
Accepted Manuscript

Multivariate and functional robust fusion methods for structured Big Data

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman, Badih Ghattas

PII: S0047-259X(17)30689-9
DOI: https://doi.org/10.1016/j.jmva.2018.06.012
Reference: YJMVA 4384

To appear in: Journal of Multivariate Analysis

Received date : 20 November 2017

Please cite this article as: C. Aaron, A. Cholaquidis, R. Fraiman, B. Ghattas, Multivariate and
functional robust fusion methods for structured Big Data, Journal of Multivariate Analysis (2018),
https://doi.org/10.1016/j.jmva.2018.06.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jmva.2018.06.012

Multivariate and functional robust fusion methods for structured Big Data

Catherine Aaron,a,1, Alejandro Cholaquidisb,2, Ricardo Fraimanb,c,3,
Badih Ghattasd,4

aUniversité Clermont Auvergne, Campus universitaire des Cézeaux, France
bCABIDA and Centro de Matemática, Universidad de la República, Uruguay

cInstituto Pasteur de Montevideo, Uruguay
d Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453, Marseille, France

Abstract

We address one of the important problems in Big Data, namely how to combine estimators from different subsam-
ples by robust fusion procedures, when we are unable to deal with the whole sample. We propose a general framework
based on the classic idea of ‘divide and conquer’. In particular we address in some detail the case of a multivariate
location and scatter matrix, the covariance operator for functional data, and clustering problems.

Key words: Big Data, Clustering, Functional Data, Robustness

1. Introduction

Big Data has emerged in recent years in various contexts such as social networks, biochemistry, health care
systems, politics, and retail, among many others. New developments are necessary to address many of the related
issues. Typically, classical statistical approaches that perform reasonably well for small data sets fail when dealing
with huge data sets. To handle these challenges, new mathematical and computational methods are needed.

The challenges posed by Big Data cover a wide range of problems, and have been recently considered in abundant
literature; see, e.g., [1, 22, 23] and references therein. We address one of these problems, namely, how to combine,
using robust techniques, estimators obtained from different subsamples in the case where we are computationally
unable to deal with the whole sample. In what follows, we will refer to such approaches as robust fusion methods
(RFM). Specifically, this paper proposes a general algorithm which, in spirit, is related with the well-known idea of
divide-and-combine. We consider the case where the data belong to finite- and infinite-dimensional spaces.

Functional Data Analysis (FDA) has become a central area of statistics in recent years, having gained much
momentum from the work of Ramsay and his collaborators in the early 2000s. Since then, both the quantity and
quality of its results have enjoyed a marked growth, while addressing a great diversity of problems. FDA faces
several specific challenges, most of them associated with the infinite-dimensional nature of the data. Essential recent
references for FDA include [3, 11, 12, 15], as well as the recent surveys [9] and [21].

Divide-and-combine is a well-known technique for dealing with huge data sets; see, e.g., [2]. In the FDA setting,
it has also been considered recently in [20] for linear regression problems with the Lasso, a problem that is not
addressed here. In the present paper, we focus on a general robust procedure for different problems. The consistency
and robustness of our method is studied in the general setting of FDA, and we apply our proposed algorithm to some
statistical problems in finite- and infinite-dimensional settings, namely, the location and scatter matrix, clustering, and
impartial trimmed k-means. Also, a new robust estimator of the covariance operator is proposed.

We start by describing one of the simplest problems in this area as a toy example. Suppose we are interested in
the median of a huge set of iid random variables X1, . . . , Xn with common density fX , and we split the sample into m

1catherine.aaron@math.univ-bpclermont.fr
2acholaquidis@cmat.edu.uy.
3rfraiman@cmat.edu.uy.
4badihghattas@gmail.com

Preprint submitted to Journal of Multivariate Analysis June 30, 2018

subsamples of size `, so that n = m`. We compute the median of each subsample, resulting in m random variables
Y1, . . . ,Ym. Then we take the median of the set Y1, . . . ,Ym, i.e., we consider the well-known median of medians, which,
in this case, will be our RFM estimator. This estimator clearly does not coincide with the median of the whole original
sample X1, . . . , Xn, but it will be close. What can be said regarding its efficiency and robustness of this estimator?

In this particular case, the RFM estimator is nothing but the median of m iid random variables, but now with a
different distribution, given by the distribution of the median of ` random variables with density fX . Suppose for
simplicity that ` = 2k + 1. Then, the density of each random variable Y1, . . . ,Ym is given by

gY (t) =
(2k + 1)!

(k!)2 FX(t)k{1 − FX(t)}k fX(t).

On the one hand, if fX{F−1
X (0.5)} , 0, the empirical median θ̂ = med(X1, . . . , Xn) has, asymptotically, a normal

distribution centered at the true median θ with variance var(θ̂) = 1/{4n fX(θ)2}. On the other hand, the distribution of
θ̃RFM , the median of medians, is asymptotically normal and centered at θ with variance var(θ̃RFM) = 1/{4mgY (θ)2},
where gY (θ) = (1/2)2k(2k + 1)!/(k!2) fX(θ) ∼ √2k/π. So in this case we can explicitly compute the asymptotic relative
loss of efficiency, i.e., limn→∞ var(θ̂)/var(θ̃RFM) = 2/π ≈ 0.6366.

In Section 2 we generalize this RFM idea and study its consistency, robustness, breakdown point, and efficiency.
In Section 3, we show how the RFM can be applied to multivariate location and scatter matrix estimation, covariance
operator estimation for functional data, and robust clustering. Section 4 reports simulation results for these problems.

2. A general setup for RFM

We start by introducing a general framework for RFM. The idea is quite simple: given a sample X1, . . . , Xn of iid
random elements in a metric space E (e.g., E = Rd) and a statistical problem (such as multivariate location, covariance
operators, linear regression, or principal components, among many others), we split the sample into m subsamples
of equal size. For each subsample we compute a robust solution for the statistical problem considered. The solution
given by RFM corresponds to the deepest point among the m solutions (in terms of the appropriate norm associated
to the problem) obtained from the subsamples.

In order to introduce the notion of depth, we will use throughout this paper the following notation. Let X be a
random variable taking values in some Banach space (E, ‖ · ‖), with probability distribution PX , and let x ∈ E. The
depth of x with respect to PX is defined by

D(x, PX) = 1 −
∥∥∥∥∥∥EPX

(
X − x
‖X − x‖

)∥∥∥∥∥∥ . (1)

It was introduced in [6], formulated (in a different way) in [21], and extended to a very general setup in [5].
Given a sample X1, . . . , Xn, let us write Pn for the empirical measure. The empirical version of (1) is

D(x, Pn) = 1 −
∥∥∥∥∥∥EPn

(
X − x
‖X − x‖

)∥∥∥∥∥∥ = 1 − 1
n

∥∥∥∥∥∥∥

n∑

i=1

Xi − x
‖Xi − x‖

∥∥∥∥∥∥∥
. (2)

Although we suggest using the depth function, we point out that this is not always suitable, e.g., in clustering.
In such cases, the deepest point may be replaced by other robust estimators, as we will show in Section 3.3. We
summarize our approach in Table 1 for a general framework of parameter estimation. This may be easily applied to
any situation where robust estimators exist or can be designed.

We will address the consistency, efficiency, robustness, and computational time of the RFM proposals.

2.1. Consistency, robustness and breakdown point of the RFM

We start by proving that, given a sample X1, . . . , Xn of a random element X, its deepest point (i.e., the value that
maximizes (2)) converges almost surely to the value that maximizes (1). Although similar results have already been
obtained, e.g., in [5], we will need this fact when Pn is not necessarily the empirical measure associated to a sample,
but any measure converging weakly to a probability distribution P. We will need the following assumption.

2

Table 1: Parameter estimation using RFM

X1, . . . , Xn: iid random elements in a Banach space E; θ0: a parameter to estimate

a) Split the sample into m subsamples with n = m`, viz. {X1, . . . , X`}, {X`+1, . . . , X2`}, . . . , {X(m−1)`+1, . . . , X`m}.
b) Compute a robust estimate of θ0 on each subsample, yielding θ̂1, . . . , θ̂m.
c) Compute the final estimate θ̃RFM by RFM combining θ̂1, . . . , θ̂m by a robust approach.

For instance, θ̃RFM can be the deepest point, or the average of 40% of the deepest points among the θ̂1, . . . , θ̂m.

Assumption H1: A probability measure P defined on a separable Hilbert spaceH fulfils H1 if P{∂B(y, r)} =

0 for all r > 0 and y ∈ H , where ∂A stands for the boundary of a set A ⊂ H .

Observe that H1 is fulfilled if the random variable ‖X − y‖ is absolutely continuous for every y ∈ H , where X is a
random variable with distribution P.

Theorem 1. Let X1, X2, . . . be a sequence of random elements with common distribution Pn, defined in a separable
Hilbert space (H , ‖ · ‖). Let P be a probability distribution fulfilling H1. Assume that Pn → P weakly, and ‖EP{(X −
x)/‖X − x‖}‖ has a unique minimum. Then, as n→ ∞,

arg max
x

D(x, Pn)→ arg max
x

D(x, P) a.s. (3)

In order to prove (3) we will use the following fundamental result proved by Billingsley and Topsøe [4] and which
still holds whenH is a separable Banach space; see Theorem 1 and Example 3.

Theorem 2. Suppose S ⊂ H and let B(S ,H) be the class of all bounded measurable functions mapping S into H .
Suppose F ⊂ B(S ,H) is a subclass of functions. Then

sup
f∈F

∥∥∥∥∥
∫

f dPn −
∫

f dP
∥∥∥∥∥→ 0,

for every sequence Pn that converges weakly to P if, and only if,

sup{‖ f (z) − f (t)‖ : f ∈ F , z, t ∈ S } < ∞,
and for all ε > 0,

lim
δ→0

sup
f∈F

P[{x : ω f {B(x, δ)} ≥ ε}] = 0, (4)

where ω f (A) = sup{| f (x) − f (y)| : x, y ∈ A} and B(x, δ) is the open ball of radius δ > 0.

Proof of Theorem 1. Consider S = H and F the subclass { fy : y ∈ H} of functions such that fy(z) = (z − y)/‖z − y‖.
Then sup{‖ fy(z) − fy(t)‖ : y, x, z ∈ H} ≤ 2. Let 2

√
δ < ε. Then, for all y,

{
x : ω fy {B(x, δ)} > ε} =

{
x ∈ B(y,

√
δ) : ω fy {B(x, δ)} > ε} ∪ {

x < B(y,
√
δ) : ω fy {B(x, δ)} > ε}.

Observe that ω fy {B(x, δ)} = 2δ/‖x − y‖ if ‖x − y‖ > δ. Thus if x < B(y,
√
δ), then ω fy {B(x, δ)} ≤ 2

√
δ < ε, and so

{x < B(y,
√
δ) : ω fy {B(x, δ)} > ε} = ∅. Finally, we get that for all y,

{x : ω fy {B(x, δ)} > ε} = {x ∈ B(y,
√
δ) : ω fy {B(x, δ)} > ε} ⊂ B(y,

√
δ).

Now, since P{∂B(y,
√
δ)} = 0 we have that 1B(yk ,

√
δ)(x) → 1B(y,

√
δ)(x) a.s. with respect to P, whenever yk → y for

every y. Lebesgue’s Dominated Convergence Theorem then implies that

P{B(yk,
√
δ)} → P{B(y,

√
δ)}.

3

This entails that P{B(y,
√
δ)} is a continuous function of y, so its maximum in a compact set, is attained.

Let ε > 0 and Kε be a compact set such that P[{Kε 	 B(0, 1)}{] < ε where Kε 	 B(0, 1) = {z ∈ Kε : d(z,K{
ε) > 1},

where K{
ε is the complement of the set Kε . Let yε,δ = arg maxy∈Kε

P{B(y,
√
δ)}. We will prove that for any fixed ε > 0,

P{B(yε,δ,
√
δ)} → 0 as δ→ 0. If this is not the case there exists η > 0, yn ∈ Kε and δn → 0 such that P{B(yn,

√
δn)} > η

for all n ∈ N. Since Kε is compact we can assume that yn → y for some y ∈ Kε by considering a subsequence. From
P{∂B(x, r)} = 0 for all x, it follows that P({y}) = 0; indeed, just consider x and r > 0 such that y ∈ ∂B(x, r).

Define ρn = max j≥n(
√
δ j + ‖y − y j‖) and Bn = B(y, ρn). Then P(Bn) ≥ η and B1 ⊇ · · · ⊇ Bn · · · . As a result,

0 = P({y}) = lim P(Bn), which contradicts the fact that P{B(yn,
√
δn)} > η. Now for all δ < 1,

sup
y

P{B(y,
√
δ)} ≤max

[
sup
y∈Kε

P
{
B(y,

√
δ)

}
, P

[{Kε 	 B(0, 1)}{]
]
.

Therefore supy P{B(y,
√
δ)} ≤ max[P{B(yε,δ,

√
δ)}, ε] < ε for δ small enough, showing that (4) holds. Finally (3) is a

consequence of the uniform convergence of D(x, Pn) to D(x, P) and the argmax argument. �

The following corollary states the consistency of the RFM explained in Table 1 when the sample X1, . . . , Xn is
distributed as a random variable X with distribution P0 fulfilling H1.

Corollary 1. Assume that P0 fulfils H1 and that there exists a unique θ0 such that, for all `,

EP0

(
θ̂1 − θ0

‖θ̂1 − θ0‖

)
= 0.

Then, under P0, θ̃RFM → θ0 a.s., as m→ ∞.

Recall that a sequence of estimators θ̂1, θ̂2, . . . is qualitatively robust at a probability distribution P if for all ε > 0
there exists δ > 0, for all probability distribution Q, Π(P,Q) < δ ⇒ Π{LP(θ̂n),LQ(θ̂n)} < ε (see [14]), where Π

denotes the Prokhorov distance and LF(θ̂n) denotes the probability distribution of θ̂n under F. As Π metrizes weak
convergence, we have the following corollary.

Corollary 2. Robustness of RFM estimators. Under the hypotheses of Corollary 1, θ̃RFM is qualitatively robust.

Remark 1. Qualitative robustness ensures the good behavior of the estimator in a neighborhood of P0. However,
there are some estimators that still converge to θ0 even if P is far from P0. For instance “the shorth”, defined as the
average of the observations lying in the shortest interval containing half of the data, has this property. Indeed, consider
the case where P0 = U(−1, 1), P1 = U(3, 4), and P = (1 − α)P0 + αP1, for any α < 0.5. This is also the case for
the impartial trimmed estimators, the minimum volume ellipsoid, and the redescendent (with compact support) M-
estimators; see Section 2.2. If the estimators corresponding to each subsample have this property, the RFM estimator
will inherit it.

2.2. Efficiency of the fusion of M-estimators
In this section we obtain the asymptotic variance of the RFM method, for the special case of M-estimators. Recall

that an M-estimator T can be defined (see Section 3.2 in [17]) by the implicit functional equation
∫
ψ{x; T (F)}F(dx) =

0, where ψ(x; θ) = (∂/∂θ)ρ(x; θ) and F stands for the true underlying common distribution of the observations. For
instance, the Maximum Likelihood estimator is obtained with ρ(x; θ) = − ln{ f (x, θ)}. The estimator Tn is given by
the empirical version of T , based on a sample X1, . . . , Xn. It is well known that

√
n {Tn − T (F)} is asymptotically

normal with mean 0 and variance A(F,T) given by the integral of the square of the influence curve, i.e., A(F,T) =∫
IC(x; F,T)2F(dx), where the influence curve, IC, is

IC(x; F,T) =
ψ{x; T (F)}

−
∫

(∂/∂θ)ψ{x; T (F)}F(dx)
.

For the location problem (i.e.,
∫
ψ(x − µ0)F(dx) = 0), we get IC(x, F,T) = −ψ(x − µ0)/

∫
ψ′(x − µ0)F(dx).

The asymptotic efficiency of Tn is defined as Eff(Tn) = σ2
ML/A(F,T), where σ2

ML is the asymptotic variance of the
4

maximum likelihood estimator. Then the asymptotic variance of an M-estimator built from a sample T 1
n , . . . ,T

m
n of

m M-estimators of T can be computed easily. The strong consistency of the M-estimators under the model (see [16])
entails that θ̃RFM built from M-estimators is consistent (see Corollary 1) whenever the empirical version of the implicit
functional equation has an unique solution.

The choice of m and ` has an impact on the robustness of the estimator and on the computation time. Indeed, if
the computation time of each θ̂i = O(`a) and the computation time of the fusion step is O(mb), then the optimal choice
is ` = O{n(b−1)/(a+b−1)} if b > 1.

2.3. Breakdown point for the RFM

Following [10] we consider the finite-sample breakdown point. Intuitively the breakdown point corresponds to the
maximum percentage of outliers (located at the worst possible positions) we can have in a sample before the estimate
breaks in the sense that it can be arbitrarily large (or close to the boundary of the parameter space).

Definition 1. Let x = {x1, . . . , xn} be a data set, θ an unknown parameter lying in a metric space Θ, and θ̂n = θ̂n(x)
an estimate based on x. Let Xp be the set of all data sets y of size n having n − p elements in common with x, viz.

Xp = {y : card(y) = n, card(x ∩ y) = n − p}.

Then the breakdown point of θ̂n at x is ε∗n(θ̂n, x) = p∗/n, where p∗ = max{p ≥ 0 : ∀y∈Xp θ̂n(y) is bounded and also
bounded away from the boundary ∂Θ, if ∂Θ , ∅}.

To analyze the breakdown point of the RFM, we consider the case where the breakdown point of the robust
estimators is 0.5 (high breakdown point estimators). For each observation Xi from the sample, let Bi = 1 if Xi is an
outlier and 0 otherwise. Assume that the variables Bi are iid following a Bernoulli distribution with parameter p and
let S j =

∑`
s=1 B(j−1)`+s be the number of outliers in the subsample j, for j ∈ {1, . . . ,m}. The RFM estimator will break

down if and only if there are more than m/2 cases where S j is greater than k (recall that ` = 2k + 1).
To take a glance of the behavior of the breakdown point, we performed 5000 replications where we generated

n = 30,000 binomial random variables with parameter p. We split each of the samples of size 30,000 randomly into
m subsamples. Next we computed the number of its subsamples which contained more than k values of 1 (outliers).
In Table 2 we report the average number of times (over the 5000 replications) that this number was greater than m/2,
for different values of p and m. The best result is obtained when m = 5.

3. Some applications of RFM

In this section we will show how RFM may be used to tackle three classic statistical problems for large samples:
estimating the multivariate location and scatter matrix, estimating the covariance operator for functional data, and
clustering. For each problem we show how to apply our approach, given in Table 1. Solutions for many other
problems may be derived from these cases, e.g., Principal Components, both for non-functional and functional data.

Table 2: Average (over 5000 replications) of estimator breakdowns for different values of m and p and fixed n = 30,000; p is the proportion of
outliers.

m p = 0.45 p = 0.49 p = 0.495 p = 0.499

5 0 0.0020 0.0820 0.3892
10 0 0.0088 0.1564 0.5352
30 0 0.0052 0.1426 0.5186
50 0 0.0080 0.1598 0.5412

100 0 0.0192 0.2162 0.6084
150 0 0.0278 0.2728 0.6780

5

3.1. Robust fusion for location and scatter matrix in finite-dimensional spaces
Given an iid random sample X1, . . . , Xn in Rd, we consider the location and scatter matrix estimation problem. To

perform RFM we only need to make explicit the estimators used for each of the m subsamples, and the depth function
in the fusion stage. For the location parameters, we propose to use simple robust estimates, denoted by θ̂1, . . . , θ̂m;
see, e.g., [19].

For the depth function we propose to use the empirical version of (1), replacing PX by the empirical distribution
Pm of {θ̂1, . . . , θ̂m},

D(θ, Pm) = 1 −
∥∥∥∥∥∥∥∥

1
m

m∑

j=1

θ̂ j − θ
‖θ̂ j − θ‖

∥∥∥∥∥∥∥∥
, (5)

where θ ∈ Rd, and ‖ · ‖ is the Euclidean distance. Equivalently, for the scatter matrix we use the depth function

D(Σ, Pm) = 1 −
∥∥∥∥∥∥∥∥

1
m

m∑

j=1

Σ̂ j − Σ

‖Σ̂ j − Σ‖

∥∥∥∥∥∥∥∥
, (6)

where Σ̂1, . . . , Σ̂m are robust estimators of the scatter matrix, the norm is ‖Σ‖ = maxi∈{1,...,d}
∑d

j=1 |Σi j|. Pm denotes the
empirical distribution of Σ̂1, . . . , Σ̂m. A simulation study is presented in Section 4.

3.2. Robust fusion for the covariance operator
The estimation of the covariance operator of a stochastic process is a very important topic in FDA, which helps

to understand the fluctuations of a random element, as well as to derive the principal functional components from its
spectrum. Several robust and non-robust estimators have been proposed; see, e.g., [5] and references therein. In order
to perform RFM, we introduce a new robust estimator to use for each of the m subsamples, which can be implemented
using parallel computing. It is based on the notion of impartial trimming in the Hilbert–Schmidt space where the
covariance operators are defined. It was introduced in [13] and has been shown to be a very successful tool in robust
estimation. Next, the RFM estimator is defined as the deepest point among the m estimators (‘impartial trimmed
means’) corresponding to each subsample.

To better understand the construction of our new estimator, we first recall the general framework used for the
estimation of covariance operators.

3.2.1. A general framework for the estimation of covariance operators
Let E = L2(I), where I is a finite interval in R, and X, X1, X2, . . . be iid random elements taking values in E.

Assume that E{X(t)2} < ∞ for all t ∈ I, and
∫

I

∫
I ρ

2(s, t)dsdt < ∞, so that the covariance function, given by ρ(s, t) =

E[{X(t) − µ(t)}{X(s) − µ(s)}], where E{X(t)} = µ(t), is well defined. For notational simplicity we assume that µ(t) = 0
for all t ∈ I. Under these conditions, the covariance operator, given for all f ∈ E by

Γ0(f)(t) = E{〈X, f 〉X(t)} =

∫

I
ρ(s, t) f (s)ds,

is diagonalizable, with non-negative eigenvalues λi such that
∑

i λ
2
i < ∞. Moreover Γ0 belongs to the Hilbert–Schmidt

space HS (E) of linear operators with norm and inner product given by

‖Γ‖2HS =

∞∑

k=1

‖Γ(ek)‖2 < ∞, 〈Γ1,Γ2〉HS =

∞∑

k=1

〈Γ1(ek),Γ2(ek)〉,

respectively, where {e1, e2, . . .} is any orthonormal basis of E, and Γ,Γ1,Γ2 ∈ HS (E). In particular, ‖Γ0‖2HS = λ2
1 +

λ2
2 + · · · . Given an iid sample X1, . . . , Xn, we define the Hilbert–Schmidt operators of rank 1 by setting, for each

i ∈ {1, . . . , n}, Wi : E → E, as Wi(f) = 〈Xi, f 〉Xi(·). Let φi = Xi/‖Xi‖, then Wi(φi) = ‖Xi‖2φi ≡ ηiφi.
The standard estimator of Γ0 is just the average of these operators, i.e., Γ̂n = (W1+· · ·+Wn)/n, which is a consistent

estimator of Γ0 by the Law of Large Numbers in the space HS (E). We replace this average by a trimmed version in
the space HS (E).

6

3.2.2. A new robust estimator for the covariance operator
Our proposal is to consider an impartial trimmed estimator as a resistant estimator. The notion of impartial

trimming was introduced in [13], and the functional data setting was considered in [7], from which one can obtain
the asymptotic theory for our setting. The construction of our estimator needs an explicit expression of the distances
‖Wi −W j‖, computed for all i, j ∈ {1, . . . , `} with i < j, which we will derive using the following lemma.

Lemma 1. We have, for all i, j ∈ {1, . . . , n} with i < j,

d2
i j ≡ ‖Wi −W j‖2HS = ‖Xi‖4 + ‖X j‖4 − 2〈Xi, X j〉2. (7)

Proof. Let us write

〈Wi −W j,Wi −W j〉HS = 〈Wi,Wi〉HS + 〈W j,W j〉HS − 2〈Wi,W j〉HS = η2
i + η2

j − 2
∞∑

k=1

〈Wi(ek),W j(ek)〉

= η2
i + η2

j − 2
∞∑

k=1

〈〈Xi, ek〉Xi, 〈X j, ek〉X j
〉

= η2
i + η2

j − 2〈Xi, X j〉
∞∑

k=1

〈Xi, ek〉〈Xk, ek〉.

Now Eq. (7) follows from the identity
∞∑

k=1

〈Xi, ek〉〈Xk, ek〉 = 〈Xi, X j〉.

This concludes the argument.

Given the sample, which we took to have mean zero for notational simplicity, and α ∈ (0, 1), we provide a simple
algorithm to compute an approximate impartial trimmed mean estimator of the covariance operator which is strongly
consistent.

Step 1: Compute di j = ‖Wi −W j‖HS , for all i, j ∈ {1, . . . , n} with i < j, using Lemma 1.

Step 2: Let r = b(1−α)nc+1. For each i ∈ {1, . . . , n}, consider the set of indices Ii ⊂ {1, . . . , n} corresponding to
the r nearest neighbors of Wi among W1, . . . ,Wn, and the order statistic of the vector (di1, . . . , din), d(1)

i ≤ · · · ≤
d(n)

i .

Step 3: Let γ = argmin{d(r)
1 , . . . , d(r)

n }.
Step 4: The impartial trimmed mean estimator of Γ0 is given by the average of the r nearest neighbors of Wγ

among W1, . . . ,Wn, i.e., the average of the rank-1 operators Wi such that i ∈ Iγ. The covariance function is then
estimated by ρ̂(s, t) =

∑
j∈Iγ X j(s)X j(t)/r. Observe that Steps 1 and 2 of the algorithm can be performed using

parallel computing.

The final estimator given by the RFM may be obtained by taking the deepest point (or the average of the 40%
deepest points) among the m estimators obtained from the algorithm above. The norm used for the depth function in
this case is the functional analogue of (6).

3.3. Robust fusion for cluster analysis

In this section we describe a robust fusion method for clustering. Our approach is based on the use of impartial
trimmed k-means (ITkM, see [8]) in two steps. In the first one we apply ITkM with a given trimming level α1 to each
of the m subsamples, and obtain m sets of k centres M̂1, . . . , M̂m. In the second step we apply ITkM with a trimming
level α2 to the set M̂1 + · · · + M̂m, as suggested in Section 5.1 of [8]. We start by describing briefly ITkM.

7

3.3.1. Impartial trimmed k-means
Given a sample {X1, . . . , Xn} ⊂ Rd, a trimming level α ∈ (0, 1), and the number of clusters k, ITkM looks for a set

{m̂1, . . . , m̂k} ⊂ Rd and a partition of the space C0, . . . ,Ck that minimizes the loss function

1
n − bnαc

k∑

j=1

∑

Xi∈C j

‖Xi − m̂ j‖2.

Here, C0 is the set of trimmed data (with cardinality bnαc). Let X ∈ Rd be a random vector with distribution PX , the
number of clusters k, and a trimming proportion α ∈ (0, 1).

Step 1: For every k-setM = {m1, . . . ,mk}, with m j ∈ Rd for all j ∈ {1, . . . , k}, and x ∈ Rd, define

d(x,M) ≡ min
{‖x − m1‖, . . . , ‖x − mk‖}.

Step 2: The set of trimming functions for PX at level α is defined by

τα(PX) =
{
τ : Rd → [0, 1], measurable, fulfilling

∫
τ(x)dPX(x) ≥ 1 − α

}
.

The functions in τα(PX) are a natural generalization of the indicator functions 1A with PX(A) = 1 − α.

Step 3: For each pair (τ,M) such that τ ∈ τα(PX) andM ⊂ Rd with card(M) = k, consider the function

V(τ,M, PX) =
1∫

τ(x)dPX(x)

∫
τ(x)d2(x,M)dPX(x).

Step 4: Finally, define
V(PX) = inf

τ∈τα(PX)
inf
M⊂Rd

card(M)=k

V(τ,M, PX). (8)

Corollary 3.2 in [8] states that there exists a pair (τ∗,M∗), not necessarily unique, attaining the value V(PX).
Moreover, if PX is absolutely continuous with respect to Lebesgue measure, τ∗ = 1B(M∗,r∗) with r∗ = r(α,M∗) =

inf{r ≥ 0 : PX{B(M∗, r)} ≥ 1 − α} and B(M∗, r) = {x ∈ Rd : d(x,M∗) ≤ r}.
Denote by Pn the empirical distribution based on the sample. Theorem 3.6 in [8] states that if PX is absolutely

continuous with respect to Lebesgue measure and there exists a unique pair (τ∗,M∗) solving (8), thenV(Pn)→V(PX)
a.s. Moreover, if M̂ is any sequence of empirical trimmed k-means, then dH(M̂,M∗)→ 0 a.s., where dH denotes the
Hausdorff distance. It is clear that in this case τ̂n = 1B(M̂,r̂) → τ∗ PX a.s., where r̂ = inf{r ≥ 0 : Pn{B(M̂, r)} ≥ 1 − α}.

Now M∗ and M̂ induce partitions of B(M∗, r∗) and B(M̂, r̂) respectively, into k-clusters, by defining, for i ∈
{1, . . . , k},

Cluster Ci =
{
x ∈ B(M∗, r∗) : ‖x − m∗i ‖ ≤ min

j,i
‖x − m∗j‖

}
,

Cluster Ĉi =
{
x ∈ B(M̂, r̂) : ‖x − m̂i‖ ≤ min

j,i
‖x − m̂ j‖}. (9)

Points at a boundary between clusters can be assigned arbitrarily. A functional version of ITkM can be found in [7].
With this in hand, the fusion step of the RFM is done by applying ITkM to the set of the k × m centers. The whole
algorithm is summarized in Table 3.

4. Simulation results

We now describe the simulations done with the RFM for the three applications described in the previous sections.
As the design of each simulation is specific to its application, we describe them separately. All the simulations were
carried out using an 8-core PC, Intel core i7-3770 CPU, 8GB of RAM, 64 bit processor, with the R software package
v. 3.3.0 running under Ubuntu.

8

Table 3: RFM algorithm for clustering

1) Split the sample into m subsamples; recall that n = m`.
2) To each subsample, apply the empirical version of α-ITkM with α = α1 and

obtain M̂1, . . . , M̂m, each one with k points in Rd.
3) Apply the empirical version of α-ITkM with α = α2 to the set M̂1 ∪ · · · ∪ M̂m.
4) Obtain the output of the algorithm (M̂RFM , r̂RMF).
5) Build the clusters by applying (9).

4.1. Location and scatter matrix for finite-dimensional spaces

We use the same simulations to analyze both the location of the parameters and their scatter matrix. For the robust
estimator we have applied the function CovMest in the R package rrcov with the parameters given by default.

We draw samples from a centered 5-dimensional Gaussian distribution with a covariance matrix whose off-
diagonal elements are all equal to 0.2. For the outliers we use a 5-dimensional Cauchy distribution with independent
coordinates centered at 50. We test two contamination levels, namely p = 0.2 and p = 0.4. We vary the sample
size n within the set {0.1E6, 5E6, 10E6} and the number of subsamples m ∈ {100, 500, 1000, 10,000}. We replicate
each simulation case K = 5 times and report the average. The estimators obtained by the RFM are the values which
maximize the depth functions given in Eqs. (5)–(6) for the location and the scatter matrix, respectively. In each case,
the maximization is done over the set of the m estimates obtained from the subsamples.

The mean squared errors (averaged over five replicates) for the location problem are given in Table 4. The estima-
tors considered are the average of the whole sample (MLE), the average of the robust location estimators (avROB),
the average of the 40% deepest robust estimators (RFM1), and the deepest robust estimator (RFM). We can see from
Table 4 that the estimator obtained by the RFM behaves very well. Depending on the structure of the outliers, the
mean of the robust estimates may behave well or not. Even if only one of the subsamples contains a high proportion of
outliers causing the robust estimator to break down, the average of the robust estimators will break down. In contrast,
the deepest M-estimator always behaves well. The performances of both estimators decrease in general with m.

Table 4: Location estimators for p = 0.2 and p = 0.4.

MLE avROB RFM1 RFM MLE avROB RFM1 RFM
n m p = 0.2 p = 0.4

0.1 100 31.3 0.0098 0.0124 0.0297 44.2 0.0042 0.0076 0.0288
0.1 500 31.3 0.0097 0.0112 0.0426 44.2 0.1070 0.0081 0.0427
0.1 1000 31.3 0.0097 0.0109 0.0477 44.2 1.3400 0.0231 0.0416
1.0 100 21.4 0.0021 0.0029 0.0074 44.1 0.0038 0.0045 0.0087
1.0 500 21.4 0.0021 0.0037 0.0110 44.1 0.0038 0.0038 0.0164
1.0 1000 21.4 0.0021 0.0030 0.0159 44.1 0.0038 0.0053 0.0186
1.0 10,000 21.4 0.0022 0.0035 0.0261 44.1 1.3900 0.0186 0.0375
5.0 100 22.0 0.0009 0.0014 0.0032 45.9 0.0007 0.0014 0.0044
5.0 500 22.0 0.0009 0.0010 0.0056 45.9 0.0007 0.0014 0.0073
5.0 1000 22.0 0.0009 0.0014 0.0071 45.9 0.0007 0.0014 0.0097
5.0 10,000 22.0 0.0009 0.0015 0.0147 45.9 0.0013 0.0011 0.0159

10.0 100 23.5 0.0009 0.0013 0.0026 47.0 0.0005 0.0010 0.0033
10.0 500 23.5 0.0009 0.0012 0.0038 47.0 0.0005 0.0009 0.0052
10.0 1000 23.5 0.0009 0.0012 0.0047 47.0 0.0005 0.0008 0.0056
10.0 10,000 23.5 0.0009 0.0012 0.0090 47.0 0.0005 0.0009 0.0102

9

Table 5: Covariance estimators. Using MLE and robust estimates over the entire sample, and aggregating by average, trimmed average or fusion
of m subsamples estimators, p = 0.2.

n m T0 T1 MLE ROB avROB RFM1 RFM

0.1 100 0.460 4.205 23,688,000 0.2594 0.2597 0.2598 0.3722
0.1 500 0.460 14.527 23,688,000 0.2594 0.2675 0.2498 0.4810
0.1 1000 0.460 23.992 23,688,000 0.2594 0.2748 0.2418 0.6130
1.0 100 3.444 6.524 1,617,200 0.2342 0.2345 0.2368 0.2656
1.0 500 3.444 24.028 1,617,200 0.2342 0.2353 0.2371 0.3189
1.0 1000 3.444 45.307 1,617,200 0.2342 0.2360 0.2381 0.3295
1.0 10,000 3.444 945.350 1,617,200 0.2342 0.2464 0.2075 0.4982
5.0 100 20.528 15.984 1,981,900 0.2317 0.2316 0.2340 0.2495
5.0 500 20.528 33.289 1,981,900 0.2317 0.2316 0.2331 0.2687
5.0 1000 20.528 68.342 1,981,900 0.2317 0.2318 0.2336 0.2842
5.0 10,000 20.528 1312.800 1,981,900 0.2317 0.2342 0.2267 0.3810

10.0 100 42.174 29.168 28,135,000 0.2307 0.2306 0.2322 0.2445
10.0 500 42.174 49.992 28,135,000 0.2307 0.2307 0.2322 0.2567
10.0 1000 42.174 73.701 28,135,000 0.2307 0.2308 0.2315 0.2660
10.0 10,000 42.174 1291.000 28,135,000 0.2307 0.2323 0.2290 0.3439

The estimation errors for the covariance are given in Tables 5 and 6, which correspond to the cases p = 0.2
and p = 0.4, respectively. We compare the MLE estimator (MLE), a robust estimator based on the whole sample
(ROB), the average of the robust scatter matrix estimators (avROB), the average of the 40% deepest robust estimators
(RFM1), and the deepest robust estimator (RFM). We also report the average time in seconds necessary for both
the global estimator (T0, over the whole sample), and T1, the estimator obtained by fusion (including computing
the estimators over subsamples and aggregating them by fusion). Since the second step of the algorithm can be
parallelized, see point b in Table 1), in practice the computational time T1 can be divided almost by m. The results of
RFM are very good for the covariance matrix as well.

Table 6: Covariance estimators. Using MLE and robust estimates over the entire sample, and aggregating by average, trimmed average or fusion
the m subsamples estimators, p = 0.4.

n m T0 T1 MLE ROB avROB RFM1 RFM

0.1 100 0.581 3.416 448,210 0.8247 0.8348 0.8378 1.0111
0.1 500 0.581 13.614 448,210 0.8247 16.3120 0.8057 1.2548
0.1 1000 0.581 22.827 448,210 0.8247 205.3000 0.7772 1.5159
1.0 100 2.631 5.622 6,030,100 0.8081 0.8094 0.8114 0.8790
1.0 500 2.631 21.131 6,030,100 0.8081 0.8143 0.8103 0.9462
1.0 1000 2.631 39.752 6,030,100 0.8081 0.8201 0.8059 0.9690
1.0 10,000 2.631 833.530 6,030,100 0.8081 203.9100 0.7706 1.2760
5.0 100 16.651 14.126 29,809,000 0.8010 0.8012 0.8035 0.8299
5.0 500 16.651 30.762 29,809,000 0.8010 0.8021 0.8025 0.8571
5.0 1000 16.651 60.389 29,809,000 0.8010 0.8032 0.8020 0.8740
5.0 10,000 16.651 1239.300 29,809,000 0.8010 0.9024 0.7877 1.0311

10.0 100 33.922 24.757 93,071,000 0.7988 0.7989 0.8013 0.8185
10.0 500 33.922 43.999 93,071,000 0.7988 0.7993 0.8007 0.8420
10.0 1000 33.922 68.787 93,071,000 0.7988 0.8001 0.8001 0.8555
10.0 10,000 33.922 1486.100 93,071,000 0.7988 0.8117 0.7939 0.9403

10

4.2. Covariance operator
To generate the data, we used a simplified version of the simulation model used in [18], viz.

X(t) = µ(t) +
√

2
10∑

k=1

λkak sin(2πkt) +
√

2
10∑

k=1

νkbk cos(2πkt),

where νk = (1/3)k, λk = k−3, and ak and bk are random standard Gaussian independent observations, see Figure 1. The
central observations were generated using µ(t) = 0 whereas for the outliers we took µ(t) = 2− 8 sin(πt). For t we used
an equally spaced grid of T = 20 points in [0, 1]. The covariance operator of this process, given by

cov(s, t) =

10∑

k=1

Ak(s)Ak(t) + Bk(s)Bk(t),

where Ak(t) =
√

2λk sin(2πkt) and Ak(t) =
√

2νk cos(2πkt), was computed for the comparisons.
We varied the sample size n within the set {0.1E6, 1E6, 5E6, 10E6} and the number of subsamples m ∈ {100, 500,

1000, 10,000}. The proportion of outliers was successively fixed to p = 0.15 and p = 0.20. We replicated each
simulation case K = 5 times and report the average performance over the replicates. We report also the average time
in seconds necessary for both a global estimate T0, over the whole sample, and T1, the estimate obtained by fusion
(including computing the estimates over subsamples and aggregating them by fusion). We compare the classical
estimator (MLE), the global robust estimate (ROB), the average of the robust estimates from the subsamples (avROB)
and the robust fusion estimate (RFM). The results are shown in Tables 7 and 8 for two proportions of outliers, p = 0.15
and p = 0.2 respectively.

If the proportion of outliers is moderate, p = 0.15, the average of the robust estimators still behaves well, better
than RFM, but if we increase the proportion of outliers to p = 0.2, RFM clearly outperforms all the other estimators.

4.3. Clustering
We performed a simulation study for large sample sizes, using a model with three clusters with outliers, introduced

in [8]. The data were generated using bivariate Gaussian distributions with the following parameters for the clusters
and the outliers, respectively:

µ1 = (0, 0), µ2 = (0, 10), µ3 = (6, 0), µ4 = (2, 10/3),

Σ1 = Σ2 = Σ3 = 1.5 × Id, Σ4 = 20 × Id

where Id is the two-dimensional identity matrix. The outliers were generated with µ4,Σ4 and n4. The sizes of the
clusters were fixed at the following values: n1 = 15, n2 = 30, n3 = 30, n4 = 40. As in [8], the outliers lying in
the 75% level confidence ellipsoids of the clusters were replaced by others not belonging to that area. The outliers

Table 7: Covariance operator estimator. Using the classical and robust estimators over the entire sample, and aggregating by average or fusion of
m subsamples estimators. p = 0.15, T = 20.

n m T0 T1 MLE ROB avROB RFM
0.05 20 553 18.20 24.3 5.16 5.21 5.52
0.05 50 543 7.81 24.3 5.20 5.24 5.60
0.05 100 528 4.79 24.3 5.20 5.17 5.58
0.05 1000 459 19.40 24.3 5.13 5.54 6.58
0.10 20 2300 69.00 24.2 5.14 5.22 5.43
0.10 50 2300 28.10 24.2 5.04 5.09 5.13
0.10 100 2290 15.20 24.2 5.06 5.15 5.43
0.10 1000 1850 21.60 24.3 5.21 5.35 6.13

11

Table 8: Covariance operator estimator. Using classical and robust estimators over the entire sample, and aggregating by average or fusion of m
subsamples estimators. p = 0.2, T = 20.

n m T0 T1 MLE cvRob avROB RFM
0.05 20 572 17.90 30.5 0.879 3.96 1.45
0.05 50 649 7.88 30.5 0.876 7.34 2.10
0.05 100 633 4.61 30.5 0.839 8.86 2.43
0.05 1000 478 19.50 30.5 0.864 13.10 7.08
0.10 20 1970 69.10 30.4 0.914 3.83 1.36
0.10 50 2030 28.10 30.4 0.921 4.32 1.55
0.10 100 2020 15.10 30.4 0.840 8.44 2.35
0.10 1000 1840 21.60 30.4 0.961 12.10 5.20

represent almost 35% of the whole sample. We used this base simulation and varied the whole sample size, multiplying
each ni by a factor “fac” taking the values in {10, 100, 1000, 10,000}. So for the smallest sample, we have n = 1150,
and the largest, n = 1,150,000.

For each value of n we varied the number of subsamples m ∈ {10, 50, 100, 1000, 10,000} with the restriction
m < fac. Finally, when applying the trimmed k-means to the samples, we tested three values for the trimming level,
α1 = 0.2, 0.35, 0.45, whereas for the fusion we fixed α2 = 0.1.

The left-hand panel of Figure 2 shows an example of the simulated data set for n = 11,500, the middle panel shows
the results obtained by ITkM applied to the whole sample, and the right-hand panel shows the output of the algorithm.
The partitions obtained by each approach are compared to the true clusters using the matching error defined by

ME = min
s∈S(k+1)

1
n

n∑

i=1

1{yi,s(ŷi)} (10)

where S(k + 1) is the set of permutations of {0, . . . , k + 1}, yi is the true cluster of observation i and ŷi is the cluster
assigned by the algorithm. The results of the simulation are given in Table 9, where we compare the RFM method,

Figure 1: Simulated functions and outliers

12

with the ITkM calculated with the whole sample. Columns ME1 and ME2 give the matching errors for ITkM applied
to the whole sample and for RFM respectively. We also report the average time in seconds necessary for both the
global estimator (T0, over the whole sample), and T1, the estimator obtained by fusion (including computing the
estimators over subsamples and aggregating them by fusion). Finally T2 is the time using parallel computing.

As expected, the RFM matching errors are often higher than those of ITkM applied to the whole sample. But the
loss of performance is very small in general and increases with m. For the smallest values of m with large samples
(n > 10,000), RFM has almost the same performance for all values of α. In contrast, increasing the value of m reduces
considerably the computation time of RFM.

4.3.1. A real data example
As an example we have chosen the MNIST data set of handwritten digits (see https://www.kaggle.com/c/

digit-recognizer/data) to compare the performance of the RFM clustering algorithm with the same cluster-
ing procedure without splitting the sample (impartial trimmed k-means). The digits have been size-normalized and
centered in a fixed-size image of 28 × 28 pixels.

The data set consists of a training sample (X1,Y1), . . . , (Xn,Yn) of n = 42,000 data, and a test sample of 10,000
data. As it is explained in the aforementioned link: “this classic data set of handwritten images has served as the basis
for benchmarking classification algorithms”. However, as we are interested in clustering we will use only the sample
X1, . . . , Xn, searching for k = 10 groups. This is a very difficult task: if the labels are chosen at random the probability
to get at least half of the 42,000 data well identified is extremely close to zero. We cluster the 42,000 data using both
methods.

The design is the same as for the previous simulations. On the one hand we cluster the whole sample using the
impartial trimmed k-mean algorithm for k = 10. On the other hand we use the RFM clustering method given in
Table 3 for m ∈ {10, 100, 500, 1000}, with α1 = 0.05 and α1 = 0.1. The labels Y1, . . . ,Yn are only used to compute the
misclassification error rates ME1 and ME2 defined in (10).

The results are given for α1 = 0.05 and α2 = 0.1 in Table 10 (left), and for α1 = 0.1 = α2 in Table 10 (right). They
show that (a) this clustering problem is very difficult; (b) the relative efficiencies of the RFM clustering procedures
for α1 = 0.05 are 5%, 2%, 9% and 6% while the computational times fall down drastically to 17%, 5%, 3% and 3%,
for m = 10, 100, 500 and 1000, respectively. For α1 = 0.1 the efficiencies are 8%, 7%, 9% and 8%, the computational
times fall down to 16%, 7%, 5% and 4% for m = 10, 100, 500 and 1000, respectively.

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−15 −5 0 5 10 15

−1
0

−5
0

5
10

15
20

True Clusters

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
● ●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10 15

−1
0

−5
0

5
10

15
20

TkMeans output

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●● ●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15 −5 0 5 10 15

−1
0

−5
0

5
10

15
20

RFM output

Figure 2: Left panel: the true clusters. Middle panel: Results obtained by ITkM over the whole sample. Right panel: The output obtained by RFM
using m = 100 subsamples. The outliers are the blue points and n = 115,000.

13

Table 9: RFM for clustering using different values of the trimming parameter α1.

n m T0 T1 T2 ME1 ME2
α1 = 0.2

1150 10 2.89 1.34 0.55 0.1539 0.1678
11,500 10 21.20 21.69 6.83 0.1594 0.1603
11,500 100 21.20 14.65 4.24 0.1594 0.1693

11,5000 10 274.90 263.80 75.11 0.1585 0.1585
115,000 100 274.90 218.10 56.44 0.1585 0.1591
115,000 1000 274.90 141.50 37.51 0.1585 0.1693

1,150,000 10 3452.00 3149.00 873.40 0.1582 0.1582
1,150,000 100 3452.00 2609.00 680.70 0.1582 0.1583
1,150,000 1000 3452.00 2158.00 546.90 0.1582 0.1590
1,150,000 10,000 3452.00 1434.00 374.70 0.1582 0.1689

α1 = 0.35
1150 10 3.45 1.43 0.54 0.1287 0.1310

11,500 10 37.87 33.38 9.89 0.1037 0.1071
11,500 100 37.87 15.30 4.29 0.1037 0.1343

115,000 10 427.70 391.10 109.60 0.1049 0.1050
115,000 100 427.70 307.20 85.70 0.1049 0.1071
115,000 1000 427.70 137.70 38.36 0.1049 0.1331

1,150,000 10 4925.00 4284.00 1166.00 0.1052 0.1053
1,150,000 100 4925.00 3660.00 928.20 0.1052 0.1055
1,150,000 1000 4925.00 3052.00 792.90 0.1052 0.1074
1,150,000 10,000 4925.00 1397.00 372.20 0.1052 0.1336

α1 = 0.45
1150 10 2.72 1.27 0.52 0.1330 0.1567

11,500 10 55.58 34.12 9.80 0.1370 0.1403
11,500 100 55.58 13.11 3.65 0.1370 0.1723

115,000 10 698.90 586.60 170.40 0.1325 0.1330
115,000 100 698.90 323.90 86.35 0.1325 0.1355
115,000 1000 698.90 122.50 33.53 0.1325 0.1729

1,150,000 10 7190.00 7087.00 2115.00 0.1327 0.1328
1,150,000 100 7190.00 5654.00 1508.00 0.1327 0.1330
1,150,000 1000 7190.00 3287.00 829.60 0.1327 0.1360
1,150,000 10,000 7190.00 1258.00 328.10 0.1327 0.1726

Table 10: Robust clustering, α2 = 0.1, α1 = 0.05 (left) and α1 = 0.1 (right).

m T0 T1 ME1 ME2
10 8560 1540 0.477 0.503

100 8560 503 0.477 0.486
500 8560 244 0.477 0.520

1000 8560 253 0.477 0.508

m T0 T1 ME1 ME2
10 9570 1500 0.492 0.530

100 9570 705 0.492 0.525
500 9570 445 0.492 0.536

1000 9570 417 0.492 0.532

5. Concluding remarks

We have addressed some fundamental statistical problems in the context of Big Data, namely large samples, in
the presence of outliers, location and covariance estimation, covariance operator estimation, and clustering. We have
proposed a general robust approach, called the robust fusion method (RFM), and shown how it may be applied to these

14

problems. The simulations gave very good results mainly for the last two problems. Different statistical challenges are
associated with these problems. Our approach may be adapted to any other task as soon as a robust efficient estimate
is available for the corresponding problem.

Acknowledgments

We are grateful to the Editor-in-Chief, Christian Genest, an Associate Editor, and two referees for their constructive
comments. For the last author this work has been partially supported by the ECOS project No. U14E02.

References

References

[1] S.E. Ahmed, Ed., Big and Complex Data Analysis: Methodologies and Applications, Springer, Berlin, 2017.
[2] A. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Boston, MA, 1974.
[3] G. Aneiros, E.G. Bongiorno, R. Cao, P. Vieu, Eds., Functional Statistics and Related Fields, Springer, Berlin, 2017.
[4] P. Billingsley, F. Topsøe, Uniformity in weak convergence, Z. Wahrs. und Verw. Gebiete 7 (1967) 1–16.
[5] A. Chakraborty, P. Chaudhuri, The spatial distribution in infinite-dimensional spaces and related quantiles and depths, Ann. Statist. 42 (2014)

1203–1231.
[6] P. Chaudhuri, On a geometric notion of quantiles for multivariate data, J. Amer. Statist. Assoc. 91 (1996) 862–872.
[7] J.A. Cuestas-Albertos, R. Fraiman, Impartial means for functional data, In: R. Liu, R. Serfling, D. Souvaine, Eds. Data Depth: Robust

Multivariate Statistical Analysis, Computational Geometry and Applications, Vol. 72 in the DIMACS Series of the American Mathematical
Society, 2006, pp. 121–145.

[8] J.A. Cuesta-Albertos, A. Gordaliza, C. Matrán, Trimmed k-means: An attempt to robustify quantizers, Ann. Statist. 25 (1997) 553–576.
[9] A. Cuevas, A partial overview of the theory of statistics with functional data, J. Stat. Plann. Inf. 147 (2014) 1–23.
[10] D.L. Donoho, Breakdown properties of multivariate location estimators, Ph.D. qualifying papers, Dept. of Statistics, Harvard University,

Cambridge, MA, 1982.
[11] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis, Springer, Berlin, 2006.
[12] A. Goia, P. Vieu, Special issue on statistical models and methods for high or infinite dimensional spaces, J. Multivariate Anal. 146 (2016)1–

352.
[13] A. Gordaliza, Best approximations to random variables based on trimming procedures, J. Approx. Theory 64 (1991) 162–180.
[14] F.R. Hampel, A general qualitative definition of robustness, Ann. Math. Statist. 42 (1971) 1887–1896.
[15] L. Horváth, P. Kokoszka, Inference for Functional Data with Applications, Springer, Berlin, 2012.
[16] P.J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, Proc. Fifth Berkeley Symp. on Math. Statist. and

Prob. Univ. of Calif. Press, Berkeley, CA, 1 (1967) 221–233
[17] P.J. Huber, E.M. Ronchetti, Robust Statistics, Wiley, Hoboken, NJ, 2009.
[18] D. Kraus, V.M. Panareto, Dispersion operators and resistant second-order functional data analysis, Biometrika 101 (2012) 141–154.
[19] R. Maronna, R. Martin, V. Yohai, Robust Statistics: Theory and Methods, Wiley, Hoboken, NJ, 2006.
[20] L. Tang, L. Zhou, P.X.-K. Song, Method of divide-and-combine in regularised generalised linear models for Big Data, 2016. https://

arxiv.org/abs/1611.06208.
[21] Y. Vardi, C. Zhang, The multivariate L1-median and associated data depth, Proc. Nat. Acad. Sci. USA 97 (2000) 1423–1426.
[22] C. Wang, M.-H. Chen, E. Schifano, J. Wu, J. Yan, Statistical methods and computing for Big Data, Statistics and Its Interface 9 (2016)

399–414.
[23] B. Yu, Let us own data science, IMS Bulletin 43(7) (2014) 1 + 13–16.

15

	Multivariate and functional robust fusion methods for structured Big Data

