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a b s t r a c t

The coefficient of determination (R2) is used for judging the goodness of fit in a linear
regression model. It is the square of the multiple correlation coefficient between the study
and explanatory variables based on the sample values. It gives valid results only when the
observations are correctly observed without any measurement error. The conventional
R2 provides invalid results in the presence of measurement errors in the data because
the sample R2 becomes an inconsistent estimator of its population counterpart which
is the square of the population multiple correlation coefficient between the study and
explanatory variables. The goodness of fit statistics based on the variants of R2 for multiple
measurement error models have been proposed in this paper. These variants are based on
the utilization of the two forms of additional information from outside the sample. The
two forms are the known covariance matrix of measurement errors associated with the
explanatory variables and the known reliability matrix associated with the explanatory
variables. The asymptotic properties of the conventional R2 and the proposed variants of
R2 like goodness of fit statistics have been studied analytically and numerically.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The linear regression analysis has a prominent role in extracting the statistical information from the data through the
determination of relationship between the study and explanatory variables. An adequate linear regression model provides
valid statistical inferences on various applications including the forecasting. The success of linear regression analysis lies on
the adequacy of the fitted model in explaining the variations in the data set. A popular tool to determine the adequacy of
the fitted model is the coefficient of determination and the adjusted version. The coefficient of determination is popularly
known as R2 and its adjusted version is called as adjusted R2. They are treated as summary measures for the goodness of fit
of any linear regression model. The R2 is based on the proportion of variability of the study variable that can be explained
through the knowledge of a given set of explanatory variables. It is the square of themultiple correlation coefficient between
the study variable and all the explanatory variables present in the linear regression model. The R2 and its adjusted version
are also used for the model selection. For example, if there are several fitted models available from the same data set, then
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a model with the least lack of fit is preferred and can be determined based on the values of the coefficient of determination
or its adjusted version. Although R2 and its adjusted versions have certain limitations, see [12], but in spite of them, they
remain a popular choice among practitioners.

The research work in obtaining the different suitable forms of the coefficient of determination for various situations has
been addressed in the literature by several researchers. Eshima and Tabata [6,7] proposed the coefficient of determination in
entropy form for generalized linear models. Renaud and Victoria-Feser [28] presented a robust coefficient of determination
in regression. Tjur [42] proposed a coefficient of determination for the logistic regression model, see also [14,18]. Huang
and Chen [16] addressed the issue of the coefficient of determination in the local polynomial model. Hössjer [15] discussed
the role of the coefficient of determination in the mixed regression model. Linde and Tutz [44] considered the coefficient
of determination in the case of association in a regression framework. Srivastava and Shobhit [39] proposed a family of
coefficients of determination in the linear regression model. Marchand [21] discussed the point estimation of the coeffi-
cient of determination, see also [22]. Lipsitz et al. [19] discussed the partial correlation coefficient and the coefficient of
determination for the multivariate normal repeated measures data. Tanaka and Huba [41] presented a general coefficient
of determination for the covariance structure models under arbitrary generalized least squares estimation. Nagelkerke [24]
presented a generalization of the coefficient of determination. McKean and Sievers [23] obtained a new coefficient of deter-
mination for the least absolute deviation analysis. Knight [17] andHilliard and Lloyd [13] discussed the role of the coefficient
of determination in the simultaneous equation models. Ohtani [25] derived the density of R2 and its adjusted version. He
also analyzed their risk performance under an asymmetric loss function in the misspecified linear regression model.

One of the fundamental assumptions in using the coefficient of determination in the linear regression analysis is that
all the observations on the study and explanatory variables are correctly observed. Many times in practical situations, the
variables are not correctly observable and the measurement errors creep into the data. If the magnitude of measurement
errors is negligible, then it may not pose any big challenge to the derived statistical inferences. On the other hand, when the
magnitude of measurement errors is large, then it disturbs the optimal properties of the estimators. A serious consequence
of measurement errors in linear regression analysis is that the ordinary least squares estimator (OLSE) of the regression
coefficients becomes biased and inconsistent. Note that the sameOLSE is the best linear unbiased estimator of the regression
coefficients in the absence of measurement errors in the data. The coefficient of determination (R2) is a function of OLSE.
So consequently, the presence of the measurement error disturbs the properties of R2. The value of R2 obtained by ignoring
the measurement errors becomes misleading and may provide incorrect statistical inferences. So we are faced with the
question of how to judge the goodness of fit in the linear regression model when the observations are contaminated with
measurement errors. Such an issue has never been addressed in the literature, to the best of our knowledge.

Itmay also be noted that the expression of conventional R2 in themultiple linear regressionmodel is based on the analysis
of variance. It is defined as the ratio of the sum of squares due to regression and the total sum of squares. Unfortunately,
such analysis of variance in the setup of measurement error models is not possible. This is due to the nonexistence of the
moments of the estimators and the complicated structure of moments, if they exist in some cases, see [2,1]. So the only
option left is possibly to look at the structure of R2 and adjust it in the framework of the measurement error model so as to
reflect the goodness of fit. We have attempted in this direction.

In order to obtain the consistent estimators of regression coefficients in the presence of measurement errors in the data,
the OLSE is adjusted for its inconsistency. Such an adjustment is done by using the additional information from outside
the sample. Various forms of additional information can be used to obtain the consistent estimators, see [3,8] etc. for more
details. In the context of the multiple measurement error model, there are two possible forms of additional information
which can be used to obtain consistent estimators of the regression coefficient vector. These two forms are based on the
knowledge of the covariancematrix of measurement errors associated with explanatory variables and the knowledge of the
reliability matrix of explanatory variables, see, e.g. [3,29,9,10,31–33] etc. Since the form of the conventional R2 is directly
related to OLSE of the regression coefficient in the no-measurement error linear regressionmodel, an idea to obtain statistics
for judging the goodness of fit in the measurement error model can be based on the form of conventional R2. Our objective
in this paper is to use both types of available information and obtain an appropriate form of the coefficient of determination
which can be used to judge the goodness of a fit in the measurement error models.

The plan of the paper is as follows. The multivariate ultrastructural model and the various statistical assumptions are
described in Section 2. In Section 3, we demonstrate the inconsistency of the coefficient of determination under the ultra-
structural form of the measurement error model. We propose two goodness of fit statistics based on R2-like expressions.
These statistics are consistent for the population counterpart of R2 which is the square of the populationmultiple correlation
coefficient. The asymptotic distributions of the proposed R2 like goodness of fit statistics are derived under the specification
of the ultrastructural measurement error model in Section 5. In order to study the small sample properties of the proposed
goodness of fit statistics, Monte Carlo simulation experiments are conducted. The findings of the simulation study are pre-
sented in Section 6 followedby some concluding remarks in Section 7. Lastly, the proof of the results is given in theAppendix.

2. The model

We consider the following exact relationship between the (n × 1) vector of values of study variable η and the (n × p)
matrixΞ of n values on each of the p explanatory variables:

η = α1n + Ξβ, (2.1)
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where α is the intercept term, 1n is the (n × 1) vector of elements unity (1’s), and β is the (p × 1) vector of regression
coefficients.

When the observations on the study and explanatory variables are contaminated with measurement errors, then η and
Ξ cannot be accurately observed. We assume that they are observed with additive measurement errors as

y = η + ϵ (2.2)

and

X = Ξ +∆, (2.3)

respectively. Here, ϵ = (ϵ1, ϵ2, . . . , ϵn)
′ is the (n × 1) vector of measurement errors associated with η and ∆ = (δ1,

δ2, . . . , δn)
′ is the (n×p)matrix ofmeasurement errors associatedwith the explanatory variables inΞ , respectively. Further,

we assume that the true values of explanatory variables are expressible as

Ξ = M + Φ, (2.4)

whereM = E(Ξ) = (µ1, µ2, . . . , µn)
′ is the (n× p)matrix of unknownmeans (constants) of true explanatory variables in

Ξ andΦ = (φ1, φ2, . . . , φn)
′ is the randommatrix associated withΞ . The (p× 1) random vectors φ1, φ2, . . . , φn of matrix

Φ are assumed to be independently and identically distributed with mean vector 0, covariance matrixΣφ and finite fourth
moment. We also assume that the (p × 1) random vectors δ1, δ2, . . . , δn of matrix∆ are assumed to be independently and
identically distributed with mean vector 0, covariance matrixΣδ and finite moments up to order four. Further, the random
variables ϵ1, ϵ2, . . . , ϵn are assumed to be independently and identically distributed with mean zero and variance σ 2

ϵ and
finite fourth moment.

Eqs. (2.1)–(2.4) describe the setup of an ultrastructural model (see [5]) which is the synthesis of the structural form and
the functional formof themeasurement errormodel, see [11,3,34–37]. The two forms of themeasurement errormodels, viz.,
the structural and the functional as well as the classical regression model with no measurement errors, can be obtained as
particular cases. When all the row vectors ofM are identical, implying that the rows of X are identically and independently
distributed, then we get the specification of a structural model. When Σφ is equal to a null matrix, implying that Φ is
identically equal to the null matrix and consequently the matrix X is fixed but is measured with error, then we obtain the
specification of a functional model. When both the matrices Σφ and Σδ are equal to the null matrix, implying that both Φ
and∆ are identically equal to the null matrix, then the X matrix becomes fixed and is measured without any measurement
error. In such a situation, we get the specification of the classical regressionmodel. Thus the ultrastructural model facilitates
the study of the functional model, the structural model as well as the classical regressionmodel under the same framework.

We further assume that limn→∞ n−1M ′PM =: Σµ which is a symmetric and positive definite matrix where P =

In − n−11n1′
n. This assumption is needed for the validity of asymptotic results and avoids the possibility of any trend in

the data, see [30].

3. Coefficient of determination in the classical regression model

First we state the definition of convergence in probability and notations used for better understanding.

Definition. Let {Zn} be a sequence of random variables defined on some probability space. Then {Zn} is said to converge to
the random variable Z if for every ϑ > 0,

P{|Zn − Z | > ϑ} → 0 as n → ∞.

We say that {Zn} converges to Z on probability as n goes to infinity and is denoted as plimn→∞ Zn = Z . The notation plim
denotes the ‘‘probability in limit’’. The probability in limit also indicates the consistency property of an estimator. If ϖ̂ is a
consistent estimator ofϖ , then plimn→∞ ϖ̂ = ϖ .

Next we discuss the performance of R2 in the classical regression model under the usual assumptions. Let us consider
the following classical multiple linear regression model where explanatory variables are non-stochastic and measurement
errors are absent:

y∗
= α1 + X∗β + u,

where y∗ is the (n × 1) vector of values on the study variable, X∗ is the (n × p) matrix of n values on each of the p non-
stochastic explanatory variables, α is the intercept term, β is the (p × 1) vector of regression slopes, and u is the (n × 1)
vector of disturbances. The notation of∗denotes that the concerned variables are obtainedwithout anymeasurement errors.
Under this classical multiple linear regression model, the coefficient of determination is defined as

R∗2
=

b∗′X∗′PX∗b∗

y∗′Py∗

=
y∗′PX∗(X∗′PX∗)−1X∗′Py∗

y∗′Py∗
, (3.1)
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where b∗
= (X∗′PX∗)−1X∗′Py∗ is the ordinary least squares estimator β . Assuming E(u) = 0 and covariance matrix

V (u) = σ 2I with other usual assumptions of the classical linear regression analysis, it can be easily shown that

plim
n→∞

(R∗2
− θ∗) = 0,

where

θ∗
=

β ′(n−1X∗′PX∗)β

β ′(n−1X∗′PX∗)β + σ 2

denotes the square of the population multiple correlation coefficient between the study and explanatory variables and is
the population counterpart of R2. Thus it is established that R∗2 is a consistent estimator of θ∗. This conclusion remains true
only in the absence of measurement errors in the data. It may be noted that R∗2 is a biased estimator of θ∗.

A systematic study of the properties of R2 and its adjusted version under the normality of disturbances was conducted by
Cramer [4]. Ohtani and Giles [26] studied the relative performance of R2 and its adjusted versionwith respect to the criterion
of risk under an absolute error loss function. Relaxing the assumption of normal distribution and considering themultivariate
t-distribution of errors, Ohtani and Hasegawa [27] analyzed the properties of R2 and its adjusted version in the presence of
the specification error. The specification error relates to the mis-specification of the multiple linear regression model with
respect to the explanatory variables in the sense that either some important explanatory variables are not included or some
unimportant explanatory variables are included in the model. In all these studies, the exact expressions of the properties
of R2 and/or its adjusted version turn out to be quite intricate. Consequently, no clear and useful conclusions can be drawn.
These expressions are therefore evaluated numerically for some selected values of the parameters and the sample sizes.
Obviously, the observations emerging from such numerical exercises are limited in their scope and value.

An alternative route is to follow some asymptotic theory and use it to obtain the suitable approximations for the exact
expressions. Generally, the approximations obtained in this way aremuch simpler in comparison to their exact counterparts
and it is not difficult to draw meaningful inferences from them. In fact, the application of asymptotic theory in many
situations does not require the assumption of any specific distribution of errors like normal. It may then be sufficient to
assume the finiteness of first few moments of the distribution and thus it is possible to draw fairly general conclusions.

Ullah and Srivastava [43] obtained the approximations for the exact moments of R2 by employing the small disturbance
asymptotic theory. The conclusions drawn from such approximations have their validity only when θ∗ is near 1, i.e., the
case of perfect fit. Thus the use of small disturbance asymptotic theory in analyzing the performance of R2 does not seem
to be appropriate and worthwhile; see also [38] who examined the closeness of small disturbance and other asymptotic
approximations to the exact results. Srivastava et al. [40] utilized the large sample asymptotic theory and derived the
approximations for the biases and mean squared errors of R2 and its adjusted version.

Now we illustrate the performance of the coefficient of determination in the measurement error model. Note that
Eqs. (2.1)–(2.2) can jointly be written as

y = α1n + Ξβ + ϵ. (3.2)

Under the model (3.2), the coefficient of determination can be defined along similar lines as in the case of the classical
regression model without measurement errors as

RĎ2 =
y′PΞ(Ξ ′PΞ)−1Ξ ′Py

y′Py
. (3.3)

LetΣĎ
:= plimn→∞ n−1Ξ ′PΞ , then

plim
n→∞

(RĎ2 − θĎ) = 0,

where

θĎ =
β ′ΣĎβ

β ′ΣĎβ + σ 2
ϵ

is the square of the populationmultiple correlation coefficient. So this establishes a sort of similarity between the coefficients
of determination in the linear regression models under two cases, viz., with and without measurement errors.

4. Goodness of fit statistics in the measurement error model

ThematrixΞ is not observable in themeasurement errormodel. The values of explanatory variables can only be observed
as X with measurement errors given by∆. So we replace the unobservableΞ by observable X in (3.3) and attempt to obtain
the expression for the goodness of fit statistics based on the form of the coefficient of determination as follows:

R2
=

y′PX(X ′PX)−1X ′Py
y′Py

. (4.1)
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In case, X has no measurement errors, then the coefficient of determination defined in (4.1) is consistent for estimating the
parameter

θ =
β ′Σβ

β ′Σβ + σ 2
ϵ

, (4.2)

where Σ := plimn→∞ n−1X ′PX . The ordinary least squares estimate of the regression coefficient becomes inconsistent
in the presence of measurement errors in the data. Several approaches are available to find the consistent estimators
of regression coefficients in the multiple measurement error models, e.g. use of additional information from outside the
sample, instrumental variable method etc. We use the approach based on the use of additional information from outside
the sample. There are two popular forms of information which can be used. These forms are the known covariance matrix
of measurement errors associated with the explanatory variables and the known reliability matrix associated with the
explanatory variables.

First we investigate the consistency of conventional R2 for the parameter θ in the presence of measurement errors in the
model. We present some results in Lemma 1 which are useful in establishing the inconsistency of conventional R2 defined
in (4.1).

Lemma 1. Under the model (2.1)–(2.4) and the assumptions made in Section 2, we have the following results.

(i) plimn→∞ n−1X ′PX = Σµ +Σφ +Σδ = Σ ,
(ii) plimn→∞ n−1X ′Py = (Σ −Σδ)β ,
(iii) plimn→∞ n−1y′Py = β ′(Σ −Σδ)β + σ 2

ϵ ,
(iv) limn→∞Σx = Σ , whereΣx = n−1M ′PM +Σφ +Σδ .

Proof of the lemma is omitted.

Theorem 1. Under the results of Lemma 1, the probability in limit of conventional R2 under the ultrastructural
model (2.1)–(2.4) is

plim
n→∞

R2
=
β ′(Σ −Σδ)Σ

−1(Σ −Σδ)β

β ′(Σ −Σδ)β + σ 2
ϵ

.

Clearly, under the measurement error models, plimn→∞ R2
≠ θ , in general. This proves that the R2 is an inconsistent

estimator of θ under this setup.
Consequently, the conclusions obtained by using the conventional R2 to judge the goodness of the fitted linear regression

model will bemisleading if the data hasmeasurement errors. Therefore it is not advisable to use the conventional coefficient
of determination (R2) as a tool to decide about the goodness of fit in the measurement error models.

In order to provide a goodness of fit statistic based on the structure of the coefficient of determination, we would like
to develop the statistic which is at least a consistent estimator of θ in the presence of measurement errors in the model.
The property of unbiasedness is difficult to meet. To fulfill such a requirement, we need some additional information from
outside the sample. Such additional information is the same as that is required to estimate β consistently. We consider here
two cases. In the first case, we assume that the common covariancematrix ofmeasurement error vectors δi, (i = 1, 2, . . . , n)
is known. In the second case, we assume that the reliability matrix of the explanatory variables is known. Such additional
information can be available from various resources like the past experience of the researcher, from some similar kind of
studies done in the past, some pilot survey etc.

In case such additional information is not available but if the repeated data are available, then such information can be
estimated from the sample itself. The forms of the proposed goodness of fit statistics remain the same under the repeated
multiplemeasurement errormodel and they can be obtained just by replacingΣδ or Kx by their respective estimated values.
The asymptotic distributions of the statistics thus obtainedwill be different than those reported in this paper. Deriving these
expressions is out of the purview of this paper.

4.1. Σδ is known

We attempt to obtain a goodness of fit statistic based on the form of the coefficient of determination which should be
at least consistent for estimating the parametric function θ as in (4.2). To do so, we look for the consistent estimators of
β ′Σβ and σ 2

ϵ . Then replace β ′Σβ and σ 2
ϵ by their respective consistent estimators in θ . Such derived statistic will be a

R2-like statistic for estimating θ . This can be used to check the goodness of fit and considered like the sample R2 for the
measurement error model.

When the covariance matrixΣδ is known, the consistent estimator of β in the ultrastructural model (2.1)-(2.4) is given
by

bδ = (S −Σδ)
−1Sb, (4.3)
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where S = n−1X ′PX and

b = (X ′PX)−1X ′Py (4.4)

is the OLSE of β , see [2,8]. We now present Lemma 2 which is a direct consequence of the fact that plimn→∞ bδ = β and
Lemma 1:

Lemma 2.

plim
n→∞

{n−1y′Py − b′

δ(S −Σδ)bδ} = σ 2
ϵ .

Using Lemmas 1(i), 2 and bδ in (4.3), we propose a new goodness of fit statistic based on the form of the coefficient of
determination under the knowledge ofΣδ as

R2
δ =

b′

δSbδ
b′

δSbδ + {n−1y′Py − b′

δ(S −Σδ)bδ}

=
b′

δSbδ
n−1y′Py + b′

δΣδbδ
, 0 ≤ R2

δ ≤ 1, (4.5)

provided b′

δSbδ ≥ n−1y′Py + b′

δΣδbδ . In case b′

δSbδ < n−1y′Py + b′

δΣδbδ , we take the value of R2
δ as 1.

So the modified coefficient of determination like statistic under the assumption of knownΣδ can possibly be defined as

R2
δ = min


b′

δSbδ
n−1y′Py + b′

δΣδbδ
, 1

. (4.6)

It can be seen that

plim
n→∞

R2
δ = θ.

Thus the proposed goodness of fit statistic R2
δ can be used to judge the goodness of fit in the linear measurement error model

in place of the traditional R2.

4.2. Reliability matrix is known

The reliability ratio is defined as the ratio of the variances of true and observed values of the explanatory variable. The
reliability matrix is the multivariate generalization of reliability ratios. The reliability matrix is defined as

Kx = Σ−1
x (Σx −Σδ).

When Kx is known, then the consistent estimator of β in ultrastructural model (2.1)–(2.4) is given by

bk = K−1
x b, (4.7)

see [2,8]. This estimator has its own advantages, see [9,10] for more details. For example, this estimator can be obtained by
obtaining the OLSE. We now present a lemma which is a direct consequence of the result plimn→∞ bk = β and Lemma 1:

Lemma 3.

plim
n→∞

{n−1y′Py − b′

kSKxbk} = σ 2
ϵ .

Using Lemmas 1(i), 3 and bk in (4.7), we propose a new goodness of fit statistic based on the form of the coefficient of
determination under the knowledge of Kx, as

R2
k =

b′

kSbk
b′

kSbk + {n−1y′Py − b′

kSKxbk}

=
b′

kSbk
n−1y′Py + b′

kS(Ip − Kx)bk
; 0 ≤ R2

k ≤ 1, (4.8)

provided b′

kSbk ≥ n−1y′Py + b′

kS(Ip − Kx)bk. In case b′

kSbk < n−1y′Py + b′

kS(Ip − Kx)bk, we take the value of R2
k as 1. So the

modified coefficient of determination like statistic under the assumption of the known reliability matrix can be defined as

R2
k = min


b′

kSbk
n−1y′Py + b′

kS(Ip − Kx)bk
, 1

. (4.9)

Using the results of Lemma 1 and the consistency of bk for estimating β , it can be proved that plimn→∞ R2
k = θ . Thus, it

is clear that the proposed coefficient of determination like statistic R2
k is a better choice as a measure of goodness of fit in

the linear measurement error model in place of the conventional R2.
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4.3. Relation between the estimated reliability matrix and knownΣδ cases

When Kx is known, then β is consistently estimated by bk in (4.7). The case of the known reliability matrix in obtaining
the consistent estimates of the regression coefficient received more attention after the work of [9]. He suggested that if the
reliability matrix is not known from outside the sample and somehow if it is possible to estimate it as K̂x, then the consistent
estimator of β is given by

b̂k = K̂x
−1

b (4.10)

where b in (4.4) is the ordinary least squares estimator of β based on the measurement error ridden observed values of the
study and explanatory variables. An interesting observation arises which gives a one-to-one relationship between the two
cases of K̂x and knownΣδ as follows.

IfΣδ is known, then

bδ = (S −Σδ)
−1Sb

whereΣx is estimated by Σ̂x =
1
nX

′PX = S. Then Kx = Σ−1
x (Σx −Σδ) can be estimated as

K̂x = S−1(S −Σδ) (4.11)
= I − S−1Σδ.

In such a case

bk = K−1
x b

⇒ b̂k = K̂−1
x b

= (S −Σδ)
−1Sb

= bδ. (4.12)

If Kx is known

Kx = Σ−1
x (Σx −Σδ)

= Ip −Σ−1
x Σδ

⇒ Σ−1
x Σδ = Ip − Kx

thenΣδ can be estimated by

S−1Σ̂δ = Ip − Kx

⇒ Σ̂δ = S − SKx.

Thus

b̂δ = (S − Σ̂δ)
−1Sb

= (SKx)
−1Sb

= K−1
x b

= bk. (4.13)

The relationships (4.12) and (4.13) indicate that if either Σδ is known or Kx is estimated, then both the estimators, viz.,
bδ or bk can be determined from each other.

In our case, if Σδ is known or Kx is estimated, then the corresponding coefficient of determination can be determined
directly. Moreover, we can also conclude that both R2

δ and R2
k converge to θ . So the large sample behavior of R2

δ and R2
k may

be similar but their finite sample propertiesmay differ. Moreover, ifΣδ = σ 2
δ I , then the problem reduces to simply knowing

the value of σ 2
δ .

Also, the behavior of values of the coefficient of determination in the two cases, viz., known Kx or estimated Kx will differ
in finite sample cases. Their large sample behavior may not differ much and may be the same in some cases.

5. Asymptotic properties

The finite sample properties of R2
δ and R2

k depend on the values of bδ and bk. The moments of bδ do not exist, see [2, p. 58]
and [1]. The asymptotic distribution exists even when the exact distributions do not exist. So we derive the asymptotic
distribution of the proposed statistics. We have considered a general structure ofΣδ andΣφ and we also have assumed the
existence and finiteness of the moments of φ and δ up to order four in terms of the respective coefficients of skewness and
kurtosis. No form of the distributions of φ and δ are assumed. It is difficult to define the matrix variants of the measures of
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skewness and kurtosis which are needed in deriving the asymptotic distributions of R2
δ and R2

k . So for the sake of simplicity
and for our purpose to derive the asymptotic distribution, we assume, without loss of generality, that all the data is mean
corrected andΣδ = σ 2

δ Ip andΣφ = σ 2
φ In. First we specify the distributional assumptions under this setup. We assume that

the elements of∆, δij, (i = 1, 2, . . . , n; j = 1, 2, . . . , p) are independent and identically distributed random variables with
mean 0, variance σ 2

δ , thirdmoment γ1δσ 3
δ and fourthmoment (γ2δ+3)σ 4

δ . Similarly, elements ofΦ ,φij, (i = 1, 2, . . . , n; j =

1, 2, . . . , p) are assumed to be independent and identically distributed with first four finite moments given by 0, σ 2
φ , γ1φσ

3
φ

and (γ2φ + 3)σ 4
φ , respectively. Likewise it is also assumed that the elements of ϵ, ϵi, (i = 1, 2, . . . , n) are independent and

identically distributed with first four finite moments given by 0, σ 2
ϵ , γ1ϵσ

3
ϵ and (γ2ϵ +3)σ 4

ϵ , respectively. Here, for a random
variable Z , γ1Z and γ2Z denote the Pearson’s coefficients of skewness and kurtosis of the random variable Z . Further, ϵi, δij and
φij for all i = 1, 2, . . . , n, j = 1, 2, . . . , p are also assumed to be statistically independent of each other. We further assume
that the nth row ofmatrixM converges to σ ′

µ. Consequently, we have limn→∞ n−1M ′PM = limn→∞ n−1M ′M = σµσ
′
µ = Σµ.

We define the following quantities which are useful in deriving the asymptotic distributions of R2
δ and R2

k . Let

H =
√
n(S −Σx), (5.1)

h =
√
n{n−1X ′(ϵ −∆β)+ σ 2

δ β}, (5.2)

g =
√
n{n−1(ϵ −∆β)′(ϵ −∆β)− σ 2

ϵ − σ 2
δ β

′β}, (5.3)

where S = n−1X ′PX = n−1X ′X . We present a lemma which is used to derive the asymptotic results:

Lemma 4. Let {dn} be a sequence of (p × 1) non-stochastic vectors such that limn→∞ dn = d. Then, as n → ∞,

Hdn
h
g


d

−→ N(2p+1)

0,

ΩH(dd′) ΩhH(d) ΩgH(d)
Ω ′

hH(d) Ωh Ωgh

Ω ′

gH(d) Ω ′

gh Ωg


 ,

where

ΩH(dd′) = (σ 2
δ + σ 2

φ )[Σ{dd′
+ (d′d)Ip} + dd′σµσ

′

µ + (d′σµσ
′

µd)Ip]
+ (γ1φσ

3
φ + γ1δσ

3
δ )[f (σµ1

′

p, dd
′)+ {f (σµ1′

p, dd
′)}′

+ 2f (Ip, 1pσµdd′)] + (γ2φσ
4
φ + γ2δσ

4
δ )f (Ip, dd

′), (5.4)

ΩhH(d) = −σ 2
δ [Σ(dβ

′
+ (d′β)Ip)+ γ1δσδ{f (σµ1′

p, βd
′)

+ f (Ip, βd′σµ1p)+ (f (σµ1′

p, dβ
′))′} + γ2δσ

2
δ f (Ip, βd

′)], (5.5)

Ωh = (σ 2
ϵ + σ 2

δ (β
′β))Σ + σ 4

δ ββ
′
+ γ1δσ

3
δ {f (σµ1

′

p, ββ
′)+


f (σµ1′

p, ββ
′)
′
} + γ2δσ

4
δ f (Ip, ββ

′), (5.6)

Ωg = 2(σ 2
ϵ + σ 2

δ β
′β)2 + γ2ϵσ

4
ϵ + γ2δσ

4
δ f (Ip, ββ

′)β, (5.7)

ΩgH(d) =

γ1δσ

3
δ {f (σµ1p, dβ ′)+ f (Ip, βd′σµ1p)} + γ2δσ

4
δ f (Ip, dβ

′)+ σ 2
δ βd

′
+ σ 4

δ β
′d

β (5.8)

Ωgh = −2σ 2
ϵ σ

2
δ β − 2σ 4

δ ββ
′β + γ1ϵσ

3
ϵ σµ − γ1δσ

3
δ f (σµ1

′

p, ββ
′)− γ2δσ

4
δ f (Ip, ββ

′), (5.9)

where the function f : Rp×p
× Rp×p

→ Rp×p is defined as f (Z1, Z2) = Z1(Z2 ∗ Ip) for Z1, Z2 ∈ Rp×p, ∗ denotes the Hadamard

product operator of matrices and
d

−→ denotes the convergence in distribution.

Proof of Lemma 4 is detailed in the Appendix.

Theorem 2. The asymptotic distribution of R2
δ as n −→ ∞ is given by

√
n

R2
δ −

β ′Σxβ

β ′Σxβ + σ 2
ϵ


d

−→ N

0,

1
(β ′Σβ + σ 2

ϵ )
4
ω′

δΩδωδ


,

whereΩδ =


ΩH (ββ

′) ΩhH (β) ΩgH (β)

Ω ′
hH (β) Ωh Ωgh

Ω ′
gH (β) Ω ′

gh Ωg


and ωδ =


σ 2
ϵ β

2σ 2
ϵ (Σ − σ 2

δ Ip)
−1β

−β ′Σβ


. HereΩH(ββ

′),ΩhH(β) andΩgH(β) are obtained by

replacing d by β in the covariance matrix given in Lemma 4.



C.-L. Cheng et al. / Journal of Multivariate Analysis 126 (2014) 137–152 145

Proof. Using (4.5), (2.1)–(2.4), (5.1)–(5.3), we have

√
n

R2
δ −

β ′Σxβ

β ′Σxβ + σ 2
ϵ


=

1
(β ′Σxβ + σ 2

ϵ )
2


σ 2
ϵ β

′Hβ + 2σ 2
ϵ β

′(Σx − σ 2
δ Ip)

−1h − β ′Σxβg

+ oP(1)

=
1

(β ′Σxβ + σ 2
ϵ )

2


σ 2
ϵ β

′, 2σ 2
ϵ β

′(Σx − σ 2
δ Ip)

−1,−β ′Σxβ
 Hβ

h
g


+ oP(1). (5.10)

Using (5.10), Slutsky’s lemma and Lemma 4, we derive the asymptotic distribution of R2
k in the next theorem.

Theorem 3. The asymptotic distribution of R2
k as n −→ ∞ is given by

√
n

R2
k −

β ′Σxβ

β ′Σxβ + σ 2
ϵ


d

−→ N

0, ω′

kΩkωk

,

where

ωk =


σ 2
ϵ β

(ΣKx)
−1

{σ 2
ϵ Ip − (Ip − Kx)Σβ

′β}Σβ

(ΣKx)
−1Σβ(σ 2

ϵ − β ′Σβ)
β ′Σβ

 ,

Ωk =


ΩH(ββ

′) ΩH(ββ
′(Ip − Kx)) ΩhH(β) ΩgH(β)

Ω ′

H(ββ
′(Ip − Kx)) ΩH((Ip − Kx)ββ

′(Ip − Kx)) ΩhH((Ip − Kx)β) ΩgH((Ip − Kx)β)

Ω ′

hH(β) Ω ′

hH((Ip − Kx)β) Ωh Ωgh

Ω ′

gH(β) Ω ′

gH((Ip − Kx)β) Ω ′

gh Ωg

 ,
and the elements of the asymptotic covariance matrix are obtained using (5.4)–(5.9) in Lemma 4.

Proof. Using (4.8), (2.1)–(2.4), (5.1)–(5.3), we have

√
n

R2
k −

β ′Σxβ

β ′Σxβ + σ 2
ϵ


=

1
(β ′Σxβ + σ 2

ϵ )
2


σ 2
ϵ β

′Hβ + β ′Σx{σ
2
ϵ Ip − β ′βΣx(Ip − Kx)}(ΣxKx)

−1H(Ip − Kx)β

+ (σ 2
ϵ − β ′Σxβ)β

′Σx(ΣxKx)
−1h + β ′Σxβg


+ oP(1)

=
1

(β ′Σxβ + σ 2
ϵ )

2


σ 2
ϵ β

′, β ′Σx{σ
2
ϵ Ip − β ′βΣx(Ip − Kx)}(ΣxKx)

−1,

(σ 2
ϵ − β ′Σxβ)β

′Σx(ΣxKx)
−1, β ′Σxβ

 Hβ
H(Ip − Kx)β

h
g

+ oP(1).

As a consequence of Lemma 4, it is easy to show that Hβ
H(Ip − Kx)β

h
g

 d
−→ N(2p+1) (0,Ωk) .

Thus, using Slutsky’s Lemma, the theorem is proved.

6. Simulation study

The asymptotic distributions of R2
δ and R2

k give us an idea about the behavior of their properties when the sample size
grows large. In order to investigate the properties of these estimators in the finite samples, we conducted the Monte Carlo
simulation experiments. To understand the effect of various involved variances more clearly, we assume that Σδ = σ 2

δ Ip
and Σφ = σ 2

φ Ip. We have also conducted the simulation for the general structures of Σδ and Σφ which can include the
heteroskedastic and/or correlated errors and their findings are reported. Since we have not assumed any distributional as-
sumptions like normality for any of the measurement errors or the random error component in deriving the asymptotic
distributions, we consider the following three choices of the distributions based on their coefficients of skewness and kur-
tosis to conduct the simulations. We choose

(i) normal distribution,
(ii) t-distribution with 6 degrees of freedom and
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Table 1
Absolute bias of R2 , R2

δ , and R2
k , when errors have normal distribution and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) AB(R2) AB(R2

δ ) AB(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.2671 0.0451 0.0815
(2.0, 0.5, 0.5) 0.2734 0.0450 0.0864
(0.5, 2.0, 0.5) 0.1812 0.0250 0.0582
(0.5, 0.5, 2.0) 0.6080 0.1953 0.1417
(2.0, 2.0, 0.5) 0.1838 0.0255 0.0608
(2.0, 0.5, 2.0) 0.6103 0.1922 0.1421
(0.5, 2.0, 2.0) 0.4994 0.1525 0.1596
(2.0, 2.0, 2.0) 0.4996 0.1496 0.1593

n = 50

(0.5, 0.5, 0.5) 0.3056 0.0244 0.0730
(2.0, 0.5, 0.5) 0.3115 0.0258 0.0793
(0.5, 2.0, 0.5) 0.1811 0.0151 0.0438
(0.5, 0.5, 2.0) 0.6931 0.1061 0.1773
(2.0, 2.0, 0.5) 0.1834 0.0156 0.0463
(2.0, 0.5, 2.0) 0.6932 0.1037 0.1777
(0.5, 2.0, 2.0) 0.5011 0.0470 0.1220
(2.0, 2.0, 2.0) 0.5016 0.0475 0.1229

Table 2
Absolute bias of R2 , R2

δ , and R2
k , when errors have t distribution with 6 degrees of freedom and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) AB(R2) AB(R2

δ ) AB(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.2812 0.0537 0.0943
(2.0, 0.5, 0.5) 0.2842 0.0535 0.0969
(0.5, 2.0, 0.5) 0.1920 0.0335 0.0691
(0.5, 0.5, 2.0) 0.6108 0.2092 0.1428
(2.0, 2.0, 0.5) 0.1933 0.0332 0.0703
(2.0, 0.5, 2.0) 0.6121 0.2086 0.1445
(0.5, 2.0, 2.0) 0.5049 0.1595 0.1647
(2.0, 2.0, 2.0) 0.5045 0.1580 0.1643

n = 50

(0.5, 0.5, 0.5) 0.3180 0.0360 0.0860
(2.0, 0.5, 0.5) 0.3217 0.0359 0.0901
(0.5, 2.0, 0.5) 0.1894 0.0219 0.0524
(0.5, 0.5, 2.0) 0.6917 0.1219 0.1750
(2.0, 2.0, 0.5) 0.1901 0.0215 0.0531
(2.0, 0.5, 2.0) 0.6924 0.1203 0.1765
(0.5, 2.0, 2.0) 0.5133 0.0676 0.1367
(2.0, 2.0, 2.0) 0.5136 0.0665 0.1374

(iii) gamma distribution with parameters (τ1, τ2, τ3), where τ1 = τ2τ3 and (τ2, τ3) ∈ {(3,

(σ 2
ϵ /3)), (3,


(σ 2
φ/3)),

(3,

(σ 2
δ /3))}. Here τ1 is the location parameter, τ2 is the shape parameter and τ3 is the scale parameter.

Note that the normal distribution has zero values for both the coefficients of skewness and kurtosis, gamma distribution
has both nonzero values for the coefficients of skewness and kurtosis whereas t-distribution has only nonzero coefficient
of kurtosis but zero coefficient of skewness. An inter comparison of the simulated values of bias and mean squared errors
from these three distributions will give an idea about the effect of departure from normality on the properties of R2

δ and
R2
k . Moreover, the random observations from the three distributions have been suitably scaled so that for any particular

combination of the variances, the generated random values from all the three distributions have the same means and the
same variances. Various combinations of the values of variances (σ 2

ϵ , σ
2
φ , and σ

2
δ ) are considered so as to reflect the broad

spectrumof smaller variances to large variances and also a combination of them.Weobtained the empirical absolute bias and
the empirical mean squared errors of R2, R2

δ and R2
k based on 25,000 repetitions. Since our main interest is in the magnitude

of bias, we have considered the absolute bias. The empirical values of absolute bias are presented in Tables 1–3 and the
empirical mean squared errors are presented in Tables 4–6 based on the chosen sample sizes n = 20, 50. In order to save
space, we are not providing the matrixM here. However, as per the assumption taken in Section 5, we adopted such matrix
M as the nth row of it which converges to σ ′

µ =

0 2 4 1 3


, as n → ∞.

The statistics R2, R2
δ and R2

k are expected to reflect the goodness of fit. If the model itself has certain defects and
measurement errors are also too high, then a lower value of R2, R2

δ and R2
k may not truly reveal the goodness of fit as the lower

values may be occurring due to in built model defects as well. In order to avoid such situations, we have first considered a
good model to generate the data with higher value of θ so that the values of R2, R2

δ and R2
k reflect the effect of measurement

errors only. This is done in the results presented in Tables 1–7where θ = 0.9 is considered for generating the data. Next, we
also studied the effect of measurement errors on the values of R2, R2

δ and R2
k when the data is generated from a reasonably

large range of values of θ . This is done for the structural model and the results are presented in Table 8.
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Table 3
Absolute bias of R2 , R2

δ , and R2
k , when errors have gamma distribution and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) AB(R2) AB(R2

δ ) AB(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.2777 0.0514 0.0909
(2.0, 0.5, 0.5) 0.2814 0.0515 0.0939
(0.5, 2.0, 0.5) 0.1899 0.0314 0.0669
(0.5, 0.5, 2.0) 0.6092 0.2079 0.1427
(2.0, 2.0, 0.5) 0.1908 0.0311 0.0677
(2.0, 0.5, 2.0) 0.6112 0.2062 0.1425
(0.5, 2.0, 2.0) 0.5049 0.1559 0.1644
(2.0, 2.0, 2.0) 0.5026 0.1551 0.1617

n = 50

(0.5, 0.5, 0.5) 0.3136 0.0317 0.0815
(2.0, 0.5, 0.5) 0.3182 0.0327 0.0863
(0.5, 2.0, 0.5) 0.1871 0.0197 0.0499
(0.5, 0.5, 2.0) 0.6907 0.1180 0.1730
(2.0, 2.0, 0.5) 0.1885 0.0195 0.0514
(2.0, 0.5, 2.0) 0.6920 0.1175 0.1762
(0.5, 2.0, 2.0) 0.5094 0.0614 0.1319
(2.0, 2.0, 2.0) 0.5114 0.0618 0.1346

Table 4
Mean squared error of R2 , R2

δ , and R2
k , when errors have normal distribution and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) MSE(R2) MSE(R2

δ ) MSE(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.0751 0.0043 0.0107
(2.0, 0.5, 0.5) 0.0788 0.0043 0.0120
(0.5, 2.0, 0.5) 0.0351 0.0012 0.0058
(0.5, 0.5, 2.0) 0.3801 0.0636 0.0353
(2.0, 2.0, 0.5) 0.0363 0.0013 0.0064
(2.0, 0.5, 2.0) 0.3830 0.0622 0.0354
(0.5, 2.0, 2.0) 0.2612 0.0435 0.0429
(2.0, 2.0, 2.0) 0.2613 0.0422 0.0428

n = 50

(0.5, 0.5, 0.5) 0.0954 0.0011 0.0076
(2.0, 0.5, 0.5) 0.0993 0.0013 0.0089
(0.5, 2.0, 0.5) 0.0338 0.0004 0.0029
(0.5, 0.5, 2.0) 0.4862 0.0219 0.0459
(2.0, 2.0, 0.5) 0.0348 0.0005 0.0033
(2.0, 0.5, 2.0) 0.4863 0.0210 0.0458
(0.5, 2.0, 2.0) 0.2560 0.0043 0.0220
(2.0, 2.0, 2.0) 0.2566 0.0045 0.0223

Table 5
Mean squared error of R2 , R2

δ , and R2
k , when errors have t distribution with 6 degrees of freedom and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) MSE(R2) MSE(R2

δ ) MSE(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.0840 0.0058 0.0142
(2.0, 0.5, 0.5) 0.0859 0.0059 0.0150
(0.5, 2.0, 0.5) 0.0401 0.0023 0.0082
(0.5, 0.5, 2.0) 0.3838 0.0713 0.0356
(2.0, 2.0, 0.5) 0.0408 0.0024 0.0085
(2.0, 0.5, 2.0) 0.3857 0.0712 0.0368
(0.5, 2.0, 2.0) 0.2672 0.0464 0.0455
(2.0, 2.0, 2.0) 0.2668 0.0457 0.0456

n = 50

(0.5, 0.5, 0.5) 0.1039 0.0026 0.0106
(2.0, 0.5, 0.5) 0.1064 0.0026 0.0115
(0.5, 2.0, 0.5) 0.0373 0.0010 0.0043
(0.5, 0.5, 2.0) 0.4844 0.0272 0.0450
(2.0, 2.0, 0.5) 0.0377 0.0010 0.0044
(2.0, 0.5, 2.0) 0.4853 0.0264 0.0457
(0.5, 2.0, 2.0) 0.2692 0.0087 0.0274
(2.0, 2.0, 2.0) 0.2697 0.0086 0.0279

First we analyze the values of absolute bias and mean squared errors of R2 from Tables 1–3. Looking at these values, we
observe that the values of the absolute bias and themean squared errors of R2 do not changewhen the sample size increases
and it remains true for all the considered combinations of variances (σ 2

ϵ , σ
2
φ , σ

2
δ ) and under all the three distributions. On
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Table 6
Mean squared error of R2 , R2

δ , and R2
k , when errors have gamma distribution and θ = 0.9.

(σ 2
ϵ , σ

2
φ , σ

2
δ ) MSE(R2) MSE(R2

δ ) MSE(R2
k)

n = 20

(0.5, 0.5, 0.5) 0.0816 0.0053 0.0131
(2.0, 0.5, 0.5) 0.0838 0.0053 0.0140
(0.5, 2.0, 0.5) 0.0390 0.0020 0.0076
(0.5, 0.5, 2.0) 0.3818 0.0705 0.0358
(2.0, 2.0, 0.5) 0.0396 0.0020 0.0079
(2.0, 0.5, 2.0) 0.3841 0.0698 0.0358
(0.5, 2.0, 2.0) 0.2669 0.0442 0.0449
(2.0, 2.0, 2.0) 0.2646 0.0446 0.0442

n = 50

(0.5, 0.5, 0.5) 0.1009 0.0019 0.0095
(2.0, 0.5, 0.5) 0.1039 0.0021 0.0105
(0.5, 2.0, 0.5) 0.0363 0.0007 0.0038
(0.5, 0.5, 2.0) 0.4828 0.0254 0.0439
(2.0, 2.0, 0.5) 0.0369 0.0008 0.0041
(2.0, 0.5, 2.0) 0.4848 0.0258 0.0457
(0.5, 2.0, 2.0) 0.2650 0.0071 0.0256
(2.0, 2.0, 2.0) 0.2671 0.0074 0.0265

Table 7
Absolute bias and mean squared error when random terms have multivariate normal distribution and θ = 0.9.

n AB(R2) AB(R2
δ ) AB(R2

k) MSE(R2) MSE(R2
δ ) MSE(R2

k)

20 0.4030 0.2458 0.1410 0.1741 0.0996 0.0339
50 0.4764 0.1932 0.1717 0.2337 0.0620 0.0390

Table 8
Absolute bias and mean squared error for various values of θ .

θ n AB(R2) AB(R2
δ ) AB(R2

k ) MSE(R2) MSE(R2
δ ) MSE(R2

k )

0.1265 20 0.0266 0.5521 0.7003 0.0042 0.3588 0.5143
0.1265 250 0.1037 0.4101 0.1424 0.0110 0.2426 0.0371
0.4200 20 0.2643 0.2693 0.4141 0.0732 0.1264 0.1936
0.4200 250 0.3876 0.1836 0.0696 0.1506 0.1000 0.0256
0.7655 20 0.6557 0.1232 0.1262 0.4314 0.0778 0.0350
0.7655 250 0.7185 0.0569 0.1054 0.5168 0.0328 0.0294
0.9988 20 0.8812 0.3401 0.0858 0.7779 0.1743 0.0171
0.9988 250 0.8632 0.0530 0.0408 0.7456 0.0058 0.0032

the other hand, the values of the absolute bias and the values of the mean squared errors of R2
δ and R2

k decrease when the
sample size increases. This verifies the analytical results proved in the earlier section. This is due to the reason that R2 is
an inconsistent estimator of θ , while both R2

δ and R2
k are the consistent estimators of θ . Moreover, the values of absolute

bias and mean squared errors of R2
δ and R2

k are much smaller than the values of R2. In fact, the obtained values of R2 are not
correct and if considered, they may lead to incorrect statistical conclusions. This clearly indicates that the values of R2 are
not suitable at all for judging the goodness of fit in the measurement error models.

Next we analyze the values of absolute bias of R2, R2
δ , and R2

k from Tables 1–3 under different distributions. First we
consider the results from the normally distributed errors. We notice that the values of absolute bias of R2 are much higher
than the values of absolute bias of R2

δ and R2
k . Since the values of R2 are based on an inconsistent estimator, they are not

suitable and that is whywe study the behavior of absolute bias of R2
δ and R2

k only. We observe that when only the value of σ 2
ϵ

increases and the values of other two variances remain the same, the values of absolute bias of R2
δ and R2

k do not differ much
and they decrease slightly when the value of σ 2

φ increaseswhile the other two variances remain fixed.When the values of σ 2
δ

increase keeping the values of the other two variances fixed, then the values of absolute bias of R2
δ and R2

k increase and both
the values are affected severely. The impact of the values of σ 2

δ on the absolute bias of R2
δ and R2

k is more than the values of
σ 2
ϵ or σ 2

φ . When both the values of σ 2
ϵ and σ 2

φ increase together and the value of σ 2
δ is kept fixed, then the values of absolute

bias of R2
δ and R2

k decrease. On the other hand, when the values of σ 2
ϵ and σ 2

δ increase together while the value of σ 2
φ stays

fixed, then the values of absolute bias of R2
δ and R2

k increase and are severely affected. In case, if only one of the values out
of σ 2

φ and σ 2
δ increases, then the absolute bias again increases but it is clear that the values of σ 2

δ affect it more and tend to
increase the magnitude of bias. The trends and effects of the values of σ 2

ϵ , σ
2
δ and σ 2

φ on the values of absolute bias in case of
t-distributed errors and gamma distributed errors are similar to the case of normally distributed errors. When comparing
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the values under normal distributionswith t- and gammadistributed errors, we find that there is significant difference in the
corresponding values. On the other hand, there is a significant difference in the values of absolute bias under the normal and
the t-distributed errors but notmuch difference is present between the values under the t-distributed errors and the values
under the gamma distributed errors. This clearly indicates that the departure from normality does affect the performance
of R2

δ and R2
k . Moreover, the skewness of the distribution has more impact on the magnitude of bias than the kurtosis of the

distribution. When the sample size increases, the magnitude of respective bias decreases.
Now we analyze the behavior of the values of empirical mean squared errors from Tables 4–6. Again, since R2 is an

inconsistent estimator of θ and its values are not reliable, we concentrate only on the values of empirical mean squared
errors of R2

δ and R2
k . We notice that when the values of σ 2

ϵ increase alone keeping the values of the other two variances fixed,
then the mean squared errors of R2

δ and R2
k do not change significantly. The values of the mean squared errors of R2

δ and R2
k

decrease when the values of σ 2
φ increase. On the other hand, the values of mean squared errors increase and are severely

affected when the values of σ 2
δ increase. When both the values of σ 2

ϵ and σ 2
δ increase together and the values of σ 2

φ are
kept fixed, then the values of mean squared errors of R2

δ and R2
k decrease. In other cases, when both the values of σ 2

ϵ and σ 2
φ

increase while the values of σ 2
δ stay fixed or both the values of σ 2

δ and σ 2
φ increase while the values of σ 2

ϵ stay fixed, then the
mean squared errors of both R2

δ as well as R2
k increase. The values of mean squared errors of R2

δ and R2
k increase more with

the increase in the values of σ 2
δ than the values of the other two variances. When the values of all the variances increase

simultaneously, then also the mean squared errors of R2
δ and R2

k increase. When the sample size increases, then the values
of mean squared errors of both R2

δ and R2
k decrease in all the cases. The trends and effects of σ 2

ϵ , σ
2
δ and σ 2

φ in the cases of t-
and gamma distributed errors are the same as in the case of normally distributed errors. Comparing the respective values of
the mean squared errors under different distributions, we notice that the values of mean squared errors under the normal
distribution are smaller than the corresponding values under the t- and gamma distributed errors. Moreover, the values of
mean squared errors under the t- and gamma distributed errors do not differ much. This clearly indicates that the departure
from normality affects the mean squared errors of R2

δ and R2
k both. Moreover, the departure from the symmetry influences

the mean squared errors more than the departure from the peakedness of the distributions.
Further, in order to analyze the performance ofR2

δ andR2
k in the finite sampleswhen thematricesΣδ ≠ σ 2

δ I andΣφ ≠ σ 2
φ I ,

i.e., they are not in the form of identity matrices, we conducted some more simulations. For illustration, we are reporting
here one set of results which is conducted using the normal distribution of all the errors ϵ, φ and δ with σ 2

ϵ = 2,

Σδ =


1.00 0.09 −0.03 0.01 −0.03
0.09 0.98 0.00 −0.08 −0.03

−0.03 0.00 0.96 0.01 −0.03
0.01 −0.08 0.01 1.09 0.04

−0.03 −0.03 −0.03 0.04 1.05

 and

Σφ =


1.15 −0.08 0.04 −0.03 0.02

−0.08 1.08 0.06 0.00 0.00
0.04 0.06 0.93 0.02 0.08

−0.01 0.00 0.02 1.02 −0.03
−0.02 0.00 0.08 −0.03 0.91

 .
The results of the simulation outcomes on the empirical absolute bias and the empirical mean squared errors are

presented in Table 7. We observe that the results are more or less similar to the cases when Σδ = σ 2
δ I and Σφ = σ 2

φ I
and they have the similar pattern and the similar conclusions except that the values of absolute bias and mean squared
error of R2, R2

δ and R2
k differ. It is clear that our suggested forms of R2

δ and R2
k work well with any form of Σδ and Σφ in

measurement error models.
The results in Table 8 present the values of absolute bias and mean squared errors of R2, R2

δ and R2
k for reasonably lower

value of θ (= 0.1265) to reasonably higher value of θ (= 0.9988) for sample sizes 20 and 250 under the setup of the
structural model. It is clear that the values of R2 are bad enough to be considered as its absolute bias and mean squared
error increase as the sample size increases which is because it is an inconsistent estimator of θ . So we consider the values
for R2

δ and R2
k . Their absolute bias and mean squared error decrease as the sample size increases for all values of θ . It is clear

from the results that the proposed statistics R2
δ and R2

k work well for all the values of θ . The values of absolute bias andmean
squared error of R2

δ and R2
k decrease as θ increases. An interesting observation emerges as follows. When θ is low, then the

absolute bias of R2
δ is more than that of R2

k . When θ is high, then the reverse holds true, i.e., absolute bias of R2
δ is higher than

that of R2
k . When θ is low, then the mean squared error of R2

k is more than that of R2
δ . On the other hand, when θ is high,

then the mean squared error of R2
k is smaller than that of R2

δ . Such information can be used in creating the guidelines for
practitioners. Suppose a practitioner wants to know that which of the information between the known covariance matrix
or known reliability matrix is to be used for fitting the model, then if the practitioner has some prior information about the
value of θ , then he can decide as follows: If θ is expected to be low, then use R2

δ and if θ is expected to be high, then use R2
k .

It may be noted that for low values of θ , quite large values of n are required before R2 performs worse than the other two
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consistent coefficients of determination, viz., R2
δ and R2

k . It may be noted that quite large values of n may not even help to
perform R2 better than the other two consistent coefficients of determination, viz., R2

δ and R2
k . The reason being that the R2

is an inconsistent estimator of θ and it will never converge to θ howsoever large nmay be.

7. Conclusion

The conventional coefficient of determination becomes inconsistent for the population version of the coefficient of de-
termination given by θ in the presence of measurement errors in the data. So we have proposed two forms of goodness
of fit statistics which can be used to judge the goodness of fit in measurement error models. These statistics are based on
the utilization of two variants of additional information and the conventional form of the coefficient of determination. The
additional information is assumed to be available from outside the sample in the form of the known covariance matrix of
measurement errors in the explanatory variables and the known reliabilitymatrix associatedwith the explanatory variables.
We also have established a connection between the two cases, i.e., when the reliabilitymatrix is estimated from the data and
when the covariance matrix of the measurement error associated with the explanatory variables is known. Thus obtained
statistics like coefficients of determination are consistent for estimating θ and can be used to judge the goodness of fit in
measurement error models. Due to the issues like the first moment of bδ does not exist (see [1]) it is difficult to define the
coefficient of determination for measurement error models as it is done through analysis of variance in the linear regres-
sion analysis in no-measurement error situations. The asymptotic distributions of R2

δ and R2
k are derived. The finite sample

properties R2
δ and R2

k are studied through the Monte-Carlo simulation experiments under the situations when Σδ = σ 2
δ I ,

Σφ = σ 2
φ I and for any general structure of Σδ and Σφ . It is observed that the values of empirical bias and empirical mean

squared errors of R2
δ and R2

k turn out to be satisfactory even for a sample of size 20. The simulated results for the cases when
Σδ ≠ σ 2

δ I and Σφ ≠ σ 2
φ I are also satisfactory. The values of R2

δ and R2
k also work well for all the values of θ . Moreover, R2

δ

is preferable for the lower values of θ and R2
k is preferable for the higher values of θ . So the proposed R2

δ and R2
k can be used

in real data modeling to judge the goodness of fit in the measurement error models for all the values of θ . It is to be noticed
that the values of absolute bias and mean squared errors of R2

δ and R2
k are affected by the departure from normality. So one

has to be cautious in using the proposed statistics when the validity of the normal distribution assumption for errors is
doubtful.

In case, the values of Σδ or Kx are not available, then one possible solution is to estimate if the repeated observations
are available. The forms of R2

δ and R2
k can be obtained by replacing Σδ or Kx by their respective consistent estimates. The

resulting statistics will remain consistent. The investigation of their properties is out of the purview of this paper.

Appendix

Lemma 5 (Central Limit Theorem). Let Vn =
n

i=1 Dinψi, where ψ1, ψ2, . . . , ψn are p × 1 independent and identically
distributed random vectors with E(ψi) = 0 and D1n,D2n, . . . ,Dnn are q × p non-stochastic matrices. Suppose that
limn→∞ cov(Vn) = Ω , where |(Ω)ij| < ∞ andΩ is positive definite. If there exists a function ϕ(n) such that limn→∞ϕ(n) = ∞

and if the elements of ϕ(n)Din are bounded, then Vn has a limiting q-variate normal distribution with mean vector 0 and
covariance matrixΩ , see [20, p. 212].

Proof of Lemma 4. Using vec operator and Kronecker’s product of matrices, we can write

Hdn =

n
i=1

Ainui, (7.1)

where, for i = 1, 2, . . . , n, Ain = n−1/2(d′
n ⊗ Ip)[(Ip ⊗ µi), (µ

′

i ⊗ Ip2), Ip2 , Ip2 , Ip2 ] are p × (p + 3p2 + p3) non-stochastic
matrices and

ui =


(φi + δi)

vec(Ip ⊗ (φi + δi))

vec(φiδ
′

i + δiφ
′

i )

vec(φiφ
′
− σ 2

φ Ip)

vec(δiδ′

i − σ 2
δ Ip)


are ((p + 3p2 + p3)× 1) independently and identically distributed random vectors.

Similarly, we can write

h =

n
i=1

Binvi, (7.2)
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where, for i = 1, 2, . . . , n, Bin = n−1/2
[µi, Ip, Ip,−(β ′

⊗ Ip)(Ip ⊗ µi),−(β
′
⊗ Ip),−(β ′

⊗ Ip)] are p × (1 + 3p + 2p2)
non-stochastic matrices and

vi =


ϵi
δiϵi
φiϵi
δi

vec(φiδ
′

i)

vec(δiδ′

i − σ 2
δ Ip)


are ((1 + 3p + 2p2)× 1) independently and identically distributed random vectors.

In the similar manner we write

g =

n
i=1

Cinwi, (7.3)

where, for i = 1, 2, . . . , n, Cin = n−1/2
[1, 2β ′, β ′(β ′

⊗ Ip)] are (1 × (1 + p + p2)) non-stochastic vectors and

wi =

 ϵ2i − σ 2
ϵ

δiϵi
vec(δiδ′

i − σ 2
δ Ip)


are ((1 + p + p2)× 1) independently and identically distributed random vectors.

Combining (7.1)–(7.3), we haveHdn
h
g


=

n
i=1

Ain 0 0
0 Bin 0
0 0 Cin

ui
vi
wi


, (7.4)

where, for i = 1, 2, . . . , n,Ain 0 0
0 Bin 0
0 0 Cin


is the ((2p + 1)× (2 + 5p + 6p2 + 3p3)) non-stochastic matrix andui

vi
wi


are ((2+5p+6p2+3p3)×1) independently and identically distributed random vectors. Using the assumption aboutmatrix
M , it can be seen that the element of matrix

√
n

Ain 0 0
0 Bin 0
0 0 Cin


is bounded. Using the assumptions about the moments of random terms in the model, we have

E

Hdn
h
g


= 0,

and limn→∞ E(Hdnd′
nH) = ΩH(dd′), limn→∞ E(hh′) = Ωh, limn→∞ E(g2) = Ωg , limn→∞ E(hd′

nH) = ΩhH(d),
limn→∞ E(Hdng) = ΩgH(d), limn→∞ E(hg) = Ωgh. Therefore, on using the central limit theorem given in Lemma 5 for

the function ϕ(n) =
√
n, we conclude that


Hdn
h
g


has a (2p + 1)-variate limiting normal distribution with mean vector 0

and covariance matrix


ΩH (d) ΩhH (d) ΩgH (d)
Ω ′

hH (d) Ωh Ωgh
Ω ′

gH (d) Ω ′
gh Ωg


.
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