Regarding Condition 1

(ii), note that the factor loadings are uncorrelated by construction and for several stochastic dependence concepts,

zero correlation implies independence (Joe, 1997, Esary et al., 1967).

Condition 2

The moment condition on |Yi| implies moment conditions on the factor loadings

E |Yi|ν = E



∫ ( ∞∑

s=1

Zi,sϕs (v)

)2

dv



ν/2

= E

( ∞∑

s=1

Z2
i,s

)ν/2
<∞.

Since all quantities in the summation are positive,

∞ > E

( ∞∑

s=1

Z2
i,s

)ν/2
≥ E

∞∑

s=1

|Z1,s|ν ,

i.e. absolute summability of EZνi,s = E〈Yi, ϕs〉ν for any i, by stationarity. This ensures
∑
s∈N〈Yi, ϕs〉2 converges

almost surely (van der Vaart and Wellner, 2000, Lemma 1.8.1). Since V = [0, 1] and C0 is linear and continuous

by Condition 3, then supu,v |C0(u, v)| < ∞. By Mercer's Theorem and existence of second moments, this implies

that the eigenfunctions are also uniformly bounded: sups∈N supv∈V |ϕk (v)| < ∞. Bounded eigenfunctions ensure

that, for k ∈ N,
∑
s∈N〈Yi, ϕs〉ϕk converges whenever

∑
s∈N〈Yi, ϕs〉2 converges, giving completeness. Some form of

measurability of 〈Zi,s, ϕs〉 (∀i, s) is required for the existence of the separable process (2.2) (see e.g. van der Vaart

and Wellner, 2000, Lemma 1.8.2). Throughout this paper we assume everything is measurable.
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Condition 3

Condition 3 controls the rate of approximation using S principal factors. In particular, Condition 3 ensures that the

process (Yi (v))v∈V is asymptotically �nite dimensional in the sense of van der Vaart and Wellner (2000), hence tight

by Condition 2 (van der Vaart and Wellner, 2000, Lemma 1.8.1). Eigenvalues of C0 are distinct for most regular cases.

For example, one can conjecture that the sth eigenvalue of the parametric covariance function exp
{
−θ2 |u− v|2

}
is

λs � λs where λ ∈ (0, 1) increases with θ(> 0) (e.g. Rasmussen and Williams, 2006 eq. 4.39, for details, where

integrals are with respect to the Gaussian measure rather than the Lebesgue measure over a compact interval).

Condition 4

Although the orthogonality condition rules out the use of the estimator of Silverman (1996), there are several pos-

sibilities for the choice of eigenfunctions satisfying Condition 4. For V a closed interval of the real line, the rate of

convergence of orthogonal eigenfunction estimators of the form (4.2) is established in Lemma 1 under Condition 6 on

the rate of convergence of the covariance function estimator. For V a compact subset of Rk (k > 1), it follows imme-

diately by Lemmata 4.2 and 4.3 of Bosq (2000) that the eigenfunctions of the estimated covariance kernel converge

to those of the true ones at rate Λ−1
s n−τ in inner product norm as long as Condition 6 holds. In general however, τ

in the convergence rate of the covariance function estimator will depend on k. The exception is if the true covariance

function is in some parametric class whose dimension does not depend on k. Moreover, in practice it is infeasible to

obtain the eigenfunctions of the estimated covariance function directly and we need to propose an estimator for the

eigenfunctions such as that of equation (4.2). These estimators are in general a�ected by the dimensionality of V, for
instance if an estimator analogous to that is equation (4.2) was to be employed, we would require kd derivatives in

order for the Fourier approximation error to be of the same order. We therefore do not consider generalisations of

Lemma 1 to the case of k > 1.

Condition 5

Suppose for a moment that 〈ψ, Yi〉 = Zi,s, (e.g. ψ ∈ Ψδ,s, δ = 0), then, the condition is standard. It says that the

transition distribution is smooth in the conditioning variable, though not necessarily di�erentiable and also that the

transition density exists. The Lipschitz continuity condition is necessary to control the rate of convergence in the

nearest neighbour estimator of the transition distribution of the {Zi,s : s = 1, . . . , S}. It is however not standard that

the condition needs to hold uniformly in ψ ∈ Ψδ,s, as in this case we usually have 〈ψ, Yi〉 6= Zi,s. The plausibility

of the condition follows from the fact that the Markovian structure is preserved by the inner product 〈ψ, Yi〉. For

de�niteness, suppose that the simple stationary AR(1) structure

Zi,s = ρsZi−1,s +Bis, (5.1)

where sups |ρs| < 1 and (Bis)i∈Z is i.i.d. Gaussian with mean zero and variance
(
1− ρ2

s

)
λs, using the fact that

EZ2
i,s = λs by construction. Recall that the (Zi,s)s∈N are independent across s. Then, for any bounded ψ using the

fact that also the eigenfunctions are bounded, let γs = 〈ψ,ϕs〉 < ∞. Then, 〈ψ, Yi〉 =
∑∞
s=1 γsZi,s is Gaussian with
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mean zero and variance
∑∞
s=1 γsλs <∞ (recall λs is the s

th eigenvalue). From (5.1), 〈ψ, Yi〉 has conditional mean

Ei−1 〈ψ, Yi〉 =
∞∑

s=1

γsEi−1Zi,s

=
∞∑

s=1

γsρsZi−1,s

and conditional variance, using independence across s,

V ari−1 (〈ψ, Yi〉) =
∞∑

s=1

γ2
sEi−1B

2
is

=
∞∑

s=1

γ2
s

(
1− ρ2

s

)
λs.

The transition distribution of 〈ψ, Yi〉 is Gaussian, it has a density and it is Lipschitz of order β = 1 in the conditioning

argument. Here, Gaussianity makes the calculations feasible. The example shows that the {(Zi,s)s∈N : i ∈ N} are not
changed by the function ψ, and the dependence of 〈ψ, Yi〉 on the past only comes from the {(Zi,s)s∈N : i ∈ N} which
are independent across s.

Condition 6

For τ = 1/2, this condition is satis�ed by a correctly speci�ed parametric covariance model as well as by the empirical

covariance function estimator, (see e.g. Bosq, 2000, Theorem 4.1 using Condition 1 to control the time series depen-

dence). The empirical covariance will only be suitable in practice if the functions are observed at a dense enough grid

of points in V. Alternatively, a smooth estimator via two dimensional nonparametric smoothing techniques can be

considered (e.g. Yao et al., 2005; Hall et al., 2006). In this case, τ < 1/2, with exact optimal rate depending on the

smoother and the properties of C0. Under regularity conditions, a �rst order kernel would lead to τ = 1/3. Under

suitable conditions, Hall et al. (2006) show improved convergence rates for the estimated eigenfunctions: compare

Lemma 1 in Section 8 with Theorem 1-2 in Hall et al. (2006).

Theorem 1

For observable factor loadings, rs � n−1/(2β+2) would still be optimal with the same convergence rate stated in

Theorem 1. Hence, estimated factor loadings and eigenfunctions do not a�ect the rate of convergence as long as

rsn
τΛs →∞. Substituting the optimal rate for r, and noting that β ≤ 1, this is the case when n−τΛ−1

s = o
(
n−1/4

)
.

From the remark on Condition 6, τ > 1/3 in most practical cases when V is a closed interval of the real line. As

long as the convergence rate of the estimator of the eigenfunctions is faster than the convergence rate of the nearest

neighbour estimator of the transition distribution of the factor loadings, we do not need to worry about not directly

observing the factor loadings. Theorem 1 provides a bound for the Kolmogorov's metric of the joint distribution of the

factor loadings. This implies convergence of estimated conditional expectation of any function of bounded variation

of the factor loadings (here bounded variation is intended in the sense of Hardy; see e.g. Sancetta, 2009, for details).
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The results are in terms of the (Λs)Ss=1 of Condition 4. This implies that the estimator is less precise for higher order

factors. Of course, a faster decay of the eigenvalues, requires a smaller number of principal components to obtain a

good approximation. In practice, one usually restricts attention to a small number of principal factors.

Theorem 2

The result of part (ii) of the Theorem also applies to
∫
V
∫

R g (y (v)) dPn (y (v) |x) dv by dominated convergence if

gPn (v) :=
∣∣∫

R g (y (v)) dPn (y (v) |x)
∣∣ is bounded by some integrable function. The error rate is only increased by |V|

which is �nite since |V| <∞.

6. Simulation performance

Here we compare several versions of our method to the linear autoregressive estimator (LA) of Bosq (2000) and to

the predictive factors estimator (PF) of Kargin and Onatski (2008) when the simulated data were generated by a

model that satis�es the linear autoregressive assumption under which LA and PF were designed to be e�ective. For

comparison, we also present the performance of the mean function and the last available curve in the sample. In the

next sub-section we present results for a more general data generating mechanism.

6.1. Data generated by an FAR(1)

We follow the experimental design of Didericksen et al (2012), generating a functional autoregression (FAR) according

to

Yi(v) =
∫

V
k(u, v)Yi−1(u)du+ εi(v) (6.1)

where V = [0, 1] and where we choose k(u, v) to be the Gaussian kernel k(u, v) = C exp{−(u2 + v2)/2} where C is a

normalising constant chosen such that ‖k‖F = 0.8. The error process ε(v) is taken to be the Brownian Bridge process

ε(v) = W (v)− vW (1)

where W (·) is the standard Wiener process generated as

W

(
k

K

)
=

1√
K

k∑

j=1

Zj j = 0, 1, . . . ,K

with (Zj)Kj=1 independent standard normal random variables and Z0 = 0. As in Didericksen et al (2012), we use a

burn-in sample of 50 functional observations.

In each simulation we compute the integrated square error as realisations of

∫

V
(Yn+1(v)− Ŷn+1(v))2dv (6.2)
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where Ŷn+1 is the estimator of the (n+ 1)th functional data object given observations up to time n. In practice, we

replace integration by summation over a �nite grid of points.

In the �rst version of the NN estimator (E-FNN), we simply consider discretising the empirical covariance on a regular

grid and taking the singular value decomposition of the resulting matrix in order to estimate the eigenfunctions at

a �nite set of points. The second version of the NN estimator (E-SNN) uses the empirical covariance function and

estimates the eigenfunctions on a �nite set of points as the eigenvectors of a matrix of evaluation points of the Fourier

transformed empirical covariance function, which is equivalent to the empirical covariance of the Fourier transformed

data (see e.g. Bosq, 2000); this equivalence is useful for functional data that are observed at a di�erent set of points

along each functional data unit. We use PF to denote the predictive factors estimator of Kargin and Onatski (2008),

LA to denote the estimator of Bosq, Mean to denote the mean function, and Previous to denote the last available curve

in the sample. For the estimator of Bosq (2000), the eigenfunctions and eigenvalues are estimated by the smoothed

functional principal components approach of Silverman (1996) using the publicly available fda package of Ramsay,

Wickham, Hooker and Graves (2009).

The NN estimation is performed by �rst estimating {ϕs : s = 1, . . . , S} by one of the procedures mentioned in the

previous paragraph, and transforming the realisations of (Yi)ni=1 to realisations of the scalar random variables in the

dual space {(Zi,sn)ni=1 : s = 1, . . . , S} by taking the inner product {〈Yi, ϕ̂s〉, i = 1, . . . , n; s = 1, . . . , S}. In practice

we replace the integral by a sum over the �nite grid of points over which each of the (Yi)ni=1 is observed. We then

construct a ball of radius rs, around xsn = 〈Yn, ϕ̂s〉 for each s = 1, . . . , S. In the experiments below, we take the

radius of the set B (xsn, rs) in the NN estimator to be rs = csσsn
−1/4, and S = 2. For good performance of the

NN estimator, S can be taken larger (as in Theorems 1 and 2), but this causes the performance of the Bosq (2000)

and PF estimators to deteriorate. Here, cs is a tuning constant and σs is the standard deviation of the sth estimated

component score from the sample of size n. We carried out experiments with di�erent values of cs and found that the

choice cs = 1.5 worked well in our case. We then construct the NN estimates of each of the S transition distributions

over a large set of values for zs as in equation (3.1). We estimate the conditional expectation of Zn+1,s by replacing

the integral
∫
zsdPsn(zs|B(xsn, rs)) by a sum over the �nite grid of zs values corresponding to the sample data

(i.e. by implementing equation (3.4)), which subsequently allows us to estimate the conditional expectation of Yn+1

by replacing the (Zn+1,s)Ss=1 in the truncated Karhunen-Loève representation by their expected values.

FIGURE 1 HERE

Figure 1: Boxplots of square root ISE for E-SNN, E-FNN, LA, PF, Mean and Previous for n ∈ {50, 100, 500, 1000}.
4000 Monte Carlo replications with functional data drawn from the FAR model described by equation (6.1).

6.2. General data generating mechanisms with dependence

Although the results presented in the previous subsection are favourable to our procedure, the FAR(1) model is very
restrictive and we would like to consider more general nonlinear data generating processes. Since interest lies in the
performance of our estimator over a range of di�erent data generating mechanisms, we follow Friedman (2001) in that

13



for each of our simulated examples, we simulate a random curve time series of size n+ 1 from the random model

Yi(v) =
K∑

k=1

Ri,kek (v) , (6.3)

e1 = a1; e2k(v) = s−ba2k cos (2πkv) ; e2k+1(v) = k−ba2k+1 sin (2πkv) ,

where b ∈ [1, 4], and ak ∈ [0, 1], Ri,k = φRi−1,k + ζi,k, φ ∈ [−0.99, 0.99] and the {ζi,k} are i.i.d. in i and k and have
t-distribution with ν ∈ [3, 30] degrees of freedom. For each of the simulations, the parameters (a1, a2, ..., aK , b, ν, ρ)
are generated from a uniform distribution with support as de�ned above. Moreover, for each sample, the model is
only observed over a �xed grid, V ′ of 20 points in V = [0, 1]. Note that (ek)k>1 are proportional to the eigenfunctions,
and (Ri,k)k>1 are proportional to the principal factor loadings.

We consider both the case of an equally spaced grid, and a randomly generated grid of 20 points, uniformly distributed
on V. Table 1. provides the step-ahead forecast performance of several versions of the nearest neighbour estimator
for training samples of size n = 50, 100, 500, 1000, as measured by the mean integrated square error (MISE) and
its standard deviation over 5000 simulations. We report the same summary statistics for the PF estimator, the LA
estimator, the unconditional mean function, and the last available function in the training sample.

Estimation is performed as in the previous section, except now we also consider using the true covariance function
rather than the estimated one (T-SNN), as this is directly available from equation (6.3). For space considerations, we
do not present the PF estimator, whose performance was worse than the other methods.

T-SNN E-SNN E-FNN LA Mean Previous

grid n MISE s.e. MISE s.e MISE s.e MISE s.e MISE s.e MISE s.e

equi 50 1.1620 1.1857 1.1108 1.8057 2.0733 4.5433 2.8033 7.5049 2.8281 7.8394 5.9545 27.016

equi 100 1.1409 2.2164 1.0561 1.6986 2.0876 5.2641 2.9289 8.6935 2.9374 8.8427 6.4815 31.120

equi 500 1.0875 2.1620 1.0608 1.9875 2.1050 4.9924 2.9992 8.2723 3.0016 8.2854 5.9430 22.735

equi 1000 1.0607 1.9549 1.0449 1.8393 2.0298 4.7432 2.8200 8.3019 2.8213 8.3107 6.0760 30.145

rand 50 1.1847 2.6513 1.1392 2.7145 1.9830 5.2117 2.8774 8.0396 2.9033 8.3173 6.4219 29.094

rand 100 1.1325 2.4495 1.0887 2.3518 1.7895 4.5411 2.8342 9.6220 2.8489 9.9407 6.3363 38.260

rand 500 1.0209 2.0653 0.9955 1.6189 1.6845 3.5614 2.9669 7.7604 2.9728 7.7912 6.0124 21.580

rand 1000 1.0039 1.7040 1.0178 1.8293 1.6350 3.2332 2.9165 8.2991 2.9190 8.3182 6.2206 26.937

Table 1: MISE and its standard error of T-SNN, E-SNN, E-FNN, LA, Mean and Previous for various values of
n in 5000 simulations of the model described by equation (6.3). `equi' denotes an equispaced grid of observation
points and `rand' denotes a randomly generated grid that is the same for all n observations.

FIGURE 2 HERE

Figure 2: Boxplots of square root ISE for T-SNN, E-SNN, E-FNN, LA, Mean and Previous for various values
of n in 5000 simulations of the model described by equation (6.3) with V ′ equispaced. In both images, the
groups correspond (from left to right) to n = 50, n = 100, n = 500 and n = 1000. These plots correspond to the
same simulations as those described in the upper portion of Table 1.
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6.3. Summary of simulation performance

The results from this section can summarised as follows.

1. Predictive factors (PF) is competitive with the procedure of Bosq (2000) (LA) when the data are generated
by a functional linear autoregression as described in Section 6.1, but the performance can be poor for more
complicated data generating mechanisms such as those described in Section 6.2. It should be noted however,
that the PF procedure involves some tuning parameters that we have not attempted to optimise, so it may be
the case that the performance of PF can be improved. Nevertheless, our results are consistent with those of
Didericksen et al (2012).

2. E-SNN uniformly outperforms all competing procedures when data are generated according to the FAR (1)
model, with the performance improving with the sample size.

3. For the more general data generating mechanism, E-SNN can outperform even the estimator that uses the true
covariance function, which can be computed explicitly with this particular data generating mechanism. The
reason for this is that the singular value decomposition based on the empirical covariance function produces
principal component scores that are uncorrelated in sample, whilst the PC scores based on the true covariance
will only be uncorrelated in the limit as n→∞.

4. LA performs better than the mean function, but with the more general data generating mechanism, the im-
provement is only marginal and the estimator does not compete with the NN procedures.

7. Empirical performance

Empirical performance on geophysics data

The Southern Oscillation Index (SOI) is a measure of the di�erence in southern surface air pressure over time between
Tahiti and Darwin, Australia. It is used as a measure of the strength of the Southern Oscillation, which is a major
component of the el-Niño and la-Niña phenomena. El-Niño and la Niña can have a dramatic impact on weather
conditions around the world, and the resulting �oods, droughts and migration of �sh populations can be particularly
devastating for countries heavily dependent on �shing and agriculture. With this in mind, it would be highly bene�cial
to be able to predict future Southern Oscillation patterns based on a time series of annual SOI curves. This curve
time series is very oscillatory, with peaks and troughs occurring at irregular intervals. We examine the performance of
E-FNN and E-SNN, along with the mean function, the last available curve, the predictive factors approach of Kargin
and Onatski (2008) and the linear autoregressive approach of Bosq (2000). The data for this example are publically
available at http://www.bom.gov.au/climate/current/soi2.shtml.

Our sample is a time series of 135 annual Southern Oscillation curves. We remove the last 51 curves from the sample
to form the initial training set, which we use to predict one step ahead. We sequentially increase the size of the
training sample by one until we reach 134, each time predicting one step ahead so that we characterise the prediction
performance of the competing estimators over a test set of 50 functional observations. We subtract the 7-year moving
average from each curve before implementing each of the competing procedures. The MISE and their standard errors
over the 50 test observations are presented in Table 3., where the error is scaled by the standard deviation function
before computing the ISE and summary statistics. This ensures that the statistics we observe are unit-free and may
be compared across di�erent data sets.
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Empirical performance on electricity demand data

We use a data set from the R package fds (Shang and Hyndman, 2011) which consists of observations on half-hourly
electricity demand in Adelaide between 6 June 1997 and 31 March 2007. Because commodity demand is characterised
by day-of-the-week e�ects, which would potentially make the curve time series non-stationary between curves, we
decide to segment the curve time series into 7 di�erent curve time series, one corresponding to each day of the
week. We focus only on the Monday series here. We subtract the 52-week moving average from each curve before
implementing each of the competing procedures; this captures both the seasonal component and the observed trend
that electricity demand in Adelaide is increasing over time.

The same split into training and test data is done as in the SOI example, and we again consider the prediction
performance of competing estimators over a test set of 50 functional observations. The MISE and their standard
errors over the 50 test observations are presented in Table 3., where again, the error is scaled by the standard
deviation function before computing the ISE and summary statistics. The Mean estimator in this case is the 52-week
moving average at the end of the training sample.

E-FNN E-SNN LA Mean Previous

data n MISE std. err. MISE std. err. MISE std. err. MISE std. err. MISE std. err.

SOI 135 1.3368 0.8338 1.3192 0.8306 1.3461 0.8347 1.3453 0.8343 2.3713 1.6690

Elec 508 1.2556 1.9258 1.1038 2.0268 1.2436 1.8136 1.3133 1.8201 1.5344 2.3825

Table 3: MISE and its standard error of E-FNN, E-SNN, PF, Mean and Previous, over a test set of 30, for the
SOI and electricity data sets.

In Figure 3. below, we present the last observation in each data set along with its prediction by several competing
methods. Although E-FNN does very well at predicting this particular realisation for the Electricity data, E-SNN
performs better over the entire test set, so we present both predictions in the right hand panel.

FIGURE 3 HERE

Figure 3: Left panel: SOI data: plot of the target (realisation at time n+1) and its prediction by several meth-
ods: the last available curve (dashed red line); E-SNN prediction (dot-dashed black line); Bosq LA prediction
(dotted blue line). Right panel: Electricity demand data: plot of the target (realisation at time n + 1) and its
prediction by several methods: the last available curve (dashed red line); E-SNN prediction (dot-dashed black
line); E-FNN prediction (solid marked black line); Bosq LA prediction (dotted line).

8. Proofs

The proof of the results is based on several steps. For the sake of clarity, we shall follow the same order as in Section
3.1 to establish all the relevant steps in the proofs. We shall then prove Lemma 1 which shows our proposed estimator
of Section 1 satis�es Condition 4 under Conditions 6 and 3.
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Properties of the estimator of
{

(Zi,s)i∈{1,...,n} ; s = 1, ..., S
}
based on the (ϕs,n)Ss=1.

We have the following preliminary Lemma

Lemma 2. Under Conditions 2 and 4, for any S ≥ 1,

∫ ∣∣∣∣∣
S∑

s=1

(ϕ̂s (v)− ϕs (v))Zi,s

∣∣∣∣∣

2

dv = Op

((
S

Λ2
Sn

2τ

) ν
ν+2
)
,

where ΛS := mins≤S Λs with Λs as in Condition 4.

Proof. Note that, by orthogonality of the eigenfunctions (Condition 4),





∫ ∣∣∣∣∣
S∑

s=1

(ϕ̂s (v)− ϕs (v))Zi,s

∣∣∣∣∣

2

dv > ε





=

{
S∑

s=1

Z2
i,s

∫
(ϕ̂s (v)− ϕs (v))2

dv > ε

}

⊆
{
M max

s≤S

∫
|ϕ̂s (v) (v)− ϕs (v)|2 dv > ε

}
∪
{

S∑

s=1

Z2
i,s > M

}
.

Hence,

Pr



∫ ∣∣∣∣∣

S∑

s=1

(ϕ̂s (v)− ϕs (v))Zi,s

∣∣∣∣∣

2

dv > ε


 ≤MSΛ−2

S n−2τ +M−ν/2

where the �rst term follows by Condition 4 and the second by Condition 2. Equating the two terms, the result
follows.

The following lemma ensures the {(Zi,s)i∈{1,...,n} : s = 1, . . . , S} based on the known eigenfunctions and the estimated
ones are close.

Lemma 3. Let Zi,sn := 〈Yi, ϕ̂s〉 and Zi,s := 〈Yi, ϕs〉. Then, under Conditions 2 and 4, for any s ≥ 1, and i ∈
{1, . . . , n}, |Zi,sn − Zi,s| = Op

(
Λ−1
s n−τ

)
.

Proof. By de�nition, |Zi,sn − Zi,s| = |〈Yi, (ϕ̂s − ϕs)〉| ≤ |Yi| |ϕ̂s − ϕs|, and the bound follows by Condition 4 because
|Yi| is bounded in probability by Condition 2
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Properties of the estimator for the transition distribution

This section establishes convergence of the estimator in (3.1).

Convergence of the marginals under estimation error

Recall that Zi(ψ) := 〈Yi, ψ〉 , ∀ψ ∈ Ψδ, as de�ned before Condition 5. For ease of notation, Zi := Zi(ψ). For any
x ∈ H, and ψ ∈ Ψδ, de�ne

Pn(z|B,ψ) :=
∑n
i=2 I1 {〈ψ, Yi−1〉 ∈ B (〈ψ, x〉 , r) , 〈ψ, Yi〉 ≤ z}∑n

i=2 I1 {〈ψ, Yi−1〉 ∈ B (〈ψ, x〉 , r)} ,

P (z|B,ψ) := Pr (〈Y1, ψ〉 ≤ z| 〈Y0, ψ〉 ∈ B (〈ψ, x〉 , r))
and,

P (z|x, ψ) := Pr (〈Y1, ψ〉 ≤ z| 〈Y0, ψ〉 = 〈ψ, x〉)
when r = 0. With this notation we now prove Theorem 1.

Proof. [Theorem 1] By Condition 4 for large enough n, we do have ϕ̂s ∈ Ψδ,s in probability for some δ = O
(
Λ−1
s n−τ

)
.

By the triangle inequality,

sup
z∈R
|Pn(z|B, ϕ̂s)− P (z|x, ϕs)|

≤ sup
z∈R,ψ∈Ψδ

|Pn(z|B,ψ)− P (z|B,ψ)|

+ sup
z∈R,ψ∈Ψδ

|P (z|B,ψ)− P (z|x, ϕs)|

= I + II.

We shall control each term separately.

Control over I. An application of Lemma 5 shows that I . K (〈x, ϕs〉)n−1/2r−1, as long as δ = o (r).

Control over II. By Lemma 3, |ϕs − ψ| ≤ δ = O
(
Λ−1
s n−τ

)
implies there are δ′ and δ′′ of order O

(
Λ−1
s n−τ

)
, such

that 〈Yi − x, ϕs − ψ〉 ≤ δ′, 〈Yi, ϕs − ψ〉 ≤ δ′′ (in probability). Moreover,

{〈Y0, ψ〉 ∈ B (〈x, ψ〉 , r)}
= {〈x, ψ〉+ 〈Y0, ϕs − ψ〉 − r ≤ 〈Y0, ϕs〉 ≤ 〈x, ψ〉+ 〈Y0, ϕs − ψ〉+ r}
= {〈x, ϕs〉+ 〈Y0 − x, ϕs − ψ〉 − r ≤ 〈Y0, ϕs〉 ≤ 〈x, ϕs〉+ 〈Y0 − x, ϕs − ψ〉+ r}
= {〈Y0, ϕs〉 ∈ B (〈x, ϕs〉+ 〈Y0 − x, ϕs − ψ〉 , r)}

and, by the previous remarks,

B (〈x, ϕs〉+ 〈Y0 − x, ϕs − ψ〉 , r) ⊆ B (〈x, ϕs〉 , r + δ′) ,
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in probability. Hence,

II = |Pr (〈Y1, ψ〉 ≤ z| 〈Y0, ψ〉 ∈ B (〈x, ψ〉))− Pr (〈Y1, ϕs〉 ≤ z| 〈Y0, ϕs〉 = 〈x, ϕs〉)|
≤ sup

z∈R,x′∈B(〈x,ϕs〉,r+δ′)
|Pr (〈Y1, ϕs〉 ≤ z + δ′′| 〈Y0, ϕs〉 = x′)− Pr (〈Y1, ϕs〉 ≤ z + δ′′| 〈Y0, ϕs〉 = 〈x, ϕs〉)|

+ sup
z∈R
|Pr (〈Y1, ϕs〉 ≤ z + δ′′| 〈Y0, ϕs〉 = 〈x, ϕs〉)− Pr (〈Y1, ϕs〉 ≤ z| 〈Y0, ϕs〉 = 〈x, ϕs〉)|

= O
(
rβ + δ′′

)

by Condition 5 using the fact that δ′ = o (r) by the condition in the Theorem. Putting everything together, we have

I + II = O
(
K (〈x, ϕs〉)n−1/2r−1 + rβ + Λ−1

s n−τ
)

= O
(
K (〈x, ϕs〉)n−β/(2β+2)

)

for r � n−1/(2β+2) if Λ−1
s n−τ = o

(
n−1/(2β+2)

)
, because β ∈ (0, 1].

We now prove Theorem 2 (ii); the proof of Theorem 2 (i) follows trivially from this by Remark 1.

Proof. [Theorem 2] Let g : R→ R be Lipschitz of order one in the sense that

E|g(Y (v))− g(Y ′(v))| ≤ E|Y (v)− Y ′(v)|.

This implies that g is also of bounded variation hence, with no loss of generality, we can take g to be increasing. For
each integer S,

E
∫ ∣∣∣∣∣
∑

s>S

Zi,sϕs (v)

∣∣∣∣∣

2

dv ≤
∑

s>S

EZ2
i,s =

∑

s>S

λs.

By Condition 3, λs = o
(
s−(d+1)

)
(e.g. Reade, 1984), implying

∑
s>S λs = o

(
S−d lnS

)
, and consequently,

∣∣∣∣∣g
( ∞∑

s=1

Zi,sϕs (v)

)
− g

(
S∑

s=1

Zi,sϕs (v)

)∣∣∣∣∣ = Op

(
S−d/2 ln1/2 S

)

for Lebesgue almost all v, because g is Lipschitz.

De�ne gM := g {g ≤M} and gMc := g {g > M} and note that

E

∣∣∣∣∣g
(

S∑

s=1

Zi,sϕs (v)

)∣∣∣∣∣

2

≤ E

∣∣∣∣∣
∞∑

s=1

Zi,sϕs (v)

∣∣∣∣∣

2

= C0 (v, v) <∞,
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by the Lipschitz condition, (2.2) and Condition 3. By Lemma 1, and the above display we also have E
∣∣∣g
(∑S

s=1 Zi,sϕ
S
sn (v)

)∣∣∣
2

<

∞ . Then, Pr (g > M) . M−2, by Markov's inequality, whether we use the true or estimated eigenfunctions. Hence,
E |g − gM | = EgMc . M−1, by Holder's inequality on gMc = g {g > M}, and we can use a �nite dimensional version
of Y and gM in place of g (again, whether we use the true or estimated eigenfunctions). Moreover, by Lemma 2,

∣∣∣∣∣gM
(

S∑

s=1

ϕs (v)Zi,s

)
− gM

(
S∑

s=1

ϕ̂s (v)Zi,s

)∣∣∣∣∣ = Op

((
S

Λ2
Sn

) ν
ν+2
)
,

for Lebesgue almost all v because gM is Lipschitz.

We show the results for gM

(∑S
s=1 ϕ̂s (v) zs

)
. To this end, de�ne

gs,nM (zs, v) :=
∫
gM

(
S∑

t=1

ϕ̂t (v) zt

)∏

t<s

dPtn (zt|Bt(〈x, ϕ̂t〉))
∏

t>s

dPt (zt|〈x, ϕt〉)) ,

where the empty product is one. Note that for each v, gs,nM (zs, v) is random, but bounded and monotonic. With this
proviso, for Lebesgue almost all v, consider the telescoping sum

∣∣∣∣∣

∫
gM

(
S∑

s=1

ϕ̂s (v) zs

)
S∏

s=1

d [Psn (zs|Bs (〈x, ϕ̂s〉))− Ps (zs|〈x, ϕs〉))]
∣∣∣∣∣

=

∣∣∣∣∣

∫ S∑

s=1

gs,nM (zs, ϕ̂s (v)) d [Psn (zs|Bs (〈x, ϕ̂s〉))− Ps (zs|〈x, ϕs〉))]
∣∣∣∣∣

≤ MSmax
s≤S

sup
zs∈R
|Psn (zs|Bs (〈x, ϕ̂s〉))− Ps (zs|〈x, ϕs〉)|

[by the properties of the Kolmogorov metric, e.g. Sancetta (2007, 2009)]

= Op

(
K (〈x, ϕs〉)MSn−β/(2β+2)

)

by Theorem 1, for r as in the statement of the theorem. Putting everything together, we have

∫
gM

(
S∑

s=1

ϕ̂s (v) zs

)
S∏

s=1

dPsn (zs|Bs(〈x, ϕ̂s〉))

=
∫
g

( ∞∑

s=1

ϕs (v) zs

)
S∏

s=1

dPs (zs|〈x, ϕs〉))

+Op

(
K (〈x, ϕs〉)MSn−β/(2β+2) +

(
S

Λ2
Sn

2τ

) v
v+2

+M−1 + S−d/2 ln1/2 S

)
.

Letting M →∞ slowly enough, the error term clearly goes to zero under the conditions of the Theorem.

We next prove Lemma 1. The proof uses the following re-phrasing of Lemma 4.3 in Bosq (2000).
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Lemma 4. Suppose C0, C1 are covariance functions from a Hilbert space H into itself. Let {ψs0; s ∈ N} and
{ψs1; s ∈ N} be the respective eigenfunctions (their range is assumed to be a subset of R). Then, for s ∈ N,
|ψs0 − ψs1| ≤ Λ−1

s |C0 − C1|F , where Λs � |λs − λs−1|+ |λs − λs+1|, Λ1 � |λs − λs+1|.

As we will see, in the proof of Lemma 1 we need to control for the approximation error due to the truncated number
of Fourier coe�cients as well as for the estimation error. Recall that

CSn (u, v) :=
∑

|r|,|p|≤S
cn(r, p) exp {i(ru+ pv)} ,

the truncated Fourier representation of Cn. As before, we denote by
{
ϕSs,n : s ∈ N

}
the set of eigenfunctions of CSn .

Proof. [Lemma 1] By the triangle inequality
∣∣ϕSs,n − ϕs

∣∣ ≤
∣∣ϕSs,n − ϕSs

∣∣+
∣∣ϕSs − ϕs

∣∣ =: I + II,

where ϕSs is the sth eigenfunction of CS0 :=
∑
|r|,|p|≤S c(r, p) exp {i(ru+ sv)} with obvious notation using the Fourier

representation in (4.3) for C0. We shall apply Lemma 4 to the estimation error I and the approximation error II. To
bound I, note that, using the Fourier basis functions as a common basis for both Cn and C0,∫

V

∫

V
|Cn(u, v)− C0(u, v)|2 dudv =

∑

r,p

|cn(r, p)− c(r, p)|2 = Op
(
n−2τ

)

by Condition 6, where the �rst equality follows by orthonormality of the Fourier basis. By positivity of the elements
in the sum

∑

r,p

|cn(r, p)− c(r, p)|2 ≥
∑

|r|,|p|≤S
|cn(r, p)− c(r, p)|2 =

∫

V

∫

V

∣∣CSn (u, v)− CS0 (u, v)
∣∣2 dudv

so that, by Lemma 4, I = Op
(
Λ−1
s n−1/2

)
. To bound II, we need a bound on the following:

∫

V

∫

V

∣∣CS0 (u, v)− C0(u, v)
∣∣2 dudv =


 ∑

|r|,|p|>S
+2
∑

r∈Z

∑

|p|>S


 |c(r, p)|2

by orthogonality of trigonometric polynomials and symmetry of c. By Condition 3, for any non negative integers k
and l with k + l ≤ d (with d as in Condition 3), the Fourier coe�cients of C0 satisfy

∑

|r|,|p|≤S

∣∣rkplc(r, p)
∣∣2 <∞, (8.1)

using the relationship between the Fourier coe�cients of C0 and the ones of its derivatives. Hence,

 ∑

|r|,|p|>S
+2
∑

r∈Z

∑

|p|>S


 |c(r, p)|2 ≤ 3

∑

r∈Z

∑

|p|>S
|c(r, p)|2 . S−2d,

by (8.1) with k = 0 and l = d. Hence, applying Lemma 4, solve for S−2d = n−2τ to infer S & nτ/d, if we want
II = O

(
Λ−1
s n−τ

)
. Finally, we note that the estimated eigenfunctions are uniformly bounded because they are based

on trigonometric polynomials (which are bounded) with square coe�cients that need to sum up to one, as the
eigenfunctions are orthonormal.
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8.1. Supplementary lemmata

Using the same notation as in the proof of Theorem 1 we have the following.

Lemma 5. For δ = o (r) and r > 0, under Conditions 1 and 5,

sup
z∈R,ψ∈Ψδ

|Pn(z|B,ψ)− P (z|B,ψ)| . K (〈x, ϕ〉)
n1/2r

in probability, where K (〈x, ϕ〉) is as in (8.2) and for ease of notation we have dropped the subscript s, e.g. ϕ = ϕs.

Proof. To ease notation we may suppress the dependence on ψ when not needed, hence B := B (〈x, ψ〉) and Zi :=
Zi (ψ) when explicit dependence on ψ and x is not used. As in Caires and Ferreira (2005), note that

Pn(z|B,ψ)− P (z|B,ψ) =
∑n
i=1 (1− E) I1 {Zi−1 ∈ B,Zi ≤ z}∑n

i=1 E I1 {Zi−1 ∈ B}

−
[∑n

i=1 (1− E) I1 {Zi−1 ∈ B,Zi ≤ z}∑n
i=1 E I1 {Zi−1 ∈ B}

+ P (z|B,ψ)
]

×
[ ∑n

i=1 I1 {Zi−1 ∈ B}∑n
i=1 E I1 {Zi−1 ∈ B}

− 1
] ∑n

i=1 E I1 {Zi−1 ∈ B}∑n
i=1 I1 {Zi−1 ∈ B}

To avoid trivialities in the notation, we used the summation
∑n
i=1 rather than

∑n
i=2. De�ne

∆1 :=
∑n
i=1 (1− E) I1 {Zi−1 ∈ B,Zi ≤ z}∑n

i=1 E I1 {Zi−1 ∈ B}
and

∆2 :=
∑n
i=1 I1 {Zi−1 ∈ B}∑n
i=1 E I1 {Zi−1 ∈ B}

− 1,

so that

|Pn(z|B,ψ)− P (z|B,ψ)| ≤ |∆1|+ |∆1 + P (z|B,ψ)|
∣∣∣∣

∆2

1 + ∆2

∣∣∣∣ =: I + II.

The Lemma is proved if, in probability, we can �nd a uniform bound in z ∈ R and ψ ∈ Ψδ for the above display. By
(8.2) we will replace E {Z0 ∈ B} with its minorand r/K.

Control over I. We show that, uniformly in z ∈ R and ψ ∈ Ψδ, I = Op
(
K (〈x, ϕ〉) /

(
rn1/2

))
. Hence,

Pr

(
sup

z∈R,ψ∈Ψδ

∣∣∣∣
∑n
i=1 (1− E) I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉) , Zi (ψ) ≤ z}∑n

i=1 E I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉)}

∣∣∣∣ >
εK (〈x, ϕ〉)
rn1/2

)

≤ Pr

(
sup

z∈R,ψ∈Ψδ

∣∣∣∣
∑n
i=1 (1− E) I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉) , Zi (ψ) ≤ z}

n1/2

∣∣∣∣ > ε

)

by Lemma 6 and we shall control the above probability. For reasons of technical nature, we are going to complete the
proof for the set {Zi−1 ∈ B,Zi > z} rather than{Zi−1 ∈ B,Zi ≤ z}. Note that

{Zi−1 ∈ B (〈x, ψ〉) , Zi > z} = {Zi−1 > (〈x, ψ〉 − r) , Zi > z} − {Zi−1 > (〈x, ψ〉+ r) , Zi > z}
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so that it is enough to focus on {Zi−1 > (〈x, ψ〉 − r) , Zi > z}. Hence, let Pψ be the marginal distribution of Zi :=
Zi (ψ) (∀i by stationarity) and de�ne Ui := Pψ (Zi (ψ)). Then,

{Zi−1 > (〈x, ψ〉 − r) , Zi > z} = {Ui−1 > Pψ (〈x, ψ〉 − r) , Ui > Pψ (z)} ,
so that

sup
z∈R,ψ∈Ψδ

∣∣∣∣
∑n
i=1 (1− E) I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉) , Zi (ψ) > z}

n1/2

∣∣∣∣

. sup
u,v∈[0,1]

∣∣∣∣
∑n
i=1 (1− E) I1 {Ui−1 > u,Ui > v}

n1/2

∣∣∣∣ .

Note that by construction Ui is [0, 1] uniform because Pψ is continuous for every ψ ∈ Ψδ. The r.h.s. is bounded if we
show equicontinuity in probability. This follows from Proposition 7.3 in Rio (2000). In fact, by the previous remarks
on Sklar's Theorem and the remarks in Section 5, the (Ui)i∈{1,...,n} are α-mixing with decaying rate as prescribed by

Proposition 7.3 of Rio (2000).

Control over II. De�ne ε′ := εK (〈x, ϕ〉) /
(
rn1/2

)
and note that, making explicit the dependence of ∆1 and ∆2 on

ψ,

{
sup
ψ∈Ψδ

|∆1 (ψ) + P (z|B,ψ)|
∣∣∣∣

∆2 (ψ)
1 + ∆2 (ψ)

∣∣∣∣ > ε′
}

⊆
{

2 sup
ψ∈Ψδ

∣∣∣∣
∆2 (ψ)

1 + ∆2 (ψ)

∣∣∣∣ > ε′
}

[because |∆1 (ψ) + P (z|B,ψ)| < 2]

⊆
[{

2 sup
ψ∈Ψδ

∣∣∣∣
∆2 (ψ)

1 + ∆2 (ψ)

∣∣∣∣ > ε′, sup
ψ∈Ψδ

|∆2 (ψ)| < 1
2

}
∪
{

2 sup
ψ∈Ψδ

∣∣∣∣
∆2

1 + ∆2

∣∣∣∣ > ε′, sup
ψ∈Ψδ

|∆2 (ψ)| > 1
2

}]

⊆
[{

sup
ψ∈Ψδ

|∆2 (ψ)| > ε′

4

}
∪
{

sup
ψ∈Ψδ

|∆2 (ψ)| > 1
2

}]
.

Hence, for ε′ := εK (〈x, ϕ〉) /
(
rn1/2

)
≤ 2,

Pr

(
sup
ψ∈Ψδ

∣∣∣∣
∆2 (ψ)

1 + ∆2 (ψ)

∣∣∣∣ > ε′
)
≤ 2 Pr

(
sup
ψ∈Ψδ

|∆2 (ψ)| > ε′

4

)
.

≤ 2 Pr

(
sup
ψ∈Ψδ

∣∣∣∣
∑n
i=1 (1− E) I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉)}

rn/K (〈x, ψ〉)

∣∣∣∣ >
ε′

4n1/2

)

[by (8.2)]

. 2 Pr

(
sup
ψ∈Ψδ

∣∣∣∣
∑n
i=1 (1− E) I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉)}

n1/2

∣∣∣∣ >
ε

4

)

by de�nition of ε′ and Lemma 6. Using the same arguments as in the Control over I, we deduce that II =
Op
(
K (〈x, ϕ〉) /

(
rn1/2

))
.
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Lemma 6. Let δ → 0 such that δ = o (r). Then, eventually, for r → 0

inf
ψ∈Ψδ

n∑

i=1

E I1 {Zi−1 (ψ) ∈ B (〈x, ψ〉)} � nr/K (〈x, ϕ〉) ,

where K := K (xs) is a �nite constant depending on xs only, such that, for any s,

|B (xs, r)| ≤ K (xs) E {Z0s ∈ B (xs, r)} . (8.2)

Proof. Under the conditions of the lemma (δ/r) |Y0| = op (1) because |Y0| has a tight measure, by integrability. Hence,
r − δ |Y1| � r in probability, implying

inf
ψ∈Ψδ

Pr (〈Y0, ψ〉 ∈ [〈ψ, x〉 − r, 〈ψ, x〉+ r]) � Pr (〈Y0, ϕ〉 ∈ [〈ϕ, x〉 − r, 〈ϕ, x〉+ r])

≥ |r|
K (〈ϕ, x〉)

by (8.2). K (xs) can be taken as an upper bound for the Radon-Nykodym derivative of the Lebesgue measure with
respect to the invariant measure of (Zi,s)i∈{1,...,n} (see the proof of Lemma 2.2 in Devroye, 1981). This is clearly �nite
almost surely.
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