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Asymptotics of Generalized S-Estimators
OLa HoOssIER*, CHRISTOPHE CROUX', AND PETER J. ROUSSEEUW?

Lund Institute of Technology, Lund, Sweden;
and University of Antwerp, Antwerp, Belgium

An S-estimator of regression is obtained by minimizing an M-estimator of scale
applied to the residuals r;. On the other hand, a generalized S-estimator (or GS-
estimator) minimizes an M-estimator of scale based on all pairwise differences
r;—r;. Generalized S-estimators have similar robustness properties as S-estimators,
including a high breakdown point. In this paper we prove asymptotic normality for
the G'S-esimator of the regression parameters, as well as for the accompanying scale
estimator defined by the minimal value of the objective function. It turns out that
the asymptotic efficiency can be much higher than that of S-estimators. For
instance, by using a biweight p-function we obtain a GS-estimator with 50%
breakdown point and 68.4% efficiency.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In the linear model, the observations are generated according to
yi=ﬂ6xi+oei’ i:l,..,, n, (1.1)

where the unknown regression parameter B, and the carriers x; are
p-dimensional column vectors, ¢ is the unknown scale parameter and e, the
error term.
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Because real-life data often contain outliers, several robust regression
techniques have been developed. S-estimators (Rousseeuw and Yohai,
1984) are defined as

., =argmin 3, (B), (1.2)
B

where §,(B) is an M-estimator of scale given the equation
o (ri(B ))

pl—=|=k 1.3
2o (6 ()

for the residuals r;(B) =y, — B'x;. Under appropriate conditions on p and
k, it has been shown that S-estimators are robust and asymptotically
normal (Rousseeuw and Yohai, 1984), but there is a tradeoff between
breakdown point and efficiency. If a 50% breakdown point is imposed, the
asymptotic gaussian efficiency of f, is at most 33 % (Hdossjer, 1992).

S-estimators arose as generalizations of least median of squares (LMS)
regression (Rousseecuw 1984), which can be obtained as a special case by
putting p(u) =I(ju| = c) and k = 1/2 which yields

1
ni

B, = argmin med |r,]. (1.4)
B i

However, this step function p does not satisfy the condition for asymptotic
normality, and indeed the LMS estimator converges at the lower rate of
n'? to a nonnormal distribution (Rousseeuw, 1984; Davies, 1990).

Recently, the class of generalized S-estimators (or GS-estimators) was
introduced (Croux et al., 1994). They are also defined by a minimization as
in (1.2), but now §,(f) is an M-estimator of scale computed from
{r(B)—r;(B); i< j}. Essentially, §,(B) is the solution of

i<j

(see (2.1) for the exact definition of §,(f)). The robustness aspects of
G S-estimators have been investigated in Croux et al. (1994), where the
breakdown point, the maxbias curve, and the influence function were
derived. Also, an algorithm for computing GS-estimators was proposed
there. It remains to determine their asymptotic behaviour, which is not
easy. In the present paper the asymptotic normality of f, is established,
yielding asymptotic efficiencies that are much higher than those of
S-estimators with the same breakdown.

A prototypical example of a GS-estimator is given by plu)=1I{|u| =2 ¢)
and k = 3/4. We will refer to the resulting f, as the least quartile difference
(LQD) regression, because the objective function §,(f) is simply the first
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quartile of {|r () —r(f); 1 <i<j<n}. The latter scale estimator was
introduced by Rousseeuw and Croux (1993). The LQD has a 50%
breakdown point, and its role in the class of GS-estimators is similar to
that of the LMS in the class of S-estimators. This time, however, the dis-
continuity of p does not prevent the estimator f, from being asymptotically
normal, due to the additional smoothness caused by the convolution r, —r,.
In fact, it turns out that the gaussian efficiency of the LQD is as high as
67.1%. Because of these favorable properties, and the fact that its com-
putation time is of the same order as the LMS, we can also use the LQD
as first step in the two-stage procedure of Simpson et al. (1992).

Other regression estimators which combine high breakdown with high
efficiency are MM-estimators (Yohai, 1987) and r-estimators (Yohai and
Zamar, 1988). The basic idea of MM-estimators is to start from an initial
high-breakdown regression (for which the LMS or the LQD can be used),
followed by a robust estimation of ¢ and a constrained M-type iteration
with an efficient p-function. On the other hand, t-estimators are based on
the minimization of a two-step scale estimator based on the residuals,
which uses an M-estimator. Therefore, 7-estimators do not have an explicit
objective function, in contrast with the LQD. Note that r-estimators can
also be computed by resampling and used as initial regression estimators.
Croux er al. (1994) provide a comparison between the maxbias curves of
7- and GS-estimators.

The paper will be organized as follows. In the next section we give an
exact definition of GS-estimators. In Section 3 we prove the asymptotic
normality of f£,, and of the scale estimator §, which is defined as the
minimal value of the objective function. Some asymptotic efficiencies are
computed in Section 4 for various p-functions. Finally, some of the more
technical results are collected in Appendices A and B.

2. DEFINITION OF GENERALIZED S-ESTIMATORS

The error terms e; are assumed to be independent and identically dis-
tributed (i.i.d.) with common distribution F(x)= P(e;< x). The carriers X,
are assumed to be i1.i.d. observations with distribution G, and independent
of the errors ¢;. We will denote by K the ( p + 1)-dimensional distribution
G x F of the vectors z,=(x,, e;).

As for notation, we will denote L,-norms of (column) vectors in R” by
{-1,, 1< p<oo, with p=2 as a default value, and L, norms of random
variables/functions by |/-|| ,. Frequently in the calculations, constants will
be denoted C (or e.g. C(F, G) to indicate dependence on other quantities),
and these may vary from line to line in the same equation, unless otherwise
stated.
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The following regularity conditions are imposed:

(X) The distribution of the carriers satisfies E;|X|>< oo,
E;(XX')=ZX is positive definite, and E;(X)=0.

(F) The error distribution has a unimodal denisty f, which is twice
continuously differentiable with a bounded second derivative.

For each f we define a generalized M-estimator of scale §,(f) (cf., Serfling,

1984) as
inf {s; (’;)l T p (L.‘E).;lz.@) gk}, 2.1)

i<j
where r, () =y;—x;B are the residuals,
k=Erp,ppe,—es),

and finally,

(R) The function p is even, continuous at 0, nondecreasing and right
continuous R*, and p(0)=0, p(o0) < 00, and p(c)= p(o0) for some ¢ > 0.

Remark 2.1. Observe that we allow g to have a countable number of
discontinuities on the interval (0, ¢]. The regularity conditions on p do not
include the case when p is unbounded, since we want to have a nonzero
breakdown point (but see Remark 3.1).

The estimate of B, is defined as any value

Bnel,={B;5,(B)=5,}, (2.2)
where
S'n‘—*mﬂin $.(B) (2.3)

estimates ¢.

3. AsYMPTOTIC NORMALITY

We assume from now on w.l.o.g that §,=0 and ¢ = 1. For notational
convenience, we write

D, (P, s)=<;)-1,2 p(M). (3.1)

i< N
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Since p(x) is nondecreasing in |x|, it follows from (2.1), (2.3), and (3.1)
that

r,={p:D,(B.35,(P))<k}. (3.2)
Putting

4,(B,5)=D,(B,s (0, 5) (3.3)
we then obtain

I,={p.D,(B.5,)= min D, (8,5}
={B4,(B,5,)=min 4, (B, S) =T, (3.4)
s

(And I",=1T, when p is continuous.} We will first prove asymptotic nor-
mality for any sequence {f,e T}, and then establish that an arbitrary
sequence {fi, e I',} is asymptotically equivalent to {f,} (see the proof of
Theorem 3.1).

It turns out to be of great importance to study the asymptotic behaviour
of 4,(8,s) in a neighborhood of (0, 1). Actually, we will show in Lemma
3.1 that locally around (0, 1), 4,, is asymptotically equivalent to a quadratic
function in f. As a preliminary, we introduce some notation. Let

p(x)=Epp(x—e) (3.5)
and
Y(x)=p'(x)=Ef(x—e).

where y = p’ may contain a countable number of delta functions. As a local
neighborhood of (0, 1) we define

Q,={(Bshls—1<n " |l .<n 7, (3.6)

where 0 < 7, <1 and 0 < 7, < } are fixed numbers, satisfying 7, + 7, > § (and
hence 1, <i<71,).

Lemma 3.1.  The function 4,(f, s) defined in (3.3) may be expanded as
4,(8,5) UL,/;’+ B'V,B+Rem, (8, s), (3.7)
where

2 _
Un:_;Z w(ei)xi’ (38)

5 )
V, ==X (xxi+ I) P'le)) —2ZE (o), (39)
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and
IRem, (5. 5)|
su ——————— =
v, Ln+ |2

In order to make use of the remainder estimate (3.10) we need to
establish that (8, $,) stays in 2, with probability tending to 1.

0,(1). (3.10)

LemMa 32. Let B, el Then
1Bl =0,(n"™).
LemMAa 3.3. Let $, be defined by (2.3). Then
1§, — 1l =0,(n"™). (3.11)
We are now ready to prove asymptotic normality for 6.

THueoreM 3.1. Let ﬁn be any vector in I',, and let U, and V,, be defined
by (3.8) and (3.9) respectively. Then

-

B.=—-V. 'U,+0,(n""? (3.12)
and hence
n'2g -4 N(O,—E—Fﬂfﬁ—l*‘) (3.13)
(Erd'(e))

Remark 3.1. Tt follows from (3.9) that [?n has the same asymptotic dis-
tribution as an M-estimator with score function ¥. It is possible to prove
Theorem 3.1 in the case when p is convex, ¥ = p’ is square integrable, and
0< ExY'(e) < oo by showing that the solution B, of 4D, (8, 5,)/08=0 is
asymptotically normally distributed with covariance matrix according to
Theorem 3.1. The local minimum of D,{(-,s) thus obtained will then
correspond to a global one, since D, (-, s) (or 4,(-, s)} is a convex function
of B. This includes least squares (p(x)=x?) and Jaeckel’s estimator with
Wilcoxon scores p(x)=|x| (cf. Jaeckel, 1972).

Proof of Theorem 3.1. We start by establishing (3.12)-(3.13) for a
sequence f§, € 7,. By the Central Limit Theorem,

n'2U, -5 N(O, 4E - (e)? T),

and by the law of large numbers,
V,5 V=2SE ) (e). (3.14)

683/51/1-12
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Hence, (3.13) follows from (3.11). It remains to prove (3.12). Let
Bu=-V, U,
Given 4, n >0, we will show that for n 2= n,,
P(|B,— B, >0n 12y, (3.15)

which will imply (3.12). Choose A4 so large that
3 YN/ |
P18 > An ") <]

for all n. Let A >0 denote the smallest eigenvalue of V, and choose ¢ so
small that

(3.16)

8<}L
=32

and

16e(1 +242) _

- 82 (3.17)

In view of Lemmas 3.1-3.3 and (3.14), if n, is large enough, n = n, implies
that

P(Bus)e2)>1-1,
|Rem,,(f, )| ) n
P< sup —————=—>¢ | <~ (3.18)
Booea, 1B 4

and finally
| - . . n
P V"—EV is positive definite | > 1 4
Hence, it follows from (3.7) and (3.18) that with probability at least 1 —#,

_ 1 _ _ _
An(ﬁ’ fn) —'An(ﬂna §n) zi(ﬂ_ﬂn), Vn(ﬁ—ﬂn)+Remn(ﬂ’ fn)_ Remn(ﬂna §n)

\

>3 18—~ -+ 1817

2<%——48) 1B— B2 —2e (lﬁ-g—Aj),
4 n ]
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which is greater than 0 as soon as

~ [2e(1 +24%) _
B—B.= a4 " 12, (3.19)

Since the right hand side of (3.19) is dominated by dn~ "2 because of (3.16)
and (3.17), we have proved (3.15).

It remains to show that { B.el’,} is asymptotically equivalent to
{B,eT,}. If not, we can find &' >0 and 5’ >0 such that

P(16, - >%)>n’

for some subsequence {#,;}. By (3.2) and Lemma 3.1, this implies that

A,={p18-B) SE&T} er,

n;

with probability > #'/2 for all n, large enough. However, this would imply
that §,(-) is constant on 4, with probability larger than #'/2. Since

sup (k—D,(B, $,))=0,(n"""%),
ﬁern

by Lemma 3.1, 3.3 and 3.4 and the \/r_z-consistency of f,,, this would imply
that D, (-, §,,) is essentially constant on A4, with probability exceeding r'/2,
which contradicts Lemmas 3.1 and 3.3. ||

Our next objective is to establish asymptotic normality for §,. For this
we will need an asymptotic linearity result for D, (0, s) as a function of s.
Let y = p’ and put

F*(x)=Pr.rle,~e,<x)
LEMMA 3.4. Let D, be defined by (3.1). Then

sup  {D,(0,5)~D,(0, 1)+ Er. (Y(e)e)(s — 1) = 0, (n~"2). (3.20)

sifs—1[<n™ "

LeMMA 3.5. Let §,(0) be defined as the solution of (2.1), with =0,
Then

(321)

n'2(5,(0)— 1) N(o M)

(Ep(ey(e)))?
where p is defined in (3.5).
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Proof. Since D, (B, s) is a U-statistic, it follows from e.g. Serfling (1980,
Chap. 5), that

n'"2(D,(0, 1) — k) -5 N(O, 4 Var -(p(e))). (3.22)
Put B=E .(ey(e)) and let
R= sup |D,(0,5)—D,(0,1)+ B(s—1})|.

sils—1<sn™ 9

Then R=o0,(n "?) by Lemma 34. Since D,(0,5s) is a decreasing
function of s, it follows easily from (3.22) and Lemma 3.4 that §,(0) is
n'”-consistent. Since D, (0, §,(0)) <k, it follows that

D, (0,1)—k R
n'/z(f,,(O)—l)an/Z————"( B) —n”z—é
with probability tending to one. For any ¢>0,

D,(0,5,(0)—en""?)>k
according to (2.1). Hence, with probability tending to one,

D01~k R

V25 () —en~ 2 —1)<n'? ,
nV(5,(0) —en 2= 1) : 5

simultaneously for all sufficiently small e. The asserted asymptotic normily
follows from (3.22) by letting ¢ - 0+. ||

THEOREM 3.2. Let §, and §,(0) be as defined in (2.3) and (2.1). Then

§,=5,(0)+0,(n"'?), (3.23)

and hence

(3.24)

nl;‘Z(s:"_l)_’_l_) N(O 4VarF(ﬁ(e))>

(Epe(eg(e)))

Proof. 1t is clear that (3.24) follows from (3.23) and Lemma 3.5, so it
remains to prove (3.23). By Lemma 3.4,

k—D,(0,3,(0))=0,(n""?)
and as in the proof of Theorem 3.1 one shows that

sup (k_Dn(B’ §n)) = op(nﬁl/z)'

Berln
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It follows then from Lemma 3.3-3.5 that
B(5,(0)—=3$,)=D,(0,5,) — D(0,$,(0)) + 0,(n" %)
=D, (0,5,) =Dy (s $u) + 0, (n™ ")
= —U,B.— 1BV, B,—Rem, (B, 5,) +0,(n ")
~1/2)

=0,(n

>

where the last equality from Lemma 3.1, Lemma 3.3 and Theorem 3.1. |

4. ASYMPTOTIC EFFIENCIENCIES

According to (3.13), the gaussian efficiency of a GS-estimator is given by

o= UV () d2(y)) @1)
fé(y)?de(y)

For p(x) = I(|x| = ¢) the efficiency is given by

NE c (4.2)

"4 exp(c?/6)—exp(—c*/2)

For this estimator the objective function corresponds to the a-th quantile
of the distances |r,—r;|, where in order for §, to be consistent we must
have

¢
a=1—E¢x¢p<e1—e2)=P¢x¢ue1—e2|<c)=2¢(73)—1. (43)

We will denote this estimator as LQD(a), noting that the LQD estimator
of Section 1 corresponds to a«=0.25. In Fig. 1a we made a plot of the
efficiency versus the quantile. Note that the efficiency gets very close to 1:
the maximal value is attained for « =0.8993 where the efficiency is 97.73 %
and the breakdown point is ¢* = 5.1 %. Surprisingly, for « — 0O the efficiency
does not tend to 0. The same thing was noted for the corresponding scale
estimators (Rousseeuw and Croux, 1992, p. 80).

It is shown in Croux er al. (1994) that ¢* = min (\/a, 1 — /%) < 1/2. This
means that for any value of ¢* there are always two possible values of a,
but we will systematically use the larger of the two (hence, o> 0.25). In
Table I, we give for some values of £¢* the corresponding 2, ¢, and efficiency.
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0.0 01

Fic. 1. Efficiency as a function of {a) the quantile a of the LQD{a) estimator; (b) the
breakdown point of S- and GS-estimators using a biweight p-function.
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TABLE I

Breakdown Point and Efficiency for
GS-Estimators of Type LQD(a)

159

ex o ¢ e
0.5000 0.2500 0.4506 0.6714
0.4500 0.3025 0.5497 0.6819
0.4000 0.3600 0.6614 0.6962
0.3500 0.4225 0.7878 0.7152
0.3000 0.4900 0.9317 0.7403
0.2500 0.5625 1.0980 0.7731
0.2000 0.6400 1.2945 0.8157
0.1500 0.7225 1.5358 0.8699
0.1000 0.8100 1.8534 0.9336

Table II provides analogous results for GS-estimators using Tukey’s

biweight p-function:

4

=

x? x8

4

|

+

[\
N
N

c c for

p(x)=

[N

2
c for
6

[x[<e

x| = e, (44)

where the choice of the tuning constant ¢ determines the breakdown point
and the efficiency. By comparing Table II with the corresponding table
for S-estimators (Rousseeuw and Yohai, 1984, p. 268) we see that GS-

estimators are much more efficient.

TABLE 11

Breakdown Point and Efficiency for
GS-Estimators Using a Biweight p-Function

e* k ¢ e
0.5000 0.1240 0.9958 0.6837
0.4500 0.1733 1.2210 0.6998
0.4000 0.2335 1.4795 0.7209
0.3500 0.3047 1.7793 0.7480
0.3000 0.3867 2.1330 0.7819
0.2500 0.4786 2.5619 0.8228
0.2000 0.5787 3.1056 0.8697
0.1500 0.6843 3.8466 09192
0.1000 0.7921 5.0012 0.9636
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In Figure Ib we plotted the efficiency versus the breakdown point for
biweight G'S-estimators, together with biweight S-estimators and LQD(«).
Note that the biweight GS-estimator is always the most efficient of the
three, and that LQD(«) performs almost as well (except for £* less than
5%, where LQD(a) is not recommended).

APPENDIX A. PrOOF OF LEmMMA 3.1

For ease of notation, let us introduce @ =(f, s) as a ( p + 1)-dimensional
parameter. We then observe that 4,,(8) introduced in (3.3) is a U-statistic,

—1

A,,(()):(Z) Y hi0: 2, z,), (A1)
i<j

where z,=(x,, ¢;) and the kernel function £ is given by

WOz, 2,)=p (61 —e,—{X; —X,) ﬁ)_p (6’1—‘62)

N N

Next, we decompose (A.1) as

n —1
4,(0)= —h0(9)+% S by (6; z,)+<’2’> S 0z, 2,).  (A2)

i=1 i<j

where
ho(0) = Ex . xN0; L), L,),
h(6,2)=FEh(0;z, 1)
and
hy(0,2,,2:)=h68;2,,2,)—h (0;2,)—h(0; 2,) + hy(0).

We start by considering #,. To this end, introduce g (x)= E.p((x —e€)/s)
and

Y (x) = pilx), (A.3)

so that s=1 corresponds to g and Y respectively (cf. (3.5)). After some
calculations one finds

5
h (6;2)= —x’[)’g/;(e)+%/3’(xx’+2) Biey+ Y, R™(0;z), (A4)
k=1
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where
R 0;2)=Ezp,(e—x'B+X'B)
~p(e—x'B)— 5 BZPY (e —x'P), (A.5)
R*(0;z)=p,(e—x'B)—p,(e) +x'B,(e)— L(x'B) ¥i(e), (A6)
R(6;2)= 318 ZB( (e —x'B)— ¥ (e)), (A7)
R'™(0;2) = 3B/ (xx' + Z) B(Yri(e) — ¥’ (e)) (A.8)
and
R"(0;2) = —x'B(¥,(e) — Y (e)). (A9)

By taking expectations in (A.4), and using the fact that E.¢(e)=0, one
obtains

ho(8)=B'ZBEY'(e) + R°(8), (A.10)
where
RY8) = i ExR'(6; Z). (A.11)
If we now put -
R () =% [_Y R™(0;72,) (A.12)
and _
Ri(9)=(;)_l 2 (832, 7), (A.13)
it follows from (A.1)~(A.2), (A.4), an(;<(JA.12)—(A.13) that (3.7) holds, with
Rem,, (6) = —R°(9)+k§: R¥(6) + R2(8). (A.14)

We will prove Lemma 3.1 through a series of lemmas, starting with some
preliminary properties of ¥, :

LEMMA A.l. Let §, be defined by (A.3). Then i, is twice continuously
differentiable,

W2 < 11 20(00), (A.15)
300 =0/ <217 [ ydo(y) 5= 11 (A.16)
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and

o 2
E,.-(x/_/ﬂ(e)—l/_/sz(e))2<4Hf'||§O(fo ydp(y)> |51“5212~ (A.17)

Proof. Integration by parts shows that
§.(x) = p(0) + [ Flx—sy) dp(y). (A18)

The regularity conditions on F allow us to differentiate three times under
the integral sign in (A.18), obtaining

J§k>(x)=jfm(x—sy)dp(y),k:o, 1,2, (A.19)

with (k) denoting the kth derivative. Formulas (A.15)-(A.17), as well as
the fact that ! is continuous, now easily follow from (A.19). |

LemMMa A2. Let R°(8) and R (0) be defined as in (A.11) and (A.12).
Then there exists a nonnegative random variable W with finite expectation
such that

4
Z R,‘,"(H)l < Wn=7|B|? (A.20)
k=1
and
[RY(O) <3 E(W)n=7|BI? (A21)
for all Be Q,. Moreover,
sup [R(0)=0,(n """ 72712 =0,(n7"). (A.22)

fes2,

Proof. Since E;X=0, we obtain from (A.5)-(A.8), (A.15), and a
Taylor expansion that

[R'NO; 2)| < § 111 EcIXIT 1B <3 plo0) IS |l EcIXI® 1B, (A23)
IR )l < 3p(00) /"1 IxIP IBP, (A.24)
IR(6; 2)1 < p(0) /"]l (EgIXI7) Ix] B (A.25)

and finally, from (A.16),
IR™(8; 2)] < 3(Ix|>+ EGIX|?) [¥i(e) —¢'(e)] |BI?

<X+ EgXP%) 1S | ydp(y) s =11 1817 (A26)



ASYMPTOTICS OF GENERALIZED S-ESTIMATORS 163

Formula (A.20) now follows from (A.12), (A.23)-(A.26) and the fact that
7, < 1;. Next, (A.21) follows from (A.11) and taking expectations in (A.20).
It remains to prove (A.22). Observe that

R, (6)=T,(s) B,
where Tn (S) = (Tnl (S), e Tnp (S)),a

Tnj(s)= - xij(l/;s(ei)_ll;(ei))

3

B

[Reak

1

and x;=(x;, .., X;,)’. Obviously, it suffices to show

sup [Tu(s) =0,(n~"7"%),  j=1,.,p

ls—1lsn™
and we consider w.l.o.g. only the case j=1, s> 1. Define

7_.-‘m = max 'Tnl (Slm)"

ogi€m
where

In—
Spy=14+ ”m . 1=0,1,.,m.

We may regard

!
T (Spn) = 2 (T (Sem) — Tnl(s(kél)m))’ I=1,.,m
k=1

as a sequence of partial sums, with T,,(s,,,) =0 and
E(Tnl (slm) - Tnl (skm))2

16 o0 2
< EXI IS ([T dbo3)) Gmmsenls Okl
(A.27)

because of (A.17) and the fact that E.y, (e) =0. It now follows from (A.27)
and Billingsley (1968), Theorem 12.2, that

- Cst, C | _,
P(TMZA)S?TSFH ! 2‘,

(A.28)

where C and C’ are constants (depending on F, p and G). We may also
rewrite (A.28) as
P(T,,,;An”“”z)s%. (A.29)
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Since the upper bound in (A.29) is independent of m and

Tm_’ Sup ITIII(S)I as m— oG,

l<ss<l 4071

it follows that

Q

|

il

P( sup [T, ()] =An ™ ""2><

t€sgi+n™

Do

and we are done. |

We still have to show that nR2(0) is uniformly small in probability over
Q2,. Theorem 9 in Nolan and Pollard {1987) treats suprema of families of
degenerate U-statistics. In order to apply this theorem we have to assume
that the carrier distribution G has bounded support, which is too restrictive
for our purposes. Instead, we will construct a direct proof. For this we first
need the following lemma, which is reminiscent of Lemma B, p. 186, in
Serfling (1980).

LEMMA A3. Let W,, .., W, be iid g-dimensional random vectors and let
g:RIx R R be a symmetric kernel function such that E,(W,, W,)=0,

él :EW’:(E”'] g(w,, W?_))Z:O,

Eg(W,, W) < and |[gl| , < M. Define a U-statistic by

—1
T,= ('27) S g W, W,), (A.30)

i<y
and let r be an even positive integer such that
Elg(W,, Wy|"<k,, s=1,..,r (A.30)
where {x,} is a bounded sequence. Then there exists a constant C, such that
E|T,)'<C,Mn~"max(k,, n')"* (A31)

Proof. We may assume M =1 wlo.g. (otherwise, replace g by g/M).
We observe that

n —r r
E|T| < (2) E T e Wiy, Wiy, (A.32)
i k=1
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where i denotes the multi-index ({i(1), (1)), ..., (i(r), j(r))), so that there are
(7)" = O(n*) choices of i. However, since &, =0, only those multi-indices
for which

Hki1<k<r iky=mor jlcy=m} #1, m=1,.,n (A33)

will give nonzero contributions to the sum in (A.32). We will make use of
the functions

K(i) = maximal number of pairwise disjoint (i(k), j(k))ini
and
L) ={itk), jlk); k=1, .., r}].

Let I denote the set of those i satisfying (A.33). Then

1<K(i)<rand 2<L(i)<r for any iel (A.34)
Given a specific i with K(i) = K, we suppose w.L.o.g. that

(i(k), j(k)) = (2k — 1,2k), k=1,., K (A.35)

We then have, since | g] . <1,

E H Wik, Wi))| S E H [g(Wa_1s Wl

k=1

K
= [T ElgWau_1, Wa)I<k;.  (A36)

Let
J={(K, L); K= K(i) and L= L(i) for some icl}.

Then, if we combine (A.32) and (A.36} and use the fact that there are
O(n*) multi-indices with L(i)= L (with a multiplicative constant only
depending on r), we obtain

ET/<Cn>Y |E

ierl

H g(Wl(k)a ](k))

Sc;n—Zr Z nLKK

n
(K, LYeJ

1 r—L+K
<Conm Y max( ) .

(K, L)eJ
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It thus remains to prove that (since {x,} is a bounded sequence)
min{r~L+K;(K,L)eJ}>£. (A37)

To this end, we fix i and suppose that (A.35) holds. Suppose also w.lo.g.
that

(itk), jikys ke =1, ., ry = {1, ., L},

where L = L(i). Then, because of (A.33), there are at least 2(L —2K)
indices i{k) or j(k) (with k > K) belonging to {2K + 1, .., L}. Moreover, by
the definition of K{(i) and (A.35), at least one of the indices i(k) and j(k)
must be less than or equal to 2K. (Otherwise we would have K(i)> K.)
Hence there are also at least 2(L — 2K) indices i(k) or j(k) with k > K that
belong to {1,..,2K}. To summarize the discussion, we obtain a lower
bound for the total number of indices ( = 2r) in i,

2r22K+2(L—-2K)+2(L—-2K)=4L - 6K
<r—L+K>L-2K (A.38)
By (A.34), we can improve (A.38) to
r—L+Kzmax(L—-2K, K, r—L+1). {A.39)
Suppose that the right hand side of (A.39) is less than r/4, so that K <r/4

and L>3r/4+ 1. But then L —2K> (3r/4+1)—r/2>r/4, a contradiction,
and thus we have proved {(A37). |}

LeMMa A4, Let R2(8) be defined by (A.13). Then

20y 1)
sup |R2(6)| =0, (n .

0e 82,

Proof. We divide the parameter set 2, into a union of blocks, the
centers of which form the lattice

r,= {0i=26,,(i1, by iy o)+ (0,0, 0, 1);

. . R . n_"
iy dp 1 €2, 14 <7,1= I,..,pand |i, | éT}, (A.41)

n n
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where i= (i), .., i,, ;) and 6, =n"", where 1> 1. Around each lattice point
f;, we form the block

Qn.i={gegn;10—9i|w<6n}3 (A42)

so that Q,c ), 2, ;. We first notice that the supremum in (A.40) may be
upper bounded according to

sup |R2(6)| < max |R%(6;)| + max R2(6;), (A43)
feQy 8iely Bie Iy
where
R%(6;)= sup |R%(6)— Ri(8) (A.44)
Bef,

is an upper bound for the variation of R2(#) within each block.

Let R?(a; 0) be defined as R2(8) in (A.13), but with p,(x)=I(|x| = a) in
place of p(x). Then R?() is a mixture of various R2(a; 0) since (as is easily
verified)

R20)=[" R2(a; 6) dpla)
0
An appeal to Minkowski’s inequality gives for any r>1,
IlRf,(B)H,SJO I R:(a; 0)Il, dp(a). (A.45)

If r>1 we also obtain

(E'max [R}(6,)|)" < E(max |R;(6,)])" < E max [R3(6,)]”

Bie Iy Gie Iy Bie Iy
<E Y RO <IT,| max E[RZ(6;)I", (A.46)
Bye Iy biely
by the convexity of x — |x|” and Jemsen’s inequality. By taking 1/rth
powers on both sides of (A.46) and using (A.45) we obtain

E max |R;(6,)| <|7,|"" max | RZ (6,
Giely, Giely

< CpE =2+ =m0 p(a0) sup || R7(a; ), (A47)

a, 6;

where the supremum on the last line of (A.47) ranges over 6,e/, and
0 < a<c, where c is defined in (R). We will estimate the RHS of (A.47) by
using Lemma A.3, and therefore we need to estimate the rth moments of



168 HOSSIER, CROUX, AND ROUSSEEUW

the kernel functions involved. Define h(a; 6;z,, z,) as h(0; z,, z,), but with
p(x) replaced by p,(x). Define in the same way hy(a; 8), h,(a; 8, z) and
hy{a; 0, 1,, 2,). By Minkowski’s and Jensen’s inequalities,

lhy(a; 0 Z,, Zy)],
< |Ala; 02, Ly, + by (@ 0, Z), + hy (a3 0; Zo)], + hola; 8)]
<4lh(a; 6, Z,, Z,)],.
By definition,
ha, 0,z,,2,)=I(le; —e;— (X, —X,)" Bl = as)— I(le, — e,| 2 as),
from which it follows that
|h(a; 0; 2,, 2,)| <I(| |e, — e5] —as| <X, —x,] [B]).
After taking expectations one obtains
Ex xlha; 0,2, Z,|" <4 /*|| . Ego1Xi =X IBISCF, G)n™ 7,

where the constant C(F, G) is independent of @ and #¢{J; 2, ;. Suppose
now that r is a positive even integer. We may then apply Lemma A.3, with
g(-, )=h(6,,-,), gq=p+1, k,=Cn~ " for some constant C=C(r, F, G),
and M =4, to obtain (for n so large that x,=n"")

E|R (a:0)|"< C(r, F.G)n~"n """, (A.48)

Since the upper bound in (A48) holds uniformly in @ and 8,er,, we
obtain from (A.47)

E max |R3(9i)| < C(r, F, G) n((rlr:)pwt(r——rnwrp(oo) n—l—r:,f’4‘ (A.49)

the I,

By choosing r large enough in (A49) we see that the RHS is o(n~"). This
completes the estimate of the first term in the RHS of (A.43). As for the
second term, define first R?(a; 6;) in the same way as R2(#;), but with p(x)
replaced by p,(x). Then clearly,

R20))< [ 1R 0) dpa) (A.50)
0
Next, we define for ;e I,

hy(a;,0;;2,,2,)= sup |hy(a; 0,2,,2,) —hy(a; 0;;2,, 2,)],
e 2,
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so that

—1
R (a; 9i><(”) S foa: 032, 2,). (As1)

2 i<j
Analogously, define #A(a; 0;;2,, 7,), h,(a; 6;; 2} and Ay(a; 8;). Then clearly,

hy(a; 0;52,,2,) <hla; 0,2, 2,) +]';1 (a;0::2,)+ R, (a; 05 2,) + hol(a; ;).
(A.52)

In order to estimate A(a; 6;; z,, z,), put 8;=(8;, 5;), and observe that for
any 6= (ﬂ’ s)egn, i

|h(a; 6;2,,2,)— h(a; 0;; z,, Z,)|
<(ley—ex—(x; — %) Bl > as) — I(le, — e, — (x; —X;)" Bi| > as;)|
+ | K{|le, — e, = as)—I(le; —e;| = as; )]
<IHlle, —e;— (X, —xy)" Bil —asil
<(a+|x,—x,[1)6,)+I(lley —e,| —as;| <ad,)
& M(a; 0;;2,, 2,). (A.53)
Hence, M(a;0,;2,,%,) is an upper bound for A(a;0;;z,,2,). Actually,

M(a; 6;; z,, z,) may be interpreted as a kernel of a U-statistic, which leads
us to the expansion

M(a;6,;2,,2,)= —My(a; 0))+ M, (a; 0;;2,) + My(a; 6;; 2,)
+M,(a; 0524, 2,), (A.54)

where
M, (a;0;;2)=E M(a; 0;;2, L)<4|f| . 2a+ E;|x—X]|,)é, (AS55)
and
Mo(a;0;) = Ex, x M(a; 0 L1, ) <A1 f* | 22+ Eg 61X, —X501) 6,
It is not hard to see, by interchanging suprema and expectations, that

51(0;0i;zl)<M1(0§9i;11) (A.56)
and
ho(a; 8;) < My (a; 0;). (A.57)

683/51/1-13
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It now foilows from (A.51)-(A.57) that we have

= i<k

_ 42 -
R@0) <3 3 Mi@oin)+(3) T Malaibiz)
=1
1 n
< C(F) 5,,(c+— Y EG|xj—X)>
n,

+<'21>k Y M,(a; 6,2, 2,), (A.58)

j<k

where ¢ is defined in (R). Denote for short, the last term in (A.58) by
M,, (a; 8,). Then, because of (A.50),

_ 1 =
R2(8,) < C(F) p(o0) 5"(c+; Eglx,~ X|) + [ 15,(a 0,)1 dp(a),
=1

(A.59)

J

and hence, since the first term of the RHS in (A.59) is independent of 4,
and d,=n""=o0(n""),
max R2(6;)<o,(n™ ')+ max |M,,(6,)|, (A.60)
Gie Iy biel,

where we have denoted the last term in (A.59) by {M,,(6,)|. In analogy
with (A.46)-(A.47) we obtain

Emax |M,, ()| < Cn' =7 =W p(c0) sup (| Mo, (a; 6,)1,,  (A61)
Giceln a, 6;
where the supremum ranges over 0 <a<c and 6;e I'",. We use Lemma A.3

in order to estimate ||M.,(a;6;)|,. In analogy with the estimates of
E\h,(6;;Z,, Z,)|", one obtains from (A.53)

E\M,(0;;Z,,Z,°<C(c, 1, F,G)9o,, s=1,..,7, {A.62)

uniformly for 0 <a<¢, and 6;€ I",. By letting r be a positive even integer,
we obtain from (A.31), if » is so large that the RHS of (A.62) is exceeded

-1

by n™},
Sup nM2n (a; Gi)”rs C(C, r, FD’ G) n'S/A. (A63)

a, 9;
It now follows from (A.60), (A.61), and (A.63), by choosing r large enough,
that the second term of the RHS of (A.43) is also o0,(n~"), and this com-
pletes the proof of the lemma. |

The claim of Lemma 3.1 now follows from (A.14), (A.20)-(A.22), and
(A.40).
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APPENDIX B. THE PROOF OF LEMMAS 3.2, 3.3, AND 34.

As with Lemma 3.1, we will start with a series of preliminary lemmas.

LeMMa B.l. Let
m(B, s)=ED, (B, s). (B.1)
Then
m(1f, s) = m(B, s), forany 1>1, (B.2)
and if € >0 is chosen small enough, there exist numbers B,, B, >0 such that
m(B, s)=m(0,s)— B,(s—1)+ B, |Bl’=k—B,(s—1)+ B,|B°>, (B.3)

whenever 1 <s<1+¢ and |pl <e.

Proof. Let D,(a; B, s) and m(a; B, s) be defined as D, (f, s) and m(g, s),
but with p,(x)=I(Jx| > a) in place of p(x). Then

D,(8.5)=[ D, (a:B.5) dpla)

and after taking expectations,
m(B.s)= | miap.s) dp(a) (B4)

In view of (B.4), it suffices to prove (B.2) for each m(aq, -, -). First notice
that

m(a; B, s)= Eg (1 = F*((X, = X;)' B +as) + F*((X, — X;)' f —as)).
(B.5)

Clearly, f* is symmetric. In addition, the unimodality of f implies that f/*
is also unimodal (Dharmadhikari and Joag-Dev, 1988, Theorem 1.8). But
this in turn implies that 1 — F*(y + as) + F*(y — as) is an increasing func-
tion of | y|, which proves (B.2) for m(a; -, -), by conditioning on the value
of X, —X,. We now turn to (B.3). We differentiate m(j, s) with respect to
f to obtain

_om(B, s)

mﬂ(O, S)—Tlf;:():o (Bﬁ)
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and

myg(0, 1) =2ZE - (e).

The regularity conditions on G and F further imply (using dominated con-
vergence) that m,(f, s) is a continuous function of (8, s). Since m,,(0, 1)
is positive definite, it follows from (B.6) that there exis numbers ¢, B, >0
such that

m(B, s)—m(0, s) = B, |B)7, (B.7)

whenever |s— 1| and ]f] <e& Since m is also continuously differentiable
w.r.t. s, with

om(B, s)
m (0, l)z—"_a'é—“'a:no.ly: —FE . (Yle)e) <O,

we may choose &, B, >0 so that
m(0, s) 2 m(0,1) — B,(s— 1) (B.8)
for all 1 <s<1+e& Formula (B.3) now follws from (B.7) and (B.8). |
Now choose a sequence of s- and |f]-values
s,=1+n"7 {B9)
and
b,=Bsn"™, (B.10)

where 1) =275, 1, <7, <3, 1,<15<} (cf. (3.6)) and B,=./2B,/B,, with
B, and B, the same constants as in {B.3). We then have:

Lemma B2, Ler m(f,s) be given by (B), and s, and b, by
(B.9)-(B.10). Then for large enough n,

inf m(B,s,)>k+B,n ", (B.11)
BBl = by

with B, given by (B.8).

Proof. Suppose that || = b, and that # is so large that |5, — 1| <& and
b, <, with ¢ as in (B.3). We then obtain from (B.2)-(B.3)

b , 2 .
m(p, s,) >m<U),"'l- p. s,,);k—an‘“ +B\Bin *'=k+ B,n"",

and the lemma is proved. |}
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Lemma B.3. Let D, (B, s), m(B,s) and s, be defined by (3.1), (B.1) and
(B.9) respectively. Then

:ug,, 1D, (B, 5,) —m(B, s,)| = 0,(n"). (B.12)
P~r00f. Put ﬁ(ﬂ, Zy, z;) = p(le; — e; — (x; — xz) ﬂ)/ nh f? (ﬂ, z)
Exn(B;z, Z) and hy(f; z,, 2,) h(ﬁ Z,,2,) h (B; z,) — Ay (
E B, (B; Z). Then note that

D, (B, 5,)—m(B, 5,)=S,(B)+ T,(B),
with
2 n
S,.(B) =;Z 1(B;2)— Exh (B; Z))

and

—1
1®=(5) T Rz

i<j
It suffices to show that
ISl = 0, (n =) (B.13)
and
1Tl = 0,(n =), (B.14)

with | -|| denoting the supremum w.r.t. 8. By construction, {T B} pemris
a family of degenerate U-statistics, and the kernels {h,(f;-,-)} have
envelope 4p(c0). (That is, 4p(co) uniformly majorizes all f,(8;-,-).)
Formula (B.13) follows applying Theorem 9 of Nolan and Poliard (1987)
to the kernels f,(B; -, -)/(4p(20)) with the function W(n, x) in the theorem
equal to (log n)~2 The fact that {4,(B; -, -)} is a Euclidean class of kernels
follows from Lemmas 16, 20 and 22 in Nolan and Pollard (1987), since p
1s of bounded variation.

It remains to prove (B.14). First one shows that (%,(B;-)} is a Euclidean
class of functions in the same way as for A,. Then apply Theorem 37
in Pollard (1984) applied to the kernels {%,(B;-,)}/(2p(0)), with
a,=n " lognand §,=1. |

We are now ready to prove Lemma 3.2:

Proof of Lemma 3.2. It follows from Lemma B.2 and B.3 that

P inf |D,(Bs,)>k)—1 as n— oo,
B 18| =2 ba
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with b, as defined by (B.10). According to the definition of §,(f8) in (2.1)
and the right continuity of p on R* we have D,(f, §,(8)) <k for all .
Hence,

P( inf §,(f)>s,)~ 1. (B.15)

BB by
By Lemma 3.5, §,(0) is n'-consistent, and hence by the definition of s,,,

P(5,0)< inf §,(8)—>1=P(If,|<b,)—1,

Bi1f 2 by

which proves the lemma, since b, =o{n ™). (Remember that t,>1,.) §

Proof of Lemma 3.3. We note that
§,<8,(0)=1+ OP(n’”z)
by (3.1) and Lemma 3.5, so it suffices to show that

P,

A\

§)—1 as n— oo,
where §,=1—n""". The proof of Lemma B.3 carries over to show that

sup \Dn(ﬁ’ ‘§11)_n1('ﬁ’ 5”)’ :0,,(”71-"). (B'lﬁ)

Be®R?

Moreover, in analogy with (B.8) one shows that there exist ¢, B> 0 such
that

m(0, s) >k + B(1—s) for 1—e<s<l. (B.17)
Hence, if n is so large that §,> 1 —e¢, it follows from (B.2) and (B.17) that

inf m(B,35,)=m(0,5,)>k+B(1—3,)=Fk+ Bn ™. (B.18)

BeRP
In conjunction with (B.16), (B.18) implies that

P(inf |D,(B,5,)>k)—1,

BeR
which in turn implies

P§,=inf$,(f)>3§,)—1,
B

and this proves the lemma. [
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Proof of Lemma 3.4. It follows from (F) and (R) that m(0, s) is a twice
continuously differentiable function of s. Since m,(0, 1)= — E..(Y(e)e) it
follows from a Taylor expansion that

sup  |m(0, s)~m(0, 1)+ (s — 1) Er.(Y(e)e)] = O(n 1) =o(n"'7?).

|s—1]<n—%
Putting =, (s)=D,(0, s) — D, (0, 1), it therefore remains to show that

IE(:)—EECH &  sup  |E,(5)— EE,(s)| =o0,(n"'?). (B.19)

|s—1l<n" "

We use a Hoeffding representation of = (s),

NN L. -1 e;—e\ B 1
20=(3) L (o(*5%)steimen) =5 o 820

n

where n=(n(1), ..., m(n)) is a permutation of (1, ..., n) and

1 €ri—1) ~ Eng2i
n n( ) [ /2] = <p<—(——_l;—_u>—p(en(Zi—l)—en(Zi))>

is an average of iid. random variables. In particular, with n, the identity

permutation and £,=e,, _; —e,,i=1, .., [n/2], we have
1 Im2) 3
W, no(S)=m 2 (P(j)—ﬂé))- (B.21)
Deﬁne W' _(a;s) by replacing p(x) by H(x>a) in (B.21), and similarly

n, mo

(a; s) by putting /(x £ —a) instead of p(x). Then clearly,

Wor)= [ (WL (@) + W2 (@ s)dpla). (B22)

From (B.20), (B.22), and Minkowski’s inequality we obtain

E|E(-) = EE( W S E[W,, () — EW, ()l
<2p(c0) E(sup |W7, . (a;5)— EW’, , (a;5))), (B.23)

n, mg n, 1o

where in (B.23), O<a<c (cf. (R)), |s—1)<n™ ™ and j=1 or 2. With
m=1[n/2] and

Fa(x)= i 1(&;<x)

§|'—
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the empirical distribution formed by &,, .., &,,, one observes that

W' (a;s)=F*(a)— F*(as)

B, Ty
and

Wk (a;s)=F*(—as)—F*(—a).

a, gy
Hence

sup |W7  (a;s)—EW/, _(a;s)| <sup |FX{I} —F,{I}|, (B24)

n, ny n, my
a. s, j e #

where % denotes the set of all intervals of length <c¢n™ ™. In order to
estimate the RHS of (B.24) we need a result concerning the oscillation of
the empirical distribution function. From Reiss (1988, formula (6.3.2)) it
follows that

E(sup |F{I} — F, {1} )< Cn~ "+ Jog n, (B.25)

e #

for some constant C (which depends on F*). The lemma now follows from
(B.19) and (B.23)-(B.25).
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