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Abstract: In this paper, we consider nonparametric regression modeling for longitudinal data. An important

modeling choice is that the covariate effect may change dynamically with time by using a bivariate link function.

Comparing with Jiang and Wang [9, 10], and Zhang et al. [28] we make two distinct contributions to this

important class of models. First, we show theoretically and empirically that taking the within-subject correlation

into account can improve the estimation efficiency for the bivariate link function. Second, we propose a novel

method involving a shrinkage estimation technique to identify consistently whether the effect of covariates is

time-varying. Simulation studies are conducted to assess the finite-sample performance and a real data example

is analyzed to illustrate the proposed methods.
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1 Introduction

In many biomedical and economic studies, measurements are collected over time on the same subject.
The observations then form a longitudinal data set. For such data, standard parametric regression
techniques that take into account within-subject correlation are well developed; see, e.g., [14, 18, 19,
20, 21, 27] and [1] for a summary of different types of parametric approaches. While parametric
approaches are useful, issues may arise as to the adequacy of the model assumptions and the potential
impact of model misspecifications on the analysis. This motivates the use of nonparametric approaches
that we adopt in this paper.

Let Y (t) and Z(t) be the response variable and covariate, respectively, observed at time t. In
traditional nonparametric regression, it is often assumed that Y (t) = µ(Z(t)) + ε(t), where ε(t)
represents the mean zero noise, which could be fitted by classic kernel, local polynomial or spline
methods. However, in more complex data settings, the effect of the covariate may change with time,
while in the standard univariate nonparametric regression the effect of time is entirely through the
covariate Z(t). Jiang and Wang [9] thus considered the time varying model

Y (t) = µ(t, Z(t)) + ε(t), (1)

which indicates that the effect of the covariate Z may change with time and as such is probably
more realistic in many real situations. For related work, see [10, 28]. Jiang and Wang [9] extended
the classical multivariate principal component analysis to accommodate covariate information for
functional data and developed two estimators. Jiang and Wang [10] proposed a new single-index
model to reflect the time-dynamic effects of the single index for longitudinal and functional response
data with both longitudinal and time-invariant covariates. Zhang et al. [28] proposed a functional
additive model with the components being time-dependent additive functions of the covariates. For the
proposed functional additive model, they developed a backfitting algorithm to estimate the unknown
regression functions.

It has been long recognized that the within-cluster correlation structure plays a very important
role in a longitudinal data analysis and that it should be taken into account whenever possible. This
usually improves estimation efficiency. Besides, the correlation structure may be of substantive interest
by itself [11]. However, for model (1), previous work ignored such correlation structure, possibly due
to the fact that explicit consideration of this aspect of the model is much more challenging and
there are usually many more parameters in the covariance matrix and the positive definiteness of the
covariance matrix has to be assured. One way to guarantee positive definiteness of the covariate matrix
is to use a modified Cholesky decomposition that could be interpreted as an autoregression model,
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with no constraint on the autoregression coefficients. Based on a modified Cholesky decomposition
[11, 18, 19, 24], the within-subject covariance matrix is decomposed into a unit triangular matrix
involving generalized autoregressive coefficients and a diagonal matrix involving innovation variances.

As a result, in order to construct a more efficient estimator of the mean function in model (1),
we adopt a three-stage approach. First, an initial estimator of the mean function is obtained by
ignoring the correlation. In the second stage, the estimated residuals are used to fit the autoregres-
sive coefficients in the covariance. Finally, the estimated covariance is used to de-correlate the original
observations and the final estimator is obtained. It is shown that the final estimator is more asymptot-
ically efficient than estimators that ignore the within-cluster correlation. The large-sample properties
of the proposed estimators are developed. We note that other ways of modeling the correlation struc-
ture are also possible, including [4, 12, 14, 29]. The advantage of the current approach is that the
covariate/time effect on the correlation structure is explicitly produced, and nonparametric regression
functions are avoided in the covariance modeling.

Modeling the time-varying effect requires estimating a link function with higher dimensionality,
which adds unnecessary complexity if the covariate effect is not actually time-varying. Therefore, an
interesting question is whether we can identify the situations when µ(t, Z(t)) is actually only a function
of its second argument. If so, a simpler model with mean function equal to µ(Z(t)) can be adopted.
Recently, Vogt [23] proposed a kernel-based L2-test statistic to tackle a similar problem. However,
his procedure is developed only for the case that the observations are made on a equally spaced grid
densely over time. In this paper, we propose a novel method using the idea of shrinkage estimation
[22]. We show that the shrinkage method can identify the true model structure (time-varying or
non-time-varying) with probability approaching 1.

The rest of the paper is organized as follows. In Section 2 we describe estimators for the mean and
the covariance structure, and establish their asymptotic properties. In particular, we show that the
final estimator that takes into account the correlation structure is more asymptotically efficient than
that which ignores the correlation structure. A shrinkage method for deciding whether a non-time-
varying model is sufficient for the given data set is taken up in Section 3. In Section 4, we present Monte
Carlo simulation results that empirically corroborate the theoretical results. We further illustrate the
proposed procedure by analyzing a real data set in Section 5. Section 6 ends the article with a
discussion. Technical proofs are presented in the Appendix.
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2 Estimation methodology

2.1 Initial estimator of the mean function

Suppose there are n subjects, and for the ith subject there are mi repeated measurements of (Y (t), Z(t),
t) over time. The jth observation of (Y (t), Z(t), t) for the ith subject is denoted by (Yij , Zij , tij) with
i ∈ {1, . . . , n} and j ∈ {1, . . . , mi}. Since subjects are often measured repeatedly over a given time
period, the measurements of each subject are possibly correlated with each other but different subjects
could be assumed to be independent.

We use local linear smoothing to obtain an initial estimator of the mean function, ignoring the
within-subject correlation. In particular, the local linear fitting has several nice properties such as
high statistical efficiency (in an asymptotic minimax sense), design adaptation and excellent boundary
behavior. See Fan and Gijbels [3] for details. For any (tij , Zij) in a close neighborhood of (t, z),
µ(tij , Zij) can be approximated by

µ(tij , Zij) ≈ µ(t, z) +
∂µ(t, z)

∂t
(tij − t) +

∂µ(t, z)
∂z

(Zij − z) ≡ β0 + β1(tij − t) + β2(Zij − z).

As a result, the local linear smoother for the mean function µ(t, z) is µ̂(t, z) = β̂0 with β̂ = (β̂0, β̂1, β̂2)⊤,
and

β̂ = arg min
β

n∑

i=1

mi∑

j=1

{Yij − β0 − β1(tij − t)− β2(Zij − z)}2Kht1,N
(tij − t)Khz1,N

(Zij − z), (2)

where K is a kernel function with Kh(·) = K(·/h)/h, ht1,N and hz1,N are bandwidths, and N =
m1 + · · ·+ mn. The solution to problem (2) is given by β̂ = H−1

1,N (D⊤
t,zWt,zDt,z)−1D⊤

t,zWt,zY, where
⊤ denotes the transpose of a matrix or vector,

Dt,z =




1 t11−t
ht1,N

Z11−z
hz1,N

...
...

...

1 t1,m1−t

ht1,N

Z1,m1−z

hz1,N

...
...

...

1 tn,mn−t
ht1,N

Zn,mn−z
hz1,N




,
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Wt,z = diag{Kht1,N
(t11 − t)Khz1,N

(Z11 − z), . . . ,

Kht1,N
(t1,m1 − t)Khz1,N

(Z1,m1 − z), . . . ,Kht1,N
(tn,mn − t)Kht1,N

(Zn,mn − z)},

Y = (Y11, . . . , Y1,m1 , . . . , Yn,mn)⊤ and H1,N = diag(1, ht1,N , hz1,N ). Equivalently,

µ̂(t, z) =
n∑

i=1

mi∑

j=1

Wh1,ij(t, z)Yij ,

where

Wh1,ij(t, z) =
Kht1,N

(tij − t)Khz1,N
(Zij − z){A1 + (tij − t)A2 + (Zij − z)A3}

B
,

with A1 = Sn,20Sn,02−S2
n,11, A2 = Sn,01Sn,11−Sn,10Sn,02, A3 = Sn,10Sn,11−Sn,01Sn,20, B = A1Sn,00 +

A2Sn,10 + A3Sn,01 and for all ℓ, k ∈ {0, 1, 2},

Sn,lk(t, u; β, h1) =
n∑

i=1

mi∑

j=1

(tij − t)ℓ(Zij − u)kKht1,N
(tij − t)Khz1,N

(Zij − u).

The following technical conditions are imposed to establish the asymptotic results. They may not
be the weakest possible conditions.

Assumption 1: The density function f(t, z) of (tij , Zij) is supported on [0, 1] × Z, continuous
and bounded away from zero and infinity.

Assumption 2: The kernel K is a density function with compact support and Lipschitz contin-
uous.

Assumption 3: µ(t, z) is twice partially continuously differentiable on [0, 1]×Z.

Assumption 4: The numbers of measurements mi are uniformly bounded for all 1 ≤ i ≤ n.

Assumption 5: The eij are iid random variables with mean zero and variance σ2
e .

Assumption 6: The bandwidth hts,N satisfy Nht8s,N/(ln ln N)1/2 → 0 and Nht2s,N/(lnN)2 →∞
as n →∞ and the bandwidth hzs,N satisfy Nhz8

s,N/(ln ln N)1/2 → 0 and Nhz2
s,N/(ln N)2 →∞

as n →∞. Here, s = 1, 2 and 3. In addition, ht1,N/ht2,N = o(1) and hz1,N/hz2,N = o(1).

Remark 1. Assumption 1–3 are typical in the smoothing literature. Assumption 4 is widely used
in the longitudinal data literature. In addition, the optimal asymptotic rate for two-dimensional
smoothing trivially satisfies Assumption 6.
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Denote µj =
∫∞
−∞ ujK(u)du and νj =

∫∞
−∞ ujK2(u)du. The asymptotic behavior of β̂ is described

in the following theorem, with necessary regularity conditions and proofs given in the Appendix.

Theorem 1. If Assumption 1 to 6 hold, then we have, as n →∞,

√
Nht1,Nhz1,N

[
H1,N








µ̂(t, z)
∂µ̂(t,z)

∂t
∂µ̂(t,z)

∂z


−




µ(t, z)
∂µ(t,z)

∂t
∂µ(t,z)

∂z







− 1

2




(
ht21,N

∂2µ(t,z)
∂t + hz2

1,N
∂2µ(t,z)

∂z

)
µ2

hz2
1,N

∂2µ(t,z)
∂z2

ht21,N
∂2µ(t,z)

∂t2




+ op(ht21,N + hz2
1,N )

]
 N (0,Σ),

where  denotes convergence in distribution and Σ = {f(t, z)}−1ω2ℑ with f(t, z) being the joint
density function of (tij , Zij),

ω2 = lim
n→∞

1
N

n∑

i=1

mi∑

j=1

ε2
ij and ℑ =




ν2
0

ν0ν1

µ2

ν0ν1

µ2
ν0ν1

µ2

ν0ν2

µ2
2

ν2
1

µ2
2

ν0ν1

µ2

ν2
1

µ2
2

ν0ν2

µ2
2




.

Due to the fact that the correlation between εi(tij1) and εi(tij2) is not considered in the estima-
tors µ̂(t, z), ∂µ̂(t, z)/∂t and ∂µ̂(t, z)/∂z, one cannot expect them to be asymptotically efficient. In
the following sections, based on the estimator µ̂(t, z) we propose an improved estimator for µ(t, z),
∂µ(t, z)/∂t and ∂µ(t, z)/∂z.

2.2 Fitting subject correlation structure

In order to construct improved estimators of µ(t, z), ∂µ(t, z)/∂t and ∂µ(t, z)/∂z we need to fit the
within subject correlation structure first. Denote cov(εi|Zi) = Σi where εi = (εi1, . . . , εimi)

⊤ with
εij = εi(tij), Zi = (Zi1, . . . , Zimi)

⊤, and Σi is an mi ×mi matrix and may depend on Zi. Then by
the Cholesky decomposition technique, proceeding as in [18], there exists a lower triangular matrix
Φi with diagonal elements being ones such that

cov(Φiεi|Zi) = ΦiΣiΦ⊤
i = diag(σ2

ei1
, . . . , σ2

eimi
).
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Namely, for all i ∈ {1, . . . , n} and j ∈ {2, . . . , mi},

εi1 = ei1, εij = ϕ
(i)
j,1εi1 + · · ·+ ϕ

(i)
j,j−1εi,j−1 + eij , (3)

where (ei1, . . . , eimi)
⊤ = Φiεi, ϕ

(i)
j,ℓ is the negative of the (j, ℓ) element of Φi. Obviously, the eij are

uncorrelated with E(eij) = 0 and var(eij) = σ2
eij

for all j ∈ {1, . . . , mi}. For simplicity, we assume
that σ2

eij
= σ2

e for all i ∈ {1, . . . , n} and j ∈ {2, . . . ,mi}. Following [11, 15, 24], we assume that

ϕ
(i)
j,ℓ = W(i)⊤

j,ℓ θ, (4)

where W(i)
j,ℓ = (W (i)

j,ℓ,1, . . . , W
(i)
j,ℓ,q)

⊤ is the q × 1 vector of covariates which may contain time, time
difference, other baseline covariates, as well as their interactions, and θ = (θ1, . . . , θq)⊤ is the regression
coefficients. Based on the estimated residuals ε̂ij = Yij − µ̂(tij , Zij), and applying the least square
technique we can obtain an estimator of θ, namely

θ̂ =
( n∑

i=1

mi∑

j=2

Π̂ijΠ̂⊤
ij

)−1
n∑

i=1

mi∑

j=2

Π̂ij ε̂ij ,

where Π̂ij = (
∑j−1

k=1 ε̂i,kW
(i)
j,k,1, , . . . ,

∑j−1
k=1 ε̂i,kW

(i)
j,k,q)

⊤. The following theorem shows that θ̂ is consis-
tent and asymptotically normal.

Theorem 2. If Assumption 1 to 6 hold, then we have, as n →∞,
√

N − n (θ̂ − θ) N (0, σ2
eΛ

−1),
where

Λ = lim
n→∞

1
N − n

n∑

i=1

mi∑

j=2

E(ΠijΠ⊤
ij)

with Πij = (
∑j−1

k=1 εi,kW
(i)
j,k,1, . . . ,

∑j−1
k=1 εi,kW

(i)
j,k,q)

⊤.

2.3 Improved estimator of the mean function and its partial derivatives

The estimators µ̂(t, z), ∂µ̂(t, z)/∂t and ∂µ̂(t, z)/∂z proposed in Section 2.1 do not take into account the
correlations within the subjects. We now construct new estimators by accounting for these correlations.
If the εij were available, then model (1) would become the following partially linear model with
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bivariate nonparametric component and uncorrelated error terms:

Yi1 = µ(ti1, Zi1) + ei1,

Yij = µ(tij , Zij) + ϕ
(i)
j,1εi1 + · · ·+ ϕ

(i)
j,j−1εi,j−1 + eij ,

where i ∈ {1, . . . , n} and j ∈ {2, . . . , mi}. Combining the fact ϕ
(i)
j,ℓ = W(i)⊤

j,ℓ θ, it is easy to see that

Yij −
q∑

r=1

(j−1∑

k=1

εikW
(i)
j,k,r

)
θr = µ(tij , Zij) + eij

for all i ∈ {1, . . . , n} and j ∈ {2, . . . , mi}. In addition, it is easy to see that (3) is an autoregressive
model. Therefore, var(ei1) = var(εi1) and var(eij) ≤ var(εij) for all j ∈ {2, . . . , mi}. As a result, if we
take Yij −

∑q
r=1(

∑j−1
k=1 εikW

(i)
j,k,r)θr as pseudo-responses, these can be used to construct more efficient

estimators of µ(t, z), ∂µ(t, z)/∂t and ∂µ(t, z)/∂z than the initial estimators µ̂(t, z), ∂µ̂(t, z)/∂t and
∂µ̂(t, z)/∂z.

In practice, εik and θr are unknown. Therefore, we replace them by ε̂ik and θ̂r. For each i ∈
{1, . . . , n} and j ∈ {2, . . . , mi}, define

Y ∗
ij = Yij −

q∑

r=1

(j−1∑

k=1

ε̂ikW
(i)
j,k,r

)
θ̂r. (5)

Then we propose an improved estimator of β = (β0, β1, β2)⊤ = (µ(t, z), ∂µ(t, z)/∂t, ∂µ(t, z)/∂z)⊤ as
the solution of the following problem:

arg min
βI

n∑

i=1

mi∑

j=1

{Y ∗
ij − β0 − β1(tij − t)− β2(Zij − z)}2Kht2,N

(tij − t)Khz2,N
(Zij − z).

The minimizer is

β̂
I

= (β̂I
0 , β̂I

1 , β̂I
2)⊤ = (µ̂I(t, z), ∂µ̂I(t, z)/∂t, ∂µ̂I(t, z)/∂z)⊤ = H−1

2,N (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1D∗⊤
t,z W∗

t,zY
∗,

where Y∗ = (Y11, . . . , Y
∗
1,m1

, . . . , Yn,1, . . . , Y
∗
n,mn

)⊤ and H2,N , D∗
t,z and W∗

t,z have the same definitions
as H1,N , Dt,z and Wt,z but with ht2,N and hz2,N in place of ht1,N and hz1,N , respectively.

For β̂
I
, we have the following the asymptotic result.
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Theorem 3. If Assumption 1 to and 6 hold, then we have, as n →∞,

√
Nht2,Nhz2,N

[
H2,N








µ̂I(t, z)
∂µ̂I(t,z)

∂t
∂µ̂I(t,z)

∂z


−




µ(t, z)
∂µ(t,z)

∂t
∂µ(t,z)

∂z







− 1

2




(
ht22,N

∂2µ(t,z)
∂t + hz2

2,N
∂2µ(t,z)

∂z

)
µ2

hz2
2,N

∂2µ(t,z)
∂z2

ht22,N
∂2µ(t,z)

∂t2




+ op(ht22,N + hz2
2,N )

]
 N (0,Σ∗),

where Σ∗ = {f(t, z)}−1σ2
eℑ and other symbols are same as those defined in Theorem 1.

Remark 2. Due to the fact that var(ei1) = var(εi1) and var(eij) ≤ var(εij) for all j ∈ {2, . . . , mi},
one has σ2

e ≤ ω2 and Σ∗ ≤ Σ. As a result, the improved local linear estimators µ̂I(t, z), ∂µ̂I(t, z)/∂t

and ∂µ̂I(t, z)/∂z are asymptotically more efficient than the local linear estimators µ̂(t, z), ∂µ̂(t, z)/∂t

and ∂µ̂(t, z)/∂z, respectively and the latter neglect the informative correlation structure.

3 Model identification

Obviously, modeling the time-varying effect increases the flexibility of modeling and tends to reduce the
modeling bias greatly. However, it adds unnecessary complexity when the covariate effect is actually
not time-varying. Therefore, an interesting question is whether we could identify the situation when
µ(t, z) is actually only a function of z. If so, a simpler model with mean function equal to µ(z) could
be adopted. Recently, Vogt [23] proposed a kernel-based L2-test statistic to tackle a similar problem.
It should be noted that his procedure is developed only for the scenario that the observations are
made on a equally spaced grid densely over time. In addition, his method is based on the bootstrap
technique and has a heavy calculation burden. We propose here a novel approach using the idea of
shrinkage estimation [22] and show that the shrinkage method can identify the true model structure
(time-varying or non-time-varying) with probability approaching 1.

Without loss of generality, we assume that t11 ≤ · · · ≤ t1m1 ≤ · · · ≤ tnmn . For any i ∈ {1, . . . , n}
and j ∈ {1, . . . , mi}, let

bij = Dvij = −(µ(t12, Zij)− µ(t11, Zij), . . . , µ(tnmn , Zij)− µ(tn,mn−1, Zij))⊤

and ||bij || =
√

v⊤ijD⊤Dvij , where D(N−1)×N = (IN−1,0(N−1)×1) − (0(N−1)×1, IN−1) and vij =

(µ(t11, Zij), . . . , µ(tnmn , Zij))⊤ is an N × 1 vector. It is easy to see that if the marginal function
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does not change over time, then

||b|| = 1
N

√
v⊤D∗⊤D∗v =

1
N




n∑

i=1

mi∑

j=1

∥bij∥2



1/2

= 0,

otherwise ||b|| > 0, where D∗ is a N2 diagonal block matrix with D in each diagonal element and
v = (v⊤11, . . . ,v

⊤
nmn

)⊤ is a N2× 1 vector. Based on the above fact, following the grouped LASSO idea
of Yuan and Lin [25] we propose the penalized estimate

B̂λ = (µ̂λ(t11, Z), . . . , µ̂λ(t1m1 , Z), . . . , µ̂λ(tnmn , Z))⊤ = arg min
B∈RN×N

Qλ(B),

where λ is the tuning parameter, µ̂λ(tij , Z) = (µ̂λ(tij , Z11), . . . , µ̂λ(tij , Z1m1), . . . , µ̂λ(tij , Znmn))⊤ and

Qλ(B) =
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2) + λ∥b∥.

(6)

In a typical least squares regression, computational algorithms for the LASSO-type problems have
been very well developed. These algorithms include the shooting algorithm [6], local quadratic approx-
imation [5], the least angle regression [2], and many others. We describe here an easy implementation
based on the idea of the local quadratic approximation [5]. Specifically, our implementation is based
on an iteration algorithm with the unpenalized Nadaraya–Watson estimator as the initial estimator.
Next, we define

B̂(m)
λ = (µ̂(m)

λ (t11, Z), . . . , µ̂(m)
λ (t1m1 , Z), . . . , µ̂(m)

λ (tnmn , Z))⊤,

to be the estimate obtained in the mth iteration. Let

b̂
m

λ =
1
N

(µ̂m
λ (t12, Z11)− µ̂m

λ (t11, Z11), . . . , µ̂m
λ (tnmn , Znmn)− µ̂m

λ (tn,mn−1, Znmn))⊤.

Then the loss function in (6) can be locally approximated by

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2) + λ
∥b∥2

∥b̂
m

λ ∥
. (7)

We can update the estimator by the solution of µ̂
(m)
λ (t, z) that minimizes (7), denote by B̂(m+1)

λ . It is

10



easy to see that the minimizer has a closed form, viz.

vec(B̂(m+1)
λ ) = (M+D(m))−1N ,

where vec(A) denotes the vectorization of matrix A,

M = diag
{ n∑

i=1

mi∑

j=1

Kht3,N
(tij − t11)Khz3,N

(Zij − Z11),
n∑

i=1

mi∑

j=1

Kht3,N
(tij − t12)Khz3,N

(Zij − Z11), . . . ,

n∑

i=1

mi∑

j=1

Kht3,N
(tij − t1m1)Khz3,N

(Zij − Z11), . . . ,
n∑

i=1

mi∑

j=1

Kht3,N
(tij − tnmn)Khz3,N

(Zij − Znmn)
}

,

and

N =
( n∑

i=1

mi∑

j=1

Kht3,N
(tij − t11)Khz3,N

(Zij − Z11)Yij ,

n∑

i=1

mi∑

j=1

Kht3,N
(tij − t12)Khz3,N

(Zij − Z11)Yij , . . . ,

n∑

i=1

mi∑

j=1

Kht3,N
(tij − t1m1)Khz3,N

(Zij − Z11)Yij , . . . ,
n∑

i=1

mi∑

j=1

Kht3,N
(tij − tnmn)Khz3,N

(Zij − Znmn)Yij

)⊤
,

and D(m) is a block diagonal matrix with each diagonal block is given by λ/∥b̂
m

λ ∥D∗D∗⊤. So as
m → ∞, denote the limiting values of B̂(m+1)

λ and µ̂
(m)
λ (t, z) respectively by B̂λ and µ̂λ(t, z), which

are our final estimators.

When N is very large, the above calculation might be time consuming as M is an N2×N2 matrix.
One way to simplify the calculation is to use sparser grids as suggested in [8]. In addition, the tuning
parameter λ should be selected. Denote by dfλ the efficient number of degrees of freedom. If the
selected model is bivariate, then dfλ = 1, otherwise 0. Also let

RSSλ =
1

N3

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ̂λ(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2).

Then λ is selected according to the following BIC-type criterion

BICλ = ln(RSSλ) + dfλ ×
ln(Nht3,Nhz3,N )

Nht3,Nhz3,N
. (8)

It should be noted that the efficient sample size Nht3,Nhz3,N is used instead of the original sample
size N . Then the tuning parameter can be obtained as λ̂ = arg minλ BICλ.

11



Based on the regular conditions listed in Section 2, the sparsity, oracle efficiency and selection
consistency for the estimator can be established as following.

Theorem 4. (Estimation Sparsity) Suppose that Assumption 1 to 6 hold, Nht
−1/2
3,N hz

−1/2
3,N λ →∞ as

n → ∞. In addition, suppose that the true model is µ(t, z) ≡ µ(z). Then there exists a univariate
function of z, µ̂(z), such that

sup
t∈T ,z∈Z

Pr{µ̂λ(t, z) = µ̂(z)} = 1.

By Theorem 4 we know that the true model can be ideally specified, then (1) becomes a standard
nonparametric regression model for longitudinal data, which has been investigated by many author.
Since this specification is not always available in practice, we call the estimator under the ideal
specification the oracle estimator. Specifically, for any given z

µ̂ora(z) =
{ n∑

i=1

mi∑

j=1

Khz3,N
(Zij − z)

}−1{ n∑

i=1

mi∑

j=1

YijKhz3,N
(Zij − z)

}
.

Then the following theorem establishes the oracle property.

Theorem 5. (Estimation Oracle) Suppose that Assumption 1 to 6 hold, Nht
−1/2
3,N hz

−1/2
3,N λ → ∞ as

n →∞. In addition, suppose that the true model is µ(t, z) ≡ µ(z). Then we have that

sup
t∈T ,z∈Z

∥µ̂λ(t, z)− µ̂ora(z)∥ = op(hz2
3,N + 1/

√
Nhz3,N ).

Define S as an arbitrary model. Then ST denotes the true model, and Sλ represents the model
identified by the proposed estimate µ̂λ(t, z). Consequently, S

λ̂
represents the model identified by

µ̂
λ̂
(t, z). The following theorem indicates that the tuning parameter selected by the BIC criterion in

(8) can indeed identify the true model consistently.

Theorem 6. (Selection consistency) Suppose that Assumption 1 to 6 hold, Nht
−1/2
3,N hz

−1/2
3,N λ →∞ as

n →∞. Then the tuning parameter λ selected by the BIC criterion can indeed identify the true model
consistently, i.e., Pr(S

λ̂
= ST ) → 1 as n →∞.

4 Simulation studies

In this section, we conduct a set of Monte Carlo simulations to demonstrate the finite-sample perfor-
mance of the proposed methods in the above sections.
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Example 4.1 In this example, we focus on evaluating the improvement of the estimation of the
mean function by taking the within-subject correlation among repeated measurements over time into
account. The data are generated by the longitudinal data nonparametric regression model defined,
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , mi}, by

Yi(tij) = µ(tij , Zij) = 2 cos(πtij)(1 + Z2
ij) + εij ,

where tij ∼ U(0, 2), Zij = 0.05× tij + 0.9× ηij with ηij ∼ U(0, 1). Furthermore, εij satisfy (3) and (4)
with W(i)

j,ℓ = (1, til − tij)⊤ and eij ∼ N (0, 0.2).

The sample size takes n = 50, 100, 200 with mi = m = 4, 6, 8 for each individual, i.e., the balanced
longitudinal data structure, and 500 simulation replications are run to draw summary statistics. In
order to describe different correlation structure, we use four different θ, namely θ = (0, 0)⊤, θ =
(0.2, 0.3)⊤, θ = (0.3, 0.2)⊤, θ = (0.2, 0.5)⊤ and θ = (0.5, 0.2)⊤ in our simulation.

It is well known that bandwidth selection has a much larger effect than the choice of kernel
function. As a result, the Gaussian kernel is used in our simulation study and 10-fold cross-validation
is used to select bandwidth. For the two-stage estimator, 80% of the optimal bandwidth is used as
the bandwidth in the first stage and the optimal bandwidth is used in the second stage. Based on our
simulation study experience, the two-stage estimator is not too sensitive to the choice of the bandwidth
of the first-stage estimator.

We compare the finite empirical performance of the initial estimator µ̂(t, z), the improved es-
timator µ̂I(t, z) and the benchmark estimator µ̂B(t, z). The benchmark estimator is the same as
the proposed two-stage estimator except that the within-subject correlation among repeated mea-
surements over time is assumed to be known exactly. The finite-sample performance of these three
estimators is assessed via the root of average squared errors (RASE):

RASE{µ̌(t, z)} =
[

1
N

n∑

i=1

mi∑

j=1

{µ̌(tij , Zij)− µ(tij , Zij)}2
]1/2

.

The mean and standard deviation (Std) of the RASE over 500 simulated samples are presented in
Table 1. From this table we can see that

(i) The finite-sample performance of µ̂(t, z), µ̂I(t, z) and µ̂B(t, z) improves with sample size n and
the number of repeated measurements.

(ii) When there is no within-subject correlation among repeated measurements over time, namely
θ = 0, the finite-sample performance of the improved estimator µ̂I(t, z) is almost the same as

13



that of the initial estimator µ̂(t, z). When there exists within-subject correlation among repeated
measurements over time, the improved estimator µ̂I(t, z) outperforms the initial estimator µ̂(t, z).
The improvement is much greater when the within-subject correlation is strong.

(iii) In most of the scenarios, the finite-sample performance of the improved estimator µ̂I(t, z) is
almost the same as the benchmark estimator µ̂B(t, z).

Table 1 also reports the finite-sample performance of the estimator θ̂ = (θ̂1, θ̂2)⊤ of the autore-
gressive coefficients θ = (θ1, θ2)⊤. From Table 1 we can see that θ̂ is almost unbiased and its standard
deviation decreases with the increasing of the sample size n or the number of repeated measurements.

It is easy to see that the results mentioned above are consistent with the theory developed in
Section 2.

Example 4.2 In this example, we check the robustness of linear model assumption for the correlation
structure. The setting is the same as in Example 4.1 except that θ = (0.3, 0.2, 0.5)⊤ and W(i)

j,ℓ =
(1, tiℓ − tij , (tiℓ − tij)2)⊤. We compare the finite-sample performance of the initial estimator µ̂(t, z)
and the improved estimator µ̂I(t, z) which takes the correlation structure with W(i)

j,ℓ = (1, tiℓ − tij)⊤.
The results are summarized in Table 2. From this table, we can see that the results mentioned above
show that our method is robust for the misspecification of the correlation structure.

In Section 3, we developed a method to check whether the mean function is time-independent. The
following example is used to evaluate the finite sample performance of the proposed model identification
method.

Example 4.3 The data are generated by the longitudinal data nonparametric regression model de-
fined, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , mi} by

Yi(tij) = µ(tij , Zij) = {1− c cos(πtij)}Z2
ij + εij ,

where the definitions of tij , Zij are same as those in the Example 4.1 and c is a constant which is
used to evaluate the degree of time-independent of the mean function. Obviously, c = 0 implies that
the mean function is time-independent. When the value of c increases, the degree of time-dependent
of the mean function becomes strong. The results are summarized in Table 3, which shows that the
proposed method works very well.
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Table 1: Finite-sample performance of the estimators of the unknown nonparametric function and
autoregressive coefficients in the error process.

m 4 6 8
(θ1, θ2) n 50 100 200 50 100 200 50 100 200

µ̂(·, ·) Mean(RASE) 0.0865 0.0508 0.0413 0.0602 0.0443 0.0363 0.0521 0.0415 0.0308
Std(RASE) 0.0163 0.0083 0.0057 0.0101 0.0066 0.0053 0.0080 0.0056 0.0041

µ̂I(·, ·) Mean(RASE) 0.0867 0.0508 0.0417 0.0602 0.0443 0.0363 0.0522 0.0416 0.0308
Std(RASE) 0.0164 0.0083 0.0057 0.0101 0.0066 0.0053 0.0079 0.0056 0.0041

(0.0, 0.0) µ̂B(·, ·) Mean(RASE) 0.0865 0.0508 0.0413 0.0602 0.0443 0.0363 0.0521 0.0415 0.0308
Std(RASE) 0.0163 0.0083 0.0057 0.0101 0.0066 0.0053 0.0080 0.0056 0.0041

θ̂1 mean 0.0009 -0.0112 -0.0065 -0.0107 -0.0112 -0.0029 -0.0120 -0.0049 -0.0046
std 0.1061 0.0797 0.0543 0.0647 0.0468 0.0315 0.0478 0.0326 0.0247

θ̂2 mean 0.0018 0.0152 0.0086 0.0076 0.0165 0.0019 0.0177 0.0076 0.0074
std 0.1637 0.1200 0.0852 0.1182 0.0890 0.0576 0.0967 0.0630 0.0478

µ̂(·, ·) Mean(RASE) 0.0912 0.0568 0.0457 0.0717 0.0544 0.0406 0.0717 0.0544 0.0423
Std(RASE) 0.0208 0.0103 0.0073 0.0165 0.0100 0.0071 0.0153 0.0100 0.0068

µ̂I(·, ·) Mean(RASE) 0.0901 0.0531 0.0432 0.0652 0.0477 0.0378 0.0610 0.0477 0.0347
Std(RASE) 0.0208 0.0097 0.0062 0.0159 0.0094 0.0076 0.0150 0.0094 0.0075

(0.2, 0.3) µ̂B(·, ·) Mean(RASE) 0.0900 0.0530 0.0432 0.0650 0.0476 0.0378 0.0609 0.0476 0.0347
Std(RASE) 0.0208 0.0098 0.0062 0.0159 0.0094 0.0075 0.0151 0.0094 0.0075

θ̂1 mean 0.1942 0.1893 0.1901 0.1956 0.1977 0.1984 0.1944 0.1977 0.1976
std 0.1052 0.0812 0.0552 0.0619 0.0437 0.0290 0.0426 0.0437 0.0202

θ̂2 mean 0.2288 0.2654 0.2871 0.2407 0.2773 0.2841 0.2743 0.2773 0.2927
std 0.1729 0.1321 0.0941 0.1282 0.0932 0.0598 0.1056 0.0932 0.0478

µ̂(·, ·) Mean(RASE) 0.0930 0.0588 0.0473 0.0784 0.0586 0.0437 0.0862 0.0640 0.0530
Std(RASE) 0.0219 0.0109 0.0080 0.0192 0.0109 0.0077 0.0204 0.0150 0.0091

µ̂I(·, ·) Mean(RASE) 0.0917 0.0539 0.0437 0.0685 0.0496 0.0390 0.0684 0.0518 0.0381
Std(RASE) 0.0222 0.0103 0.0064 0.0190 0.0111 0.0089 0.0212 0.0134 0.0105

(0.3, 0.2) µ̂B(·, ·) Mean(RASE) 0.0917 0.0538 0.0437 0.0683 0.0495 0.0390 0.0684 0.0518 0.0381
Std(RASE) 0.0223 0.0103 0.0064 0.0190 0.0111 0.0089 0.0212 0.0134 0.0105

θ̂1 mean 0.2794 0.2811 0.2840 0.2892 0.2936 0.2956 0.2920 0.2994 0.2957
std 0.1033 0.0800 0.0545 0.0593 0.0414 0.0271 0.0398 0.0276 0.0179

θ̂2 mean 0.1495 0.1766 0.1961 0.1522 0.1854 0.1899 0.1780 0.1835 0.1965
std 0.1708 0.1309 0.0933 0.1254 0.0896 0.0569 0.1032 0.0674 0.0441

µ̂(·, ·) Mean(RASE) 0.0950 0.0608 0.0495 0.0797 0.0594 0.0447 0.0845 0.0630 0.0519
Std(RASE) 0.0226 0.0114 0.0093 0.0196 0.0109 0.0078 0.0196 0.0144 0.0088

µ̂I(·, ·) Mean(RASE) 0.0912 0.0543 0.0440 0.0679 0.0496 0.0389 0.0665 0.0508 0.0376
Std(RASE) 0.0227 0.0106 0.0066 0.0186 0.0112 0.0088 0.0195 0.0125 0.0100

(0.2, 0.5) µ̂B(·, ·) Mean(RASE) 0.0907 0.0542 0.0440 0.0675 0.0496 0.0389 0.0665 0.0507 0.0376
Std(RASE) 0.0227 0.0106 0.0066 0.0186 0.0112 0.0088 0.0195 0.0125 0.0100

θ̂1 mean 0.2089 0.2032 0.1981 0.2065 0.2076 0.2039 0.2056 0.2101 0.2021
std 0.1060 0.0817 0.0552 0.0627 0.0437 0.0282 0.0420 0.0295 0.0190

θ̂2 mean 0.3801 0.4287 0.4672 0.4042 0.4511 0.4695 0.4394 0.4538 0.4788
std 0.1812 0.1377 0.0972 0.1381 0.0977 0.0612 0.1125 0.0747 0.0484

µ̂(·, ·) Mean(RASE) 0.1047 0.0696 0.0578 0.1144 0.0844 0.0657 0.1535 0.1178 0.0946
Std(RASE) 0.0266 0.0149 0.0125 0.0319 0.0181 0.0124 0.0509 0.0321 0.0267

µ̂I(·, ·) Mean(RASE) 0.0969 0.0583 0.0464 0.0869 0.0608 0.0460 0.1194 0.0843 0.0643
Std(RASE) 0.0283 0.0135 0.0082 0.0350 0.0212 0.0153 0.0582 0.0414 0.0330

(0.5, 0.2) µ̂B(·, ·) Mean(RASE) 0.0970 0.0581 0.0463 0.0867 0.0608 0.0461 0.1199 0.0843 0.0644
Std(RASE) 0.0287 0.0135 0.0082 0.0355 0.0214 0.0154 0.0587 0.0413 0.0331

θ̂1 mean 0.4596 0.4793 0.4806 0.4781 0.4951 0.4911 0.4868 0.5014 0.4965
std 0.1020 0.0779 0.0524 0.0577 0.0382 0.0237 0.0403 0.0267 0.0146

θ̂2 mean 0.1515 0.1632 0.1940 0.1573 0.1699 0.1922 0.1713 0.1652 0.1886
std 0.1781 0.1329 0.0931 0.1299 0.0892 0.0539 0.1162 0.0759 0.0417
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Table 2: Finite-sample performance of the estimators of the unknown nonparametric function when
the error structure is misspecified.

m 4 6 8
(θ1, θ2, θ3) n 50 100 200 50 100 200 50 100 200

µ̂(·, ·) Mean(RASE) 0.1026 0.0673 0.0560 0.0943 0.0693 0.0536 0.1053 0.0798 0.0632
Std(RASE) 0.0252 0.0140 0.0119 0.0239 0.0140 0.0094 0.0276 0.0191 0.0128

µ̂I(·, ·) Mean(RASE) 0.0934 0.0567 0.0456 0.0733 0.0533 0.0413 0.0782 0.0590 0.0436
Std(RASE) 0.0256 0.0121 0.0075 0.0235 0.0146 0.0110 0.0285 0.0196 0.0156

Table 3: Correct model identification probability.

m 4 6 8
(θ1, θ2) c n 50 100 200 50 100 200 50 100 200

c = 0 0.98 0.97 0.99 0.99 0.97 0.99 0.99 0.98 0.99
c = 0.25 0.06 0.14 0.78 0.21 0.36 0.90 0.20 0.75 0.88

(0.0, 0.0) c = 0.50 0.71 1.00 1.00 0.92 1.00 1.00 0.97 1.00 1.00
c = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 0 0.94 0.97 0.96 0.95 0.94 0.97 0.89 0.92 0.93
c = 0.25 0.10 0.14 0.62 0.19 0.57 0.67 0.30 0.48 0.73

(0.2, 0.3) c = 0.50 0.66 1.00 1.00 0.80 1.00 1.00 0.95 0.99 1.00
c = 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 0 0.93 0.97 0.96 0.92 0.92 0.96 0.82 0.88 0.91
c = 0.25 0.12 0.15 0.55 0.19 0.53 0.58 0.31 0.34 0.74

(0.3, 0.2) c = 0.50 0.62 1.00 1.00 0.80 1.00 1.00 0.89 0.92 1.00
c = 0.75 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c = 0 0.93 0.94 0.93 0.78 0.83 0.86 0.70 0.63 0.63
c = 0.25 0.19 0.24 0.36 0.41 0.35 0.57 0.40 0.50 0.52

(0.5, 0.3) c = 0.50 0.40 0.97 0.99 0.61 0.72 1.00 0.54 0.68 0.79
c = 0.75 0.90 1.00 1.00 0.89 0.98 1.00 0.69 0.89 0.97
c = 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.89 0.97 1.00
c = 1.50 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
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5 Real data study

We now apply the proposed method to analyze a data set from a panel hormone study [26]. The study
involved 34 women whose urine samples were collected in one menstrual cycle and whose urinary
progesterone was assayed on alternate days. A total of 492 observations were obtained, with each
woman contributing from 11 to 28 observations over time. Each woman’s cycle length was standardized
uniformly to a reference 28-day cycle since the change of the progesterone level for each woman depends
on the time during a menstrual cycle. Zhang et al. [26] and He et al. [7] used the longitudinal partially
linear regression model to fit this data set. See Zhang et al. [26] for a detailed description of this data
set. To fit these data, we propose the nonparametric regression model

yij = µ(tij , Zij) + εij ,

where y, t and Z stand for progesterone value, day and bmi, respectively. In the above model, we
furthermore suppose that the covariates for the autoregressive components take the form W(i)

j,ℓ =
(1, til− tik)⊤. Then applying our methods to this data set we find θ̂1 = 0.2183 (0.0190), θ̂2 = −0.3736
(0.0464). The nonparametric estimates of the functions of day and bmi are plotted in Figure 1.

Figure 1 demonstrates that day and bmi affect the progesterone value nonlinearly, and our proposed
test method shows that they are really nonlinear, where Figures 2 and 3 give the biases of the two
methods and 95% pointwise confidence band for µ(t, Z) over time with difference Z with and without
considering the within correlation.

In addition, we also calculated the sum of squared errors (SSE) for the partially linear regression
model used in He et al. [7], which is 270.6651. The SSE for our bivariate regression model is 241.6877.
We also compared the prediction accuracy of our bivariate nonparametric model (BNPM) with that of
partially linear model (PLM) in Zhu and Fung [7]. We randomly split the 34 subjects into a training
set and a test set with corresponding proportions π and 1−π, respectively. We used the training set to
estimate both of the PLM and BNPM, and then predict the response of the test set. 500 replications
were used to calculate the prediction errors corresponding to π = 0.3, π = 0.5 and π = 0.7. Table 4
reports the root mean square error (RMSE) of the prediction errors and indicates that our model
seems suitable for these data.

6 Concluding remarks

In this paper, we have investigated the efficient estimation and model identification for a nonpara-
metric model with a time-varying regression function and longitudinal covariate. In order to improve
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Figure 1: Estimation of the bivariate nonparametric of day and bmi. The left panel exhibits the
estimated function which does not consider the within-cluster correlation. The right panel depicts the
function based on our proposed method.

Table 4: Prediction results for the hormone study.

π = 0.3 π = 0.5 π = 0.7

NPM Mean(RMSE) 0.1207 0.1007 0.0985
Std(RMSE) 0.1184 0.0882 0.0791

PLM Mean(RMSE) 0.1919 0.1548 0.1806
Std(RMSE) 0.1418 0.1192 0.1379
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Figure 2: Biases of the two method.

estimation efficiency by considering within-subject correlation among repeated measures over time,
as in [24], we used a modified Cholesky decomposition to decompose the within-subject covariance
matrix into a unit triangular matrix involving generalized autoregressive coefficients and a diagonal
matrix involving innovation variances. A local polynomial smoothing method was then used to es-
timate the unknown nonparametric functions of the marginal mean. The asymptotic theory of the
resultant estimators was developed as well. In addition, we proposed a shrink-based method to tackle
the model identification problem, which could identify the model consistently and estimate the model
simultaneously.

In closing, we mention possible future directions. Throughout this paper, we assumed that the
covariate Zij is univariate. It is easy to see that our proposed methods could be extended to the scenario
of the covariate Zij being two or three-dimensional. However, when the dimension of the covariate
Zij is greater than 3, our proposed methods will be subject to the so-called “curse of dimensionality.”
As in Jiang andWang [9] and Zhang et al. [28], one could overcome this challenge and achieve both
dimension reduction and sensible model interpretation through single index or additive nonparametric
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Figure 3: 95% pointwise confidence band for µ(t, Z) over time with Z = 24.5450, Z = 28.8979 and
Z = 33.6136, which are the lower, middle and upper quartiles of the bmi range, respectively. The red
solid lines represent the estimated nonparametric function considering the within-subject correlation,
and the red broken lines represent the 95% pointwise confidence band for it. Finally, the blue lines
represent the estimated nonparametric function without considering the within-subject correlation,
and the blue broken lines delineate the 95% pointwise confidence band for it.

regression modeling. The methods developed in this paper were mainly built upon (local) least squares.
It is well known that least squares technique is very sensitive to outliers and for many commonly used
non-normal errors, such as a mixture normal distribution, Laplace distribution, Cauchy distribution
and so on, its efficiency may be significantly ruined. An effective way to cope with this issue is to
develop robust estimation and method of model identification.
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Appendix. Proof of the main results

For easy reference, we start by introducing a lemma that is needed to prove the main results.

Lemma 1. Under Assumptions 1, 3, 4 and 6, for k1 + k2 = k ∈ {0, 1, 2, 4},

sup
t∈T

∣∣∣∣∣∣
1

Nhthz

n∑

i=1

1
mi

mi∑

j=1

K

(
tij − t

ht

)
K

(
Zij − z

hz

)(
tij − t

ht

)k1
(

Zij − z

hz

)k2

− f(t, z)µk

∣∣∣∣∣∣

= Op

{
h2

t + h2
z +

(
ln N

Nhthz

)1/2
}

,

and

sup
t∈T

1
Nhthz

n∑

i=1

1
mi

mi∑

j=1

K

(
tij − t

ht

)
K

(
Zij − z

hz

)(
tij − t

ht

)k1
(

Zij − z

hz

)k2

εij = Op

{(
ln N

Nhthz

)1/2
}

,

as n →∞, as long as ht and hz satisfy Assumption 6.

Proof. Lemma 1 follows immediately from results of Mack and Silverman [16] and Masry [17]. �

Proof of Theorem 1. The proof of Theorem 1 can be found in Masry [17]. We omit the details. �

Proof of Theorem 2. By the definition of ζ̂ij , we have

Π̂ij −Πij =

(
j−1∑

k=1

{µ(tik, Zik)− µ̂(tik, Zik)}W (i)
j,k,1, . . . ,

j−1∑

k=1

{µ(tik, Zik)− µ̂(tik, Zik)}W (i)
j,k,q

)⊤
.
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Thus an application of Theorem 1 yields

1
N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)(Π̂ij −Πij)⊤ = Op



{

ht21,N + hz2
1,N +

(
ln N

Nht1,Nhz1,N

)1/2
}2

 Iq.

Similarly,

1
N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)Π̂⊤
ij =

1
N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)Π⊤
ij +

1
N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)(Π̂ij −Πij)⊤

=
1

N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)Π⊤
ij + Op



{

ht21,N + hz2
1,N +

(
ln N

Nht1,Nhz1,N

)1/2
}2

 Iq,

and ∣∣∣∣∣∣
1

N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)Π⊤
ij

∣∣∣∣∣∣
= Op



{

ht21,N + hz2
1,N +

(
ln N

Nht1,Nhz1,N

)1/2
}2

 Iq.

These imply

1
N − n

n∑

i=1

mi∑

j=2

(Π̂ij −Πij)Π̂⊤
ij = Op



{

ht21,N + hz2
1,N +

(
ln N

Nht1,Nhz1,N

)1/2
}2

 Iq.

Due to the fact that

n∑

i=1

mi∑

j=2

Π̂ijΠ̂⊤
ij =

n∑

i=1

mi∑

j=2

{(Π̂ij −Πij) + Πij}{(Π̂⊤
ij −Π⊤

ij) + Π⊤
ij}

=
n∑

i=1

mi∑

j=2

{(Π̂ij −Πij)(Π̂ij −Πij)⊤ + (Π̂ij −Πij)Π̂⊤
ij + Πij(Π̂ij −Πij)⊤ + ΠijΠ⊤

ij},

we see that, as n →∞,

1
N − n

n∑

i=1

mi∑

j=2

Π̂ijΠ̂⊤
ij =

1
N − n

n∑

i=1

mi∑

j=2

ΠijΠ⊤
ij + op(1)Iq →p Λ.

22



Write

n∑

i=1

mi∑

j=2

Π̂ij ε̂ij =
n∑

i=1

mi∑

j=2

{(Π̂ij −Πij)(ε̂ij − εij) + (Π̂ij −Πij)εij + Πij(ε̂ij − εij) + Πijεij}

≡
√

N − n (J1 + J2 + J3 + J4).

Based on Theorem 1, we have

J1 = Op



{

ht21,N + hz2
1,N +

(
ln N

Nht1,Nhz1,N

)1/2
}2

1q = op(1)1q.

By the definition of µ̂(t, z),

µ̂(t, z)− µ(t, z) = diag(1, 0, 0)(D⊤
t,zWt,zDt,z)−1D⊤

t,zWt,zε + diag(1, 0, 0)(D⊤
t,zWt,zDt,z)−1D⊤

t,zWt,z

× (µ(t11, Z11), . . . , µ(t1m1 , Z1m1), . . . , µ(tnmn , Znmn))⊤ − µ(t, z).

Note that each element of D⊤
t,zWt,zDt,z has the form of kernel regression, hence by Lemma 1, we have

1
N

D⊤
t,zWt,zDt,z = f(t, z)diag(1, µ2, µ2)Op

[
1 +

{
ln N

Nht1,Nhz1,N

}1/2
]

. (9)

Therefore, combining the proofs of Lemma A.5 and A.6 of Liang et al. [13], we get

1√
N − n

n∑

i=1

mi∑

j=2

j−1∑

k=1

W(i)
j,kdiag(1, 0, 0)(D⊤

tik,zik
Wtik,zik

Dtik,zik
)−1D⊤

tik,zik
Wtik,zik

εεij = op(1).

In addition, µ(t, z) are smooth in the neighborhood of |tij − t| < ht1,N and |Zij − z| < hz1,N , so that

µ(tij , Zij) = µ(t, z) + ht1,N
∂µ(t, z)

∂t

tij − t

ht1,N
+ hz1,N

∂µ(t, z)
∂z

Zij − z

hz1,N
+ ht1,Nhz1,N

∂2µ(t, z)
∂t∂z

+ ht21,N

∂2µ(t, z)
2∂t2

(
tij − t

ht1,N

)2

+ hz2
1,N

∂2µ(t, z)
2∂z2

(
Zij − z

hz1,N

)2

+ op(ht21,N + hz2
1,N ), (10)

where ∂µ(t, z)/∂t and ∂µ(t, z)/∂z, ∂2µ(t, z)/∂t2 and ∂2µ(t, z)/∂z2 are the first and the second deriva-
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tives of µ(t, z). As a result,

1√
N − n

n∑

i=1

mi∑

j=2

j−1∑

k=1

W(i)
j,k{diag(1, 0, 0)(D⊤

tik,zik
Wtik,zik

Dtik,zik
)−1D⊤

tik,zik
Wtik,zik

× (µ(t11, Z11), . . . , µ(t1m1 , Z1m1), . . . , µ(tnmn , Znmn))⊤ − µ(tik, zik)}εij = op(1).

It follows that J2 = op(1) and J3 = op(1). Furthermore,

J4 =
1√

N − n

n∑

i=1

mi∑

j=2

Πijεij =
1√

N − n

n∑

i=1

mi∑

j=2

ΠijΠ⊤
ijθ +

1√
N − n

n∑

i=1

mi∑

j=2

Πijeij .

For any q×1 constant vector κ = (κ1, . . . , κq)⊤, let Zd =
∑n

i=1

∑mi
j=2(κ

⊤Πij)eij/(N−n). It is obvious
that E(Zd) = 0 and

var(
√

N − nZd) =
1

N − n

n∑

i=1

E
{ mi∑

j=2

(κ⊤Πij)eij

}2
=

1
N − n

n∑

i=1

mi∑

j=2

σ2E
( q∑

k=1

κkπijk

)2
.

Denote ξi =
∑mi

j=2(κ
⊤Πij)eij . Then

S2 =
n∑

i=1

var(ξi) =
n∑

i=1

mi∑

j=2

E(κ⊤Πij)2σ2.

This leads to ∑n
i=1 E|ξi|3

S3
≤ CnE(

∑q
k=1 |κk| · |πijk|)3

n3/2[E{∑q
k=1 κkπijk}2]3/2

= Op

( 1√
N

)
= op(1).

So Theorem 2 follows from the Lyapunov Central Limit Theorem. �

Proof of Theorem 3. From the expression of (µ̂TS(t, z), ∂µ̂TS(t, z)/∂t, ∂µ̂TS(t, z)/∂z)⊤, it follows
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that

H2,N

[
{µ̂TS(t, z),

∂µ̂TS(t, z)
∂t

,
∂µ̂TS(t, z)

∂z
}⊤ − {µ(t, z),

∂µ(t, z)
∂t

,
∂µ(t, z)

∂z
}⊤
]

=
{

(D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
n∑

i=1

mi∑

j=2




1
tij−t
ht2,N

Zij−z
hz2,N


Kht2,N

(tij − t)Khz2,N
(Zij − z)µ(tij , Zij)−

+ {µ(t, z), ht2,N
∂µ(t, z)

∂t
, hz2,N

∂µ(t, z)
∂z

}⊤
}

+ (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
n∑

i=1

mi∑

j=1




1
tij−t
ht2,N

Zij−z
hz2,N


Kht2,N

(tij − t)Khz2,N
(Zij − z)eij

+ (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
n∑

i=1

mi∑

j=2




1
tij−t
ht2,N

Zij−z
hz2,N


Kht2,N

(tij − t)Khz2,N
(Zij − z)(Π⊤

ijθ − Π̂⊤
ij θ̂)

≡ J1 + J2 + J3.

Similar to (9),

1
N

D∗⊤
t,z W∗

t,zD
∗
t,z = f(t, z)diag(1, µ2, µ2)Op

[
1 +

{
ln N

Nht2,Nhz2,N

}1/2
]

,

with probability approaching 1. Combining with (10), we have

J1 =
(
D∗⊤

t,z W∗
t,zD

∗
t,z

)−1
D∗⊤

t,z W∗
t,zBt,z + op(ht22,N + hz2

2,N ),

where

Bt,z =
ht22,N

2

(( t11 − t

ht2,N

)2
, . . . ,

( tnmn − t

ht2,N

)2
)⊤

× ∂2µ(t, z)
∂t2

+
hz2

2,N

2

((Z11 − t

ht2,N

)2
, . . . ,

(Znmn − t

ht2,N

)2
)⊤

× ∂2µ(t, z)
∂z2

.
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By Lemma 1, we have

1
N

D∗⊤
t,z W∗

t,zBt,z = f(t, z)
((

ht22,N

∂2µ(t, z)
2∂t

+ hz2
2,N

∂2µ(t, z)
2∂z

)
µ2,

hz2
2,N

∂2µ(t, z)
2∂z2

µ2, ht22,N

∂2µ(t, z)
2∂t2

µ2

)⊤
.

Combining with the fact (K + aM)−1 = K−1 − aK−1MK−1 + O(a2) as a → 0, we get

(
D∗⊤

t,z W∗
t,zD

∗
t,z

)−1
D∗⊤

t,z W∗
t,zBt,z =

1
2




(
ht22,N

∂2µ(t,z)
∂t + hz2

2,N
∂2µ(t,z)

∂z

)
µ2

hz2
2,N

∂2µ(t,z)
∂z2

ht22,N
∂2µ(t,z)

∂t2


 {1 + op(1)}.

Therefore,

√
Nht2,Nhz2,N





J1 −
1
2




(
ht22,N

∂2µ(t,z)
∂t + hz2

2,N
∂2µ(t,z)

∂z

)
µ2

hz2
2,N

∂2µ(t,z)
∂z2

ht22,N
∂2µ(t,z)

∂t2


+ op(ht22,N + hz2

2,N )





= op(1).

Next we show that, as n →∞,

√
Nht2,Nhz2,NJ2  N (0,Σ∗). (11)

For any non-zero constant vector (d1, d2, d3)⊤, let

Zt,z =
1
N

n∑

i=1

mi∑

j=1

{
d1 + d2

(
tij − t

ht2,N

)
+ d3

(
Zij − z

hz2,N

)}
Kht2,N

(tij − t)Khz2,N
(Zij − z)eij .
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Obviously, E(Zt,z) = 0 and

var(
√

Nht2,Nhz2,NZt,z)

=
ht2,Nhz2,N

N

n∑

i=1

E
mi∑

j=1

[{
d1 + d2

(
tij − t

ht2,N

)
+ d3

(
Zij − z

hz2,N

)}
Kht2,N

(tij − t)Khz2,N
(Zij − z)eij

]2

+
ht2,Nhz2,N

N

n∑

i=1

∑

j1 ̸=j2

E
[{

d1 + d2

(
ti,j1 − t

ht2,N

)
+ d3

(
Zi,j1 − z

hz2,N

)}{
d1 + d2

(
ti,j2 − t

ht2,N

)
+ d3

(
Zi,j2 − z

hz2,N

)}

×Kht2,N
(ti,j1 − t)Khz2,N

(Zi,j1 − z)Kht2,N
(ti,j2 − t)Khz2,N

(Zi,j2 − z)ei,j1ei,j2

]

≡ Q1 + Q2.

As n →∞, we have

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
}
→ f(t, z)ν2

0 ,

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
(

tij − t

ht2,N

)2}
→ f(t, z)ν0ν

2
2 ,

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
(

Zij − z

hz2,N

)2}
→ f(t, z)ν0ν

2
2 ,

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
(

tij − t

ht2,N

)}
→ f(t, z)ν0ν1,

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
(

Zij − z

hz2,N

)}
→ f(t, z)ν0ν1,

ht2,Nhz2,NE
{

K2
ht2,N

(tij − t)K2
hz2,N

(Zij − z)
(

tij − t

ht2,N

)(
Zij − z

hz2,N

)}
→ f(t, z)ν2

1 .

Hence

lim
n→∞

Q1 = f(t, z)σ2{d2
1ν

2
0 + (d2

2 + d2
3)ν0ν

2
2 + (2d1d2 + 2d1d3)ν0ν1 + 2d2d3ν

2
1}.

Similarly, for j1 ̸= j2, we can show that Q2 → 0 as n →∞. Further, let S2
N =

∑n
i=1 var(ϕi) with

ϕi =
√

ht2,Nhz2,N

mi∑

j=1

{
d1 + d2

(
tij − t

h2,N

)
+ d3

(
Zij − z
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)}
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(tij − t)Khz2,N
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Then

S2
N = f(t, z)σ2{d2

1ν
2
0 + (d2

2 + d2
3)ν0ν

2
2 + (2d1d2 + 2d1d3)ν0ν1 + 2d2d3ν

2
1}+ o(n),

which together with the fact that

n∑

i=1

E|ϕi|3 ≤ O(1)×
n∑

i=1

(ht2,Nhz2,N )3/2E
{
|d1|+ |d2| ·

∣∣∣∣
tij − t

ht2,N

∣∣∣∣+ |d3| ·
∣∣∣∣
Zij − z

hz2,N

∣∣∣∣
}3

×K3
ht2,N

(tij − t)K3
hz2,N

(Zij − z) = O(nht
−1/2
2,N hz

−1/2
2,N ),

implies that the Lyapunov condition lim
n→∞

S−3
N

∑n
i=1 E|ϕi|3 = 0 is satisfied. Hence (11) is proved.

It remains to show that J3 = op[ht22,N + hz2
2,N + {1/(Nht2,Nhz2,N )}1/2]. Express J3 as J3 =

J31 + J32 − J33 with

J31 = (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
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mi∑

j=2




1
tij−t
ht2,N

Zij−z
hz2,N


Kht2,N

(tij − t)Khz2,N
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ij)θ,

J32 = (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
n∑

i=1

mi∑

j=2




1
tij−t
ht2,N

Zij−z
hz2,N


Kht2,N

(tij − t)Khz2,N
(Zij − z)(Π⊤

ij − Π̂⊤
ij)(θ̂ − θ),

and

J33 = (D∗⊤
t,z W∗

t,zD
∗
t,z)

−1
n∑

i=1

mi∑

j=2



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
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ij(θ̂ − θ).

By Theorem 2 and following the arguments proving (11), it is easy to see that

J33 = Op

(
1√
N

)
×Op

(
1√

Nht2,Nhz2,N

)
= op

{
ht22,N + hz2

2,N +
(

1
Nht2,Nhz2,N

)1/2}
.
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Combining Theorem 1 and 2 we can show that

J32 = Op

(
1√
N

)
×Op

{
ht21,N+hz2

1,N+
(

1
Nht1,Nhz1,N

)1/2}
= op

{
ht22,N+hz2

2,N+
(

1
Nht2,Nhz2,N

)1/2}
.

According to the proof of Theorem 1,

µ̂(tij , Zij)− µ(tij , Zij)

= diag(1, 0, 0) {f(tij , Zij)S}−1




1
N

∑n
i1=1

∑mi
j1=1 Kht1,N

(ti1,j1 − tij)Khz1,N
(Zi1,j1 − zij)εi1,j1

1
N

∑n
i1=1

∑mi
j1=1

(
ti1,j1

−tij
h1,N

)
Kht1,N

(ti1,j1 − tij)Khz1,N
(Zi1,j1 − zij)εi1,j1

1
N

∑n
i1=1

∑mi
j1=1

(
Zi1,j1

−zij

h1,N

)
Kht1,N

(ti1,j1 − tij)Khz1,N
(Zi1,j1 − zij)εi1,j1




+ diag(1, 0, 0) {f(tij , Zij)S}−1




f(tij , Zij)
(
ht22,N

∂2µ(t,z)
2∂t + hz2

2,N
∂2µ(tij ,Zij)

2∂z

)
µ2

f(tij , Zij)hz2
2,N

∂2µ(tij ,Zij)
2∂z2 µ2

f(tij , Zij)ht22,N
∂2µ(tij ,Zij)

2∂t2
µ2


+ op(ht21,N + hz2

1,N )

= G1(tij , Zij) + G2(tij , Zij) + op(ht21,N + hz2
1,N ),

where

G1(tij , Zij) =
1

f(tij , Zij)
1
N

n∑

i1=1

mi∑

j1=1

Kht1,N
(ti1,j1 − tij)Khz1,N

(Zi1,j1 − zij)εi1,j1 ,

G2(tij , Zij) =
1
2

(
ht22,N

∂2µ(t, z)
∂t

+ hz2
2,N

∂2µ(t, z)
∂z

)
µ2 + op(ht21,N + hz2

1,N )

and S = diag(1, µ2, µ2). Then we have

1
N

n∑

i=1

mi∑

j=2

Kht2,N
(tij − t)Khz2,N

(Zij − z)
q∑

k=1

{ j−1∑

d=1

G1(tij , Zij)W
(i)
j−1,d,k

}
θk

=
1
N

n∑

i1=1

mi∑

j1=1

εi1,j1Φi1,j1 ,

29



where

Φi1,j1 =
1

Nf(tij , Zij)

n∑

i=1

mi∑

j=2

Kht2,N
(tij − t)Khz2,N

(Zij − z)

×
q∑

k=1

{ j−1∑

d=1

Kht1,N
(ti1,j1 − tij)Khz1,N

(Zi1,j1 − zij)W
(i)
j−1,d,k

}
θk.

Since εi1,j1 and Φi1,j1 are independent and Assumption 4.2 implies that Φi1,j1 is bounded,

1
N

n∑

i=1

mi∑

j=2

Kht2,N
(tij − t)Khz2,N

(Zij − z)
q∑

k=1

{ j−1∑

d=1

Z⊤ijG1(tij , Zij)W
(i)
j−1,d,k

}
θk = Op(N−1/2).

Moreover, invoking Lemma 1, we get

1
N

n∑

i=1

mi∑

j=2

Kht2,N
(tij − t)Khz2,N

(Zij − z)
q∑

k=1

[ j−1∑

d=1

{G2(ti,j−k, Zi,j−k)+ op(ht21,N +hz2
1,N )}W(i)

j−1,d,k

]
θk

= Op(ht21,N + hz2
1,N ) = op(ht22,N + hz2

2,N ).

Thus J31 is of order op[ht22,N + hz2
2,N + {ln N/(Nht2,Nhz2,N )}1/2], and so is J3. Hence the proof of

Theorem 3 is complete. �

Lemma 2. Suppose that Assumption 1 to 6 in the Appendix hold and λ → 0 as n → ∞. Then we
have

1
N2

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

∥µ̂λ(ti1j1 , Zi2j2)− µ(ti1j1 , Zi2j2)∥2 = Op{(Nht3,Nhz3,N )−1}.

Proof. For an arbitrary matrix A = (aij), we define its norm as ∥A∥2 =
∑

a2
ij . We use u = (uij) ∈

RN×N to denote an arbitrary N ×N matrix and vu = vec(u). Let

B0 = (µ0(t11, Z), . . . , µ0(t1m1 , Z), . . . , µ0(tnmn , Z))⊤ ∈ RN×N .

Thus, by Fan and Li [5], it suffices to show that for any small probability ε > 0, we can always find a
constant C > 0, such that

Pr
[

inf
N−2∥u∥2=C2

Qλ{B0 + (Nht3,Nhz3,N )−1/2u} > Qλ(B0)
]
≥ 1− ε. (12)
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By definition of Qλ(B), we have

ht3,Nhz3,N

N2
[Qλ(B0 + {Nht3,Nhz3,N )−1/2u} −Qλ(B0)]

=
ht3,Nhz3,N

N2

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ(ti1j1 , Zi2j2)− (Nht3,Nhz3,N )−1/2ui1j1,i2j2}2

Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2)

− ht3,Nhz3,N

N2

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2)

+
ht3,Nhz3,Nλ

N2
× ∥vu0 + (Nht3,Nhz3,N )−1/2vu∥ − ∥vu0∥

N
= R1.

By simple algebraic calculations and the fact that ∥vu0∥/N = 0, we have

R1 ≥
1

N2

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

{u2
i1j1,i2j2 f̂(ti1j1 , zi2j2)− 2ui1j1,i2j2 êi1j1,i2j2} = R2,

where

êi1j1,i2j2 =

√
ht3,Nhz3,N

N

n∑

i=1

mi∑

j=1

(µti1j1
,Zi2j2

− µtij ,Zij − εij)Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2)

and

f̂(ti1j1 , zi2j2) =
1
N

n∑

i=1

mi∑

j=1

Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2).

Let f̂min be the smallest element of f̂(ti1j1 , zi2j2) and ê ∈ RN×N with the (i1j1, i2j2) element equal to
êi1j1,i2j2 . We have

R2 ≥ f̂min{N−2∥u∥2} − 2(N−2∥u∥2)1/2(N−2∥ê∥2)1/2 = R3.

By the condition N−2∥u∥2 = C2, we have

R3 = f̂minC
2 − 2C × (N−2∥ê∥2)1/2. (13)

After some algebraic calculations, we have N−2∥ê∥2 = Op(1). By Assumption 2, we have Pr(f̂min →
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fmin) → 1 and fmin > 0, where fmin is the smallest value of joint probability density function. Lastly,
note that the first term in (13) is a quadratic function in C while the second term is linear in C. As
long as C is sufficiently large, the right-hand side of (13) is guaranteed to be positive with probability
arbitrarily close to 1. This proves (12). The proof is of Lemma 2 is thus complete. �

Proof of Theorem 4. Suppose the claim is not true, i.e., ∥b∥ ̸= 0. Since

b =
1
N

(µ(t12, Z11)− µ(t11, Z11), . . . , µ(tnmn , Z11)− µ(tn,mn−1, Z11), . . . ,

µ(tnmn , Znmn)− µ(tn,mn−1, Znmn))⊤,

then ν = (µ(t11, Z11), . . . , µ(tnmn , Z11), . . . , µ(tnmn , Znmn))⊤/N must be the solution of the following
normal equation

0 =
∂Qλ(B)

∂ν
= α1 + α2, (14)

where α1 is an N2-dimensional vector with its kth component given by α1k. If k = 1 + (n1− 1)N for
all n1 ∈ {1, . . . , N}, then for all i2 ∈ {1, . . . , n} and j2 ∈ {1, . . . , mi2},

α1k =
λ{µ(t11, Zi2j2)− µ(t12, Zi2j2)}

∥b∥
.

If k = k∗ + (n1 − 1)N for all n1 ∈ {, . . . , N} and 2 < k∗ < N , then for all i2 ∈ {1, . . . , n} and
j2 ∈ {1, . . . , mi2},

α1k =
λ{µ(tk, Zi2j2)− µ(tk−1, Zi2j2)− µ(tk+1, Zi2j2)}

∥b∥
.

If k = N + (n1 − 1)N for all n1 ∈ {1, . . . , N}, then for all i2 ∈ {1, . . . , n} and j2 ∈ {1, . . . , mi2},

α1k =
λ{µ(tnmn , Zi2j2)− µ(tn,mn−1, Zi2j2)}

∥b∥
.

Thus α2 is a N2-dimensional vector whose kth component is given by

−2
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ̂(ti1j1 , Zi2j2)}Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2).

By the standard argument of kernel smoothing when applying Lemma 1, ∥α2∥ = Op(Nht
−1/2
3,N hz

−1/2
3,N ).

Furthermore, under the conditions of the theorem, we know that Pr(∥α1∥ > ∥α2∥) → 1. Consequently,
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we know that, with probability tending to 1, the normal equation (14) cannot hold. This implies that
∥b̂λ∥ must be located at the place where the objective function Qλ(B) is not differentiable. Since
the only place where Qλ(B) is not differentiable for b̂λ is the origin, we know immediately that
Pr(∥b̂λ∥ = 0) → 1. This completes the proof of Theorem 4. �

Proof of Theorem 5. Trivial in view of Theorem 4. We omit the details. �

Proof of Theorem 6. In this paper, we say that an arbitrary model S is underfitted if the true
model is a bivariate nonparametric model but we think that it as a univariate nonparametric model;
it is overfitted if the true model is a univariate nonparametric model but we estimate it as a bivariate
nonparametric model. Then, according to whether the model Sλ is underfitted, correctly fitted, or
overfitted, we can create three mutually exclusive sets, viz.

R+ = {λ ∈ R : Sλ ⊃ ST ,Sλ ̸= ST }, R0 = {λ ∈ R : Sλ = ST }, R− = {λ ∈ R : Sλ ̸⊃ ST }.

Furthermore, following the same idea as in [8], we define a reference tuning parameter λn such that

λn = Op{N−3/2ht3,Nhz3,N ln(N)/||b̂||}, where b̂ has the same definition as b̂
m

λ except that µ̂m
λ (t, Z) is

replaced by the unpenalized estimator. It follows immediately that such a tuning parameter satisfies
the technical conditions specified in Theorem 4. Consequently, we know that Pr(Sλn = ST ) → 1.
Then the theorem can be proved by comparing BICλn and BICλ. We distinguish two cases.

Case 1 (Underfitted model). Recall that B̂λ automatically determines a model Sλ. Under such a
model Sλ, we can define another unpenalized estimate B̂Sλ

as

B̂Sλ
=

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2).

In other words, B̂Sλ
is the unpenalized estimator under the model determined by B̂λ. By definition,

we have RSSλ ≥ RSSSλ
. Due to the fact that βS ̸= β0 for any S ⊃ ST , we also have

RSSλ − RSSλn > N−2
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

{µ̂Sλ
(ti1j1 , Zi2j2)− µ̂λ(ti1j1 , Zi2j2)}2f̂(ti1j1 , Zi2j2)

≥ f̂min{N−2
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

{µ̂Sλ
(ti1j1 , Zi2j2)− µ̂λ(ti1j1 , Zi2j2)}2}

= f̂min{∥B̂Sλ
− B̂λ∥} → fmin∥BSλ

−Bλ∥ > 0,
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where f̂min and fmin are defined as in Lemma 2. This together with the definition of BICλ suggest
that Pr(infλ∈R− BICλ > BICλn) P−→ 1.

Case 2 (Overfitted model). Let λ be an arbitrary tuning parameter that produces an overfitted model
(i.e., λ ∈ R+). For the unpenalized estimator B̃, we must have

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ̃(ti1j1 , Zi2j2)}Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2) = 0.

Thus

RSSλ = N−3
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

n∑

i=1

mi∑

j=1

{Yij − µ̃(ti1j1 , Zi2j2)}2Kht3,N
(tij − ti1j1)Khz3,N

(Zij − Zi2j2)

+ N−2
n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

{µ̃(ti1j1 , Zi2j2)− µ̂λ(ti1j1 , Zi2j2)}2f̂(ti1j1 , Zi2j2)

= RSSF + Rλ.

It follows that

ln(RSSλ)− ln(RSSF ) = ln
(

RSSλ

RSSF

)

≥ − f̂max

N2RSSF

n∑

i2=1

mi2∑

j2=1

n∑

i1=1

mi1∑

j1=1

∥µ̃(ti1j1 , Zi2j2)− µ̂λ(ti1j1 , Zi2j2)∥2 = Op{(Nht3,Nhz3,N )−1}. (15)

Similarly, we can prove that

ln(RSSλn)− ln(RSSF ) = −|Op{(Nht3,Nhz3,N )−1}|. (16)

Combining (15) and (16) we deduce that

inf
λ∈R+

lnRSSλ − lnRSSλn ≥ −|Op{(Nht3,Nhz3,N )−1}|.

Consequently, it follows that

BICλ − BICλn ≥ −|Op{(Nht3,Nhz3,N )−1}|+ ln(Nht3,Nhz3,N )
Nht3,Nhz3,N

.
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It is clear that, with probability tending to 1, the right-hand side of the above equations is guaranteed
to be positive. Consequently, we have Pr(infλ∈R+ BICλ > BICλn) P−→ 1.

Combining Cases 1 and 2, we have

Pr( inf
λ∈R+∪R−

BICλ > BICλn) P−→ 1.

The above equation implies that, with probability tending to 1, the tuning parameters failing to
identify the true model cannot be selected by our BIC criterion, because it is at least not as favorable
as our reference λn. Thus the proof of Theorem 6 is complete. �
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