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a b s t r a c t

Multivariate extremes behave very differently under asymptotic dependence as compared
to asymptotic independence. In the bivariate setting, we are able to characterise the
extreme behaviour of the asymptotic dependent case by using the concept of the copula.
As a result, we are able to identify the properties of the boundary cases, that are asymptotic
independent but still have some asymptotic dependent features. These situations are
the most problematic in statistical extreme, and, for this reason, distinguishing between
asymptotic dependence and asymptotic independence represents a difficult problem. We
propose a simple test to resolve this issue which is an alternative to the procedure
based on the classical coefficient of tail dependence. In addition, we are able to identify
the worst/least asymptotic dependence (in the presence of asymptotic dependence)
that maximises/minimises the probability of a given extreme region if tail dependence
parameter is fixed. It is found that the perfect extreme association is not the worst
asymptotic dependence, which is consistent with the existing literature. We are able to
find lower and upper bounds for some risk measures of functions of random variables. A
particular example is the sum of random variables, for which a vivid academic effort has
been noticed in the last decade, where bounds for a sum of random variables are sought.
It is numerically shown that our approach provides a great improvement of the existing
methods, which reiterates the sensible conclusion that any additional piece of information
on dependence would help to reduce the spread of these bounds.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Estimation of multivariate extreme events is a challenging problem in Extreme Value Theory (EVT) and the starting point
of non-parametric estimation is to decide if data exhibit the asymptotic dependence (AD) or asymptotic independence (AI)
property. In simple words, under AD, concomitant extreme events are observed and both are at the same scale. Under AI,
concomitant extreme events may occur but at different scales or may not even occur at the same time. Therefore, it is
expected that extreme regions estimates to be very different in magnitude in the presence of AD than AI. It is well-known
that statistical inferences in the presence of AI is very difficult, and many estimation methods are available if AD holds (see
for example, [8]). Since distinguishing between AD and AI plays an important role in predicting extreme events, Ledford
and Tawn [24,25] introduced the coefficient of tail dependencewhich has been extensively investigated in the literature. For
example, nonparametric inference can be found in [27,9], while Goegebeur and Guillou [18] considered an asymptotically
unbiased estimator in the case of AI. The main disadvantage of the coefficient of tail dependence is that inconclusive results
are possible, especially in situations which fall on the boundary between AD and AI. In order to help detect AI/AD, the recent
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paper of Asimit et al. [3] proposes a conditional version of the classical measure of association Kendall’s tau for absolutely
continuous distributions.

The initial motivation of the paper was to examine in great detail the joint tail behaviour of a bivariate random vector
under AD and understand the differences between AD and almost AD (boundary between AD and AI) cases. Since we are
interested in characterising the association of extreme events, the concept of the copulawill be considered throughout this
paper. Our properties will clarify the existing examples in the literature that pointed out naive conjectures of a link between
some measure of tail dependence and the presence of AI/AD. Having in mind our AD characterisation, one may construct
counterexample for such speculative conclusions and serve to provide a better understanding of extreme behaviour in the
almost AD extreme behaviour. In fact, we exhibit one example, but many examples can be constructed in the same fashion,
that can be useful as a model for any statistical extreme where the overlapping between AD and AI is of interest. We are
able to identify the worst/least extreme dependence under ADwith a fixed tail dependence parameter, which is a measure of
tail dependence (for a summary of tail dependence concepts, we refer the reader to [20]). In our interpretation, worst (least)
extreme dependence represents the least (most) favourable dependence thatmay occur and it really depends on the context.
For example, when one deals with a sum of positive insurance losses, the worst (least) dependence is achieved when some
tail riskmeasures of the aggregate risk ismaximised (minimised). Note that focusing only on the tail dependence parameter,
the overall dependence may be underestimated as argued in [17]. We can further find the upper and lower bounds for the
tail distribution of a function of random variables (rv’s). A special case is the sum of rv’s that has been extensively studied in
the literature as it can be seen below. Note that extreme quantile for a sum of rv’s are of great interest in risk management
among other areas (for example, see [3]).

Value-at-Risk (which is in fact a quantile) is one of the most common risk measure used in practice in the banking
and insurance industries, and therefore its evaluation has received particular attention in the last decade. The uncertainty
with the dependence among rv’s is huge, especially due to the data scarcity, and the choice of a parametric model is quite
challenging even though such compromises are made in practice and are sometimes based on prior beliefs of the modeller.
As a result, evaluating the range of values for the VaR of a sum of rv’s is usually made when the marginal distributions are
known and, possibly, an additional piece of information about dependence is known. This approach allows the decision-
maker to understand the worst and least possible VaR-based risk. The best possible bounds for the distribution of a sum
of rv’s are described in [13,14] and the references therein. VaR bounds have been discussed in [15,32,4,5], if no additional
information about dependence is available. The recent paper of Bernard et al. [6] investigates the VaR constrained set-up
under an additional assumption that the aggregate variance is known. The same problem is investigated in [4,5] when the
decision-maker has only a summary statistics of the individual risks (mean, variance, skewness etc., i.e. some high order
expectations) instead of their distributions. Usually, these bounds are attained under extreme atomic dependence models
which suggests that studying the constrained problem under a reduced set of feasible dependence structures represents the
way forward in this field. As a result, Bignozzi et al. [7] find VaR bounds under the assumption of lower orthant stochastic
ordering with respect to a particular dependence model.

This paper first provides the necessary background in Section 2. The AD is fully characterised in Section 3, which enables
us to identify the worst and least asymptotic dependence in Section 4.We propose a new procedure to identify the presence
of AD/AI in Section 5. Section 6 numerically illustrates the advantages of our findings over the existing bounds available in
the literature. Finally, all proofs are relegated in the Appendix.

2. Background

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) rv’s with cumulative distribution function (cdf) F and
infinite right-end point. EVT assumes that there are two sequences of constants an > 0, bn ∈ ℜ such that

lim
n→∞

P

an

max
1≤i≤n

Xi − bn


≤ x


= G(x), x ∈ ℜ.

In this case,G is called an Extreme Value Distribution and F is said to belong to the domain of attraction of G. The Fisher–Tippett
Theorem (see [16]) states that if the limit distribution is non-degenerate then G(x) = exp{−x−α

} for all x > 0with α > 0 or
G(x) = exp


−e−x


for all x ∈ ℜ, since the domain of F is assumed to be unbounded in the right tail. In the first case,X has the

regularly varying (RV) property at∞with tail index α, i.e. the survival function F̄ = 1−F satisfies limt→∞ F̄(tx)/F̄(t) = x−α

for all x > 0, and we write F̄ ∈ RV−α . In the second case, X has a Gumbel tail and it is well-known (see, for example, [29]
or [11]) that there exists a positive, measurable function a such that limt→∞ F̄(t + xa(t))/F̄(t) = e−x for all real x, and we
write F̄ ∈ Λ(a).

We now review the concept of vague convergence. Consider an n-dimensional cone E equipped with a Borel sigma-field
B. Two particular cones EF = [0, ∞] \ {0} and EG = [−∞, ∞] \ {−∞} will be of interest in this paper. In particular, EF is
involved when the tails are RV, while EG becomes the main interest whenever we deal with Gumbel tails. A measure on the
cone is called Radon if its value is finite for every compact set in B. For a sequence of Radon measures {ν, νk, k = 1, 2, . . .}
on E , we say that νk vaguely converges to ν, written as νk

v
→ ν, if

lim
k→∞


E

h(z)νk(dz) =


E

h(z)ν(dz)
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holds for every nonnegative continuous function h with compact support. It is known that νk
v

→ ν on EF if and only if the
convergence

lim
k→∞

νk [0, x]c = ν [0, x]c

holds for every continuity point x ∈ EF of the limit. Obviously, 0 is replaced by −∞ if EG appears instead. For more details
and related discussions, we refer the reader to Section 3.3.5 and Lemma 6.1 of Resnick [30].

Dependence among rv’s plays an important role in our paper, and we therefore introduce the concept of a copula. Let X
and Y be two rv’s with cdf’s F and G, respectively. The dependence structure associated with the distribution of a random
vector can be characterised in terms of its copula. A bivariate copula is a two-dimensional cdf defined on [0, 1]2 with
uniformly distributed marginals. Due to Sklar’s Theorem (see [31]), if F and G are continuous, then there exists a unique
copula,C , such thatP(X ≤ x, Y ≤ y) = C (F(x),G(y)). Similarly, the survival copula,C , is defined as the copula corresponding
to the joint tail function, i.e. the distribution of


F̄(X), Ḡ(Y )


(see [26]).

Our main assumption on dependence is given as Assumption 2.1.

Assumption 2.1. Assume that there exists a non-degenerate function H : [0, 1]2 → [0, 1] such that

H(x, y) = lim
u↓0

C(ux, uy)
u

. (2.1)

Consequently, H(1, 1) := c ∈ (0, 1], which is also called the tail dependence parameter.

It is not difficult to find that H is a homogeneous function of order one, i.e. H(t·) = tH(·). In addition, H(·) > 0 on (0, 1]2,
since otherwise the homogeneity property of function H ≡ 0 would make H degenerate. It is also true (see [26]) thatC(x, y) ≤ min(x, y) and therefore H(x, y) ≤ min(x, y). Further, define HX (x) = H(x, 1)/c and HY (y) = H(1, y)/c the
marginal cdf’s of the joint cdf H(·)/c. By setting y = a and x = az, we see that H(x, y) = cyHX


x
y


if x ≤ y. In general,

H(x, y) = c yHX

x/y

I

x ≤ y


+ c xHY


y/x

I

y < x


, (2.2)

where I represents the indicator function. Moreover, x ≤ HX (x),HY (x) ≤ min

x/c, 1


for all 0 ≤ x ≤ 1 (for details, see [3]).

Note that c > 0 is assumed, which means that X and Y are AD (see [8] or [22]). Alternatively, if limu↓0
Ĉ(u,u)

u = 0, then
we have AI. In order to distinguish between AD and AI, Ledford and Tawn [24,25] introduced the concept of the coefficient
of tail dependence η ≤ 1 by assuming thatC(u, u) = u1/ηs(u)


1 + o(1)


as u ↓ 0, (2.3)

where s is a slowly varying function, i.e. limu↓0 s(ux)/s(u) = 1 for all x > 0. Thus, under condition (2.3), when η = 1 and
limu↓0 s(u) = c ∈ (0, 1], AD property holds, while either η < 1 or η = 1 and limu↓0 s(u) = 0 implies AI. Therefore, η and the
limit behaviour of function s can be used to distinguish between AD and AI. Note that standard estimators for c are available
in [3,19].

In order to explain the joint tail behaviour, we also need to assume that X and Y have similar tails.

Assumption 2.2. The random variables X and Y are tail equivalent such that limt→∞ Ḡ(t)/F̄(t) = 1.

Let H : ℜ
2
+

\ {0} → ℜ+ such that

H(x, y) := max(x, y)H


x
max(x, y)

,
y

max(x, y)


.

It can be shown that, for F̄ ∈ RV−α ,

lim
t→∞

P

X > xt, Y > yt


P(X > t)

= H

x−α, y−α


(2.4)

and, for F̄ ∈ Λ(a),

lim
t→∞

P

X > t + xa(t), Y > t + ya(t)


P(X > t)

= H

e−x, e−y (2.5)

(for details, see [1,23]). Consequently, if F̄ ∈ RV−α , then

P


X/t, Y/t


∈ ·


F̄(t)

v
→ µF (·) (2.6)
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holds on EF , where µF

(x, ∞] × (y, ∞]


:= H


x−α, y−α


. Similarly, if F̄ ∈ Λ(a), then

P


(X − t)/a(t), (Y − t)/a(t)


∈ ·


F̄(t)

v
→ µG(·) (2.7)

holds on EG, where µG

(x, ∞] × (y, ∞]


:= H


e−x, e−y


.

3. Characterisation of AD

This section provides a characterisation of the AD as defined in Assumption 2.1 and we show in Propositions 3.1 and
3.2 that the limiting dependence is fully described by its marginal cdf’s, namely HX and HY . The one-to-one relationship
incentivise the authors even more to understand the properties of marginal cdf’s. These technical results will help us later
in Section 4 to find the worst and least possible extreme dependence, which is the main aim of our paper.

Proposition 3.1. If Assumption 2.1 holds, then HX and HY are continuous and possess right derivatives hX and hY , which are
themselves continuous and satisfy hX (1−) + hY (1−) = 1 + d, for some d ∈ [0, 1]. In addition, x−1HX (x), x−1HY (x), hX (x) and
hY (x) are non-increasing functions of x. Moreover, hX (0+) = hY (0+) = 1/c.

A straightforward implication of Proposition 3.1 is given by Corollary 3.1, and its proof is left to the reader.

Corollary 3.1. If Assumption 2.1 holds, then HX (x) ≤ 1 − hX (1−)(1 − x) and HY (x) ≤ 1 − hY (1−)(1 − x) for all 0 ≤ x ≤ 1.

It is interesting to find out whether, for any given pair of cdf’s HX and HY on [0, 1], possessing density functions hX and
hY , there exists a copula that satisfies (2.1). It is natural to believe that the bivariate cdf derived via (2.2) has a copula that
holds the property from (2.1), which is established in the next proposition.

Proposition 3.2. Let HX and HY be two cdf’s on [0, 1] with non-increasing density functions hX and hY such that hX (0+) =

hY (0+) = 1/c and hX (1−) + hY (1−) = 1 + d, where c ∈ (0, 1] and d ∈ [0, 1]. Define

J(x, y) =


yHX

 x
y


if 0 ≤ x < y ≤ 1

xHY

y
x


if 0 ≤ y ≤ x < 1.

Then J is a bivariate cdf with marginals HX and HY , and its copula, J

H−1

X ,H−1
Y


, satisfies (2.1) with H ≡ cJ, where H−1

X and H−1
Y

are the left-continuous inverses of HX and HY , respectively. Moreover, x−1HX (x) and x−1HY (x) are non-increasing functions in
x ∈ (0, 1].

Finally, we examine in Proposition 3.3 the almost AD cases, i.e. η = 1 and c = 0. The proof is left to the reader since it
can be shown in the same manner as Propositions 3.1 and 3.2.

Proposition 3.3. (i) Assume that there exists a non-degenerate homogeneous of order one function H : [0, 1]2 → [0, 1] such
that

H(x, y) = lim
u↓0

C(ux, uy)C(u, u)
and lim

u↓0

C(u, u)
u

= 0. (3.1)

Then HX (·) = H(·, 1) and HY (·) = H(1, ·) are continuous and possess right derivatives hX and hY , which are themselves
continuous and satisfy hX (1−)+hY (1−) ∈ [1, 2]. In addition, x−1HX (x), x−1HY (x), hX (x) and hY (x) are non-increasing functions
of x. Moreover, hX (0+) = hY (0+) = ∞.

(ii) Let HX and HY be two cdf’s on [0, 1] with non-increasing density functions hX and hY such that hX (0+) = hY (0+) = ∞

and hX (1−) + hY (1−) ∈ [1, 2]. Define

J(x, y) =


yHX

 x
y


if 0 ≤ x < y ≤ 1

xHY

y
x


if 0 ≤ y ≤ x < 1.

Then J is a bivariate cdf with marginals HX and HY , and its copula, J

H−1

X ,H−1
Y


, satisfies (3.1) with H ≡ J , where H−1

X and H−1
Y

are the left-continuous inverses of HX and HY , respectively. Moreover, x−1HX (x) and x−1HY (x) are non-increasing functions in
x ∈ (0, 1].
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Having in mind Proposition 3.3, one may easily construct examples that exhibit the almost AD property. Two examples
are as follows:

HX (x) = HY (x) :=
(x + 1) log(x + 1) − x log x

2 log 2
(3.2)

and

HX (x) = HY (x) := x

1 −

1
2
log x


. (3.3)

Note that the (3.2) appeared as Example 5.2 in [21]. Both examples are counterexamples to the naive conjecture that AI
implies a joint extreme behaviour similar to independence:

P

(U, V ) ∈ ·|U, V ≤ u


≃ P


U ∈ ·|U, V ≤ u


P

V ∈ ·|U, V ≤ u


,

for u sufficiently close to 0, where the random vector (U, V ) has cdf H .

4. Worst and least dependence

The AD profile of a bivariate random vector is discussed in great detail in Section 3. These properties are useful to explain
how to find the largest and lowest possible value (and their corresponding dependence structures) of an extreme event with
a fixed positive value for c > 0. Examples include the tail probability of a function of rv’s such as sum, product, absolute
difference etc.We first provide themathematical formulation of the chosen problemswhich are given in Theorem 4.1. These
results are the key ingredient in establishing our bounds for the tail probability as obtained in Proposition 4.1 and Lemma4.1.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold.
(i) If F̄ ∈ RV−α , then for any b > 0 we have that

lim
t→∞

P(X + bY > t)
P(X > t)

= 1 + bα
− c(1 + b)α

+ bc

 1

0
z1/α−1


1 + bz1/α

α−1
hX (z) +


b + z1/α

α−1

hY (z)


dz. (4.1)

(ii) If F̄ ∈ RV−α , then

lim
t→∞

P(XY > t2)
P(X > t)

= −c +
c
2

 1

0
z−1/2hX (z) + hY (z)


dz. (4.2)

(iii) If F̄ ∈ Λ(a), then

lim
t→∞

P(X + Y > 2t)
P(X > t)

= −c +
c
2

 1

0
z−1/2hX (z) + hY (z)


dz. (4.3)

Remark 4.1. It is well-known (see [30]) that the limit from (4.1) under AI becomes

lim
t→∞

P(X + bY > t)
P(X > t)

= lim
t→∞

P(X > t) + P(bY > t)
P(X > t)

= 1 + bα.

Now, the same limit is equal to 2 if α = b = 1 for any c ∈ [0, 1], which justifies the particular example from Section 3.2 of
Klüppelberg and Resnick [22]. In other words, AD and AI provide the same limit whenever X and Y are tail equivalent and
RV with tail index of 1. This is a another counterexample that a stronger positive dependence in the tail (usually simplified
to the value of c) would increase the tail probability of X + Y . Recall that Embrechts et al. [12] concluded that the marginal
cdf’s affect the tail behaviour and may have a greater impact than the dependence.

Let

aX (x), aY (x) : 0 ≤ x ≤ 1


be two continuous, monotone functions of x. As observed in Theorem 4.1, the aim is to find

a pair (hX , hY ) of densities, satisfying the sufficient conditions stated in Proposition 3.2 in order to minimise (respectively
maximise) an infinite dimensional optimisation problem with objective function given by:

J(aX , aY ) =

 1

0
aX (x) hX (x) dx +

 1

0
aY (y)hY (x) dx, (4.4)

or at least to identify the infimum (supremum) of this quantity in the event that it is not attained. Thus, hX ∈ Hξ,c,d and
hY ∈ H1+d−ξ,c,d, where

Hξ,c,d :=

h : h is a non-increasing density on [0, 1], h(0+) = 1/c, h(1−) = ξ


, ξ ∈ [d, 1], c ∈ (0, 1].

The infinite dimensionality issue is solved in Theorem 4.2 by reducing the set of feasible solutions.
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Theorem 4.2. Suppose a : [0, 1] → R is a continuous and monotone increasing function. Then

inf
h∈Hξ,c,d

 1

0
a(x)h(x) dx =

 1

0
a(x)h∗(x; ξ, c) dx and sup

h∈Hξ,c,d

 1

0
a(x)h(x) dx =

 1

0
a(x) dx,

where

h∗(x; ξ, c, d) =


1
c

if 0 < x < x(ξ , c)

ξ if x(ξ , c) < x < 1,
(4.5)

and x(ξ , c) is chosen in order for h∗(·; ξ, c, d) is a valid density. That is, x(ξ , c) =
(1−ξ)c
1−ξc . If a is continuous and monotone

decreasing, the extrema are interchanged.

With the help of Theorem 4.2, we can now solve the infinite dimensional optimisation problem defined in (4.4). Namely,
if aX (·) and aY (·) are continuous and monotone increasing functions on [0, 1], we have

inf
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = inf
0≤d≤ξ≤1

 1

0


aX (x)h∗(x; ξ, c, d) + aY (x)h∗(x; 1 + d − ξ, c, d)


dx,

sup
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) =

 1

0


aX (x) + aY (x)


dx.

Note the supremum is not attained unless c = 1 while the inf and min are interchangeable (optimisation is made on a
compact set, specifically [0, 1]), and therefore we may obtain a sharp lower bound. Moreover, if aX and aY are continuous
and monotone decreasing functions, then the infimum and supremummay swap with each other. Sometimes, closed-form
solutions can be found and are explicitly given in Proposition 4.1.

Proposition 4.1. Denote AX (x) =
 x
0 aX (y) dy and AY (x) =

 x
0 aY (y) dy.

(i) Assume that aX ≡ aY ≡ a such that a is a continuous, monotone increasing function, the extremal values of J(a, a) defined
in (4.4) are

inf
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(a, a) = AX (1) +
1

r∗(c)
AX

r∗(c)


,

sup
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(a, a) = 2AX (1),

where r∗(c) = c/(2 − c) < 1. If a is a continuous and monotone decreasing function, then the infimum and supremum are
reversed.

(ii) Assume that aX and aY are monotone increasing and decreasing, respectively, continuous functions, then the extremal values
of J(aX , aY ) defined in (4.4) are

inf
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) =
AX (c)

c
+ AY (1),

sup
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = AX (1) +
AY (c)

c
.

Remark 4.2. Proposition 4.1(i) tells us that for all symmetric problems (in aX and aY ) from Theorem 4.1, namely (4.1) with
b = 1 and α > 1, (4.2) and (4.3) have a lower bound when H(x, y) = c min(x, y), which can be achieved for many copulae
(for example, take Ĉ(u, v) = c min{u, v} + (1 − c)uv). That is, the least extreme dependence for a sum with a given c is
the Fréchet–Hoeffding upper bound (when the upper copula, as explained in [21], is the Fréchet–Hoeffding upper bound).
This confirms the fact that quantiles of a sum are maximised under negative association instead of a maximum positive
association (see for example, [10]). On the other side, the worst extreme dependence for a sum with a given c is given by

H−1
∗


max(u, v)


H∗


H−1

∗


min(u, v)


H−1

∗


max(u, v)

 ,

where H∗(x) =
x
c I

0 ≤ x ≤ r∗(c)


+

1+x
2 I

r∗(c) < x ≤ 1


.
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In the very end of this section we outline a variant of Lemma A.1 when function b(·) is not always positive on [0, 1]. The
infinite dimensional optimisation problem is first solved over a reduced feasibility set given by

H ϵ,ξ,y0 :=

H : H is a cdf on [0, 1] with a non-increasing density h such that (4.6) is satisfied


,

H(x0) = y0, h(0+) =
1
c
, h(x0+) ≤ ϵ ≤ h(x0−), h(1−) = ξ, (4.6)

where c ∈ (0, 1] and x0 ∈ (0, 1) are some constants. In addition, the remaining parameters should satisfy

ξ ≤
1 − y0
1 − x0

≤ ϵ ≤
y0
x0

≤
1
c
, d ≤ ξ ≤ 1, x0 ≤ y0. (4.7)

The final result is given as Lemma 4.1 and its proof is left to the reader since one can follow similar arguments to the one
used in the proof of Lemma A.1.

Lemma 4.1. Suppose b : [0, 1] → ℜ such that
 1
0 |b(x)| dx < ∞. In addition, there exists 0 < x0 < 1 such that b(x) ≤ 0 and

b(x) ≥ 0 if 0 ≤ x ≤ x0 and x0 ≤ x ≤ 1, respectively. Then

inf
H∈Hϵ,ξ,d,y0

 1

0
b(x)H(x) dx =

 1

0
b(x)H∗(x; ϵ, ξ, d, y0) dx,

sup
H∈Hϵ,ξ,d,y0

 1

0
b(x)H(x) dx =

 1

0
b(x)H

∗
(x; ϵ, ξ, d, y0) dx

where

H∗(x; ϵ, ξ, d, y0) =



x
c

if 0 ≤ x ≤
c(y0 − ϵx0)

1 − cϵ

y0 + ϵ(x − x0) if
c(y0 − ϵx0)

1 − cϵ
≤ x ≤ x0

1 −
1 − y0
1 − x0

(1 − x) if x0 ≤ x ≤ 1

and

H
∗
(x; ϵ, ξ, d, y0) =



y0
x0

x if 1 ≤ x ≤ x0

y0 + ϵ(x − x0) if x0 ≤ x ≤
1 − ξ − y0 + ϵx0

ϵ − ξ

1 − ξ(1 − x) if
1 − ξ − y0 + ϵx0

ϵ − ξ
≤ x ≤ 1.

As before, the desired bounds can be found via a finite dimensional constrained optimisation problem by varying the
parameters ϵ, ξ , d and y0 over the set defined in Eq. (4.7).

5. Detecting AD

It has been previously explained the importance of knowing whether or not AD represents a reasonable assumption. We
already know that η = 1 may imply AD or AI. This section provides a new way of detecting AD and elaborates a simple test
statistic to differentiate between AD and AI.

Let X and Y be two identically distributed truncated Pareto rv’s with survival function F̄(t) = x−α for all x ≥ 1. If the
survival copulaC of (X, Y ) satisfies Assumption 2.1, then from Theorem 4.1(i) we get that

lim
t→∞

P(X + Y > t)
P(X > t)

= 2 − c 2α
+ c

 1

0
z1/α−11 + z1/α

α−1
hX (z) + hX (z)


dz.

The lower and upper bounds for the above limit can be found via Proposition 4.1(i) with

A(x; α) =

1 + x1/α

α
− 1.

If α > 1 then

K(α, c) ≤ lim
t→∞

P(X + Y > t)
P(X > t)

≤ K(α, c), (5.1)
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where

K(α, c) := 2 − c 2α
+ 2cA(1; α) = 2 + c (2α

− 2)

and

K(α, c) := 2 − c 2α
+ c


A(1; α) +

2 − c
c

A


c
2 − c

; α


=

(2 − c)1/α + c1/α

α
.

Thus, the lower bound is strictly greater than 2 under AD, while Remark 4.1 tells us that the limit is always 2 under AI. These
suggest a way of testing AD against AI as follows

H0 : K(θ) > 2 versus H1 : K(θ) = 2,

for any fixed θ > 1, where we define

K(θ) = lim
u↓0

K(u; θ) and K(u; θ) :=

P


U−1/θ
+ V−1/θ

−θ
≤ u


u

.

Note that the asymptotic upper tail dependence of (X, Y ) and the asymptotic lower tail dependence of (U, V ) =
F̄(X), F̄(Y )


are equal. Therefore, we check the AD/AI property for the pair of standard uniform (U, V ) in the lower tail

instead of the upper tail, and as a result, the assumption from (2.3) is replaced by

C(u, u) = u1/ηs(u)

1 + o(1)


as u ↓ 0.

Similarly, another way of testing AD against AI is as follows:

H0 : K(θ) < 2 versus H1 : K(θ) = 2,

for any fixed 0 < θ < 1.
We now provide a brief simulation study for our proposed test for distinguishing between AD and AI. Obviously, a more

detailed investigation is needed in order to grasp multiple potential problems that usually arise with such estimators (for
example the optimal fraction problem), but these aspects are beyond the scope of this paper. Four dependence models are
assumed as follows:
(A) Farlie–Gumbel–Morgenstern copula

C(u, v; ξ) := uv

1 + ξ(1 − u)(1 − v)


, −1 ≤ ξ ≤ 1.

The lower AI holds with η = 1/2.
(B) The first almost AD example with copula

H−1
X


max(u, v)


HX


H−1

X


min(u, v)


H−1

X


max(u, v)

 ,

where HX is defined in (3.2). Recall that the lower AI holds with η = 1.
(C) The second almost AD example with copula

H−1
X


max(u, v)


HX


H−1

X


min(u, v)


H−1

X


max(u, v)

 ,

where HX is defined in (3.3). Recall that the lower AI holds with η = 1.
(D) Clayton copula

C(u, v; ξ) :=

u−1/ξ

+ v−1/ξ
− 1

−ξ
, ξ > 0.

The lower AD holds with c = 2−ξ and HX (x; ξ) = HY (x; ξ) =


1+x−1/ξ

2

−ξ

.

A sample (Ui, Vi) of size n = 5000 is drawn from each copula and we plot in Figs. 5.1–5.4 the tail dependence estimators,η andK(θ)with θ = 1.2, 1.3 for the four dependencemodels and different values of k. The value of k represents the fraction
of the sample which is considered to be extreme behaviour of the sample. Recall that we investigate AD/AI at the lower end.
The tail dependence estimator (at the upper end) and its properties have been investigated in [9]. In our setting, we have

η(k) =
1
k

k
i=1

log
T(i)

T(k+1)
,

where T(i) is the ith largest order statistics of

Ti = min

n + 1
RUi

,
n + 1
RVi


with RUi being the rank of Ui among U1,U2, . . . ,Un and RVi being the rank of Vi among V1, V2, . . . , Vn.
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Fig. 5.1. Estimatorsη(k),K(1.2; k) andK(1.3; k) for copula (A) with ξ = 0.5 are plotted against k = {21, . . . , 500}.

Fig. 5.2. Estimatorsη(k),K(1.2; k) andK(1.3; k) for copula (B) are plotted against k = {21, . . . , 500}.

Fig. 5.3. Estimatorsη(k),K(1.2; k) andK(1.3; k) for copula (C) are plotted against k = {21, . . . , 500}.

Fig. 5.4. Estimatorsη(k),K(1.2; k) andK(1.3; k) for copula (D) with ξ = 1 are plotted against k = {21, . . . , 500}.

An estimator for K(θ) is

K(θ; k) =
1
k

n
i=1

I


U−1/θ
i + V−1/θ

i

−θ

≤ k/n


.

TheAIwith η < 1 fromFig. 5.1 seems quite clear and the η plot ismore informative. The almost AD copulae fromFigs. 5.2 and
5.3 show that our proposed estimator could be carefully used in conjunctionwith the classical coefficient of tail dependence.
The AD copula plots displayed in Fig. 5.4 suggest that a significant change of K(θ) when θ marginally changes would be an
indication that AD is present, but an extensive simulation study would provide a better understanding of how to interpret
such plots. The horizontal lines in Fig. 5.4 represent the theoretical values for K(θ) calculated via (4.1) as follows:

K(θ) = 2 − 2θ−ξ
+ 21−ξ

 1

0
z1/θ−11 + z1/θ

θ−1
HX (dz; ξ).

Numerical evaluations show that K(1.2) = 2.22974 and K(1.3) = 2.36934.
Note that the behaviour of K̂ (as shown in Figs. 5.1–5.4) follows a similar pattern when k changes. For small values of k,

the estimator behaves erratically due to small sized samples, while for large values of k, the rapidly growing bias is observed
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Fig. 6.1. The upper bound (solid line) and lower bound (dashed line) for the ratio of VaR1−q(X + Y )/VaR1−q(X) as a function of c with α = 2 (left) and
α = 3 (right).

and poor estimates are obtained. In between those scenarios, there is a region of values for k, where the estimator is more
stable and the actual estimate is chosen accordingly. Special attention should be paid to the theoretical optimal choice of
k that is usually found by minimising the asymptotic mean squared error, but further research is needed to confirm this
plausible choice. As a final comment, we would like to point out that further work is needed to show the consistency of our
proposed estimator and other properties that will help us to produce confidence intervals. As explained in [3], we believe
that a combination of some existing estimators (for example, the ones from [9,3]) with our estimators would provide better
statistical tools to distinguish between AD and AI.

6. Numerical results

Some numerical examples are now given in order to justify the advantage of using our asymptotic approximations. As
explained in Section 1, special attention has been given to evaluating the tail risk for a portfolio of risks for which the
dependence is unknown or very little is known. According to our previous findings, we can answer the same questions by
estimating the tail risk of a bivariate portfolio of risks where some partial information about dependence is known, namely,
the tail dependence parameter c . Obviously, there is some uncertainty with the estimation of c , but confidence intervals
can be found and in turn, the bounds are changed accordingly. Interestingly, we are able to find sharp upper bounds, which
provide the most conservative scenario that a decision-maker might expected to encounter. The tail risk is based on one of
the most popular risk measures, VaR. Its definition for a generic risk rv Z at a confidence level q is

VaRq(Z) := inf
t


P(Z ≤ t) ≥ q


.

It is first assumed that X and Y are identically distributed Pareto rv’s such that P(X > x) = (1 + x)−α for all x ≥ 0.
Lemma 2.1 of Asimit et al. [2] and Eq. (5.1) show that

K(α, c)
1/α

≤ lim
q↓0

VaR1−q(X + Y )

VaR1−q(X)
≤

K(α, c)

1/α
.

These bounds are plotted in Fig. 6.1.
While both bounds are informative, the decision-maker ismore keen to find theworst possible case, i.e. the upper bound.

It is well-known that under AD, the joint tail behaviour exhibits the lower orthant property and therefore, we can compare
our results with the one obtained by Bignozzi et al. [7]. Their Theorem 3.1 tells us that

VaR1−q(X + Y ) ≤ inf
1−q≤s≤1


VaRs(X) + VaR(1−q)/s(X)


= 2VaR√

1−q(X),

since the objective function from above is convex and symmetric due to the Pareto assumption. The VaR ratio upper bound
found in [7] is depicted in Fig. 6.2. Comparing Figs. 6.1 and 6.2, it becomes clear that it is more advantageous to use our
bounds if one has knowledge about the tail dependence parameter. The same conclusion can bedrawn for theVaR ratio lower
bounds, since the lower bound from [7] is 1 (see their Example 3.1). Recall that our asymptotic approximations displayed in
Fig. 6.1 depend only on c , but remain unchanged for different values of q. In turn, the alternative upper bounds from Fig. 6.2
are only sensitive to changes of q.

Knowing the most and least conservative scenarios, it is interesting to understand how wide our confidence interval is.
Thus, we plot in Fig. 6.3 the relative spread (difference between the VaR ratio upper and lower bounds) based on our results
(left) and Bignozzi et al. [7] (right). Once again, our bounds are tighter since we include an additional piece of information
about dependence, but it is fair tomention that our approachworks only in the bivariate case. It is alsoworthmentioning that
the bounds are less spread for relatively small values and large values of c , since the uncertainty with the tail dependence
is reduced in this case when X and Y have RV tails.

We now assume that the risks are exponentially distributed with mean 1 and perform the same analysis as before.
Proposition 4.1(i) and (4.3) yield that

c ≤
P(X + Y > 2t)

P(X > t)
≤


c(2 − c)
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Fig. 6.2. The upper bound for the ratio of VaR1−q(X + Y )/VaR1−q(X) as a function of 1 − q with α = 2 (left) and α = 3 (right).

Fig. 6.3. The relative spread for various values of c (left) and q (right) with α = 2 (solid line) and α = 3 (dashed line).

Fig. 6.4. The upper bound (solid line) and lower bound (dashed line) for the ratio of VaR1−q(X + Y )/VaR1−q(X) as a function of 1 − qwith c = 0.25 (left),
c = 0.5 (middle) and c = 0.75 (right).

Fig. 6.5. The relative spread as a function of qwith (left) and without (right) asymptotic piece of information given by c = 0.25 (solid line), c = 0.5 (long
dashed line) and c = 0.75 (short solid line).

and in turn, Lemma 2.4 of Asimit et al. [2] implies that

2VaR1−q/c(X) ≤ VaR1−q(X + Y ) ≤ 2VaR1−q/
√
c(2−c)(X), for q sufficiently close to 0.

Our VaR ratios are depicted in Fig. 6.4 and are calculated as above.
As before, the VaR ratio lower and upper bounds found in [7] are 1 and 2VaR√

1−q(X), respectively. Comparing these
bounds with the values displayed in Fig. 6.4, one can find that our bounds are tighter. Moreover, we compare in Fig. 6.5 the
relative spread of the VaR ratio based on our results (left) and Bignozzi et al. [7] (right). Note that for larger values of c , our
lower/upper bounds (see Fig. 6.4) and relative spread (see Fig. 6.5) increase.
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Appendix

Proof of Proposition 3.1. It is sufficient to prove the properties for HX , since the other case can be shown in the same
fashion. Recall that HX is right-continuous, as it is a cdf. Choose ε > 0 and for 0 < u < (1 − ε)v we have

(1 − ε)vHX


u

(1 − ε)v


=

H

u, (1 − ε)v


c

≤
H(u, v)

c
= vHX

u
v


.

Write x =
u

(1−ε)v
and in turn one may get that

HX (x) − HX

(1 − ε)x


HX (x)

≤ ε.

Thus, HX is a left-continuous function, and hence is a continuous function. Since it is non-decreasing, this means that it has
a right derivative hX , which must satisfy

sup
0<x<1

x
hX (x)
HX (x)

≤ 1.

In other words, wemaywrite HX (x) = xJX (x), where JX is a continuous, non-increasing function satisfying JX (1) = 1. Taking
this one step further, we observe for 0 < u < v that

chX

u
v


=

∂H(u, v)

∂u
≤

∂H

u, v(1 + ε)


∂u

= chX


u

v(1 + ε)


.

Defining x =
u

v(1+ϵ)
, one may get that hX ((1 + ε)x) ≤ hX (x), and thus, hX is right-continuous and non-increasing function

on (0, 1). The left continuity of hX is obtained in the same way as the left continuity of HX above.
Let (U, V ) be two rv’s on [0, 1] with joint cdf G = H/c , where H is defined in (2.2). For any 0 < x < 1, Eq. (2.2) yields

P(U, V ≤ x,U > V ) =

 x

0
(HY (1) − hY (1−)) dz =


1 − hY (1−)


x.

Similarly, P(U, V ≤ x,U < V ) =

1 − hX (1−)


x. These and the fact that G(x, x) = x imply

P(U = V ≤ x) =

hX (1−) + hY (1−) − 1


x.

Thus, one may choose d = P(U = V ) = hX (1−) + hY (1−) − 1, which clearly satisfies d ∈ [0, 1].
It only remains to justify hX (0+) = hY (0+) = 1/c. Assume that the random vector (Z, T ) has survival copulaC and

Z, T ∈ RV−α are identically distributed and positive rv’s. Clearly, relation (2.4) implies that

lim
t→∞

P(T > ty|Z > t) = y−αH(yα, 1), for all y < 1,

and since the limit is continuous, the limit holds uniformly in y as a result of Theorem 1.11 of Petrov [28]. Thus,

1 = µF

(1, ∞) × (0, ∞]


= lim

y↓0
y−αH


yα, 1


= c lim

y↓0

HX

yα


yα
= c hX


0+

,

which completes the proof.

Proof of Proposition 3.2. It is first proved that x−1HX (x) is a non-increasing function in x ∈ (0, 1]. Clearly, for any x

d
dx

HX (x)
x

= −
HX (x)
x2

+
hX (x)
x

= −
1
x2

 x

0
hX (y) dy +

hX (x)
x

=
1
x2

 x

0


hX (x) − hX (y)


dy ≤ 0,

since hX is non-increasing. The mirror result for HY can be shown in a similar manner.
Next, we show that J(·) is a valid cdf on [0, 1]2. Note that J(x, 0) = J(0, x) = 0 for any 0 ≤ x ≤ 1 and that J(1, 1) = 1. It

only remains to establish that

J

x2, y2


− J

x2, y1


− J

x1, y2


+ J

x1, y1


≥ 0, for all 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1.

We demonstrate that ∂ J
∂x (x, y2) −

∂ J
∂x (x, y1) ≥ 0 for each x, from which the required result follows by integration. There are

three cases to consider; in each case the result relies on the fact that hX and hY are non-increasing, whilst in case (ii) we also
use the fact that hX (1−) + hY (1−) = 1 + d.
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(i) Suppose first that x ≤ y1 ≤ y2. If x < y1, the following holds

∂ J
∂x

(x, y2) −
∂ J
∂x

(x, y1) = hX


x
y2


− hX


x
y1


≥ 0.

The remaining case in which x = y1 is further shown. The right derivatives of J with respect to x at (x, y1) is given by

lim
ϵ↓0

J(x + ϵ) − J(x, x)
ϵ

= lim
ϵ↓0

(x + ϵ)HY

x/(x + ϵ)


− x

ϵ

= lim
ϵ↓0


HY

x/(x + ϵ)


+

HY

1 − ϵ/(x + ϵ)


− 1

ϵ/(x + ϵ)

x
x + ϵ


= 1 − hY (1−).

Similarly, the left derivative becomes

lim
ϵ↓0

J(x, x) − J(x − ϵ)

ϵ
= hX (1−),

which is always larger than the right derivative. Thus, our claim is true since hX


x
y2


− hX (1−) ≥ 0.

(ii) Now, suppose that y1 < x ≤ y2. If y1 < x < y2, we have that

∂ J
∂x

(x, y2) −
∂ J
∂x

(x, y1) = hX


x
y2


−


HY

y1
x


−

y1
x
hY

y1
x


= hX


x
y2


− hX (1−) + 1 − hY (1−) −


HY

y1
x


−

y1
x
hY

y1
x


+ d

= hX


x
y2


− hX (1−) +

 1

y/x


hY (u) − hY (1−)


du +

y1
x


hY

y1
x


− hY (1−)


+ d

≥ 0.

As in setting (i), the case x = y2 is justified as follows:

∂ J
∂x

(x, y2) −
∂ J
∂x

(x, y1) ≥ 1 − hY (1−) −


HY

y1
x


−

y1
x
hY

y1
x


=

 1

y/x


hY (u) − hY (1−)


du +

y1
x


hY

y1
x


− hY (1−)


≥ 0.

(iii) Next, suppose y1 < y2 < x and it yields

∂ J
∂x

(x, y2) −
∂ J
∂x

(x, y1) =


HY

y2
x


−

y2
x
hY

y2
x


−


HY

y1
x


−

y1
x
hY

y1
x


=

 y2/x

y1/x


hY (u) − hY

y2
x


du +

y1
x


hY

y1
x


− hY

y2
x


≥ 0.

We also need to verify that C satisfies (2.1), where C(u, v) := J

H−1

X (u),H−1
Y (v)


is the copula of J , which exists due to

Sklar’s Theorem. Elementary arguments may help to justify that

lim
u↓0

H−1
X (u)
u

= lim
u↓0

H−1
Y (u)
u

= c

as a result of hX (0+) = hY (0+) = 1/c and the fact that H−1
X and H−1

Y are non-decreasing. Thus, if x < y and u is sufficiently
close to 0, then H−1

X (ux) ≤ H−1
Y (uy) and we have

lim
u↓0

J

H−1

X (ux),H−1
Y (uy)


u

= lim
u↓0

H−1
Y (uy)
u

HX


H−1

X (ux)

H−1
Y (uy)


= cyHX


x
y


= cJ(x, y).

The case y ≤ x can be justified similarly, which completes the proof.
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Proof of Theorem 4.1. (i) Note first that Eq. (2.6) yields

lim
t→∞

P(X + bY > t)
P(X > t)

= µF

As

, where As :=


(x, y) : x + by > 1


,

since µF

∂As


= 0 (for details, see [23]). An alternative proof is given in [30,22]. Now, using Eqs. (2.2), (2.4) repeatedly and
obvious changes of variables, we get

µF

As


= µF

(x, y) : x + by > 1, x ≥ y


+ µF


(x, y) : x + by > 1, x < y


=

 1

1
1+b

µF


dx ×


1 − x
b

, x


+


∞

1
µF

dx × (0, x]


+ c d (1 + b)α

+

 1/b

1
1+b

µF

(1 − by, y] × dy


+


∞

1
b

µF

(0, y] × dy


= c α

 1

1
1+b

x−α−1hX


1 − x
ax


dx + µF


(1, ∞] × (0, ∞]


−


∞

1
1+b

µF

dx × (x, ∞]


+ c d (1 + b)α

+ c α

 1
b

1
1+b

y−α−1hY


1 − by

y

α
dy + µF


(0, ∞] × (1/b, ∞]


−


∞

1
1+b

µF

(y, ∞] × dy


= b c

 1

0
z1/α−1 1 + bz1/α

α−1
hX (z) dz + 1 − c hX (1−)(1 + b)α + c d (1 + b)α

+ b c
 1

0
z1/α−1 b + z1/α

α−1
hY (z) dx + bα

− c hY (1−)(1 + b)α,

which concludes (4.1) since hX (1−) + hY (1−) = 1 + d.
(ii) The vague convergence from relation (2.6) yields

lim
t→∞

P(XY > t2)
P(X > t)

= µF

Ap

, where Ap :=


(x, y) : xy > 1


, (A.1)

as long as µF

∂Ap


= 0. Note that no mass is put in neighbourhoods of ∞, and therefore, the only possible way to put same

mass on the boundary of Ap is only on the curve {xy = 1}. Assume that µF


(x, 1/x), x > 0


= m > 0. Thus,

µF


(x, y), 1 < xy ≤ 2


≥ µF

 
q∈Q


(1,2]


(x, y), xy = q


=


q∈Q


(1,2]

µF


(x, y), xy = q


= µF


(x, y), xy = 1

 
q∈Q


(1,2]

q−α/2

= ∞,

where the second last step is due to the fact thatµF (xA) = x−αµF (A) holds for any relatively compact set, which contradicts
our assumption thatm > 0, since µF is a Radon measure.

Some algebra that involves multiple use of Eqs. (2.2), (2.4) and some obvious changes of variables lead to

µF

Ap


= µF

(x, y) : xy > 1, x ≥ y


+ µF


(x, y) : xy > 1, x < y


=


∞

1
µF


dx ×


1/x, ∞


−


∞

1
µF

dx × (x, ∞]


+ c d

+


∞

1
µF

1/y, ∞


× dy


−


∞

1
µF

(y, ∞] × dy


= c α


∞

1
x−α−1hX


x−2α dx − chX (1−) + c d + c α


∞

1
y−α−1hY


y−2α dy − chY (1−)

=
c
2

 1

0
z−1/2hX (z) dz +

c
2

 1

0
z−1/2hY (z) dz − c,

since hX (1−) + hY (1−) = 1 + d. The latter and relation (A.1) conclude part (ii).
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(iii) A consequence of Eq. (2.7) is that

lim
t→∞

P(X + Y > 2t)
P(X > t)

= µG

B

, where B :=


(x, y) : x + y > 0


,

since µG

∂B


= 0 (for details, see [23]). Note that there is an alternative approach, which is given in [22]. As before, by
multiple use of Eqs. (2.2), (2.5) and obvious changes of variables, we get

µG(B) = µG

(x, y) : x + y > 0, x > 0


+ µG


(x, y) : x + y > 0, y > 0


− µG


(0, ∞] × (0, ∞]


=


∞

0
µG

dx × (−x, ∞]


−


∞

0
µG

(−y, ∞] × dy


− c

= c


∞

0
e−xhX


e−2x dx + c


∞

0
e−yhX


e−2y dy − c

=
c
2

 1

0
z−1/2hX (z) dz +

c
2

 1

0
z−1/2hY (z) dz − c.

The proof is now complete.

The first step in the proof of Theorem 4.2 is the next lemma. Let H ξ,c,d be the collection of cdf’s whose densities h are
elements of Hξ,c,d.

Lemma A.1. Suppose b : [0, 1] → [0, ∞) satisfies
 1
0 b(x) dx < ∞. Then

inf
H∈Hξ,c,d

 1

0
b(x)H(x) dx =

 1

0
xb(x) dx, (A.2)

sup
H∈Hξ,c,d

 1

0
b(x)H(x) dx =

 1

0
b(x)H∗(x; ξ, c) dx (A.3)

where

H∗(x; ξ, c, d) =


x
c

if 0 ≤ x ≤
(1 − ξ)c
1 − ξc

1 − ξ + ξx if
(1 − ξ)c
1 − ξc

≤ x ≤ 1.

Proof of Lemma A.1. The proof of (A.3) is straightforward, since H∗(·; ξ, c, d) ∈ H ξ,c,d and it follows from Corollary 3.1
and the fact that H(x) ≤ x/c that H(·) ≤ H∗(·; ξ, c, d) for any H ∈ H ξ,c,d.

In addition, since H(x) ≥ x, it is clear that the infimum in (A.2) is at least as large as
 1
0 xb(x) dx. What remains is the

proof of equality, which we accomplish by demonstrating a sequence of functions Hn ∈ H ξ,c,d such that
 1
0 b(x)Hn(x) dx → 1

0 xb(x) dx.
Define

Hn(x) =



x
c

−
n
2


1
c

− 1
2

x2 if 0 ≤ x ≤ xL(n)

x +
1
2n

if xL(n) ≤ x ≤ xU(n)

1 − ξ(1 − x) −
n
2
(1 − ξ)2(1 − x)2 if xU(n) ≤ x ≤ 1,

where xL(n) =

n
 1
c − 1

−1
and xU(n) = 1 − [n(1 − ξ)]−1. It is not difficult to verify that Hn ∈ H ξ,c,d. Further, 1

0
b(x) |x − Hn(x)| dx =

 xL(n)

0
b(x)

x −
x
c

+
n
2


1
c

− 1
2

x2
 dx +

 xU (n)

xL(n)

1
2n

b(x) dx

+

 1

xU (n)
b(x)

x − 1 + ξ(1 − x) +
n
2
(1 − ξ)2(1 − x)2

 dx
=


1 −

1
c

 xL(n)

0
xb(x)


1 +

n
2


1
c

− 1

x


dx +
1
2n

 xU (n)

xL(n)
b(x) dx
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+ (1 − ξ)

 1

xU (n)
(1 − x)b(x)

−1 +
n
2
(1 − ξ)(1 − x)

 dx
≤

3
2n

 xL(n)

0
b(x) dx +

1
2n

 xU (n)

xL(n)
b(x) dx +

3
2n

 1

xU (n)
b(x) dx

≤
3
2n

 1

0
b(x) dx,

which justifies our results in full.

Proof of Theorem 4.2. Suppose a : [0, 1] → R is continuous and monotone increasing; then it has a non-negative
derivative b = a′ almost everywhere. Thus, the proof becomes straightforward and it follows from integration by parts
and Lemma A.1.

Proof of Proposition 4.1. (i) The supremum follows immediately from Theorem 4.2. For the infimum, we need tominimise

min
0≤d≤ξ≤1

 1

0
a(x)


h∗(x; ξ, c, d) + h∗(x; 1 + d − ξ, c, d)


dx

= min
0≤d≤ξ≤1


1
c
A


(1 − ξ)c
1 − ξc


+ ξ


A(1) − A


(1 − ξ)c
1 − ξc


+

1
c
A


(ξ − d)c
1 + d − (1 − ξ)c


+ (1 + d − ξ)


A(1) − A


(ξ − d)c

1 + d − (1 − ξ)c


. (A.4)

It is first shown that the objective function is convex in ξ for any fixed d and attains its minimum at ξ ∗(d) = (1 + d)/2. We
need to minimise g(ξ) + g(1 + d − ξ) on [d, 1], where g : [d, 1] → ℜ with

g(ξ) := ξA(1) +


1
c

− ξ


A


(1 − ξ)c
1 − ξc


.

Clearly,

∂g
∂ξ

= A(1) − A

r(ξ)


−

1 − r(ξ)


a

r(ξ)


, with r(ξ) :=

(1 − ξ)c
1 − ξc

.

Recall that A(s) + (1 − s)a(s) is a strictly increasing function, since its derivative is (1 − s)a′(s) > 0. The latter and the
fact that r is a strictly decreasing function suggest that ∂g

∂ξ
is strictly increasing in ξ . Consequently, the objective function

from (A.4) is decreasing and increasing in ξ if and only if ξ ≤ (1 + d)/2 and ξ ≥ (1 + d)/2, respectively, and therefore the
minimum is reached at ξ ∗(d) = (1 + d)/2.

We now vary d ∈ [0, 1] in order to globally minimise (A.4). That is, we ought to minimise 2g

(1 + d)/2


or equivalently

min
1≤t≤ 2−c

2−2c

h(t) := t

A

1 −

1
t


− A(1)


by denoting t =

1
c −

1+d
2

1
c − 1

.

Now, h′′(t) = t−3a′(1 − 1/t) > 0 and it yields

h′(t) ≤ h′(1) = a(0) − A(1) =

 1

0


a(0) − a(y)


dy ≤ 0

and thus, the global minimum is attained when t∗ =
2−c
2−2c . Therefore, the infimum in (A.4) is A(1)+

1
r∗ A(r∗) and is obtained

at

d∗, ξ ∗


= (0, 1/2).

Finally, if a is monotone decreasing, we can apply the proposition to ã(x) = −a(x) to obtain the required result.
(ii)We only prove the infimum since supremum can be shown in a similar manner. The first stage optimisation problems

are solved via Theorem 4.2 and we have

inf
(hX ,hY )∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = inf
0≤d≤ξ≤1

 1

0


aX (x)h∗(x; ξ, c, d) + aY (x)


dx

= inf
0≤d≤ξ≤1

g(ξ) + AY (1), (A.5)

where g is defined in the proof of part (i). For any fixed d, the above function is increasing in ξ since

g ′(ξ) ≥ g ′(d) = A(1) − A

r(d)


−

1 − r(d)


a

r(d)


=

 1

r(d)
a(y) dy −


1 − r(d)


a

r(d)


≥ 0
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by keeping inmind that g ′ and a are increasing functions. Thus, theminima is attained at ξ ∗(d) = d and by varying d ∈ [0, 1],
it is not difficult to find that the infimum in (A.5) is obtained when d∗

= ξ ∗
= 0, which completes the proof.
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