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a b s t r a c t

Exploring resting-state brain functional connectivity of autism spectrum disorders (ASD)
using functional magnetic resonance imaging (fMRI) data has become a popular topic over
the past few years. The data in a standard brain template consist of over 170,000 voxel
specific points in time for each human subject. Such an ultra-high dimensionality makes
the voxel-level functional connectivity analysis (involving four billion voxel pairs) both
statistically and computationally inefficient. In this work, we introduce a new framework
to identify the functional brain network at the anatomical region level for each individual.
We propose two pairwise tests to detect region dependence, and one multiple testing
procedure to identify global structures of the network. The limiting null distribution of each
test statistic is derived. It is also shown that the tests are rate optimal when the alternative
block networks are sparse. The numerical studies show that the proposed tests are valid
and powerful. We apply our method to a resting-state fMRI study on autism and identify
patient-unique and control-unique hub regions. These findings are biologicallymeaningful
and consistent with the existing literature.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The functional brain network refers to the coherence of the brain activities amongmultiple spatially distinct brain regions.
It plays an important role in information processing andmental representations [12,44], and could be altered by the status of
one’s disease. Recent work [18,31,46] showed that patients with neurological diseases (such as Alzheimer’s disease and the
Autism Spectrum Disorder) have different functional networks compared to the controls. As a result, reliable and efficient
inference on functional brain networks will benefit the study of these diseases. The goal of this research is to infer the
functional networks of the brain region using neuro-imaging data.

Recent advances in neuro-imaging technologies provide great opportunities for researchers to study functional brain
networks based on massive neuro-imaging data, which are generated using various imaging modalities such as positron
emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG). In a neuro-
imaging experiment, the scanner records the brain signals at multiple points in time at each location (or voxel) in the three-
dimensional brain, leading to a four-dimensional imaging data structure. In a typical fMRI study, the number of voxels can
be up to 200,000 and the number of imaging scans over time ranges from 100 to 1000. In the light of the brain function and
the neuroanatomy, the human brain can be partitioned into about 100–200 anatomical regions and each region contains

* Corresponding author.
E-mail addresses: jichun.xie@duke.edu (J. Xie), jiankang@umich.edu (J. Kang).

http://dx.doi.org/10.1016/j.jmva.2017.01.011
0047-259X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2017.01.011
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2017.01.011&domain=pdf
mailto:jichun.xie@duke.edu
mailto:jiankang@umich.edu
http://dx.doi.org/10.1016/j.jmva.2017.01.011


J. Xie, J. Kang / Journal of Multivariate Analysis 156 (2017) 70–88 71

approximately 200–4000 voxels. Such high dimensionality and complexity of the data pose great challenges on the inference
of the whole brain network.

Due to the ultra-high dimensionality of voxel numbers (up to 200,000), direct inference on the network of voxels is
extremely resource intensive and computationally expensive.More importantly, the primary interest focuses on the network
inference at the region level rather than at the voxel level. To this end, [3] examines the functional connectivity of a particular
brain region, called seed region, by correlating the seed region brain signals against the brain signals from all other regions.
Although this method yields a clear view of the functional connectivities between one region of interest (the seed region)
and other regions [10,19], it fails to examine the functional network on a whole brain scale. Alternatively, [50] proposed
to form meshes around a seed voxel by regressing p functionally nearest neighbor voxels on the seed voxel, where the
number of regressors p is determined by minimizing Akaike’s final prediction error [1]. Then two voxels are considered
as functionally connected if one serves as a functional predictor for the other. The number of all connected voxel pairs
between two anatomic regions is treated as the dependence measure between these two regions. Although this method
successfully provides a functional network among anatomic regions, no inference results are provided on what level of
connectivities should be regarded as significant. Another commonly usedmethod [28,29] is to summarize one statistic (such
as the largest principal component of voxel signals) in each region and then study the dependence between these statistics.
Commonly usedmeasures of dependence include the covariance matrix or the Gaussian Graphical model; see [29,37,46,51].
Since only one statistic is summarized in each region, the dependence among these summarized statistics sometimes fails
to characterize the functional connectivities between brain regions.

In this article, we propose a newmethod to estimate the region level functional connectivity for each individual. Instead
of summarizing one statistic in each region, we utilize multiple statistics such that the region wise brain connectivity
information can be adequately captured. These statistics can be viewed as functional components of the region. The
correlation matrix between the components in two regions is used to measure the dependence between these two regions.
We assume that two regions are functionally connected if and only if at least one pair of components is correlated between
these two regions.

We then concatenate these functional components region by region. No region level functional connectivity implies
that the covariance matrix (or equivalently its inverse) of the concatenated components has a block-diagonal structure.
Numerous examples in the existing literature confirm this is a reasonable assumption; see [11,29,42]. Thus, to construct a
functional network of brain anatomic regions, we test whether the correlation matrix of two regions has a block diagonal
structure.

Previous literature for testing a high-dimensional covariance/correlation matrix include testing whether the covariance
matrix is proportional to the identity matrix [9,15,17,32,34,43], and testing whether two covariance or correlation matrices
are equal [13,14,33,34]. To the best of our knowledge, no existing methods have been published to address whether high-
dimensional covariance matrix has block-diagonal structure. However, ideas from published work can be borrowed to
construct test statistics for our problem. There are mainly two types of existing test statistics: one is a chi-square statistic
which is based on the sum of squared sample covariances, and the other is the extreme statistic based on the largest absolute
self-standardized sample covariance. In general, the chi-square statistical test performs better when the alternative network
is dense and the extreme statistical test performs better when the alternative network is sparse. In imaging studies, the
network of functional components is usually sparse. Therefore, we will use an extreme type of statistical test.

This paper is organized as follows. In Section 2, we introduce the notation and define the testing hypotheses. Section 3
presents two procedures to control type I error for each hypothesis and a multiple testing procedure to control the family-
wise error rate. We will discuss their theoretical properties in Section 4. One of the procedures involves estimating sparse
regression coefficients. The estimators are discussed in Section 5. We will demonstrate the numerical performances of our
procedures in Section 6. In Section 7, we apply the proposed procedures on resting-state fMRI data from subjects with
and without autism spectrum disorder (ASD), and compare the functional networks of anatomic regions between cases
and controls. The neuro-imaging results reflect the clinical characteristics of ASD. These methods are further discussed in
Section 8.

2. Model and hypotheses

In fMRI studies, blood-oxygen-level dependent (BOLD) signals are collected at a large number of voxel locations for
n scans. The standard preprocessing steps applied to BOLD signals include motion correction, slice-timing correction,
normalization, and de-trending or de-meaning procedures [23,35,52], and then the signals are clustered based on their
voxel locations mapping to the existing anatomic regions. After clustering, the signals are summarized into functional
components to reduce the dimension of voxels and eliminate the redundancy of high coherent signals. Oneway to summarize
the functional components is to perform principal component analysis (PCA) in region s to extract the first qs principal
components. Alternatively, independent component analysis (ICA) can be performed to extract qs independent components.
The choice of summarizing method depends on the distribution of the processed signals; see [2,41].

For each patient, assume that qs functional components are summarized in region s. Each functional component is of
length n, containing replications of signals across n scans. Let Xk,s,i be the kth scan of the ith component in the sth brain
region, after removing the temporal-correlation between the scans. These components can be treated as independent across
scans.
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Denote by Xk,s = (Xk,s,1, . . . , Xk,s,qs )
⊤ the vector of functional components in region s of scan k, and by Υst =

corr(Xk,s,Xk,t ) the correlation matrix between region s and region t . To test whether region s and region t are functionally
connected, we set up the hypotheses:

H0,st : Υst = 0 vs. H1,st : Υst ̸= 0. (1)

A rejection of H0,st implies that regions s and region t have significant functional connectivity. The goal is to test H0,st with
controlled type I error, and also to perform multiple testing on H0,st simultaneously to control the family-wise error rate.

The difficulty of this testing problem lies in the large number of parameters and relatively small number of replications.
First, the number of summarized functional components in each region may increase with the number n of scans. Second,
the number of total region pairs p(p−1)/2 usually exceeds n. Therefore, we need to address the high-dimensional challenges
in testing a large number of them simultaneously.

3. Testing procedures

To test H0,st , we propose two procedures to fit different distribution assumptions on the functional components.
Therefore, neither of them can universally outperform the other. We further develop a multiple testing procedure to control
the family-wise error rate (FWER) for testing {H0,st : 1 ≤ s < t ≤ p} simultaneously.

3.1. Test I: Marginal dependence testing

The first procedure is based on the Pearson correlation between the components in two regions. Denote by the pairwise
correlation ρst,ij = corr(Xk,s,i, Xk,t,j). Then the null hypothesis Hst,0 : Υst = 0 is equivalent to Hst,0 : max1≤i≤qs,1≤j≤qt |ρst,ij| =

0. A straightforward approach is to check whether the sample correlation between two regions is close to zero. Denote the
Pearson correlation between the ith component in region s and the jth component in region t by ρ̂st,ij, i.e.,

ρ̂st,ij = σ̂st,ij/
(
σ̂ss,iiσ̂tt,jj

)1/2
,

where

X̄s,i =
1
n

n∑
k=1

Xk,s,i, X̄t,j =
1
n

n∑
k=1

Xk,t,j, σ̂st,ij =
1
n

n∑
k=1

(Xk,s,i − X̄s,i)(Xk,t,j − X̄t,j).

The test statistic is defined as

T (1)
st = n max

i,j
ρ̂2
st,ij − 2 ln(qsqt ) + ln{ln(qsqt )}. (2)

With mild conditions (details in Section 4), under H0,st , T
(1)
st asymptotically follows the Gumbel distribution

F (x) = exp{−π1/2 exp(−x/2)}. (3)

To control type I error at level α, we reject H0,st if T
(1)
st exceeds the (1 − α)th quantile of F (x), i.e., T (1)

st > qα , with

qα = − ln(π ) − 2 ln[ln{1/(1 − α)}]. (4)

Wewould like to point out the intrinsic differences between our test statistic and the statistics proposed by [14] and [13].
First, [14] proposes to test whether two covariance matrices are equal, and [13] proposes to test whether two correlation
matrices are equal, and whether a correlation matrix is equal to the identity matrix. These two papers address different
problems, and therefore their methods cannot be applied directly to our paper. Second, both [14] and [13] used self-
standardized sample covariance (or correlation) as the test statistics, while our paper standardizes the sample covariance by
its null variance. Our statistic not only has optimal theoretical properties under weaker conditions, but also performs better
numerically.

3.2. Test II: Local conditional dependence testing

The alternative testing procedure is based on the Pearson correlation between the residuals of local neighborhood
selection in two regions. In region s, we regress other qs − 1 variables on Xk,s,i,

Xk,s,i = αs,i + X⊤

k,s,−iβs,i + εk,s,i, (5)

where Xk,s,−i is the vector of Xk,s by removing the ith component. In region t with t ̸= s, we build up a similar regression
model, viz.

Xk,t,j = αt,j + X⊤

k,t,−jβt,j + εk,t,l. (6)



J. Xie, J. Kang / Journal of Multivariate Analysis 156 (2017) 70–88 73

Let ρε,st,ij = corr(εk,s,i, εk,t,j) be the correlation of the error terms in two models. Clearly, the null hypothesis H0,st is
equivalent to

H0,st : max
i,j

ρε,st,ij = 0.

We therefore develop a testing procedure to test if the correlations ρε,st,ij are all zero. If the coefficients βs,i and βt,j in
models (5) and (6) were known, we would know the value of each realization of the errors εk,s,i and εk,t,j, and center them
as ε̃k,v,ℓ = εk,v,ℓ − ε̄v,ℓ with ε̄v,ℓ =

∑n
k=1εk,v,ℓ/n, (v, ℓ) = (s, i) or (v, ℓ) = (t, j). Based on models (5) and (6), the centered

realization of the error ε̃k,v,ℓ could be expressed as

ε̃k,v,ℓ = (Xk,v,ℓ − X̄v,ℓ) − (Xk,v,−l − X̄v,−l)⊤βv,ℓ, (v, ℓ) = (s, i) or (v, ℓ) = (t, j). (7)

Consequently, the Pearson correlation between ε̃k,s,i and ε̃k,t,j would be

ρ̃ε,st,ij =
1
n

n∑
k=1

σ̃ε,st,ij(
σ̃ε,ss,iiσ̃ε,tt,jj

)1/2 ,

where

σ̃ε,st,ij =
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j, σ̃ε,ss,ii =
1
n

n∑
k=1

ε̃2
k,s,i, σ̃ε,tt,jj =

1
n

n∑
k=1

ε̃2
k,t,j.

Unfortunately in practice, the coefficients in (5) and (6) are unknown. However, the coefficients can be well estimated
by existing methods, such as Lasso or Dantzig selector. Suppose ‘‘good’’ coefficient estimators β̂s,i and β̂t,j exist. (This notion
is made more precise in Section 4, where we also address how to obtain ‘‘good’’ coefficient estimators.) Then the centered
error term ε̃k,v,ℓ can be estimated by

ε̂k,v,ℓ = (Xk,v,ℓ − X̄v,ℓ) − (Xk,v,−l − X̄v,−l)⊤β̂v,ℓ, (v, ℓ) = (s, i) or (v, ℓ) = (t, j). (8)

Consequently, we calculate the Pearson correlation based on ε̂k,s,i and ε̂k,t,j,

ρ̂ε,st,ij = σ̂ε,st,ij/
(
σ̂ε,ss,iiσ̂tt,jj

)1/2
,

where

σ̂ε,st,ij =
1
n

n∑
k=1

ε̂k,s,iε̂k,t,j, σ̂ε,ss,ii =
1
n

n∑
k=1

ε̂2
k,s,i, σ̂ε,tt,jj =

1
n

n∑
k=1

ε̂2
k,t,j.

As for Test I, we construct the test statistic as follows:

T (2)
st = n max

i,j
ρ̂2

ε,st,ij − 2 ln(qsqt ) + ln ln(qsqt ).

Under certain conditions (discussed in Section 4) and H0,st , T
(2)
st also follows theGumbel distribution defined in (3). Therefore,

to control type I error at level α, we reject H0,st if T
(2)
st > qα , where qα is the (1 − α)th quantile of F .

3.3. Family-wise error rate control

Considering the standard space of the brain [39] and the commonly used brain atlas (the Automated Anatomical
Labeling [49] regions), the number of region pairs in the whole brain is over 4000, which is much larger than the number
of scans (typically of the order of 200). This provides motivation to develop a solution to correct for multiplicity when
constructing the functional connectivity network of the whole brain. We propose procedure (9) to test {H0,st : 1 ≤ s < t ≤

p} simultaneously and control the family-wise error rate (FWER). The procedure can involve either T̃ (1)
st or T̃ (2)

st , depending
on the assumption of the dependence structure of local voxels. Our findings show that to control FWER at level α, we only
need to adopt a higher threshold. The adjusted testing procedure is as follows:

Reject H0,st ↔ ∀1≤s<t≤p T (b)
st > 2 ln{p(p − 1)/2} + qα, (9)

for b = 1, 2. The threshold depends on the desired FWER α, and the total number of region pairs p(p − 1)/2.

4. Theory

In this section, we derive the null distributions of the statistics on which Tests I and II are based. We also examine the
power and the optimality properties of the proposed tests. Furthermore, we prove that the multiple testing procedure (9) is
able to control FWER.
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For the remainder of the paper, unless otherwise stated, we use the following notation: for a vector a = (a1, . . . , ap)⊤ ∈

Rp, denote by |a|2 = (
∑p

j=1a
2
j )

1/2 its Euclidean norm; for a matrix A = (aij) ∈ Rp×q, define the spectral norm ∥A∥2 =∑
|x|2=1|Ax|2 and the Frobenius norm ∥A∥F = (

∑
ija

2
ij)

1/2; for a finite set A = {a1, . . . , as}, card(A) = s counts the number
of elements in A; for two real number sequences (an) and (bn), write an = O(bn) if |an| ≤ C |bn| hold for a certain positive
constant C when n is sufficiently large, write an = o(bn) if limn→∞an/bn = 0, and write an ≍ bn if c|bn| ≤ |an| ≤ C |bn|, for
some positive constants c and C when n is sufficiently large.

Also assume the number of variables in all regions are comparable, i.e., q1 ≍ · · · ≍ qp. Let q0 = max(q1, . . ., qp), and
assume X1,v, . . . ,Xn,v are independently and identically distributed for each region v.

4.1. Asymptotic properties of Test I

Denote by Υvv = (ρvv,ij)qv×qv the correlation matrix of Xk,v . For Xk,v,i, denote by r (1)v,i the number of other components in
region v non-negligibly correlated with Xk,v,i, viz.

r (1)v,i = card{j : |ρvv,ij| ≥ (ln q0)−1−α0 , j ̸= i},

where α0 is a positive constant. For a positive constant ρ0 < 1, define

D(1)
v = {i : |ρvv,ij| > ρ0 for some j ̸= i}.

Thus, D(1)
v contains index i such that Xk,v,i is highly correlated to at least one other component in region v.

We need the following conditions:

(C1.1) For region v = s, t , there exists a subset Mv ⊂ {1, . . . , qv} with card(Mv) = o(qv) and a constant α0 > 0
such that for all γ > 0, maxi∈Mc

v
r (1)v,i = o(qγ

v ). Moreover, assume there exists a constant 0 ≤ ρ0 < 1 such that
card{D(1)

v } = o(qv).

Condition (C1.1) constraints the sparsity level of non-negligible and large signals. It specifies that for each region v, for
almost all components i within the region, the count of non-negligible |ρvv,ij| is of a smaller order of qγ

v . The condition is
weaker than the commonly seen condition which imposes a constant upper bound on the largest eigenvalue of Σvv . In
fact, if λmax(Σvv) = o{qγ

v /(ln q0)1+α0}, max1≤i≤qv r
(1)
v,i = o(qγ

v ). Additionally, Condition (C1.1) also requires the number of
components that are very highly correlated with at least one other component to be small. This condition can be easily
satisfied if all the correlations ρvv,ij are bounded by ρ0.

(C1.2) Sub-Gaussian type tails: For region v = s, t , suppose that ln(qv) = o(n1/5). There exist some constants η > 0 and
K > 0 such that

max
1≤i≤qv

E
[
exp{η(Xk,v,i − µv,i)2/σvv,ii}

]
≤ K .

(C1.2*) Polynomial-type tails: For region v = s, t , suppose that for some γ1, c1 > 0, q0 ≤ c1nγ1+1/2, and for some ϵ > 0,

max
1≤i≤qv

E|(Xk,v,i − µxi)/σ
1/2
vv,ii|

4γ1+4+ϵ
≤ K .

Conditions (C1.2) and C(1.2*) impose constraints on the tail of the distribution of Xk,v,i, and the corresponding order of qv .
They fit a wide range of distributions. For example, Gaussian distributions satisfy Condition (C1.2), and Pareto distributions
Pareto(α) (which are heavy tailed) with α sufficiently large satisfy Condition (C1.2*).

Theorem 1. Suppose that Conditions (C1.1) and (C1.2) or (C1.2*) hold. Then under H0,st , as n, q0 → ∞, the distribution T (1)
st

converges point-wise to the Gumbel distribution F defined in (3).

When Condition (C1.1) is not satisfied, i.e., the correlation matrices Υss and Υtt are arbitrary, it is difficult to derive the
limiting null distribution of T (1)

st . However, Test I can still control the type I error.

Proposition 1. Under Condition (C1.2) or (C1.2*) and the null H0,st , for 0 < α < 1, Pr(T (1)
st ≥ qα) ≤ ln{1/(1 − α)}, where qα

is defined in (4).

When the desired type I errorα is small, ln{1/(1−α)} ≈ α. Therefore, Test I can still control type I error close to the desired
level. When there comes a rare circumstance that a larger type I error is desired for the test, we can define α′

= 1− e−α and
reject H0,st when T̃ (1)

st ≥ qα′ . Since α = ln{1/(1 − α′)}, Test I is always an asymptotically valid test, for arbitrary correlation
matrices Υss and Υtt . However, the power will be reduced when we threshold T (1)

st at the higher level qα′ .
We now turn to the power analysis of Test I. To test the correlation between region s and region t , we define the following

class of correlation matrices:

U (1)
st (c) =

{
Υst : max

i,j
ρ2
st,ij ≥ c ln(dst/n)

}
.
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We also set

κst = sup
1≤i≤qs,1≤j≤qt

σss,iiσtt,jj

θst,ij
.

We first show that κst is bounded. By Hölder’s inequality,[
E{(Xs,i − µs,i)(Xt,j − µt,j)}

]2
≤ σss,iiσtt,jj.

Therefore,

E{(Xs,i − µs,i)2(Xt,j − µt,j)2} − σss,iiσtt,jj ≤ θst,ij ≤ E{(Xs,i − µs,i)2(Xt,j − µt,j)2} + σss,iiσtt,jj.

Because

E{(Xs,i − µs,i)2(Xt,j − µt,j)2} ≤
[
E{(Xs,i − µs,i)4}E{(Xt,j − µt,j)4}

]1/2
,

and by Condition (C1.2) (or (C1.2*)),

E{(Xs,i − µs,i)4} ≤ Kσ 2
ss,ii, E{(Xt,j − µt,j)4} ≤ Kσ 2

tt,jj,

(K − 1)σss,iiσtt,jj ≤ θst,ij ≤ (K + 1)σss,iiσtt,jj.

Thus κst ≤ K + 1.

Theorem 2. Suppose that Condition (C1.2) or (C1.2*) holds. Then as n and q0 both go to infinity,

inf
Υst∈U

(1)
st {4(1+κst )}

Pr(T (1)
st > qα) → 1.

To distinguish the alternative from the null, Test I requires only one entry in the correlation matrix Υst larger than
{4(1 + κst ) ln(dst/n)}1/2. The rate is optimal in terms of the following minimax argument. Denote by F (1)

st the collection
of distributions satisfying (C1.2) or (C1.2*), and by T (1)

st,α the collection of all α-level tests over F (1)
st , i.e.,

∀
Φst,α∈T (1)

st,α
Pr(Φst,α = 1) ≤ α.

Theorem 3. Suppose Condition (C1.2) or (C1.2*) holds. Let α and β be any positive numbers with α + β < 1. There exists a
positive constant c0 such that for all large n and q0,

inf
Υst∈U

(1)
st (c0)

sup
Tst,α∈T (1)

st,α

Pr(Tst,α = 1) ≤ 1 − β.

For any hypothesis testing, if the null is never rejected, the type I error α0 = 0 and the type II error β0 = 1; if the
null is always rejected, the type I error α0 = 1 and the type II error β0 = 0. These are trivial testing methods, and for
both tests we have α0 + β0 = 1. For non-trivial testing methods, we expect α0 + β0 < 1. Theorem 3 shows that, when
max1≤i≤qs,1≤j≤qt ρ

2
st,ij ≤ c0 ln dst/n for some sufficiently small c0, the sum of the type I error α0 and the type II error β0 cannot

be bounded away from 1. Therefore, the lower bound order max1≤i≤qs,1≤j≤qt ρ
2
st,ij ≥ c ln dst/n cannot be improved. On the

other hand, Theorem 2 shows that when max1≤i≤qs,1≤j≤qt ρ
2
st,ij ≥ 4(1 + κst ) ln(dst/n), the power of Test I will approach 1.

Therefore, Test I enjoys a certain optimality.
In Theorems 2 and 3, the difference between the null and the alternative is measured by |Υst |

2
∞

= max1≤i≤qs,1≤j≤qt ρ
2
ij,st .

Another commonly used measure is the Frobenius norm ∥Υst∥F . Denote by rst the count of the nonzero entries in Υst , i.e.,

rst =

qs∑
i=1

qt∑
j=1

1(ρst,ij ̸= 0).

Consider the following class of matrices:

V (1)
st (c) =

{
Υst : ∥Υst ∥

2
F ≥ crst ln(dst/n)

}
.

We now show that Test I also enjoys the rate optimality property measured by Frobenius norm.

Corollary 1. Suppose that Condition (C1.2) or (C1.2*) holds. Then for a sufficiently large c, as n and q0 both go to infinity,

inf
Υst∈V

(1)
st {4(1+κst )}

Pr(T (1)
st > qα) → 1.

If ∥Υst ∥
2
F ≥ 4(1 + κst )rst ln(dst ), max1≤i≤qs,1≤t≤qt ρ

2
st,ij ≥ 4(1 + κst ) ln(dst ). Therefore, Corollary 1 can be derived from

Theorem 2.
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Theorem 4. Suppose that Condition (C1.2) or (C1.2*) holds. Assume that rst ≤ qγ2
0 for some 0 < γ2 < 1/2. Let α, β be any

positive number with α + β < 1. There exists a positive constant c0 such that for all large n and q0,

inf
Σst∈V

(1)
st (c0)

sup
Tst,α∈T (1)

st,α

Pr(Φst,α = 1) ≤ 1 − β.

In this theorem, we assume that rst ≤ qγ2
0 . The assumption is quite reasonable for the brain network, because if the

connections of the functional components exist between two brain regions, they are usually sparse.
Theorem 4 shows that, when Υst ∈ V1

st (c0) for some sufficiently small c0, the type I error α0 and type II error β0 cannot
be bounded away from 1. Therefore, the minimax rate ∥Υst ∥

2
F ≥ crst ln dst cannot be improved. Theorem 4 and Corollary 1

show that Test I also performs optimally over V (1)
st (c).

4.2. Asymptotic properties of Test II

For Test II, the conditions required for achieving its asymptotic property are different from what is required for Test I.
Recall that εk,s,i and εk,t,j are the error term of regressing all other components on one component within the region,

as defined in (5) and (6), and σε,st,ij = cov(εk,s,i, εk,t,j). Let Υε,st = (ρε,st,ij) be the correlation matrix between εk,s =

(εk,s,1, . . . , εk,s,qs )
⊤ and εk,t = (εk,t,1, . . . , εk,t,qt )

⊤. Then

ρε,st,ij =
σε,st,ij

(σε,ss,iiσε,tt,jj)1/2
,

where σε,st,ij = cov(εk,s,i, εk,t,j), σε,ss,ii = var(εk,s,i) and σε,tt,jj = var(εk,t,j).
For εk,s,i, denote by r (2)v,i the number of other εk,s,j that are non-negligibly correlated (>(ln q0)−1−α0 ) with it, viz.

r (2)v,i = card{j : |ρε,vv,ij| ≥ (ln q0)−1−α0 , j ̸= i}.

For a positive constant ρ0 < 1, define the set that εk,v,i is highly correlated with at least one εk,v,j as

D(2)
v = {i : |ρε,vv,ij| > ρ0 for some j ̸= i}.

We need the following conditions:

(C2.1) For regions v = s, t , there exists a subset Mv ∈ {1, . . . , qv} with card(Mv) = o(qv) and a constant α0 > 0
such that all γ > 0, max1≤i≤p,i∈Mv r

(2)
v,i = o(qγ

v ). Moreover, assume there exists a constant 0 ≤ ρ0 < 1 such that
card{Dv} = o(q0).

Condition (C2.1) parallels Condition (C1.1). It imposes conditions on within region correlation Υε,vv . Suppose Xk,v
follows a multivariate Gaussian distribution with the inverse covariance matrix Ωvv = (ωvv,ij). Because ρε,vv,ij =

ωvv,ij/(ωvv,iiωvv,jj)1/2 [2], Condition (C2.1) holds under many cases when the inverse covariance matrix is sparse and
bounded; see [26,28,38]. Because covariance matrices and inverse covariance matrices are different, some data only satisfy
one of these two conditions. Consequently, the corresponding procedure should be applied.

(C2.2) For region v = s, t , the variable Xk,v ∼ N (µv,Σvv), with λmax(Σvv) ≤ c0, where λmax is the maximum eigenvalue
operator. Also assume ln q0 = o(n1/5).

In general, the theoretical properties of Test II hold for many non-Gaussian distributions as well. However, only under
the Gaussian distribution assumption, ρε,vv,ij has an interpretation of conditional dependence such that

ρε,vv,ij = 0 ↔ Xk,v,i ⊥⊥ Xk,v,j | {Xk,v,ℓ : ℓ ̸= i, j}.

Condition (C2.2) makes Condition (C2.1) a natural assumption on the conditional dependency. Since σvv,ii ≤ λmax(Σvv) and
σvv,iiωvv,ii ≥ 1, this condition also implies that var(εk,s,i) = 1/ωvv,ii ≤ c0.

(C2.3) Recall the definition of ε̃k,v,ℓ and ε̂k,v,ℓ in (7) and (8). Under the cases (i) s ̸= t and (ii) s = t and i = j, with probability
tending to 1,

max
i,j

⏐⏐⏐⏐⏐1n
n∑

k=1

ε̂k,s,iε̂k,t,j −
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j

⏐⏐⏐⏐⏐ ≤ C(ln q0)−1−α0 . (10)

Note that ε̂k,v,i is the centered residual and ε̃k,v,i is the centered randomerror. The term |
∑n

k=1ε̂k,s,iε̂k,t,j−
∑n

k=1ε̃k,s,iε̃k,t,j|/n
is determined by the difference between βv,i and its estimator β̂v,i. We will specify in Section 5 some estimation methods
and corresponding sufficient conditions under which Condition (C2.3) will hold.

We derive the null distribution of T (2)
st in the next theorem.

Theorem 5. Suppose that Conditions (C2.1), (C2.2) and (C2.3) hold. Then under H0, as n, q0 → ∞, T (2)
st converges point-wise to

the Gumbel distribution F in (3).
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The derivation of the limiting null distribution of T (2)
st calls for Condition (C2.1).When it is not satisfied, we can still control

type I error based on the following proposition.

Proposition 2. Under Conditions (C2.2) and (C2.3) and the null H0,st , Pr(T
(2)
st ≥ qα) ≤ ln {1/(1 − α)}, where qα =

− ln(π ) − 2 ln ln{1/(1 − α)} is the (1 − α)th quantile of F defined in (3).

The power analysis of Test II parallels to that of Test I. Let

rε,st =

qs∑
i=1

qt∑
j=1

1(ρε,st,ij ̸= 0).

Define the following two classes of matrices:

U (2)
st (c) =

{
Υε,st : max

1≤i≤qs,1≤j≤qt
ρ2

ε,st,ij ≥ c ln dst/n
}

;

V (2)
st (c) =

{
Υε,st : ∥Υε,st ∥

2
F ≥ crε,st ln(dst/n)

}
.

We have the following theorem.

Theorem 6. Suppose that Conditions (C2.2) and (C2.3) hold. Then

lim
n,q0→∞

inf
Rst∈U

(2)
st (c1)

Pr(T (2)
st ≥ qα) = 1, and lim

n,p→∞
inf

Rst∈V
(2)
st (c2)

Pr(T (2)
st ≥ qα) = 1,

for some c2 ≥ c1.

Denote by F (2)
st the collection of distributions satisfying (C2.2), and by T (2)

st,α the collection of all α-level test over F (2)
st . As

for Test I, Test II enjoys a certain rate optimality in its power.

Theorem 7. Suppose Condition (C2.2) holds. Let α, β be any positive number with α + β < 1, There exists a positive constant
c3 such that for all large n and q0,

inf
Rε,st∈U

(2)
st (c3)

sup
Φst,α∈T (2)

st,α

Pr(Φst,α = 1) ≤ 1 − β

and

inf
Rε,st∈V

(2)
st (c3)

sup
Φst,α∈T (2)

st,α

Pr(Φst,α = 1) ≤ 1 − β.

4.3. Asymptotic properties of the multiple testing procedure

The properties of the multiple testing procedure (9) are based on the limiting null distribution of each test statistic. In
light of Theorems 1 and 5, we have the following results.

Theorem8. Consider themultiple testing procedure (9). If Conditions (C1.1) and (C1.2) or (C1.2*) hold, the procedure (9)with T (1)
st

controls the family-wise error rate at level α. If Conditions (C2.1) and (C2.2) hold, the procedure with T (2)
st controls the family-wise

error rate at level α.

5. Estimation of β̂v,i

Test II depends on the estimators of the regression model. Estimating regression coefficients has been investigated
extensively in the past several decades;methods include the Dantzig selector [16], the Lasso [47], the SCAD [22], the adaptive
Lasso [53], the Scaled-Lasso [45], the Square-root Lasso [7], and so on. In this paper, we focus on the Dantzig selector and
Lasso, and determine when they yield good estimators for the proposed testing procedures. In particular, we discuss the
sufficient conditions for Condition (C2.3) to hold.

Before we discuss the estimating methods, we introduce the following notation. For region v and component i, let

bv,i =
1
n

n∑
k=1

(Xk,v,−i − X̄v,−i)⊤(Xk,v,i − X̄v,i)

be the sample covariance between this component and other components in the region. Denote by

Σ̂vv,−i,−i =
1
n

n∑
k=1

(Xk,v,−i − X̄v,−i)(Xk,v,−j − X̄v,−j)⊤
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the sample covariance matrix without component i, and let Dv,i = diag(Σ̂vv,−i,−i). For the following methods, the tuning
parameters are

λv,i(δ) = δ(σ̂vv,ii ln qv/n)1/2.

Dantzig Selector: For each v ∈ {1, . . . , p} and i ∈ {1, . . . , qv}, the Dantzig selector estimators are obtained by

β̂v,i(δ) = argmin |α|1, subject to |D−1/2
v,i Σ̂−i,−iα − D−1/2

v,i bv,i|∞ ≤ λv,i(δ). (11)

Lasso: For each v ∈ {1, . . . , p} and i ∈ {1, . . . , qv}, the Lasso estimators are obtained by

β̂v,i(δ) = D−1/2
v,i α̂v,i(δ), (12)

where

α̂v,i(δ) = arg min
α∈Rp−1

[
1
2n

n∑
k=1

{Xk,v,i − X̄v,i − (Xk,v,−i − X̄v,−i)D
−1/2
v,i α}

2
+ λv,i(δ)|α|1

]
.

We now demonstrate that under certain conditions, the methods yield good estimators that satisfy the need for testing.
Define the error bound by av,1 and av,2

av,1 = max
1≤i≤qv

|β̂v,i − βv,i|1, av,2 = max
1≤i≤qv

|β̂v,i − βv,i|2. (13)

Proposition 3. Suppose that Condition (C2.2) holds. Consider the Dantzig selector estimator β̂v,i(2) in (11). If max1≤i≤qv |βv,i|0 =

o[n(ln q0)−3−2α0{λmin(Σ)}2], then Condition (C2.3) holds.

Proposition 4. Suppose that Condition (C2.2) holds. Consider the Lasso estimator β̂v,i(2.02) in (12). If max1≤i≤qv |βv,i|0 =

o[n(ln q0)−3−2α0{λmin(Σ)}2], Condition (C2.3) holds.

In fact, Proposition 3 holds for any Dantzig selector estimator β̂v,i(δ) with δ ≥ 2; and Proposition 4 holds for any Lasso
estimator β̂v,i(δ) with δ > 2. For computational simplicity, we chose δ = 2.02. The numeric studies indicate that such choice
works well in testing.

6. Simulation studies

In this section, we evaluate the performance of the our methods via two simulation studies: one is focused on the size
and power of the proposed tests for two regions, the other illustrates how to identity the functional brain network using the
proposed tests under family-wise error rate controls.

6.1. Size and power

We simulate a random sample X1, . . . ,Xn from a normal distribution with mean zero and covariance Σ11,22. For each
k ∈ {1, . . . , n},

Xk ∼ N (0q1+q2 ,Σ11,22) with Σ11,22 =

(
Σ11 Σ12

Σ⊤

12 Σ22

)
,

where Xk = (X⊤

k,1,X
⊤

k,2)
⊤ and Xk,s is of dimension qs for s = 1, 2. For comparison, we also consider two alternative test

procedures for H0,12 in (1):

Test III: A simple test based on the Pearson correlation coefficient between the principal component scores. Specifically,
denote by Zs the first principal component score of data (XT

1,s, . . . ,X
T
n,s)

T. We compute the sample correlation
between Z1 and Z2, denoted ρ̂st . The Fisher’s Z transformation is then taken to obtain the testing statistics T (3)

st
for this simple approach, which is given by

T (3)
12 =

1
2
ln
(
1 + ρ̂12

1 − ρ̂12

)
.

Using the results by [27], it is straightforward to show that
√
n − 3 T (3)

12 ⇝ N(0, 1) under H0,12 in (1). This implies
that we reject H0,12 if

√
n − 3 |T (3)

12 | > zα/2, where zα is the 1 − α normal quantile.
Test IV: An alternative test procedure that extends the idea by [13]. The test statistic is

T (4)
12 = n max

i,j
ρ̃2
12,ij − 2 ln(q1q2) + ln ln(q1q2)
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where ρ̃12,ij = σ̂12,ij/(θ̂12,ij)1/2 and

θ̂12,ij =
1
n

n∑
k=1

{
(Xk,1,i − X̄1,i)(Xk,2,j − X̄2,j) − σ̂12,ij

}2
.

Note that θ̂12,ij is an estimator of θ12,ij = var{(Xk,1,i − µ1,i)(Xk,2,j − µ2,j)}, where µ1,i and µ1,j are the expectations
of Xk,1,i and Xk,2,j, respectively. Although T (4)

12 may also work for our problem, Test I statistic T (1)
12 requires weaker

conditions for its asymptotic properties to hold. More specifically, to derive the asymptotic null distribution of T (4)
12 ,

we need an additional moment bound condition; see Condition (C2) in [13]. Test I statistic T (1)
12 does not need this

additional condition, and therefore can work for more general distributions.

To define different model specifications on Σ11,22, we introduce a few auxiliary matrices. Let Ad = (aij)d×d where aii = 1
and aij ∼ 0.5 × Bernoulli(0.5) for 10(k − 1) + 1 ≤ i ̸= j ≤ 10k, where k = 1, . . . , [d/10] and aij = 0 otherwise. Let
Bd = (bij)d×d where bii = 1, bi,i+1 = bi−1,i = 0.5 and bi,j = 0 for |i − j| > 3.

Let Λd = (λij)d×d with λii ∼ U(0.5, 2.5) and λij = 0 for i ̸= j. Now, we define four different models for Σ11 and Σ22.

• Model 1 (Independent Cases): Σss = Λqs , for s = 1, 2.
• Model 2 (Block Sparse Covariance Matrices): Σss = Λ

1/2
qs (Aqs + δiIqs )/(1 + δi)Λ

1/2
qs , for s = 1, 2, where δi =

|λmin(Aqs )| + 0.05.
• Model 3 (Block Sparse Precision Matrices): Σss = Λ

1/2
qs (A−1

qs + δ∗

i Iqs )/(1 + δ∗

i )Λ
1/2
qs , for s = 1, 2, where δ∗

i =

|λmin(A−1
qs )| + 0.05.

• Model 4 (Binded Sparse Covariance Matrices): Σss = Λ
1/2
qs (Bqs + τsIqs )/(1 + τs)Λ

1/2
qs , for s = 1, 2, where τs =

|λmin(Bqs )| + 0.05.
• Model 5 (Binded Sparse Precision Matrices): Σss = Λ

1/2
qs (B−1

qs + τ ∗
s Iqs )/(1 + τ ∗

s )Λ
1/2
qs , for s = 1, 2, where τ ∗

s =

|λmin(B−1
qs )| + 0.05.

• Model 6 (Heavy Tail distribution): Instead of a normal distribution, we assume that Xk follows a multivariate t
distribution with zero mean, 5 degrees of freedom, and the covariance structure is the same as Model 1.

To simulate the empirical size, we assume Σ12 = 0q1×q2 . To evaluate the empirical power, let Σ12 = (σij)q1×q2 with
σij ∼ sij × Bernoulli[5/(q1q2)] with sij ∼ N (4

√
ln(q1q2)/n, 0.5). The sample size is taken to be n = 80 and 150, while the

dimension (q1, q2) varies over (50, 50), (100, 150), (200, 200) and (250, 300). The nominal significant level for all the tests
is set at α = 0.05. The empirical sizes and powers for the six models, reported in Tables 1 and 2, are estimated from 5000
replications.

Obviously when the covariance matrix of each region is sparse, Test I controls the type I error better, while when the
precision matrix is sparse, Test II controls the type I error better. This shows the influence of Conditions (C1.1) and (C2.1)
when deriving the limiting null distribution. On the other hand, the simulation also shows thatwithout these two conditions,
there is very little inflation in the type I error. The power analysis shows the similar pattern. In general, Test I/II has a larger
power when the covariance/precision matrix is sparse. Both Tests I and II achieve a much larger power than Test III (the
Pearson correlation test on the first PC scores), although the empirical sizes of Test III are comparable to the proposed tests.
Test IV has a similar performance as Test I in terms of empirical size, where the power is slightly smaller than Test 1 for
Models 1–5. For Model 6 (heavy tail distribution case), Tests I, III and IV can still control the size, while Test II has an inflated
size. For Model 6, Tests I and II still maintain a high power, while Test IV can hardly detect any signal. In order for Test IV to
work, additional constraints are required on the high order moments, and it is possible that these conditions do not hold for
heavy-tailed distributions.

6.2. Network identifications

In this section, we perform the simulation studies to illustrate the performance of our proposed testing procedure with
the family-wise error rate control on the network identifications. We simulate a region level brain network according to the
Erdős–Rényi model [21]. We set the number of regions p = 90, and the probability of any two brain regions being functional
connected as 0.01. The simulated brain network is shown in Fig. B.1 of the Online Supplement.

For every two connected brain regions s and t on the simulated network, we consider four models that we discussed in
Section 6.1 for the specifications of Σss and Σtt . Similar to the simulation studies for evaluating the empirical power, we set
Σst = (σij)qs×qt with σij ∼ sij × Bernoulli(10/dst ) with sij ∼ N (4

√
ln(dst )/n, 1). We set n = 150 and simulate the fMRI time

series based on a normal model, i.e., Xk ∼ N (0,Σq×q), for each k ∈ {1, . . . , n}, where q = q1 + · · · + qp and

Σq×q =

⎛⎜⎝Σ11 Σ12 . . . Σ1p
Σ21 Σ12 . . . Σ2p
. . . . . . . . . . . .

Σp1 Σp2 . . . Σpp

⎞⎟⎠ .
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Table 1
Empirical size of Tests I, II, III and IV for different sample sizes and models (×10−2).

Model Test (q1, q2)

(30, 30) (50, 50) (100, 150) (200, 200) (300, 250)

n = 80

1 I 4.50 4.46 4.54 5.14 6.16
II 4.58 4.48 4.70 5.70 5.44
III 6.48 6.26 3.38 5.34 7.60
IV 3.98 4.56 5.02 6.04 4.08

2 I 4.20 4.60 4.52 6.04 6.06
II 2.88 4.06 4.08 3.86 2.88
III 6.46 4.58 8.88 7.34 6.32
IV 4.32 4.40 4.62 3.04 3.06

3 I 3.44 4.02 4.50 4.98 3.20
II 4.56 3.94 5.02 5.76 5.74
III 8.26 3.36 7.40 6.38 3.48
IV 4.24 3.42 3.56 3.88 4.18

4 I 4.80 4.82 5.12 5.22 6.02
II 1.92 2.28 3.04 2.16 3.12
III 4.42 3.36 6.56 4.78 3.20
IV 3.60 3.98 4.84 4.98 5.82

5 I 0.88 1.02 1.06 1.90 1.90
II 4.52 4.60 4.32 6.28 6.14
III 4.52 4.28 5.38 4.36 6.40
IV 1.08 1.04 1.42 2.14 2.10

6 I 3.38 2.62 1.02 0.82 1.20
II 6.20 6.82 9.64 13.78 7.98
III 5.58 4.38 5.58 5.58 4.80
IV 1.98 2.36 1.38 1.60 1.58

n = 150

1 I 4.94 4.10 5.04 4.62 4.84
II 4.76 4.34 4.78 5.18 5.36
III 8.80 4.04 6.44 5.56 5.76
IV 4.82 4.12 5.00 4.72 4.72

2 I 5.08 4.62 4.48 4.88 4.74
II 4.02 4.68 4.40 4.70 4.24
III 5.86 7.46 3.30 4.04 5.02
IV 4.98 4.32 4.26 4.72 4.64

3 I 4.94 4.68 4.50 4.86 4.60
II 5.34 4.68 4.26 5.12 5.04
III 2.76 8.80 4.74 5.22 3.98
IV 4.64 4.88 4.80 4.96 4.84

4 I 5.02 4.78 4.96 4.92 5.10
II 2.62 2.46 3.62 3.42 3.78
III 2.92 5.74 6.50 5.52 4.00
IV 4.82 5.12 5.06 4.86 4.88

5 I 1.96 1.92 1.96 2.18 3.10
II 5.62 4.46 4.04 4.92 4.94
III 3.38 5.92 3.90 5.42 2.34
IV 2.04 2.12 1.98 2.24 4.08

6 I 4.00 2.82 0.64 1.62 0.80
II 7.18 7.20 5.40 9.98 7.42
III 4.00 4.98 4.00 4.24 4.02
IV 2.00 2.22 2.82 1.62 1.96

Table 3 reports the accuracy of the network identification and the performance for multiple testing. Denote Est as the
indicator of the true connectivity between region s and region t , and Êa,st as the indicator of the estimated connectivity
at the ath iteration for each 1 ≤ s < t ≤ p and a ∈ {1, . . . , 5000}. The NETTPR is defined as the percentage of exactly
identifying the correct network, the FWER is the empirical family-wise error rate which is the frequency of having one or
mode false discoveries of the functional connectivity over the brain network, and the FDP is the false discovery proportion
among the entire detections. Mathematically,

NETTPR =
1

5000

5000∑
a=1

1(∀1≤s<t≤p Êa,st = Est ),
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Table 2
Empirical power of Tests I, II, III and IV for different sample sizes and models (×10−2).

Model Test (q1, q2)

(30, 30) (50, 50) (100, 150) (200, 200) (300, 250)

n = 80

1 I 88.58 85.00 60.20 55.44 54.74
II 88.46 85.46 60.36 55.84 54.04
III 11.32 6.26 7.06 8.66 6.18
IV 86.48 83.92 56.12 54.98 45.18

2 I 88.04 80.20 59.78 55.08 55.10
II 69.72 64.10 49.70 44.72 43.94
III 6.46 4.00 7.00 5.72 7.28
IV 85.02 78.12 49.98 54.04 50.90

3 I 69.88 65.50 50.24 44.40 44.36
II 87.46 80.40 59.30 54.94 55.90
III 3.84 3.36 7.80 4.50 3.96
IV 66.28 62.40 48.22 42.20 42.12

4 I 90.24 95.42 63.40 56.08 64.32
II 56.82 59.16 43.98 42.18 42.84
III 8.02 8.52 10.12 5.96 8.64
IV 89.24 90.22 61.22 52.08 62.20

5 I 80.82 75.14 44.30 35.00 34.78
II 89.94 85.36 54.30 49.90 44.96
III 8.12 5.30 6.52 6.68 7.60
IV 78.28 72.10 45.20 36.20 35.80

6 I 45.60 18.04 100.00 100.00 100.00
II 99.82 99.14 100.00 100.00 100.00
III 7.8 6.22 8.64 9.42 9.04
IV 0.24 0.62 0.04 0.02 0.42

n = 150

1 I 98.82 98.08 96.66 89.24 85.22
II 98.96 98.04 96.98 87.78 85.04
III 13.82 4.04 8.82 7.52 9.48
IV 98.12 94.38 98.84 88.18 84.10

2 I 99.14 97.86 97.02 87.62 84.46
II 86.98 75.92 73.30 55.58 55.18
III 8.10 11.48 6.26 5.02 3.64
IV 94.36 94.78 94.08 84.28 88.64

3 I 90.06 87.74 76.38 54.88 55.48
II 94.58 94.70 92.48 84.80 79.94
III 3.80 9.26 4.26 5.84 3.04
IV 84.06 83.42 68.22 74.32 30.16

4 I 95.26 92.56 88.68 74.92 85.42
II 85.40 67.54 64.48 58.32 59.26
III 9.34 10.14 9.24 6.56 6.08
IV 98.12 98.54 76.86 72.00 65.12

5 I 84.74 79.74 56.00 44.96 45.40
II 95.10 89.96 78.44 55.24 53.32
III 7.94 9.08 5.26 3.62 2.34
IV 74.74 86.74 63.22 45.44 47.12

6 I 98.24 79.62 90.04 100.00 100.00
II 98.98 99.98 95.22 100.00 100.00
III 8.84 8.60 9.20 9.8 9.40
IV 0.62 0.04 0.24 0.02 0.04

FWER =
1

5000

5000∑
a=1

1(∃s<t Êa,st = 1, Est = 0),

FDP =

∑5000
a=1

∑
1≤s<t≤p 1(Êa,st = 1, Est = 0)∑5000

a=1
∑

1≤s<t≤p 1(Êa,st = 1)
.

Table 3 shows the similar pattern as Tables 1 and 2.When the covariancematrix is the identity matrix, Test I performs better
than Test II since the optimization step of Test II introduces extra errors. In addition, Test I is computationally much faster
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Table 3
Accuracy of the network identification for Tests I and II.

Test I Test II

NETTPR FWER FDP NETTPR FWER FDP

Model 1 0.72 0.02 0.08 0.60 0.02 0.08
Model 2 0.64 0.02 0.04 0.56 0.08 0.02
Model 3 0.24 0.10 0.06 0.68 0.04 0.12
Model 4 0.66 0.04 0.02 0.36 0.16 0.08
Model 5 0.18 0.12 0.07 0.70 0.02 0.06
Model 6 0.38 0.04 0.04 0.64 0.12 0.16

than Test II. Therefore we recommend Test I when the covariance matrix is the identity matrix or sparse, and Test II when
the precision matrix is sparse and its inverse is not sparse.

7. Application

In this section, we demonstrate our method via an analysis of the resting-state fMRI data that are collected in the autism
brain imaging data exchange (ABIDE) study [20]. The major goal of the ABIDE is to explore the association of brain activity
with the autism spectrum disorder (ASD), which is a widely recognized disease due to its high prevalence and substantial
heterogeneity in children [6]. The ABIDE study collected 20 resting-state fMRI data sets from 17 different sites consisting
of 1112 individuals with 539 ASDs and 573 age-matched typical controls (TCs). The resting-state fMRI is a popular non-
invasive imaging technique that measures the blood oxygen level to reflect the resting brain activity. For each subject, the
fMRI signal was recorded for each voxel in the brain over multiple points in time (multiple scans). The different sites in the
ABIDE consortium produced a different number of fMRI scans ranging from 72 to 310. Several regular imaging preprocessing
steps [20,30], e.g., motion corrections, slice-timing correction, spatial smoothing, have been applied to the fMRI data, which
were registered into the MNI space (image size: 91 × 109 × 91(2 mm3)) consisting of 228,483 voxels. We concentrate on
the network identification for over 90 regions in the brain, with regions defined according to the AAL system.

We take a whitening transformation of original fMRI signals using the AR(1) model [52] to remove the temporal
correlations. The de-trending and de-meaning procedures are also applied for original fMRI signals.We perform the principal
component analysis (PCA) to summarize the voxel-level fMRI time series into a relatively small number of principal
component signals within each region. The number of signals is chosen according to the criterion of the cumulative variance
contribution being larger than 90%. The mean number of the principal components over 90 regions is 18 and ranges from 6
to 36. We apply the proposed methods to identify the resting state brain network for each subject. The network for a group
of subjects is defined by including the connections for regions i and j if they are connected with over 85% of subject-level
networks. The ASD patient and control networks include 445 connections and 502 connections respectively, where numbers
of unique connections are 31 and 88. The number of connections shared by both groups is 441. The control network is denser
than the ASD patient network.

Fig. 1 shows the unique connections for the ASD patient network and the healthy control network. In the ASD patient
network, there are two ‘‘hub’’ brain regions that have at least four unique connections to other regions in the brain. They are
the medial part of the superior frontal gyrus (SFGmed-R) and Gyrus rectus (REC). These regions were demonstrated in the
previous publications [5,25,40,48] to be strongly associated with autism. Our results suggest that ASD patients have active
region level functional connectivities between these three regions, while the controls do not have these connectivities. On
the other hand, in the healthy control network, there are three ‘‘hub’’ regions that have at least seven connections. They are
the dorsolateral part of right superior frontal gyrus (SFGdor-R), the left middle frontal gyrus (MFG-L) and the right middle
frontal gyrus (MFG-R). Our results suggest that autismpatients break the greatest number of the connectivities in these three
regions. The brain functions of these regions are consistent with the autism clinical symptom. For example, the superior
frontal gyrus is known for being involved in self-awareness, in coordination with the action of the sensory system [24].

8. Discussion

The novel contributions of our work include the following: (1) we propose a new framework to identify the region level
functional brain network using formal statistical testing procedures, which makes full use of the massive voxel-level brain
signals and incorporate the brain anatomy into the analysis, producing neurologically more meaningful interpretations;
(2) we establish the statistical theory of the proposed testing procedures, which provides a solid foundation for making valid
inference on the functional brain network; (3) the proposedmethod is computationally very efficient and the computational
algorithm is straightforward to implement in parallel mode; and (4) although the development of our proposed approach is
motivated by the analysis of brain imaging data, it is a general method for network construction and can be readily applied
to other problems, such as identification of gene networks and social networks.
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Fig. 1. Identified region level resting state brain networks for ASD patient group and healthy control group.
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Appendix A. Proof of the main theorems

Without loss of generality, in this section, we assume E(Xk,s,i) = E(Xk,t,j) = 0, and var(Xk,s,i) = var(Xk,t,j) = 1 unless
otherwise stated. Due to space limitations, we list the proofs of some theorems (Theorems 2, 4, 5, and Propositions 3 and 4)
here. Theorem 6 follows similar arguments as Theorem 2, and the proof of Theorem 7 follows along similar lines as that of
Theorem 4. The proof of Theorem 1 is relatively long and the main techniques follow the proof of Theorem 1 in [14]; thus it
is relegated to the Online Supplement.

In addition, to simplify the notation in the proofs, we denote by dst = qsqt the total number of entries in the covariance
matrixΥst . We also define c(dst , α) = 2 ln(dst )− ln ln(dst )+ qα , where qα is the (1− α)th quantile of the null distribution F .

To prove Theorem 2, we need Lemmas 1 and 2.

Lemma 1. Recall that θ1,st,ij = σss,iiσtt,jj and θ̂1,st,ij = σ̂ss,iiσ̂tt,jj. Under Condition (C1.2) or (C1.2*) and the null H0,st , there exists
some constant C > 0, such that as n, q0 → ∞,

Pr

{
max
i,j

⏐⏐⏐⏐⏐1 −
θ̂1,st,ij

θ1,st,ij

⏐⏐⏐⏐⏐ ≥ C
1

(ln q0)2

}
= O(q−1

0 + n−ϵ/4). (A.1)

Lemma 2. Recall that θst,ij = var{(Xk,s,i − µs,i)(Xk,t,j − µt,j)}. Under Condition (C1.2) or (C1.2*), there exists a constant C > 0
such that

Pr
{
max
(i,j)∈A

(σ̃st,ij − σst,ij)2

θst,ij/n
≥ x2

}
≤ C |A|{1 − Φ(x)} + O(q−M

0 + n−ϵ/8) (A.2)
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uniformly for 0 ≤ x ≤ (8 ln q0)1/2 andA ⊆ {(i, j) : 1 ≤ i ≤ qs, 1 ≤ j ≤ qt}. Under H0,st , (A.2) also holds when substituting θst,ij
to θ1,st,ij.

Proof of Theorem 2. Define

Tst,2 = max
i,j

nσ̂ 2
st,ij

θ1,st,ij
, Tst,3 = max

i,j

nσ 2
st,ij

θ1,st,ij
,

Tst,4 = max
ij

n(σ̂st,ij − σst,ij)2

θ1,st,ij
, Tst,5 = max

ij

n(σ̂st,ij − σst,ij)2

θst,ij
.

By Lemma 1,

Pr(T (1)
st > qα) ≥ Pr[Tst,2 ≥ c(dst , α){1 + o(1)}].

Since Tst,3 ≤ 2Tst,4 + 2Tst,2 and Tst,3 ≥ 4(1 + κst ) ln dst , we get

Pr[Tst,2 ≥ c(dst , α){1 + o(1)}] ≥ Pr[Tst,3 − 2Tst,4 ≥ 2c(dst , α){1 + o(1)}]
= Pr[Tst,4 ≤ Tst,3/2 − c(dst , α){1 + o(1)}]
= Pr[Tst,4 ≤ {2κst ln dst + ln(ln dst ) − qα}{1 − o(1)}].

Because Tst,5 ≥ Tst,4/κst . It follows that

Pr[Tst,4 ≤ {2κst ln dst + ln(ln dst ) − qα}{1 + o(1)}] ≥ Pr[Tst,5 ≤ {2 ln dst + (1/κst ) ln(ln dst ) − (1/κst )qα}{1 − o(1)}].

By Lemma 2,

Pr[Tst,5 ≤ {2 ln dst + (1/κst ) ln ln dst − (1/κst )qα}{1 − o(1)}] → 1. □

Proof of Theorem 4. It suffices to prove the conclusion for variables with a normal distribution satisfying Condition (C2)
and (C2*). Let min(qs, qt ) = q∗(s, t). Denote by M(s, t) = {S : S ⊆ {1, . . . , q∗

}, card(S) = rst} the set of all the subsets of
{1, . . . , q∗

} with cardinality rst . Let m̂ be a random subset of {1, . . . , q∗
}, which is uniformly distributed on M. Consider the

following covariance matrix of (Xs,Xt )⊤:

Σ∗

m̂ =

(
Iqs×qs Σ∗

st,m̂

Σ∗⊤

st,m̂ Iqt×qt

)
, and Σ∗

st,m̂ = (σst,ij)qs×qt ,

with

σst,i1 i1 = ρ = c{ln(dst/n)}1/2, σst,i2i2 = σst,ij = 0

for all i1 ∈ M(s, t), i2 ∈ M(s, t)c, j ̸= i. Here c is a positive constant whichwill be specified later. Without loss of generality,
suppose qs ≤ qt . Let us reorder the variables X = (Xs,1, Xt,1, . . . , Xs,qs , Xt,qs , . . . , Xt,qt )

⊤. Then the covariance matrix of X is
Σm̂ = diag(A(i), . . . , A(i), Iqt−qs ), with

A(i) =

(
1 ρ

ρ 1

)
if i ∈ m̂ and A(i) = I2 if i ∈ m̂c .

It is easy to see that the precision matrix is Ωm̂ = diag(B(i), . . . , B(i), Iqt−qs ), with

A(i) =
1

1 − ρ2

(
1 −ρ

−ρ 1

)
if i ∈ m̂ and A(i) = I2 if i ∈ m̂c .

We construct a class of Σ : Q = {Σm̂, m̂ ∈ M(s, t)}. Let Σ0 = I and Σ1 be uniformly distributed on Q. Let µρ be the
distribution of Σ1. It is a measure on {∆ ∈ S(rst , s, t) : ∥∆∥

2
F = rstρ2

}. For a ∈ {0, 1}, let dPa(X) be the likelihood function
given Σa. Define

Lµρ (X) = Eµρ

{
dP1(X)
dP0(X)

}
,

where Eµρ is the expectation onΣm̂. By the arguments in Section 7.1 of Baraud [4], it suffices to show that E0(L2µρ
) ≤ 1+o(1).

We have

Lµρ = Em̂

[
n∏

k=1

1
|Σm̂|

1/2 exp
{
−

1
2
X⊤

k (Ωm̂ − I)Xk

}]
.

Let E0 be the expectation on Xk with N (0, I) distribution. Then

E0(L2µρ
) = E0

⎡⎣ 1(
q∗

rst

) ∑
m∈M

[
n∏

k=1

1
|Σm|

1/2 exp
{
−

1
2
X⊤

k (Ωm − I)Xk

}]⎤⎦2
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=
1(
q∗

rst

)2 ∑
m,m′∈M

E0

[
n∏

k=1

1
|Σm|

1/2

1
|Σm′ |

1/2 exp
{
−

1
2
X⊤

k (Ωm + Ωm′ − 2I)Xk

}]
.

Set Ωm + Ωm′ − 2I = (as1,s2,i,j), with s1, s2 ∈ {s, t}, i ∈ {1, . . . , qs1}, and j ∈ {1, . . . , qs2}. If i ∈ m ∩ m′, ass,ii = att,ii =

2ρ2/(1−ρ2), ast,ii = −2ρ/(1−ρ2). If i ∈ m∆m′, ass,ii = att,ii = 1/(1−ρ2)−1, ast,ii = −ρ/(1−ρ2). Otherwise, as1,s2,i,j = 0.
Now let t = |m ∩ m′

|. By simple calculations, we have

E0(L2µρ
) =

1(
q∗

rst

)2 (1 − ρ2)−nrst
rst∑
t=0

(
q∗

rst

)( rst
t

)(q∗
− rst

rst − t

)
1tn(1 − ρ2)(2rst−t)n/2

=

(
q∗

rst

)−1 rst∑
t=1

( rst
t

)(q∗
− rst

rst − t

)
(1 − ρ2)−tn/2

≤ q∗rst (q
∗
− rst )!
q∗!

rst∑
t=0

( rst
t

)( s
q∗

)t( 1
1 − ρ2

)tn/2

= {1 + o(1)}
{
1 +

rst
q∗(1 − ρ2)n/2

}rst

≤ exp{rst ln(1 + rstq∗c2−1)}{1 + o(1)}

≤ exp(r2stq
∗c2−1){1 + o(1)}.

For sufficiently small c2, E0(L2µρ
) = 1 + o(1), and hence the theorem is proved. □

Proof of Theorem 5. Define

Tst = nmax
ij

ρε,st , T̂st = max
i,j

n(σ̂ε,st,ij − σε,st,ij)2

θε,st,ij

T̃st = max
ij

n(σ̃ε,st,ij − σε,st,ij)2

θε,st,ij
, T̆st = max

i,j

n(σ̆ε,st,ij − σε,st,ij)2

θε,st,ij
,

where

σ̂ε,st,ij =
1
n

n∑
k=1

ε̂k,s,iε̂k,t,j, σ̃ε,st,ij =
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j, σ̆ε,st,ij =
1
n

n∑
k=1

εk,s,iεk,t,j.

By Condition (2.3) and maxi|σ̃ε,ss,ii − σε,ss,ii| = OP {(ln q0)−1−α0},

|θ̂ε,st,ij − θε,st,ij| ≤ |σ̂ε,ss,iiσ̂ε,tt,jj − σε,ss,iiσε,tt,jj|

≤ OP
{
max(|σ̂ε,ss,ii − σε,ss,ii|, |σ̂ε,tt,jj − σε,tt,jj|)

}
= OP {(ln q0)−1−α0}.

By (C2.2), θε,st,ij ≥ 1/c20 . Thus with probability tending to 1,

|Tst − T̂st | ≤ CT̂st (ln q0)−1−α0

|T̂st − T̃st | ≤ C(ln q0)−1−α0

|T̆st − T̃st | ≤ Cn( max
1≤i≤qs

ε̄4
s,i + max

1≤j≤qt
ε̄4
t,j) + Cn1/2T̆ 1/2

st ( max
1≤i≤qs

ε̄2
s,i + max

1≤j≤qt
ε̄2
t,j).

The second inequality above stems from Condition (C2.3). Note that

max
1≤i≤qs

|ε̄s,i| + max
1≤t≤qt

|ε̄t,j| = OP {(ln q0/n)1/2}.

Thus, it suffices to show that for any x ∈ R,

Pr{T̆st ≤ 2 ln dst − 2 ln(ln dst ) + x} → exp
(

−
1

π1/2 e−x/2
)

.

The rest of the proof is similar to the proof of Theorem 1. □

Proof of Proposition 3. We first decompose σ̂ε,st,ij as follows:

1
n

n∑
k=1

ε̂k,s,iε̂k,t,j =
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j − A1,s,t,i,j − A2,s,t,i,j + A3,s,t,i,j,



86 J. Xie, J. Kang / Journal of Multivariate Analysis 156 (2017) 70–88

where

A1,s,t,i,j =
1
n

n∑
k=1

ε̃k,s,i(Xk,t,−j − X̄t,−j)⊤(β̂t,j − βt,j)

A2,s,t,i,j =
1
n

n∑
k=1

ε̃k,t,j(Xk,s,−i − X̄s,−i)⊤(β̂s,i − βs,i)

A3,s,t,i,j = (β̂s,i − βs,i)
⊤Σ̂st,−i,−j(β̂t,j − βt,j).

We bound each term in order. First note that, for all s, t ∈ {1, . . . , p},

|A1,s,t,i,j| ≤

⏐⏐⏐⏐⏐1n
n∑

k=1

ϵ̃k,s,i(Xk,t,−j − X̄k,t,−j) − cov(ε̃k,s,i,Xk,t,−j)

⏐⏐⏐⏐⏐
∞

⏐⏐⏐β̂t,j − βt,j

⏐⏐⏐
1

+

⏐⏐⏐cov(ε̃k,s,i,X⊤

k,s,−j)(β̂t,j − βt,j)
⏐⏐⏐ . (A.3)

Now for anyM > 0, there exists a sufficiently large C > 0 such that

Pr

[
max

1≤i≤qs,1≤j≤qt

⏐⏐⏐⏐⏐1n
n∑

k=1

ε̃k,s,i(Xk,t,−j − X̄t,−j) − cov(ε̃k,s,i,Xk,t,−j)

⏐⏐⏐⏐⏐
∞

≥ C{ln(dst/n)}1/2
]

= O(q−M
0 ).

Next, recall the definition of av,1 and av,2 in (13). When s = t and i = j, cov(ε̃k,s,i,Xk,s,−i) = 0. Therefore

max
1≤i≤qs

⏐⏐A1,s,s,i,i
⏐⏐ = OP

{
as,1(ln qs/n)1/2

}
.

When s ̸= t , under H0,st , cov(ε̃k,s,i,Xk,t,−j) = 0. Therefore

max
1≤i≤qs,1≤j≤qt

⏐⏐A1,s,t,i,j
⏐⏐ = OP

{
at,1(ln dst/n)1/2

}
.

When s ̸= t and under H1,st ,⏐⏐⏐cov(ε̃k,s,i,X⊤

k,s,−j)(β̂t,j − βt,j)
⏐⏐⏐ ≤

{
var(ε̃k,s,i)

}1/2 {(β̂t,j − βt,j)
⊤Σtt,−j,−j(β̂t,j − βt,j)

}1/2
≤ c0at,2.

Therefore,

max
1≤i≤qs,1≤j≤qt

⏐⏐A1,s,t,i,j
⏐⏐ = OP [at,1{ln(dst/n)}1/2 + at,2].

We can derive bounds for A2,s,t,i,j similarly. Next, we bound A3,s,t,i,j. First,

A3,s,t,i,j = (β̂k,s,i − βk,s,i)
⊤(Σ̂st,−i,−j − Σst,−i,−j)(β̂k,t,j − βk,t,j)

+ (β̂k,s,i − βk,s,i)
⊤Σst,−i,−j(β̂k,t,j − βk,t,j).

It is easy to show that for anyM > 0, there exists a sufficiently large C > 0 such that

Pr
[

max
1≤i≤qs,1≤j≤qt

|σ̂st,ij − σst,ij| ≥ C{ln(dst/n)}1/2
]

= O(q−M
0 ).

When s ̸= t , one has Σst,−i,−j = 0 under H0,st while ∥Σst,−i,−j∥2 ≤ c0 under H1,st . By the inequality⏐⏐⏐(β̂k,s,i − βk,s,i)
⊤(Σ̂st,−i,−j − Σst,−i,−j)(β̂k,t,j − βk,t,j)

⏐⏐⏐ ≤
⏐⏐Σ̂st,−i,−j − Σst,−i,−j

⏐⏐
∞

|β̂k,s,i − βk,s,i|1|β̂k,t,j − βk,t,j|1, (A.4)

we have under H0,st ,

max
1≤i≤qs,1≤j≤qt

⏐⏐A3,s,t,i,j
⏐⏐ = OP

[
as,1at,1{ln(dst/n)}1/2

]
;

and under H1,st ,

max
1≤i≤qs,1≤j≤qt

⏐⏐A3,s,t,i,j
⏐⏐ = OP

[
as,1at,1{ln(dst/n)}1/2 + as,2at,2

]
.

When s = t , we can show by a similar argument that under H0,st ,

max
1≤i≤qs,1≤j≤qt

|A3,s,s,i,j| = OP
{
a2s,1(ln qs/n)1/2

}
;

and under H1,st ,

max
1≤i≤qs,1≤j≤qt

|A3,s,s,i,j| = OP
{
a2s,1(ln qs/n)1/2 + a2s,2

}
.
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Therefore, when s ̸= t , under H0,st

1
n

n∑
k=1

ε̂k,s,iε̂k,t,j =
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j + OP

{
(as,1at,1 + as,1 + at,1)

(
ln dst
n

)1/2
}

; (A.5)

and under H1,st ,

1
n

n∑
k=1

ε̂k,s,iε̂k,t,j =
1
n

n∑
k=1

ε̃k,s,iε̃k,t,j + OP

{
(as,1at,1 + as,1 + at,1)

(
ln dst
n

)1/2

+ (as,2at,2 + as,2 + at,2)

}
. (A.6)

When s = t and i = j, under H0,st ,

1
n

n∑
k=1

ε̂2
k,s,i =

1
n

n∑
k=1

ε̃2
k,s,i + OP

{
(a2s,1 + as,1)

(
ln qs
n

)1/2
}

; (A.7)

and under H1,st ,

1
n

n∑
k=1

ε̂2
k,s,i =

1
n

n∑
k=1

ε̃2
k,s,i + OP

{
(a2s,1 + as,1)

(
ln qs
n

)1/2

+ a2s,2

}
. (A.8)

It then suffices to show that for each v ∈ {1, . . . , p}, av,2 = OP {(ln q0)−1−α0} and av,1 = OP {n(ln q0)−2−α0}.
From the proof of Proposition 4.1 in [36], p. 2975, with probability tending to 1,

|D−1/2
v,i Σ̂vv,−i,−iβ̂v,i − D−1/2

v,i bv,i|∞ ≤ λv,i(2).

It then follows that

|D−1/2
v,i Σ̂vv,−i,−i(β̂v,i − βv,i)|∞ ≤ 2λv,i(2).

From

max
1≤i≤qv

|βv,i|0 = o
{
λmin(Σ)(n/ln q0)1/2

}
and the inequality

δ⊤Σ̂vv,−i,−iδ ≥ λmin(Σ−i,−i)|δ|22 − OP {(ln q0/n)1/2}|δ|1,

we can further see that the restricted eigenvalue assumption RE(s, s, 1) in [8], p. 1711, holds with κ(s, s, 1) ≥ cλmin(Σ)1/2.
From the proof of Theorem 7.1 in [8],

av,1 = OP

{
max
1≤i≤qv

|βv,i|0(ln qv/n)1/2
}

, av,2 = OP

[{
max
1≤i≤qv

|βv,i|0(ln qn/n)
}1/2

{λmin(Σ)}−1

]
Therefore, we can conclude. □

Proof of Proposition 4. From the proof of Proposition 4.2 in [36], we have with probability tending to 1,

|D−1/2
v,i Σ̂vv,−i,−iD

−1/2
v,i (α̂v,i − D1/2

v,i βv,i)|∞ ≤ 2λv,i(δ).

Then by (A.5), (A.6), (A.7), (A.8), and the proof of Theorem 7.2 in [8], we get that Condition (2.3) holds for βv,i(δ) with
δ > 2. □

Appendix B. Supplementary data

The supplementary material includes the proofs of theorems and lemmas that are not included in Appendix A, and the
simulated network (Fig. B.1) on 90 regions using Erdős–Rényi model discussed in Section 6.2.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2017.01.011.
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