JOURNAL OF MULTIVARIATE ANALYSIS 44, 191-219 (1993)

Quadratic Negligibility and the Asymptotic Normality
of Operator Normed Sums

R. A. MALLER

University of Western Australia, Nedlands 6009, Australia

The condition max,_,., X'V, 'X,~% 0, where X, are vectors in R“ and
V,=%"_, X, XT is important in the asymptotics of various linear and nonlinear
regression models. We call it “quadratic negligibility.” It is shown that, when X, are
independent and identically distributed random vectors in RY quadratic
negligibility is equivalent to X, being in the operator normed domain of attraction
of the multivariate normal distribution, thereby generalising the one-dimensional
case. Related results on the convergence of the matrix V,, along with results on the
centering and norming constants for operator-normed convergence, are also
given. € 1993 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY
In this paper we investigate the condition

max XTV,'x,—0, (1.1)

I<i<n

where “—" denotes convergence in probability, X, is a sample of

independent and identically distributed (ii.d.) d-dimensional (column)
vectors, and

v,=Y X, X7. (12)

i=1

(*T” denotes a vector or matrix transpose.) This condition is of interest in
the theory of regression, where it is related to the requirement that the
components of a weighted sum of random variables be uniformly
asymptotically negligible. So we could dub (1.1) “quadratic negligibility.”

In one dimension, condition (1.1) or its almost sure (a.s.) version has
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also attracted the interest of probabilists because in one way it expresses
the property of individual random variables being negligible with respect to
their sum of squares. To date, (1.1) seems not to have been studied for
d>1, and this, motivated by the above statistical and probabilistic
applications, is the object of this paper. In view of known results for the
one-dimensional case (see below), we might conjecture that (1.1) requires
the asymptotic normality of the sample vectorial sum

after appropriate norming and centering. But what form should this take?
It turns out that the right kind is precisely the operator norming studied
by Hahn and Klass [9, 10] in which the existence of nonstochastic vectors
A, and square matrices B, is required so that, as n — oo,

B,(S,— A4,)—> N(O, ).

Here N(0, I) denotes a standard normal random vector in ¢ dimensions,

and “-2” denotes convergence in distribution. (N(0, 1) will be the

univariate standard normal.) This is the main result of Theorem 1.1.
Before stating the theorem, we introduce some further notation. Let

be the sample mean, and let

n

V=Y (X,—X)X,~ X" (1.3)

i=1

be the sample sum of squares and products matrix. It will follow from
Lemma 2.3 below that V, and ¥, are non-singular on sets whose
probabilities approach one as n — oc, so we can assume without loss of
generality that ¥, ' and V' exist.

We assume X, are full, i.e,, 47X is not degenerate for ue S¢ ', where X
is a random variable with distribution function F, the same as that of X,
and S“ ! is the unit sphere in R“. Thus for each ue S¢ ', the quantity

Vo) =E[" X iy a ] (1.4)

is not zero for x large enough. (1, denotes the indicator of an event A.)
Throughout this paper, a supremum or infimum over u will be understood
to mean a supremum or infimum over ue S¢ .



QUADRATIC NEGLIGIBILITY 193
THEOREM 1.1.  The following are equivalent:
there exist nonstochastic vectors A, and square matrices B, such that
B,(S,—A4,)-2 NO,I) (n— ) (1.5)
there exist nonstochastic square matrices B, such that
B, V,BT 51  (n-x) (1.6)

there exist nonstochastic vectors A, and square matrices B, such that

B,Y (X;—A)X,—A4,)'BI 51 (n—) (1.7a)
i=1
and _ ,
n|B,(4,-X)’—0 (n-x) (1.7b)
max X7V, 'X,—50 (n— ) (1.8)
1<ig<n

X2P(|uTX) >
sup\—”;x%—a() (x = ) (1.9)

u

max (X,—X,)"7,"(X,—X,)—>0  (n—x). (1.10)

l<ign

Remarks. (1) We use “I"" to denote the identity matrix in ¢ dimensions,
and by convergence in probability of 4 x d random matrices we mean that
each component converges separately.

(i) In the course of the proof of Theorem 1.1, it is shown that if
(1.5)—(1.10) hold, then E |X|*< o for 0<a <2 and A, may be chosen as
nu=nE(X) in (1.5) or as p in (1.7); thus centering occurs at the mean, as
we would hope. The norming matrix B, in (1.5), (1.6), or (1.7) is clearly
nonsingular for large enough n (so we choose it to be so, in general) and
may be chosen to be symmetric (B, = B}). B, shrinks to 0 as n — oo, and
we show that the “size” of B,, as measured by its largest eigenvalue, is at
most of order n~ 2. (See Theorem 2.1 for these.) We note that Hahn and
Klass [9] use E[(u7X)? A x*] rather than V,(x) in their formulation of
{1.9), but these are equivalent since

E[("X): A x?] =V, (x)+ xX*P(Ju" X| > x).
When (1.6) holds and u =0 we also have
n 2
‘Z:[‘)i—’;l (n— ), (1.11)

68344 2.2
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where b} =trace (B,’)— o« 1is a nonstochastic norming sequence.
Equation (1.11) is “relative stability™ of >¥_, {X,|* and is equivalent to

CYPUXI>N g s (1.12)
E[IX|71 j},\'|g,\':]

(cf. Feller [4, p.236], Rogozin [22], Maller [16]), which is Lévy's [15,
p. 113] necessary and sufficient condition for |X,| to be in the domain of
attraction of the normal. However, (1.12) does not imply (1.9) (see the
remark following the proof of Theorem 1.1), so the conditions in
Theorem 1.1 are genuinely ¢-dimensional. In general, B, cannot be taken as
diagonal in (1.5); diagonal special cases were studied earlier by Greenwood
and Resnick [6]. Another way of expressing (1.11) (when p=0) is

trace(V,) »
—— 1 (n— ).
trace(B, °)

(iii) In one dimension, Breiman [1] showed that (1.8) holds if and
only if X7 are relatively stable, ie.,

B

LS

?

Yy X
i=1

for a nonstochastic sequence B, with B, — 0 as n— oc, and this in turn is
equivalent to the asymptotic normality of B,>7_, X,—A,) for a non-
stochastic sequence A,. Theorem 1.1 contains the d-dimensional versions of
these results. Again in the one-dimensional case, Kesten [13] shows that
(1.8) holds for a.s. convergence if and only if EX; < oo; this was extended
by O’Brien [19] to the case of pairwise independent X,.

(iv) In statistical applications, condition (1.8) or its mean-centered
equivalent (1.10) appears in the asymptotic theory of generalized linear
models [3], in time series [17], in censored regression [23], in stochastic
adaptive control models [147, and in the analysis of many other nonlinear
regression models. In these situations it is used as a condition on stochastic
or fixed covariates or regressor variables, usually to ensure asymptotic
normality of regression coefficients. Equation (1.8) is sufficient and in some
cases necessary for the consistency and asymptotic normality of the least
squares estimator of the regression coeflicient in the linear regression of a
dependent variable on a vector X, of covariates. This seems to have first
been proved by Eicker [2], and there are also versions in Hajek [11] and
Huber [12, p. 159]. The quantity in (1.8) is the diagonal term in the “hat”
matrix [12, p. 156] and as such measures the “influence” of the i/th
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covariate; a large influence is to be noted. Hence the importance in
statistics of understanding (1.8).

(vi) Condition (1.7b) or something like it is necessary if we wish to
allow the general centering sequence A, in (1.7a), as an example at the end
of Section 3 shows.

{(vil) We may wish to apply (1.8) when X, are not full; for example,
a design matrix may contain a column of ones to allow estimation of an
intercept. Suppose

X/lz [IX;'-]TER‘”',

where X, are full i.i.d. random vectors in R By a formula for the inverse
of a partitioned matrix (Rao [21, p. 297]) we can show that

n

-1
)?-T(Z XX) Xi=n'+(X,—X)7;(X,—X,) (113)

1 i

i=1

SO
n -1
max )?,T(ZX/,X/,T) %220 (no )

if and only if (1.10) and hence (1.5) holds. Thus the desired asymptotic
normality obtains simply by omitting the degenerate component.

(viii) The “self-normalisation” or “studentisation” of the sum §, by
the square root of an estimate of its variance is of great interest in statistics.
From (1.6) we suspect that ¥, '* (a symmetric square root of ¥, ') should
be of the “right” size to normalise S,, and we ask whether (1.5) implies

VoS, —A,)—> NO,I) (n— o) (1.14)

This is true in one dimension. Following the proof of Theorem 1.1 we show
that if B, (S, —nu) -2 N(O, I) then

(S, —n)T VNS, —nu)~ 4% (n—> ), (1.15)

where y2 is the chi-square random variable with d degrees of freedom. This
expresses the convergence in distribution of the “Mahalanobis T2” statistic,
and shows that 7 *(S, — np) is stochastically compact under (1.5). If in
addition X, are spherically symmetric around u then we do have
V'S, —nu)-2 N(O, I), as follows from (1.15). More difficult is the
reverse implication from (1.14) to (1.5). In one dimension this is true for
symmetric X;, as recently shown by Griffin and Mason [8].
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2. PRELIMINARY RESULTS

In this section we give some useful results on the forms of sequences 4,
and B, which generalise the “nice” properties which hold in one dimension.
There, B, (S, — A,) -2 N(0, 1) implies that £ |X| < o and that 4, may be
chosen as nEX, while B, satisfies

B, ~n[E(X—EX)1.p <1 (n— )

and n'?B, is bounded above as n — oc. The d-dimensional counterparts of
these are given in Theorem 2.1. Lemma 2.1 contains a symmetry result on
B,. The section also contains two lemmas concerning the “size” of the
matrices ¥, and V, and convergence of eigenvalues of a matrix.

Recall that X is assumed full throughout this paper. We will let 4, (V),
Feax V) and A, (V) or A(V), denote the minimum, maximum, and an
arbitrary eigenvalue of a square matrix V. We will say that a triangular
array of scalar random variables (Z,,, | <i<n) is “uniformly asymptoti-
cally negligible” (UAN) (or “infinitesimal,” Gnedenko and Kolmogorov
(S, p-95]) if for any ¢ >0,

max P(|Z,|>¢)—0

‘ in
I1<i<n

as n— . We often use the Cramér—-Wold device, that a sequence of
random vectors Z, - Ze R if and only if u'Z,-% u'Ze R, for each
ueS N

THEOREM 2.1.  Suppose there exist nonstochastic vectors A, and square
matrices B, such that B, (S, — A,)-2 N(0, I). Then

limsup n'21_ (B, < x; (2.1)

L

B, X %> 0 and u"B,X, are UAN for ue 8¢ '; (2.2)

E|X|*< o for 0<a <2 and for a nonstochastic matrix B,

B,(S,—nu) -2 N(O, I), where p=EFEX; (2.3)

nBE{(X—u)X—u)" 1, 5v<i,} B, L (2.4)

Proof of Theorem 2.1. The proof requires some preliminary results
which we give as the following three lemmas.

LEMMA 2.1. (i) Suppose for a sequence of random vectors Z, € RY, we
have B,Z, 2> G as n— ¢, where G is a nondegenerate spherically sym-
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metric random vector in RY and B, are square nonsingular nonstochastic
matrices. Then B, may be taken to be symmetric matrices.

(i1) Suppose for a sequence of symmetric nonsingular random dxd
matrices Z

B,Z, Bl —~1 (n—x),

where B, are square nonsingular nonstochastic matrices. Then B, may be
taken to be symmetric matrices.

Proof. Let (BIB,)'? be a symmetric square root of the symmetric
matrix B}B,, and when ue S* ' consider

u'(B!'B,'*Z,=[u"(B!B,)"?B,'1B,Z,=v]B,Z,,

»n

where ¢f=u"(B!B,)' "B, 'e S’ '. Use Helly’s theorem to find a sub-

sequence (denoted N} so that v, — v(n — oo, ne N), where the convergence
is componentwise and re $¢ . Thus

t1B,Z,=v"B,Z,+ (v,-v)"B,Z, "> v7G. (2.5)
Now ¢'G has the same distribution as G,, where G, is the first (or any)
component of G this follows by the spherical symmetry of G. This in
turn has the same distribution as u¥G. Thus u™(BIB,)' °Z,—"- u"G,
the convergence in (2.5) is independent of the subsequence, and so
(BTB,)' *Z, - G. The second part is proved similarly. [

Remarks. Lemma 2.1 also follows when G is the spherically symmetric
subsequential limit of stochastically compact S,,, from the results of Hahn
and Klass [9,10] and Griffin [7], who in effect define B, by its eigen-
vector decomposition. Note that Lemma 2.1 also holds if # — o through a
subsequence.

LEMMA 2.2. Let W, be a symmetric random matrix with eigenvalues
%;(n), 1 <j<d Then the following are equivalent as n — x:

w, -1 (2.6)

L1, 1<j<d; (2.7)
if}f(uTW,,u)——f» I, sup (WW,u)—o1; (2.8)
WW,ou—251  foreach ueS‘ ' (2.9)

W' exists with probability approaching 1 and W'~ 1. (2.10)

”n
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Proof. (See also Tyler [24] for (2.7)). Let i(n) be any eigenvalue of W,
and 0(n) a corresponding (random) eigenvector. If (2.6) holds then

An)=0(n)TW, 0(n)
=0(n)"(I1+4,) 0(n)
=140(n)" 4,0(n),

where 4, is a symmetric matrix each of whose elements converge in
probability to 0. Let 6, (n) and 4, (n) be the elements of 6(n) and 4,,. Since
0(n)] =1, 0, (n) are bounded, and since 4,5 0, 4, (n)—>0 as n— .
Thus

17 o
10T 4,0 <Y T 10, (1) 8 (n) A, (n)] —— 0,

i=1 k=1

showing that i(n) %> 1 and proving (2.7).
We have for ue S¢ !

min A, (W,)<u"W,u< max 4, (W,),

l<jsd 1<j<d

and if (2.7) holds the right and left extremes of this converge in probability
to one as n— . Thus (2.7) implies (2.8). (2.9) follows immediately from
(2.8); in lact the convergence in (2.9) is uniform in ue SY .

When (2.9) holds, let e; be the coordinate vector in R i.e.,, having a one
in the jth position and zeros elsewhere. Then if W, = (w,(n)), we have, as
n—- oo,

. =T £
wyn)=e, W,e,— 1.

nty

Also, if j#k, (e,+¢,)2" 7 €S’ ', so because of the symmetry of W,

(e, e )TW, (e +e) =w, (1) + 2w, (1) + wy (1) — 2.

Thus w, (7)-5 0 when j#k. So W,~% I, and (2.6) follows. So far we
have shown that (2.6)-(2.9) are equivalent.

Finally, if (2.6) holds, we have that W, is positive definite and therefore
nonsingular on a set whose probability approaches one by (2.7). On this
set,

Vimin W) = W, N 20 ™W, U2 4 (W, 1) = Vi (W)
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if ueS?"'. By (2.7), the right and left extremes of this converge in
probability to one as n — oc; thus

W, w21 for ueS* '
By (2.9) applied to W, ', this implies W, ' %> I, which is (2.10). Similarly,
(2.10) implies (2.6). 1
LEMMA 23. When X is full, there is a ¢ >0 such that
Plhgin(V,)=cn)— 1 (n— ) (2.11)
while for every ¢ >0,
P(luin(V,)20) =1 (n—> ). (2.12)

Proof. When X is full, ie, u"X is not degenerate for ue S ', we can

show that there are constants ¢ >0 and 7> 0 such that

inf uTELXX Ty oy Ju 2 (2.13)

To see this, suppose for a sequence T, — oo there were u,€ S ' such that
uf ELXX™ 1y <0 Ju, =0,

Choose a subsequence such that u,—»ue S’ ! and given 7>0, choose
T,>T. Then

uELXX" v o Ju=Timu[ELXXT1 o7 ]u,

<limsup u/E[XX"1\ <7 Ju,=0.

Letting T— oc shows that "X =0 as., a contradiction. Thus (2.13) holds.
To prove (2.11), we have for T>0

n n
T T 2 T 2
u Vnu= Z (u XI) 2 Z (u Xl) 1{|.k’,|€7'}
i=1 i=1
n

=u' ) XfXTl‘:umsﬂ“

i
i=1

and by the weak law of large numbers

n ' Z X:X.T]:|x,|sr:—P"E[XXT]:msr:]'

i=1
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By Lemma 2.2 of Tyler [24] and (2.13), if T is large enough,

erin <n PY X XT e ﬂ) 5 il ELXXTL 1) 2 26
i=1

This implies (2.11). To prove (2.12), by Pakes [20], «"V,u is non-

decreasing in n, so for any sample path, uTV, u— V, say. Suppose V < o

on a set B which has probability 0 or 1 by the Hewitt-Savage 0-1 law. If

P(B)=1, Pakes [20] shows that on the set B,

Z,— AV <x

(where Z,=u"X,) for some finite 4. But then Z,~ 4 -0 as. as i — oc,
which, since Z, is an i.id. sequence, implies that Z, is a constant. So u" X,
is degenerate, contrary to assumption. Thus, in fact, A, (¥V,)— % as.,
certainly implying (2.12). §

We now prove Theorem 2.1. Suppose B,(S,—4,)-2 N(0,I). Then
according to Lemma 2.1 we may take B, to be symmetric. Define the
eigenvalue decomposition (e.g., Rao [21, p. 39]) of B, by

B, =08(n) A(n)0(n)7,

where A(n) is a diagonal dxd matrix whose diagonal elements are the
eigenvalues of B,, and 0(n) is an orthogonal matrix, i.e., 8(n)T8(n)=I. Use
Helly’s theorem to find a subsequence which we denote N so that 6(n) — 0,
an orthogonal matrix, when n — o0, ne N. We have

A(n) 0(n)(S,—A,)=0(n)"B,(S,—A,)
=0"8,(S,—A,)+ [0(n)—0]"'B,(S,—A4,)
2N, 1) (1> x,neN).
Thus since the limit does not depend on the choice of N,
An)0(m)(S,—A,)— N0, )  (n- x).

So if 8, (n) are the columns of #(n) and 2, (n) are the diagonal elements of
A(n), we have, for 1 <j<d,

4, (n) 8, (m)(S,— A4,)—> N0, 1).

At this stage we do not have the UAN condition which is needed to apply
criteria for the convergence of triangular arrays. Let X, be iid. random
variables with the same distribution as X, but independent of them, and let
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Xi= X.— X,. Then the symmetrised random variables 6, (m)T X! satisfy, by
a simple characteristic function argument,

Ai(n) 2 0, (n)"X: 25 N(0,2) (n—x) (2.14)

i=1

Let 4, (n) denote the largest of 4, (n) and suppose (2.1) fails to hold. Then
12,

n' i (n)—x as n—oc, neN, for a subsequence N of integers. Then by
(2.14),

ZZ,,,—C»O (n— o0, ne N),

i=1

where we define
Zm = [61 (n)TXb:]r“J"I ‘2’ le = [01 (n }TX‘I]!/"I 2'
Since Z,, are symmetric we then have for real ¢,

[EcostZ,]"—1 (n—oxc,neN)

and letting r, = n(1 — E cos tZ,), this implies
(1—n 'r) =exp[nlog(t—n 'r)]—1,

so —nlog(l—n 'r,)—>0, and r,—»0 (n—>oc, neN). But since
1 —cos tx > 17x%/2 for |1x| <1 and since |0, (n)"X}| <X},

r,=nE(l —costZ,) ZntzE[Zil Gt 12
=rE{[0,(n)"X ]I Qeton ) <t 112
> 20, () ELX XDy o0 0,(0)2
=1 igf [ ELX XD e J /2

Now the last expression is bounded away from 0 for r small enough
by (2.13) applied to X3, so r,—0 (n— o, ne N) is impossible. This
contradiction proves (2.1), and (2.1) implies 4., (B,)— 0, so (2.2) follows
easily from (2.1).

To prove (2.3), apply Gnedenko and Kolmogorov [5, Theorem 5,
p. 143] to (2.14). (Note that 4, (n)(),(n)TX'} are UAN for each j, since by
(2.1), 4,(n)—0.) This gives

Y [0, "X 1P L2, 1<j<d,

i=1
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where < signifies that the ratio of the two sides converges in probability
to one as n — o. Adding over 1 € j < d and recalling that
Y 10,(n) 0, (n)" =1 gives
T xR,
=1,
b,

where

d
ha=2Y% 4, *(n)=2trace(B, ).
j=l

This is relative stability of 3”_, |X!|? and by (1.12) is equivalent to

i=1

P X3 > x)
E[1X3)° 1 Qxl<v]

-0 (x —o0).

Thus |[X3| is in the domain of attraction of the normal distribution,
and this implies E |X{|* <o, O<2<2, and hence E|X|*< 0, O0<a<2.
Hence certainly E (X <oc. To complete the proof of (2.3), we need
B, (S, —nu) -2 N(O, I) for some B,. However, this is easily seen by sym-
metrising then using the equivalence lemma of Hahn and Klass [9, p. 264)
and Theorem S of Hahn and Klass [9], so we omit the details.

To prove (2.4), by (2.3) we may replace X —u by X; ie., we may take
u=0. Then u"B,S,-> N, 1) for ueS’ ' If Z,=u"B,X, then by
Gnedenko and Kolmogorov [5, Theorem 2, p. 128], we have for ¢>0

nP{|Z,)|>¢} -0 (2.15)
and

n{E[Z,1 xaz,,|<1:{]_Ez[erl :nz,.lsm]}“’ I

Theorem 5 of Hahn and Klass [9] applies so (1.9) holds and by their
equivalence lemma we have, since £Z, =0,

E2[2r1] ;\x,,;s::;] gf: 1E[Z"1 Hzn|S1‘}]|
=¢|E[Z,1,,, .. ]l
:O{E[Ziluz,,mu}]} (n—o0).
We thus obtain

"E[Z,Z.I 1»z"|s,;:] — 1,
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and so
nE[(uTB,,X)21H,,Tﬂmgnz]—» 1. (2.16)

This is not quite what we want, since the indicator function depends on u.
But (2.15) says

nP|u"B,X|>¢)—~0 (n— a0)

from which we obtain, taking v to be the coordinate vector along each axis
in turn,

nP(|B,X|>e)—0  (n— ). (2.17)

Finally, since [«"B,X| < |B,X|, we easily conclude from (2.16) with ¢ =1,
that

RE[(WB, X1, 4 v <iy]1— L. (2.18)
Thus, replacing X by X — p, we have by Lemima 2.2 that
nBE{(X—pu)X =)' 1, 5 a1y Ba— L (2.19)

We may then omit the y from the indicator function in (2.19) by a similar
argument to that by which we deduced (2.18) from (2.16). Thus (2.4)
holds. |

Remarks. (i) Having proved (2.3) we do not distinguish between 5,,
and B,.

(it) Following (2.4) it is of interest to ask whether we can define
(uniquely) a matrix sequence by

1.
(BdX  Xpl<1) 8o

B, =nE{(X-X)X-X,)"1

the answer to a closely related question is yes, as shown by Theorem 2 of
Maronna [18], when X is full. Currently we do not know whether this is
the “right” norming sequence for the asymptotic normality (or, more
generally, stochastic compactness) of S,,.

3. ProOOF oF THEOREM 1.1

The proof is divided into six sections denoted (a), .., (f), giving the
proofs of the implications (1.5) — (1.6), ..., {1.9) = (1.5), and (1.8) «> (1.10).
The methods rely on a reduction to the one-dimensional case by projecting
on a unit vector. The results concerning the sum of squares and products
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matrices ¥, and V, essentially use Raikov's theorem (Gnedenko and
Kolmogorov [5, p. 143]) showing that, after centering and norming, a sum
of squares is relatively stable if the sum is asymptotically normal. The
major part of the proof is the implication from (1.8) to (1.9), and this is
essentially an extension of Breiman’s [1] arguments to the multivariate
case, using some of the ideas now current in the theory of “trimmed sums.”
And, of course, important use is made of the Hahn-Klass analytic
equivalence for the operator-normed asymptotic normality.

(a) Let (1.5) hold, so by Theorem 2.1, u= EX exists and may be
taken as zero, B, may be taken as symmetric and nonsingular, and 7B, X,
are UAN. We will show that (1.6) holds. We have u'B, S, -2 N(0, 1) for
ueSY 'so (see (2.15) and (2.16)) as n — 0, for each &> 0,

nP{|lu'B,X|>¢e} -0 (3.1)

and
nE[(uTB,,X):l1!,,13,,,\';@;:]—' 1. (3.2}

By Gnedenko and Kolmogorov [5, Theorem 2, p. 140], (3.1) and (3.2}
imply

Y (uTB, X)) 1

=1
which implies by Lemma?2 that B,V,B,-% I, since B,V,B, is
symmetric. Also

n{B”X”‘Z:’I l IB”S”‘LO
SO we obtain

Bn l7an: Bn Z Xf X;rBII_nBHY"YIan 1+0p(] )s

i=1

where 0,(1) is a quantity converging to 0 in probabilty. Thus (1.5) implies
(1.6).

(b) Next we show that (1.6) implies (1.7). Our first task is to show
that £|X] < o¢. According to Lemma 2.1 we may take B, to be symmetric.
Let the eigenvalue decomposition of B, be B, =0(n) A(n) 8(n)", where
A(n) is diagonal and 0(n) is orthogonal. Use Helly’s theorem to find a sub-
sequence N so that 8(n)— 0, an orthogonal matrix, when n-— oc, ne N,
Then

An) 6T (n) V,0(n) A(n)=0%(n) B, V, B,0(n) — I, as n->oc,neN.
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Since the limit does not depend on N this implies
)0, (n)V,0, )1, 1<j<d (n—>x),

where 6, (n) are the columns of 6(n) and /, (n) are the diagonal elements
of A(n). Thus we have 4, (n)>0 and

2

YO0, T, - X)), 1< j<d (3.3)

i=1
Adding over 1< j<d and recalling that 3¢_, 6, (n) 0, (n)" =1 gives

Zz':l|Xi_/‘7n|2 P

L,
b,

where

d
b=y 4, *(n)=trace(B,").

i=1

Now when E | X|? = =,

X, (3.4)

[\/]
>
|
>
||N
M
>
|
>
'
g E

i=1 i=1 i

which we demonstrate as follows: Given £>0 fix 7 so large that
P(|X|>T)<&% and let ue S ' Then

n

Z X HEORE A

i=1

-12

n

n 12
<n12T<0”<Z |X,»|3> ,

i=1

since we assume E |X|? = «. Also by the Cauchy-Schwarz inequality,

n 12 n 1:2
<"12[Z l:.xq>r:] ( }X/|2>
i=1 i=1

n 1,2
J(P(1X|> T))”(Z |X,-\2>

i=1

n 12
<8<Z |X1|2) b

=1

n
Z XI 1 Xl >7T)

i=1

5
n 12

and adding these gives

nl : ‘Yll! =0p<i |Xu‘2> -’

i=1
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so, indeed, (3.4) is true. Thus when E |X|?= oc,

X

pr b

this is relative stability of 37, |X;|> and is equivalent to (1.12). This
implies £|X| < oc and, of course, this is also true if E {X|? < cc.
Now we can show that (1.7) holds with 4, = u = EX. Since

Bll Z (XlAlu)(Xi_#)TBn = Bn VIIBI +an(/\_/n_iu)(A—/n‘“)TBu*

i=1

for (1.7a) with 4, = u, it will suffice to prove (1.7b) with A, = pu. Now 7,
is invariant under the transformation X, — X, — g, so assume y=0. Then
by the weak law of large numbers, X, 0, and for (1.7b) with 4, =0 it
will suffice to show that

lim sup n'?4,..(B,) < <, (3.5)

because then
n |BII‘YH|2<’1 IA_/nl2 }“max(Bi)

converges to zero in probability as #n — co. Let 4,(n) be the largest eigen-
value of B, and suppose (3.5) fails, so there is a sequence N of integers such
that ni2(n) - o and n— oc, ne N. By (3.3) this means

n 'Y [0, (X, X)]1*~>0 (n—>ox,neN)

But
|01(n)TY"!2 S |A_/n12_r;+ O’

so we have

h 191(’7)]-[/”91(’7):"7l i [gl(n)TXi]2

i=1
=n 'Y [0,(m)"X,-X ) +16,(n)'K,
i=1

0 (n— oc,neN)

which contradicts (2.11). Thus (3.5) holds and we have shown that (1.6)
implies (1.7), in which we may take 4,=p.
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(c) Next, (1.7) implies (1.8). To prove this, first assume 4,=0 in
(1.7). Then we have B, V,B, % I. This implies for £ >0 and ue S ' that

nP(|u"B,X|>¢)—0
which we prove as follows. Let Z,,=u"B, X, and Z,=u"B, X so we have
i‘ z: -5 (3.6)
o
For ¢> 0, (3.6) obviously implies

P(max |[Z,|>1+4+¢)->0

1<ign l"
and so for e> 1
nP(|Z,| >¢e)—0. 3.7)

At this stage we do not know that Z,, are UAN. But (3.6) implies that for
any 1

[E(exp(itZ2)]"=e" + 4,(1),
where 4,(1) > 0 as n - oc. Thus, defining the log appropriately,
E(l —cos tZ2)—iE(sintZ})y=1—[e" + 4,(1)]'"
=1—exp{log[e”+ 4,(1)}/n}
= —log[e" + 4,(1))/n+O0(n"?)

= —it/n+o(n""),
so that
nE(l —cos tZ?) -0 (n— ).

Now keep 0 <1< 1. We have

- 12

ME( = cos 1Z2) 2 n B[ Z3) za ey ) =ntt |y dPUZ,) <)

!
0
in which the left-hand side —0. After integrating by parts the right-hand
side is

12
—nP(Z,| > 1 2) + 4n? f PP(IZ,| > ) dy
4]
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and by (3.7) the first here is o(1). But the integral is bounded below by

e

4nt’ J PUZ, > ) dy 2 et P Z,] > ),

0

where 0 <g <t "2 Thus (3.7) holds in fact for all ¢> 0.
From (3.7), taking each component of B,X in turn, we obtain
nP(|B,X]|>¢)—0; thus

max |B,X,| 250,

Isigsn

and so

max sup "B, X,| — 0.

I<i<n w

Also from B,V ,B, -5 I, by Lemma 2.2,

inf(u"B,V,B,u)— 1.

u

IfuesS? !, let

Then we have for 1 <i<n

("X, XTu) (0]B,X,X'B,v,)

i n-n

(uT Vllu) B (U;II-BII VH BI v )

n

Supz~ |UTBnXi|2
= infr'(UTBn Vn B,,L‘)

10TB, X, |?
< max Sup( lL " :l P 0

iziza (1+0,(1))

This proves (1.8) using the identity (Rao [21, p. 60]):

TX_ 2
X7V X, =sup X (38)

u u

u ”

We assumed at first that 4, =0 in (1.7) but we can remove this restric-
tion by noting that (1.7) as stated implies (1.6) and, hence, by part (b) of
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the proof, that 4, may be taken as u and, hence, as 0. To see that (1.7) as
stated implies (1.6), we have

Bn Z (XI_AII)(XI_AH)TBH:BH Z (Xi_A_/n)(Xi_YH)TBn

i=1 i=1
+an(Yn_An)(/‘7n_An)TBn
:Bn VHBH+0[7(1)

by (1.7b), so B,V B, %> I (n— =), proving (1.6).

(d) Now we show that (1.8) implies (1.9). For this part of the proof
we will assume that #7X has a continuous distribution for each uwe S !
and remove this restriction later. For brevity, write Y“=(u"X,)%
According to (3.8), we have

Y P
max sup ———;— 0.
Isisn w Z/:lY/
Thus
Supmax,g,g,, Y! p 0
” u
w Zi:l Yl'
or
{1yQu ,
inf —* —— oC,
“ Ynl
where
n
(1ygu __ " u u w
Si=3Y Y—YY  and Y4 = max Y¥
i=1 I<ign

Thus we have for all x>0
P('"S“> xY¥ Jallue SY ') -1 (n—x)

or
P (VSu<xY)>0  (n—>x0).
This implies, for all x>0, that

sup P(\VS < xY)»0  (n— x) (39)

683 44 2-3
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Now let A, (x) be the distribution function of Y and note that (see (1.4))

VAX" ) =E[u" X)) 1, iy coy]

=E[Yil . 1= '0 ydh, ().

Following arguments used in Hahn and Klass [9] and in Griffin [7,
Lemma 2.2] we can define for each v a nondecreasing sequence

B, (w)=inf{x>0:V, (x)/x’<n '}, (3.10)

so that, by continuity of F and of V,

B (u)=nV (B, (u)). (3.11)
Then, since X is full,
infh (x)—=>1 (x— ), inf B (u) » = (n-—x). (3.12)

Z

Next, since Y has a continuous distribution, ¥, is uniquely defined a.s.,
and we have

PSS KXY ) =nP(Yi+ - + Y <xY' Y'< Y'for2<i<n)

nl

—n | P(ST () <) b ) dhy (v, (3.13)

u
Y0

where for y >0

Shyy= 3 Yi(r)

P 1

and Y¥(y). 1 <i<n, are i.i.d. random variables, each with the conditional
distribution of Y, given that Y{<y If x, y>0 we have by Markov’s
inequality
P(SY () <xv)=1- PS5 (y)>xy)
21— E[S] ((»]/()
= 1 - (’1 - 1) l/u(."] 2)/““‘("‘,“}114( 1))

>1=2(n—1)V, (3 )(xy)

where we fix x, so large that inf, A, (x)>1 for x> x,. as is possible by



QUADRATIC NEGLIGIBILITY 211

(3.12), and keep y=x, By (3.12) we may also take B, (u)=x, for
ueS? ' Suppose that v'?> B, (u); (3.10) and (3.11) show then that

V.(8,

V(') _V(Bu(w) 1

ul
v Bl (u) n

which gives
P(SY (v)<xy)=1=2(n—1)/(nx)2=}

if v'22 B,(u)= x, and x> 4. Going back to (3.13) shows then that (recall
the continuity of /)

2PCVSE< XYz a | K ) dh(y)
B ()

=1—h2(B.(u)).

By (3.9) we then deduce that

sup [1 —A"(B2(u))] >0 (n— ). (3.14)

1

Now we claim that

supn[1—h (B (u))] -0 (n—x) (3.15)

"

If not, there are sequences n, —» o«c and u, such that
n,[l——h,,,(B,l,,(u,-))]—-»O‘G(O, 0] (i—>o0).
Since
hy(B,(u))=exp[nlogh, (B, (u))] <exp{—n[1—h,(B;(u))]},
if §=oc, this means A (B} (u,))—0 (i—oc) which contradicts (3.14).

Likewise if 0 <3 < oc we obtain a contradiction, so (3.15), indeed, holds.
Together with (3.11) this means we have proved

{B:’,(u)[l—hu(B:’,(u)»]
Su

V. (B,(u)) }—’0 (n—x). (3.16)

Essentially. to obtain (1.9), we need to replace B,(u) by an arbitrary



212 R. A. MALLER

x— o in (3.16). To do this, we show that B, , ,(u)~ B, («), uniformly in
ue S '. We have by (3.11)

5

O=(n+1)B, () V,(B,, (u)—nB, (1) V,(B,(u))
=n[B,} () V (B, ()= B, () V,(B,()]+B,} (1) V,(B,, ()
=nB, *(u) V,(B,(u)[B, ] (u) B ()~ 1]
+n[V (B, ()= V (B, (u)] B, (w)+(n+1) "

Since nB, *(u) V,(B,(u})=1 and

nV(B, . ()= V(B ()] "Il x dhy(x)

B, (w) B (W)
<n[l —h,,(B,z,(u))] -0

uniformly in u, by (3.15), we have, indeed, shown that

sup

1

B(u)
l_._____w” — — O ) 17
l BEH(“)l 0 (n— o) (3.17)

Finally, we claim that

sl‘tp v (x) -0 (x— o0). (3.18)

If not, there are sequences x, — o, u,€ S ', such that

.\'f[l —h,, (xf)]

>3 ;
V) =20d0¢e(0, ]

Since inf, B, (#) — oo as n > oc we can define a sequence n, of integers by
n;=supin: B, (u;) < x,}
so that

Bn, (Zl,) gxi < Bn,+ 1 (ui)'

Now n,— oc; if not, n,+ 1< N, say. Since x,<B, . (u,)<By(u;), this
means B, (u,) = 2. Then by (3.11), (1.4), and integration by parts,
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5 Bx(u;) N
Byu)= NV, (Byw))=N | 3> dP(lu]X| < )
0

By{uw)
ssz PP(uTX] > v)dy
0

ol

=2NB () | yP(ulX|> yBy(u;)) dy.
(¢}
But then

1
IN [ yP(uTX] > ¥By (u,) dy

YO

1

N

1
<IN | ¥PUX| > yBy(u) dy,

(4]

whereas the last expression converges to zero as i— o¢ by dominated
convergence, since N is fixed and P(|X]>x)—0 as x —» 0. Thus indeed
H;— L.

We now have

'le[l _hu, (\‘:2)] < B;:z,+ | (ll,*) Br:;, (U,)[l _hm (Br::, (u,))]
l"u, ‘-\.:) h B: (ll,-) l/ul (Bn, (ui))

"

<sup

1

B, .\ (u) B (u)[1 —h, (B} (u))]
B (u) Sfp{ VB, () }

—0(i— x)

by (3.17) and (3.16). This demonstrates (3.18), which is (1.9), and shows
that (1.8) implies (1.9) when u'X is continuous.

Now assume (1.8) holds for a general X. By Lemma 2.3 we can choose
¢ >0 so that

Pl (V) > 10cn) > 1 (n— o). (3.19)

Let Z, be 1.1.d. random variables distributed as N(0, ¢/), independent of X,
and define

/?i':X,.+Z'., V,,ZZ/?,X?.

Then «"X, are continuous ii.d. random variables. To show that (1.8) holds
for X,. consider
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n ”
w PV ou=u"V,u+2u" Y X, Zlu+u" Y Z, Z'u
i1

i=1

n
. . :
zu'V,u+2u" Y X, ZMu

f=1

n 12
214TV,,u—2[(u”',,u)(uT Y Z, Z,Tu>] .

\ i=1

the last step following from the Cauchy-Schwartz inequality. Let 4(u) be
the set where

”n
u' Y Z,Zlu<u"V, ul9;

("

then on A(u),

H
WV uzu"V,u3dzu' Y Z,ZM
=1

and also

! "X, | u'Z,|
)'3\ @'Vt T Wz, ZN)

The first term on the right-hand side converges to O in probability
uniformly in ¥ and | </<n by assumption. The second term converges in
probability to 0 uniformly in © and i because n ' ¥ Z, is asymptotically
normal with mean 0 and covariance matrix ¢/, so the implication (1.5) to
(1.8) holds for the continuous random variable Z. Also

P(A(u) fails to hold for some u)

n
-P (uT Y Z,ZTu>u"V,u/9 for some u)
P=1

<P (sup u''y Z,Z un> IO(';"()) + P(inf u™V,u/n < 10¢)

1 =1 u

< P( Y iz|'n> 10«/9) +o(1) (see (3.19))

i=1

=0(1)
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sincen 'Y 1Z,12-5 ¢ <10¢/9. Thus for £> 0,
=

WX,
P < max sup >&
l<isn w uTl’"U

< P{ max |[u'X,)>>eu"V,ufor some ue SY '

I<isn

< P{max (u"X,|>>eu"V ,uforsomeue S’ ', A(u)holds for all !

I<ign
+ P{ A(u) fails to hold for some u|
— 0.

Thus (cf. (3.8))

and so (1.8) holds for X. By the continuous part of the proof, then, (1.9)
holds for X. Since

PUZ,|>x)=0(¢ %) (x—x)

it is not hard to see from this that (1.9) holds for X. This proves that (1.8)
implies (1.9), in general.

{e) That (1.9) implies (1.5) follows from Theorem 5 of Hahn and
Klass [9] provided we can show that E|X|< x. If ¢, is a coordinate
vector (one in the jth position, zeros elsewhere) and x,=c,TX is the jth
component of X, we have by (1.9) that

X P(|x;] > x)
fo yPUx;[ > v) dy

(x> x)1<j<d (3.20)

Thus the random variables x, are each in the domain of attraction of the
normal, so E |x;|* < oc, 0<a<2, 1 €/<d. But since

IX|=(x7+ --- +x2)''<d max |x,|,

l<jsd

we have £|X|* < ¢ for 0<a< 2. Now apply the above-mentioned result
of Hahn and Klass to X, —u to obtain B, (S, —nu) - N(0, ), which is
(1.5).
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(f) Finally we show that (1.8) and (1.10) are equivalent. If (1.8) holds
then it holds with X, replaced by X, — 4, where A4 is any constant, i.e.,

max (X,—A)7T

I1<ign

" -1
x{Z(X,—A)(X,—A)T} (X,—A)—>0, n-ow. (321

i=1

This is true because we showed above that (1.8} implies (1.5), and (1.5)
is invariant under the transformation X,— X,—A4 (after redefining
A,=A,+nAd), and (1.5) in this form implies (3.21) via (1.8). Likewise
(1.10) is obviously invariant under this transformation. Furthermore, when
(1.5) holds, we know from Theorem 2.1 that u = E(X) exists. So we can let
X;=X,;— u, or equivalently, take u =0, without loss of generality. Then
X, u=0 and, since
Vn: Z (Xi_/‘_/n)(X/_Yn)T
i=1
=Y X, X/ —nX, X[ =V,—nX X}

"
=1

we have

W' Vu=u"V,u+o,(n)=(1+0,(1)u"V,u,
the last equality holding since, with probability approaching one, u" F,u/n
is bounded away from zero uniformly in u by Lemma 2.3. Thus «™ ¥V, u/n

must be bounded away from zero uniformly in u with probability
approaching one, and

.L(T(X,—/\_/”)I
Sup ———————
w (W,
<Sup luTXil 4 p |uT/\7n|
= s 5T SUp ————.
u [1+0p(1)](u—rl/nu)l> u (LITI’/,,U)lz

The last expression converges in probability to zero uniformly in 1 <i<n
if (1.8) holds (and X, % 0). Thus (see (3.8)) (1.8) implies (1.10). Conver-
sely, u™V,u<uTV,u, so it is easy to show that (1.10) implies (1.8) (without
invoking (1.5)). |

Remarks. (1) For the counterexample mentioned in Section 1, take

d=2, E|X|?< o, EX=0, and let B, =diag(n ', n '), d=[0 1]". Then
we have

B,S,— N0,1—85T)  (n— x),
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i.e., convergence to a singular normal, so (1.5) fails. But

Y WBXY-S5 1w} (n- ),

i=1

SO

ﬁ: [MTB,,(X,-—A”):]2
i=1

= Z (u"B, X ) =2(u"B,S)(n "ut &)+ (u'd)

i=1

W8+ T =1 (n-x),
and (1.7a) holds, if we let 4,=n '?B, 'J. Note that

n|B,(A,—X ) =nln “?6—n 'B,S, > -1 (n—> x),

so (1.7b) fails.

(1) We remark also that (1.11) does not imply (1.9); because (3.20)
implies (1.11}), but (3.20) cannot imply (1.9) by the example on page 238
of Hahn and Klass [9]. In fact, the uniformity in u is essential in (1.9), as
they show. However, when X has a spherically symmetric distribution, each
projection of X has the same distribution, so X being in the operator-
normed domain of attraction of the normal in the sense of (1.5) is
equivalent to each component of X or to |X| being in the domain of
attraction of the one-dimensional normal, in the usual sense.

(ili) Finally, we show that (1.5) implies (1.15). Let 8, 5,2 N(0, 1)
and u=0. Then from B, ¥, B, %> I (see (1.6)) we obtain B, 'V, 'B ' -5 1
(Lemma 2.2) and so

SiV,'8,=0,0,-0,4,0,
where
4,=1—-B,V,'B,—2 0
and

Qn = BnSn _D_* ‘)V(0~ I)
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Thus by the continuous mapping theorem Q'Q, 2> 2. Also

d d

107 4,0,/<Y Y lg, () gu(n) 4,(n)) —— 0,

j=1 k=1

where ¢, (n) and 4,,(n) are the components of Q, and 4,. The former are
stochastically bounded, since @, converges in distribution to N(0, /); the
latter converge in probability to 0, since 4, %> 0. Replacing X by X —
completes the proof of (1.15).
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