Journal of Multivariate Analysis 74, 193-221 (2000) ®
doi:10.1006/jmva.1999.1886, available online at http://www.idealibrary.com on IIIE):I

M-Estimators Converging to a Stable Limit
Miguel A. Arcones!

Department of Mathematical Sciences, State University of New York

Received August 1, 1996

We discuss the asymptotic linearization of multivariate M-estimators, when the
limit distribution is stable. We consider two different types of kernels: VC and bracket-
ing. When applied to the case of normal limits, our work improves the known results
to obtain the limit distribution of M-estimators. We give weak conditions for the
asymptotic normality of M-estimators over differentiable kernels. To obtain these
results, we present an inequality on empirical processes satisfying a bracketing
condition with respect to a norm smaller than the L, norm.  © 2000 Academic Press
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1. INTRODUCTION

We discuss the convergence of M-estimators to a stable (possibly normal)
limit distribution. Huber (1964) introduced M-estimators as a way to obtain
more robust estimators. Let (S, %, P) be a probability space and let { X;} 7,
be a sequence of ii.d.r.v.’s with values in S. Let X be a copy of X,. Let &
be a subset of R Let g: Sx® — R be a function such that g(-, 0): S— R
is measurable for each 6 € ©. Suppose that we want to estimate a parameter
0, € ©® characterized by E[ g(X,0)— g(X,0,)]>0 for each 0+#60,. An
M-estimator 0, over the kernel g(x, 0) is a random variable 0, = 0,(X,, ..., X,)
satisfying

nY g(X;,0,) ~ gingnfl Y g(X;,0). (L.1)

i=1 i=1

Another type of M-estimator is 0, defined by
0,)~0, (1.2)
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where A(-, 0): S — R is a measurable function for each 0 @. Here, 0, is
estimating a value 6, characterized by E[ (X, 6,)] =0. In general, the two
methods can give different estimates (see, for example, Bai et al., 1990).

There are many estimators that fall in the previous setup. It is well
known that maximum likelihood estimators are M-estimators. In this case
g(x, 0)= —log f(x, 0), where f(x, 0), 0 €O, is a family of densities. Cramér
(1946) obtained the asymptotic normality of maximum likelihood estimators
assuming strong differentiability conditions. He even need to assume a third
derivative. Weaker differentiability assumptions for the asymptotic normality
of maximum likelihood estimators (or M-estimators) were imposed by
Daniels (1961), Huber (1964, 1967), Le Cam (1970), Ibragimov and
Has’minskii (1981), and Serfling (1981).

We will use the notation in empirical processes. For instance, we write

PA=E[f(X)] and P,f=n—'3 f(X).

i=1

where f is function on S. {¢;} will denote a sequence of iid.r.v.’s with
Pr{e;=1} =Pr{e;= —1} =1/2, which is independent of the sequence {X}.
¢ will denote a constant which may vary from occurrence to occurrence.
Given a vector v, |v| will denote the Euclidean norm. Given a d X d matrix
A, we define the following norm ||A|| :=sup, <, |b'4b|.

To obtain the asymptotics of M-estimators we apply the delta method
(Taylor expansions). In the case in (1.1), under regularity conditions, there
are a function ¢ and a positive definite symmetric matrix ¥ such that

ax(P,—P)(g(-,0+a,;"'0)—g(-, 0,)—a, ' 0¢(-)) —5 0,
E[g(X, 0)— g(X, 00)1=(0—0,) V(0—0,)+0(|0—0,?),
and

a,(0,—04)+2"'V'a,(P,—P) =5 0. (1.3)

If a,(P,— P) ¢ converges in distribution and (1.3) holds, then «,(0,—0,)
also converges in distribution. Given the kernel g(x, 6), ¢(x) is chosen so
that (6 —6,)" ¢(x) is the linear part in the Taylor expansion of g(x, 0). a,
is chosen so that a,(P,— P) ¢ converges in distribution.

For the M-estimators defined as in (1.2), under some regularity condi-
tions, we have that

a,(0,—00) + (H'(0)) ™" a,(P,— P) h(-, 0p) = 0. (14)

If either (1.3) or (1.4) holds, the rate of convergence of the M-estimator
is determined by the influence function (which is either V~!¢(x) or
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(H'(0,)) Y h(-, 0,)). If the influence function has heavy tails, the rate of
convergence of the M-estimator is of an order of magnitude smaller than
n'2.1f g(x, 0) has a bounded influence function (and some regularity condi-
tions hold), the M-estimator converges with rate n'/? for any possible sample
distribution. If the influence function is not bounded, we have distributions
whose corresponding M-estimator converges with a rate slower than n'/2
Hence, M-estimators over kernel with a bounded influence function are
preferable.

In Section 2, we present general principles to obtain (1.3) and (1.4).

In Section 3, we see how the conditions obtained in Section 2 are
satisfied for VC subgraph classes of functions. Asymptotic normality of
M-estimators using that a certain class of functions is a VC subgraph class
was first obtained by Pollard (1985). He considered the case when { |0 — 0,| ~*
(g(x, 0)— g(x, 0p) — (0 —0,) ¢(x)): 10 —0,| <} is a VC subgraph class of
functions, for some ¢ > 0. Here, we consider the case when for some J,> 0,
{g(x,0)—g(x,04):10—0y| <y} is a VC subgraph class of functions. It is
easier to check that these classes are VC subgraph classes than the classes
of functions considered by Pollard.

In Section 4, we give some bracketing conditions in the class of functions
{g(x,0):0€ O} so that (1.3) or (1.4) holds. The asymptotic normality of
M-estimators under bracketing conditions has been considered by several
authors (see, for example, Huber, 1967; Pollard, 1985; Hoffmann—Jgrgensen,
1994; and van der Vaart and Wellner, 1996). We present an inequality on the
tail of empirical processes by measuring the size of the brackets with respect
to a norm smaller than the L, norm. Usually the brackets of size 2 ~* are func-
tions 4, such that E[(X%_, ¢, 4,(X;))*]1=nE[ 43(X,)]1<27%; we impose
the weaker condition nE[ (2% 4,(X;)) A (2% 42(X;))] < 1. The norm deter-
mined by the previous inequality is a natural norm to consider. Klass (1980)
proved that if nE[(&,/K(n)) A (&7 /K*(n))] =1, where {&;} is a sequence
of iid.r.v’s with mean zero, and K(n) is a real number, then cK(n)<
EL|X7_1&;11<2K(n), where ¢ is a universal positive constant. We apply
our results to obtain the asymptotics of M-estimators under very weak
differentiability conditions.

In Section 5, we apply the previous results to location estimators and
to the k-means. The location estimators appear when g(x, 6) = p(x—0),
where p is a function. The asymptotic normality of these estimators has
been considered by many authors (see, for example, Huber, 1964, 1967,
Serfling, 1981). We will see that, under certain conditions, these estimators
converge to a stable limit. The k clusters means is the M-estimator over the
kernel g(x, ) =min, _, ., |x — 0%|% Hartigan (1978) proved the asymptotic
normality of these M-estimators. Under certain conditions, these estimators
can converge to a stable limit. A better estimator (k-medians) of k clusters is
the M-estimator over g(x, 0) =min, _; ., |x —0)|. The k-medians estimator
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is more robust than the k-means. We will see that the k-medians is asymptoti-
cally normal even for heavy tailed distributions.

2. A GENERAL APPROACH TO THE LINEARIZATION OF
M-ESTIMATORS

Our approach to obtain the asymptotics of M-estimator is to do Taylor
expansions. In this section, we give general conditions to get (1.3) and (1.4).
The next theorem follows from Theorem 3 in Arcones (1998).

THEOREM 1. Let {X;} | be a sequence of iid.r.v.’s with values in S. Let

13

O be a subset of R?. Let 0, be in the interior of O. Let g: Sx 0 — R be a
function such that g(-, 0): S — R is measurable for each 0 € 0. Let ¢: S — R
Let {a,} be a sequence of positive numbers which converges to infinity such
that sup, >, n~'a> < . Let {0,=0,X,, .., X,)} be a sequence of @-valued
random variables. Suppose that:

(A.1) OAnl’@o and n~! i-1 8(X, 9n)<infee@n_12?=1g(X,-, 0)
+0Pr(an_2).

(A.2) There is a positive definite symmetric d x d matrix V such that
E[g(X, 0)— g(X, 00)]1=(0—0,) V(0—0,)+0(10—0,/?),

as 60— 6,.
(A3) a,(P,—P)d=0p(1).
(Ad) For each 0 <M < o0,

Sup ai|(Pn_P)r(’6)|l)Oa

16] < Ma, !
where
r(x, 0) = g(x, 0o+ 0) — g(x, 0) — 0'¢(x).

(A.5) For each © >0, there exists a 0 >0 such that

lim lim sup Pr

M — © n— oo

sup

{ ai|(Pn_P)(g('a00+0)_g('390))|>1}
10— 6, <5 tay |0 — 0,1+ M

Then,

a,(0,—04)+2 'a,(P,—P)V_p L5 0. (2.1)
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Under (A.3), (A.5) is equivalent to the following: for each 7> 0, there
exists a 0 >0 such that

. . a’|(P,—P)r(-,0)]
1 1 P n n > 21 —0.
im lim sup Pr {lz:usp& mi 0P+ M } 0

M — © n— oo
We assume the existence and consistency of M-estimators, which could
be dealt with by different methods. Conditions (A.2)-(A.3) are elementary
conditions. In the next sections, we will use empirical processes to obtain
manageable conditions which imply (A.4) and (A.5).
We present the following theorem for the M-estimators in (1.2):

THEOREM 2. Let {X;} 2, be a sequence of iid.r.v.’s with values in S. Let
O be a subset of R%. Let h: S x @ — R be a function such that h(-, 0): S —
R? is measurable for each e @. Let 0, be in the interior of @ such that
E[h(X, 04)]=0. Let {a,} be a sequence of positive numbers which converges
to infinity such that sup,-,n 'a’<o. Let {0,=0,X,, .., X,)} be a
sequence of O—valued random variables. Suppose that:

(B.1) 0,-%5 0, and a,n=' ¥r_ h(X;,, 0,) =5 0.

(B.2) H(O):=FE[h(X,0)] is differentiable at 0, with nonsingular
derivative.

(B3) an(Pn_P) h(aGO)ZOPr(l)

(B.4) For each M < o0,

sup a, (P, — P)(h(-, 0) = h(-, 0,))| = 0.

10— 6,1 < Ma,!

(B.5) For each t>0, there exists a 6 >0 such that

: . a,|(P,—P)(h(-, 0)—h(-, 0,))] }
lim lim sup Pr { su r = >1;=0.
Moo n%oop |9—901|)<5 ta, |0 — 04| + M
Then,
a,(0,—00)+ (H'(0)) "' a,(P,— P) h(-, 05) == 0. (2.2)

Proof. By (B.2), there are ¢, 6,> 0 such that if |0 —6,| <J,, then

¢ [0—0o] <[|H(0)—H(0,)].
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Take 0 <t <c. If |0, —0,] <J,, then

ca,10,—0,| <a, |H(0,)— H(0,)|

<an |(Pn7P)(h(’ én) 7/1(" 60))'

+an |(Pn_P) h(s 00)' +an |Pnh(a gn)l
=1d, |én_90| +0Pr(1)

A

This implies that «,(0, —60,) = Op,(1). We also have that

a, |H'(00)(0,— 00) + (P, — P) h(-, 0,)|
<an |(Pn_P)(h(9 ()0)_h(’ 071))' +an |Pnh(9 0n)|
+a, |H(0,) — H(0o) — H'(05)(0,— 0,)],

which converges to zero in probability. ||

Conditions (B.1)~(B.3) are elementary conditions. Using empirical
processes, we will obtain usable conditions that imply (B.4) and (B.5). It
should be noted that (1.2) may have not solution when / is not continuous
in 0 (see, for example, Bai et al., 1990).

3. CONVERGENCE OF M-ESTIMATORS OVER
A VC SUBGRAPH CLASS OF FUNCTIONS

Given a set S and a collection of subsets 4, for A< S, let 4%(4)=
card{A N C: Ce%}, let m*(n) =max{4%(A):card(4)=n} and let s(¢) =
inf {n: m®(n) <2"}. % is said to be a VC class of sets if 5(%) < 00. General
properties of VC classes of sets can be found in Chapters 9 and 11 in
Dudley (1984). Given a function f: S — R, the subgraph of f is the set
{(x,1)eSxR:0<r< f(x) or f(x)<t<0}. A class of functions Z is a
VC-subgraph class if the collection of subgraphs of & is a VC class. The
interest of these classes of functions lies in their good properties with respect
to covering numbers. Given a pseudometric space (7, d), the e-covering
number N(e, T, d) is defined as

N(e, T, d) = min{n: there exists a covering of T by n balls of radius <e¢}.

Given a positive measure . on (S, &) we define Ny(¢e, 7, u) = N(e, 7, ||| L, u))-
If # is a VC-subgraph class (Pollard, 1984, Prop. II. 25), then there
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are finite constants 4 and v such that, for each probability measure u
with uF? < oo,

No(e, F, 1) S A(uF?)"2/e)", (3.1)

where F(x)=sup;.» | f(x)| and 4 and v can be chosen depending only on
s(F), i.e. uniformly over all the classes of functions with the same number
s(Z ). By the maximal inequality for subgaussian processes in Theorem 3.1
in Marcus and Pisier (1981) there exists a constant ¢ depending only on 4,
v and p such that for any class of functions satisfying (3.1) and any p >0,

| <ot

We apply Theorem 1 to get sufficient conditions for the convergence of the
M-estimator over a VC subgraph class of functions. First, we consider
condition (A.5) in Theorem 1.

S 6 £X)

j=1

E { sup Y & F(X))
j=1

feZF

p] (3.2)

LemmA 3. Given >0, suppose that:

(i) For some 0y>0, {g(x,0)—g(x,0,):10—04<5,} is a VC
subgraph class of functions.

(i1) For each M >0,

sup afy [(P,—P)(g(+, O+ a, ' 0)—g(-, 0p))] = Op(1).

16l <M
(1)  There are constants ¢, ¢ >0 such that
E[(M7'Gs(X)) A (M T2G3(X))]<coPM 174,

for each 6 >0 small enough and each M >0 large enough, where Gs(x)=
SUP g <5 |8(X, O+ 0) — g(x, 0,)].

(iv) a,= O(n'?).

Then, for each ©>0, there is a d >0 such that

lim lim sup Pr
M — © n— oo

sup

{ a£|(PnP)(g('70)g("BO))|>1}
10— 6y <5 al} |0 — 00>+ M
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Proof. We have that

ah |(P,—P)(g(-, 0)— g(-, 0o))|

sup
a;l<10—6,1<s ‘[af|0—00|ﬁ+M
< sup sup (rteV=DE4 M)~ ab

1<j<[log(a,0)]1+1 e/~1<a,|0—0y| <e/
x|(P,—P)(g(-,0)—g(-,00))l

Hence,

Pr{ sup alj|(Pn_P)(g("0)_g('390))|>1}
a7l <10—0,1 <5 wal} [0 — 0, + M -

[log(a,0)]1+1
< T pr| s kiR, e 0)- gl 00)

j=1 a,|0—6y| <el

>e‘ﬁ(repj+M)}.
By symmetrization, (3.2) and hypothesis (iii)

Pr{ sup  af |(P,— P)(g(-.0)— g(-. 00))| >e—ﬂ<reﬁf+M)}

a, |0—0y| <el

<eﬂ<reﬂf+M>—1E{ sup af,’|<PnP>(g<.,9>g(-,eom}

a,|0—6,| <el

<2(re’3f+M)_1afn_1E{ sup

an|07¢90|<e/'

n

S &(g(X,. 0)— g(X, HO»H
z 8iGan_lej(Xi)

i=1
i=1 :|

< c(zeﬂj-l- 1\4)71 affE[Ga;lef(X) IGarrlej(X)Zna;ﬁ(reﬁj+M)]
+C(Teﬁj+ M)il ag nil(nE[Gi;lej(X) IGa'rlej(X)Znan_ﬁ(reﬂj+M)])l/2
<c(re? + M)~ ¥ (na, P(re + M)) 4

j —1 (=L B\1/2 B2,  — j 1—g)2
+c(te + M)~ (n~al)'? PP (na; P(ze? + M)~ D2,

<c(re¥ + M)~! affn_lE{

Therefore, the claim follows. |

The following theorem gives the asymptotic distribution of M-estimators
under weak conditions:

THEOREM 4. With the notation in Theorem 1, assume (A.1), (A.2), (A.3) and
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(A.6) For some 9,>0, {g(x,0)—g(x,04):10—0,| <o} is a VC
subgraph class of functions.

(A7) For each M, n>0,
n Pr{n_laiRa;lM(X) = ’7} - Os
where R, (x)=supg < |7(x, 0)].
(A.8) There are constants ¢, ¢ >0 such that

E[(MT'G,(X)) A (MT2GHX)] < oM™ 74,

for each 6 >0 small enough and each M >0 large enough.
(A.9) For each 0eR¢,

nE[(n~'a; [r(X, a, ' 0)]) A (n"%ayr*(X, a, 0))] - 0.
Then, (2.1) holds.

Proof. We apply Theorem 1 and Lemma 3. We claim that by Theorem
24 in Arcones (1999), for each 0< Moo, {aX(P,—P)(g(-,00+a, ' t)—
g(+, 0y)): 1| <M} converges weakly. We need to prove that:

(C.1) For each |t{| <M,
nPrin—'a|g(X,00+a,'t)— g(X, 0,)] =2} =0(1).

(C2) For each >0,

lim lim sup n Pr{ sup n'a?|g(X, 00 +a; ') —g(X, 0h+a,'s)| 2;7}
5>0 n—oow Is], |7l < M
ls—1fl <

=0.

(C3) ”_la:E[Gi;IM(X) In’laiGzn,lM(X)él] =0(1).

(C4) lim limsup sup n'alE[|g(X,0y+a, 1)
020 n—ooo ||s|‘7|t||<1¢‘54
sl 121l <

—g(X, 00+an_ls)|2In_laﬁGin—lM(X)él] :0

(C.5) lim limsup sup a2|E[(g(X,00+a,'t)
>0 n—->oo |s—t| <o
Isl, l7l <M

—g(X, 0p+a,'s)) In_laiGj'rlM(X)Zl:” =0.
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By the CLT for stable r.v.’s, for each 0 <7< oo, n Pr{n~'a, |¢(X)| =1}
= O(1). From this bound and (A.7), (C.1) follows.
We have that

wPr{ sup g 0o o) - g Ot 2 )

Isl, [t <M
|s—t| <o

<nPr{n"'a, |p(X)| =370y} +2n Pr{n""a R, -1, (X)=3""n}.

This implies (C.2).

(C.3) follows from hypothesis (A.8).

As to Condition (C4), given >0, take k>0 such that
sup,-, n Pr{n~'a, |§(X)| =k} <n. Given |s|, |t| <M with |s—1]<J, we
have that

nTa EL|g(X, 0o+ a, ' 1) — g(X, 0o+ a; ' $)1* L1226, 10 <1]
<27 +n"'auET1g(X, O+ a, ') — g(X, O +a, 's)|?
Xln’laiGan—lM(X)<l,n’lan 6(x)| <k ]
<2 +43n"'ayE[ (X, a; ' 1)]? L2 a0l <ke+1]
+3n71a:E[ |V(X, a;ls)|2 In’laﬁ |r(X,an_ls)| <k+1]
+3nayEl|a, (t—s) $(X)? L-14, 1900) <k )
(A.9) implies that 3n~'ay E[[r(X, a, ' )| [,-122 jyx.at oy <k +1] = 0. (A3)
implies that n~'a2 E[|p(X)|? [,-1, 1gcx)1<1]1 = O(1). (C4) follows from the
previous estimations.
As to Condition (C.5), given # >0, by (A.8), we can take k>0 large so
that a; E[ G, ~12/(X) I,-1,26, _,, (x)>x] <7. Given s, [t| <M, we have that
ay E[|g(X, 0g+a,'t)— g(X, 0g+a, 's)| In‘laiGarrlM(X)zl]
<a,E[g(X. Oo+a, 1)~ g(X, 00+ a,'s)|
Xln-laiG,,;lM<X>>k, 80X, 6y +a; ' 1) — (X, G+ 5) > 7]

+alE[1g(X, Og+a, '1)—g(X, 0g+a, " s)|

XIk>n*1aﬁGan_1M(X)>l, lg(X, 0y +a, ') — g(X, 90+a;1s)|>q]

+aZE[|g(X, 0p+a, ' 1)— g(X, 0p+a,'s)|

X In_laﬁGarrlM(X)Z 1, |g(X, 6y+a,; ') — g(X, 6y +a, ') <n]
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<2a;E[G,-10(X) L1226, 1,(x)>k]
+2kn Pr{|g(X, Oy +a,; ' 1)— g(X, 0g+a, ' s)| =n}
+na; Prin~la;G,~1,(X) =1}
<2 +2kn Pr{|g(X, 0y +a,;'t)— g(X, 0+ a,;'s)| =n} +1c,

which implies (C.5) via (C.2). Therefore, {a(P,—P)(g(-,00+a,'t)—
g(+, 04)): || <M} converges weakly. Since {a,(P,— P)0'¢: |0| <M} also
converge weakly, so does {aX(P,—P)r(-,a, ' 0): 10| <M}. (A9) implies
that for each 0 e R? a*(P,— P) r(-,a;'0) -2 0. Therefore, (A.4) holds. It
is easy to see that the conditions in Lemma 3 are satisfied. ||

We present the following theorem for the M-estimators in (1.2).

THEOREM 5. With the notation in Theorem 2, assume (B.1), (B.2), (B.3),

(B.6) For some o> 0, {h(x, 0)—h(x, 0y): 10— 0, <y} is a VC sub-
graph class of functions.

(B.7) There are constants 0 <q <1 and ¢ >0 such that
E[(M~'Hs(X)) A (M 2HHX))] <coM "4,
for each 6 >0 small enough and each M >0 large enough, where

Hyx)= sup |h(x, 0)—h(x, 0,)|.

10—y <
Then, (2.2) holds.
Proof. By symmetrization, (3.2) and hypothesis (B.7)

E[ sup a,,|<Pn—P)<h<-,0)—/4(-,90))@

10— 0y <Ma, !

< 2n1anE[ sup

10— 06y < Ma, !

% e(h(Xy, 0) —h(X;, 0))
=1

|

<ty ELH,-1(X) Iy, 005a]
+C(”_la,2,E[H§;1M(X) Iy, |, x)<a,] )2 =0,

|

i
n

Z 81'Ha”_1M(Xi)

-1
<cn a,,E[
i=1

which gives (B.4). Lemma 3 implies (B.5). ||
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4. CONVERGENCE OF M-ESTIMATORS UNDER
BRACKETING CONDITIONS

In this section, we consider the case when the class of functions satisfies
a bracketing condition. We present the following bound on empirical
processes over classes of functions that satisfy a bracketing condition:

THEOREM 6. Let Xi,.., X, be independent r.v’s with values in the
measurable spaces (S;, A), ... (S,, %), respectively. Let T be a parameter
set. Let f;(-,1): S; = R be a measurable function for each teT and each
1< j<n. Let a=4. Let ky be an integer. Suppose that for each k =k, there
exists a function ;. T — T such that 7, (7, (1)) =7, (2); me_1(2) =74 _1(5), if
7 () =7 (s) and

E[(2° 4; (X, me (1)) A (2% 47, (X, 7 (1)) <1

1

I M =

J

where
Al m() = sup |7 =m0
Then,
P {sup S & (f(X,0 1) [(X), nk(,(z)))‘ > M}
teT j=1

<Y Pr {sup A, 10 (Xys (1)) = M(a+2) = 275 Ra(log Ny, 1)~
j=1

teT

><< 5 2_k(10gNk)1/2>_1}+ S 4N, (4.1)
k

k=ky+2 =ky
for
M=2%a+2) Y 27%(log Ny
k=ky+2
where N is the cardinality of 7, (T).

Proof.  Without loss of generality, we may assume that N, >2. First,
we prove that if

da+2) T 2 H(log N2

k=ky+2
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then
Pr{sup | ¥ 53,01 08 ma0)| > 40
teT lj=1
<Y P {supA, kO(X,-,nko(r))>2-1—k0(logNko+1)—”2}+ Y 6N
=1 k=ky

J

teT

(4.2)
Let 7,(¢t) =inf{k>ko: 4, (X}, 7, (1)) >27""*(log N, ;) ~"?}. Take k, >
ko such that

n2 ki (log 2) =2 < /2. (4.3)

We have that
o — (X, T (1))
=2 (X ) = f(Xp, e (0)) L=k

+ 2 & (X, ) = f(X; s Ty (1 )))Irj(t)>k1

P
+Y > (X, 0= (X m (1)) I'rj(t):k

J=1 k=ky+1

n ky
+X Y X (1) = (X i (1) L5k

Jj=1 k=ky+1

= UD(t)+ UP(t)+ U (1) + UM(1). (4.4)
Hence, we have that
P {sup S (X ) — f(X,. nk(,(r)))‘ >4n}
teT | j=1
4 .
<Y Pr{sup (U (0] . (45)
= teT

It 7;(1) =k,, then
271 o(log Ny, ) ™2 < A 4, (X, 7 (1)),
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So,

Pr {sup U >n}

teT
< % Pr{sup 4,4, (0 e (0) 227 log Ny )7 (46)
j=1 teT
By (4.3)
|U5,2)(Z)| < Z Aj, kl(Xj, ”kl(f)) IAJ-,kl(Xj,nkl(t))<2’k1(logNk1)’l/2
j=1
<n2 ki (log2)~ 12 <y/2.
Hence,
Pr {sup [UR(1)] 217} =0. (4.7)
teT

It 7,(¢) =k, then

27 "% (log Niyy) ™' <4, 1 (X, i (1))
<4, (X, i 1(1) <27%(log Ny) ~ 12

Since w?E[(u™" 4, x(X;, 1 (1)) A (u=? 47 (X;, 7, (1)))] is nondecreasing,
we have that for 0 <u<27%,

n

D uE[ 4; 1 (X;, m, (1)) IAj,k(Xj,nk(t))ZM:l
1

j=

< 3 2 RE[Q2 A, (X (1)) A (2% A2 (X me(0)))] <272

Jj=1
Thus,

n

> E[4; (X}, mp (1)) Irj(t):k]

j=1

n
<) E[A4; (X}, m (1)) IAj’k(Xj, nk(t))>2’1’k(logNk+l)’1/2]
=1

<2'"*(log Ny 1)
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Since E[(u’lAj,k(Xj, (1)) A (12 Aik(Xj, 7,(2)))] 1s nonincreasing,
z E[A;,k(Xj, nk(t))lr]-(t)=k]
j=1

<) E[A?,k(Xj, (1)) IAj,k(Xj, (1) <2—*(log 2)~12] <27%*(log2)~"

From the previous estimations and the Bernstein inequality,

Pr {sup U >n}

teT

n

D (4; 1 (X;, 7. (1)) Irj(t):k

Jj=1

<% oy

k=ky+1 teT;

—E[4, (X, nk(t))lfj(t)=k])’>(a+1)21_k(10gNk+1)1/2}
! —(a+1)>2>"*log N
< z Z ZCXp . > (Cl+ ) 08 NVg41
k=ky+1 teT, 22 ELAG (X, me(2)) Loy~
+(2/3)2" " *(log Nj) 72 (a+1) 2" ~*(log Ny,

= —6(a+1)? (log Ny)'? (log Ny, )2\ _ &
< 2 2Nkex1°< Sog2) sl >< Lo 2N
k=ky+1 g a k=ky+1

where T, =7, (T).

Since 7y _1(1) = mp _ 1 (me (1)), |f5( X mi(2)) — F( X, 1 (2)) ] <
4; —1(X;, me_1(2)). Hence,

Pr {sup U9 >n}

teT

<3 ZZPr{

k=ky+1 teT;

> e ( f5( X, mp (1)) — f( X, e _4(2))) Irj(t)zk
=1

> (a+2)2'*(log Nk+1)”2}

ky
< ) 2N
k=ky+1
e < —(a+2)?22"*log Ny ., >
X
P2 222 (2/3) 2 (log N,) 72 (a+2) 27 *(log Ny 1) 2
kl
< ) 2Nge.

k=ky+1
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(4.2) follows from (4.4)—(4.9) letting k, go to infinity.
Given 0<A<1, the class of functions {if;(x,¢):1eT} satisfies the
conditions in this theorem. So, by (4.2)

n

S (X 1) — f(Xp )))‘

Jj=1

Pr {sup

teT

> 12%a+2) Y 27%(log Nk)l/z}

k=ky+2

<Y Pr {sup Ay 10Xy 1 (1) 2 27127 o (log Nk(,H)—“z}
j=

teT
o0
+ ) 4N;°,
k=k,

for each 0<i<1. (4.1) follows taking M=.""2%a+2) S kg2 X
2% (log No)'2 I
To check conditions (A.4), (A.5), (B.4), and (B.5), we will use the follow-

ing theorem:

THEOREM 7. Let { X;} 2, be a sequence of iid.r.v.s with values in a measur-
able space (S, &). Let X be a copy of X,. Let M, 5,>0. Let r: Sx (—6, 50)°
— R be a measurable function such that r(-, 0) is a measurable function for
each Oe(—0dy,30)% Let {a,} and let {b,} be two sequences of positive
numbers bounded away from zero. Let 1 <q <2 and let v> 0. Suppose that:

(1) For each M,n >0,

nPr {b,,n_l sup lr(X,a,TIH)l?n}*O.

10l <M

(ii) For each 0eRY,
nE[(n='b, |H(X, a,;'0)]) A (n72b2r*(X, a,7'0))] — 0.
(ii1) For each 1<a, |0 <a,o, and each n large enough,
nE[(n"'b,tg a7 10177 [r(X, 0)]) A (n™%bht42a, 10| 72 r3(X, 0))]1 < 1

(iv)  For each 0 <0< 1, each || <M, each 1 <M <J,a, and each n
large enough,

nE[min(b,n~'tg ' M =907 A,-10(X, a1 0, a, 7 MS?),
bﬁn—ZTO—ZM—2q5—2 Ain’lM(Xﬂ an—l 9’ an—l M(SU))] < 1,



M-ESTIMATORS 209

where

Ay (X, 0,0)= sup |r(X,0+1)—r(X, 0)|.

t)t| <o
101, 10+ 1 <M
Then,
(a) For each 0 <M < 0,
n

by~ Y (r(X,, a,0)— E[r(X,, an—lg)])’l,o_

n
i=1

sup
10| <M

(b) For each t>0, there exists a 0 >0 such that

b I(P, = P) (0 _ ] _
{ =

lim lim sup Pr

M — o n— oo

Su =
o a2 [0— 002+ M

Proof. Define |0|,, :=max,  ;<,|0"’|. To symmetrize in part (a), we
need to prove that for each v >0,

sup Pr{b,|(P,—P)r(-,a,'0) =1} —0. (4.10)

16| <M

Take a function 7: [ —M, M]¢— [ —M, M]? such that #(n([ M, M]%))
< o0, and Supye_ar, a1 |0 —7(0)] . < J°. By condition (ii),

sup Pr{b,|(P,—P)r(-,a, ' n(0))=2""c} ->0.

ol <M
Condition (iv) implies that

sup Pr{b, |(P,—P)(r(-,a,;' 0)—r(-,a;'n(0)))=2""1}

10| <M

< sup 211E{b,,n1

0] <M

i (r(X;, a,'0)—r(X,, anln(ﬁ)))H <8t 17,4.
j=1

So, (4.10) holds. From (4.10) and Lemma 2.5 in Giné and Zinn (1984), we
may symmetrize the expression in (a). Hence, it suffices to prove that

sup |b,n~" Y er(X,, a;lﬁ)‘ -Pr, 0.
10l <M

n

i=1

Without loss of generality, we may assume that M and 7, are integers.
Let k be a positive integer. Let A, ={ —M + j2 757 1< j< My 2%+,
It is easy to see that we may define n,: T— T such that |7,(0)—0|
<14"27%, the coordinates of 7, (0) are in A, and 7,_(t;) =m;_(t,), if
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me(t1) =71, (ty). Then, Ny = #m,(T) = (Mz742"*+1)9 Take k, large enough.
By Theorem 6,

Pr { sup

10| <M

bn=' Y er(X,, an_lﬂ)‘ 2‘[}

i=1

<nPr{ sup b,,n_1|r(X,an_19)|>c}+ Y AN ¢=:1+11
k

16l <M =k,

where ¢ is a finite constant. By hypothesis (i), /— 0. II can be made
arbitrarily small by letting k, — co. Therefore, (a) follows.
As to (b), by part (a), it suffices to prove that

. . b, |(P,—P)r(-,0)] }
limsup lim Pr su >1;,=0.
P L'geﬁlsa ta 10>+ M

M— oo n— o

First we prove that we may symmetrize. Take M such that supg -, - o, ToX?/
(tx? 4 M) <2~* By hypothesis (iii)

sup

a;'<10l,<6

bn|(Pn_P)r(’H)| _1}
P =2
r{ @ 07+ M

ay 101" 7o

21012 <
a'<01, <5 T4y [0° + M

<23 —1

From this and using the inequality xy <a~'x*+ p~!y% for x, y>0 and
a~ !4 p~1=1, it suffices to prove that

[log(a,d)]+1
lim limsup )  Pr {aﬁnl sup

16|, <ela,

Y (X, 9)‘ >Me’]} =0

i=1

M — oo n— oo j=1 1

(4.11)

where g<r<2. Let T={0eR?: |0, <1}. Let k be a positive integer.
Without loss of generality, we may assume that 7, ' is an integer. Let 4, =
{—1+ 27 750 1<j<ef 2 ). m: T> T such that |7,(0) =0, <
75 "27%, the coordinates of m,(0) are in A, and 7, _,(t,) =m,_,(1,), if
ne(t)) =m(ty). Then, Np= #m,(T)=12%+49 Let a=4. Take b>
(log 2) dv(r —q)~ L. Let k;=[j/b]. Then, there exists an integer j,, such
that

27 ) 27K(log Np)'P< 1.
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By part (a),

Y (X, 9)‘ >Me”} =0.

i=1

Jo
lim limsup ) Pr{ sup n~'b,
101,

1

M—>o© n-oo j=1 <ela,

We apply Theorem 6 to j> j, and f(x,0)=b,n"'e"¥r(x,a, ' e’0). We
have that

Y er(X;, ejan_lﬁ)’ >Me’/}

i=1

Pr {n ~1p, sup

0], <1

Y er(X;, ela;? nqj(ﬁ))‘ 22_1Me’f}

i=1

<Pr {n_lbn sup

10, <1

Y e(r(X,, ela; o)

i=1

+Pr {n_lbn sup

16],, <1

—r(X,, eja;lnqj(é’)) ZZIMe”}

<Nij7222€72(r7q)jT2

+nPr {bnn1 sup |r(X, ela;'0)]

0], <1

o) —1
>e'jM29kf(logNkj+1)1/2< Y 2k(10gNk)1/2> }

k=@+2
o0
+ ) 4N;“
k=kj+2

SeM 722 o= =i ey~ Lj2e—Hr— D) 4 ) —Javd/b,

which implies that

[log(a,d)] +1
lim lim sup Y Pr {b,,nl sup

|9|w<eja;

Y er( X, 9)’ > Me’]}

izt

M — o n— oo j=1

o
< Z c2—javd/b'
J=Jp+1

Since j, can be taken arbitrarily large, (4.11) follows. ||
Theorems 1 and 7 give the following:

THEOREM 8. Under the notation in Theorem 1, suppose (A.1), (A.2),
(A.3), (A.9) and for some positive constants v, d,, T and 1 <q <2,
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(A.10) For each M, n >0,

n Pr {bnn_1 sup |r(X,an_10)|>;7}—>O.

0l <M
(A.11) For each 1<a, |0| <dya,,
nE[(n~'aza,* 10177 r(X, 0)]) A (n"2aya, 10|72 r*(X, 0))] <c.
(A.12)
nE[(a?n~'ty' 2771 4, (X, 710, a7t 20Y))
A(adn=2t5207%5~ Az_u( a;'0,a;'20%)]<1,

for each 6 >0 small enough, each n large enough, each 0| <9, and each
1 <A< dya,, where

no

M(xy 0, 6)2 sup |r(x,9+l)—r(x, 0)|a
%

Then, (2.1) holds.

Pollard (1985) considered the asymptotic normality of M-estimators
assuming bracketing conditions. He assumed conditions on the class
{10001~ (g(x, 0) — g(xx, 09) — (0—00)" $(x)) : |0 — 0| <Jy}. Instead, we
consider the simpler class {g(x, 0) — g(x, 0y) — (0 —0)" ¢(x) : |0 —0y| <y}

Theorem 9 gives the following theorem for differentiable kernels:

THEOREM 9. Suppose (A.1), (A.2) and

(A13) g(x,-): 0@ —>R is first differentiable with continuity in a
neighborhood of 6, and for some 6,> 0,
2
} <.

Proof. We apply Theorem 9. Let B(x)=supy <s H%(x, 0o+ 0)]. 1t is
easy to see that for |0 <d,, |r(x, 0)] <|0] B(x) and for M <6,/2, 0 <,/2
and 0] <6y/2, A,,(x,0,0)<0B(x). From these estimations (A.3) and
(A.9)—(A.12) follow. |

og
20 (X, 00+ 0)

E[ sup

10] <6

Then, (2.1) holds with a, = n'?>.

Next, we consider another way to do the bracketing.
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THEOREM 10. Let  be function from S into the set of dxd symmetric
matrices. Assume (A.1), (A.2), (A.3),

(A14)  ELIIY(X)]] < oo.
(A15) lims o E[supp <4 10172 |1(X, 0) — 0'Y(X) 6] 1=0.

Then, (2.1) holds.

Proof. We apply Theorem 1. Let Bj(x)=supg<s |0 “2r(x, 0)—
0'y(x) 0|. By the LLN,

Pr{ sup ai|(Pn—P)r(-,9)|>17}

16] < Ma, !

<Pr{M?||(P,— P)Y(X)| + M*(P,+ P) B,-12(X) =1} — 0.

which implies (A.4).
If E[ B5(X)] <3 'z, then
an |(P,—P) (-, 0)|
p 7 —=>1
r{lii‘fa w2 [0+ M }
<Pr {|(P,—P)Y(X)| +(P,+P) B;>1} >0,

which implies (A.5). |

The next theorem follows directly from Theorem 10.

THEOREM 11. Assume (A.1),

(A15) g(x,-): @ >R is second differentiable with continuity in a
neighborhood of 6.

(A16) a,(P,—P)¢$=Oxp. (1), where §(x) =G (x, 0o).

(A.17) E[Z (X, 0,)]=0.
(A.18) V:=E[(0%g/00%)(X, 0,)] is a positive definite symmetric matrix.
(A.19) For some 6,> 0,
2
E{ sup (XO +0}
161 <3, 00 °

Then, (2.1) holds.

In the particular case a,=n"? and g(x, 0) = —log f(x, 0), where f(x, 0),
0 € O is a family of densities, previous result is very similar to Proposition
4 in Le Cam (1970). Jureckova and Sen (1996) prove the asymptotic
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normality of multivariate M-estimators assuming third derivatives. Previous
theorem only needs second order derivatives.
For the M-estimators idefined by (1.2), Theorems 2 and 7 give the
following:
THEOREM 12. With the notation in Theorem 2, assume (B.1), (B.2), (B.3),
(B.8) For each M, n >0,
n Pr {annl sup |h(X, 0g+a; ' 0)—h(X, 0,)| 277} - 0.
|0l <M
(B.9) For each 0eR?,
nE[(n~"a, |h(X, 0+ a, ' 0)—h(x, 0,)|
A (n™%ay [h(X, 0o+ a, ' 0)| —h(X, 05)*)] - 0.
(B.10) For each 1<a,l|0| <a,o, and each n large enough,
nE[min(n~'a,ty " a, 40|79 |h(X, 0y +a, ' 0)| —h(X, 0,)],
n=2a2ty a2 0|72 |\h(X, Oy +a,; ' 0)] —h(X, 0)*)]<1.

(B.11) For each 0<o<1, each |0| <M, each 1 <M <9,a,, and each
n large enough,

nE[min(ann_lro_lM‘qé_ldan—lM(X, a;'0,a;" Ms°),
apntg PM 072 A5 (X, a0, MOY)) T <,
where
Ay (X,0,0)= sup  |h(X,0p+a; (0+1)—h(X,0,+a,'0).
£ <o
101,10 +¢| <M

Then, (2.2) holds.

The following theorem follows similarly to Theorem 10.

THEOREM 13. Let  be function from S into the set of symmetric dx d
matrices. Assume (B.1), (B.3),

(B.8) E[Y(X)] is nonsingular.
(B9)  lims_ o E[supg_q,<s |0 — Ol V(X 0) —h(X,0,) —
Y(X)(0—00)1=0.

Then, (2.2) holds.
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Proof.- We apply Theorem 2. (B.2) follows from the dominated con-
vergence theorem. Let Bs(x)=sup g <5 |0| “Hh(x, O+ 0) —h(x, 0y) —(x) 0].
By the LLN,

Pr{ sup a,,|(P,,—P)<h<~,00+9>—h<~,90>)|>n}

16| < Ma, !

<nPr{M |[(P,—P)Y(X)| + M(P,+ P) B, 11(X) =n} - 0.

which implies (B.4). (B.5) follows similarly. ||

It is easy to see that conditions (B.8) and (B.9) hold, if /(x, 0) is differen-
tiable with respect to @ in a neighborhood of 6,, the matrix derivative is
continuous at 0, and for some d, >0, E[supg <, || Z(X,00+0)]]< c0.

5. SOME APPLICATIONS

An application of previous theorem is the following is the asymptotic
distribution of the M-estimators for the location parameter. Let { X} 72, be
a sequence of ii.d.r.v.’s with values in R% Let p be a function on R We
consider the M-estimator over g(x, 8) = p(x —0).

THEOREM 14. Assume the notation in Theorem 2 with d=1 and g(x, 0)
= p(x —0), where p: R - R is a continuous function, nondecreasing on [0, c0),
nonincreasing on (=00, 0] with liminf),, , ,, p(x)> p(x,), for each x, € R.
Let Let 0, is any sequence of r.v. satisfying

n=' Y p(X;—0,)=inf n=" Y p(X;—0).
j=1

feR?

Assume (A2), (A3), (A7), (A8), (A.9) and

(1) For each 6 >0,

inf  E[p(X—0)—p(X—04)]>0.

10— 0y =6

Then, (2.1) holds.

Proof. We apply Theorem 4. To prove that the classes of functions
{p(x—0)—p(x—0,: 0 R} is a VC subgraph class, we have to show that
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{Ay UBy:0eR?} isa VC class of sets, where A, :={(x',1): 0< 1< p(x—0)
—p(x—10,)} and By:={(x', 1)" 0>f>P(X—9)—P(X—90)}~ Let py(u) =
p(u) for u <0 and let p,(u) = p(u) for x = 0. Let p; (1) =sup{u<0: p(u) >t}
and let p5 '(¢)=inf{u>0: p(u) >1}. We have that 4,= A, U A}, where

o ={(xX,0):0<t,x=0,y—=Z'0—p; (t+p(x—0,))}
and
pe={(x,0):0<t,x—0,x—0—y—p7 i+ p(x—0,))}.

We have that {C(¢y, ..., 1,,): t1, ..., 1, € R} is a VC class, where C(t, ..., t,,)
={xeS:X7_,t,/;(x)=0} and f,,.., f,, are functions on S (Dudley,
1984, Theorem 9.2.1). We also have that if {C,: e T} and {D,:te T} are
VC classes, then so are {C,nD,:teT} and {C,uD,:teT} (Dudley,
1984, Proposition 9.2.5). Hence, {A4,:0eR?} is a VC class. A similar
argument gives that {B,: 0e R?} is a VC class.

Let /; =liminf}, _, ., p(x) and let 1=/ — E[ p(X—0,)] >0. Take £¢>0
and M >0 such that

(Ih—e)1—&)=E[p(X—00)]+27"
Pr{|X|<M}=>1-2
min(p(M), p(—M)) =1, —e.

For || > 2M, we have that

n-! Z P(Xj_g)>n_l z p(Xj_H) IllesM
i=1

i=1

n

Z min(p(M), p(—=M)) I x) < ar = (L —&)(1 —2¢),

for n large enough. Hence, |0,| < M, for n large enough.
By the law of the large numbers for VC subgraph classes of functions
(see Theorem 8.3 in Giné and Zinn, 1984),

sup (P, = P)(p(|-=01) —p(]-=0o))| >0 as.

16— 0y] <M

This and hypothesis (i) give the consistency of the M-estimator. The rest
of the conditions in Theorem 4 are assumed. ||

Given a sequence of iid.r.v’s {X;} 72, the k-means is the M-estimator
over the kernel g(x,0)=min;_;_;|x—0%|% where 0=(0", .. 00).
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The next theorem show that the k-means can converge to a stable limit
distribution.

THEOREM 15. Let {X,} 72, be a sequence of iidruv’s. Let g(x,0)=
min, <, < |x—609D|% where 0= (0", ..., %) Let 1 <a<2. Let {a,} be a
sequence regularly varying of order 1/a. Suppose that:

(i) There exists a O0ye R* with 0 < . < 0% such that E[ g(X, 0)
—g(X, 0,)]>0, for each 0# 0, with 0V < ... <P,

(i) a,(P,— P) ¢ converges in distribution, where

$(x) =2((06 = X) I 0,216 1 075
(05 =) L 10 o, 2 0+ o )"
(ii1)  The distribution function Fy of X is differentiable at ng’j“) =
2_1(98j)+98j+1))a for 1< j<k—1.
(iv) Fl042) = 2F (05 2) (05— 0§) >0,

Fy 0§77 0) = Fy (0§ )) =27 Py (067 D)0 * D — 0§)

—27 PR (057 V)05 05 ) >0,

fOV 2<]<k— 1, and 1 _FX(ag)kfl,k)) _271F7X(06k71,k))(9(()k)_Hgkfl)) > 0.
Then, (2.1) holds, with V determined by

k—1
0V0=(0V) Fx(0§-2) + 3 (0 (Fx(0§7* )= Fx(0§~"7)

j=1
+(09)? (1= Fy(05—11))

k—1
_2-2 z (9(j)+9(j+1))2F;{(ng,ﬁl))(%jﬂ)_gg)j))_

j=1
Proof. The result follows from Theorem 4. The consistency of the k

clusters means follows from Cuesta and Matran (1988).
We assume without loss of generality that

27100 +02) < 271(0D + 0P) < 271(0D + 09) <2710 + 0P) < ...
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We have that

r(x, 0) = (01 = 0")? I _ oo 2100 1 o)1

k—1

+ 2 (09 —07")? Ta-10G-1 4 00), 2-1(0§ + 813
j=2
k—1
k )2 ' 2
+(0% —05) L o-19k-14 o)) o0y T Z (0 —05)
j=2
+(2x =0V —0Y =)0V — U= D) L o191 4 0, 2-1(0U-1 + 0007 -

(5.1)
Hence,

E[r(X,0)]—(0—0,) V(0—0,)
k—1
=— 2 (09 =0§) (Fy(0Y~"7) = Fx (0§ ~17))
j=2
k—1
+ 2 (09 =067 (Fx(0Y=" D) = Fx(0§ 7))
j=2

k
+ Y (E[(2X =09 —0Y=D)(0Y) —0Y=1) Ipu-10 pr1.01]

j=2

_272(9(1‘71) +0Y) — 9(()]‘7 n_ 981‘))2 F’X(ngfl’ j))(ggj) _ ng, 1)))'
Obviously,
(6Y) — 38}'))2 (F(OV—17)) _F(ng—l,j))) =0(]0—0,1%)
and
(09 = 0 (Fy (091 7) = F(O§ =" 7)) = 0(10 0o ).
By a change of variable

E[(2X =0 —U=D)(0V — YD) Ityi-10 gir-1.07]

oU—1LJ)

= —[ L 2AF(0) = Fy0§ 71 )09 — 097 V) dx
901* 2
— _2—2(0(1'—1) + oY) — 08}'—1) _ 05)/’))2 FLY(O(()/'_I’/'))(OE)/') _ 051’—1))
+0(|0—0,]?).

(A.2) in Theorem 4 follows from previous estimations.
Condition (A.3) is assumed.
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Next, we consider condition (A.6). The class of functions {g(x, 6)—

g(x, 0,) : 0 € R} is contained in the class

2k
{ Y. (a;x+b;) I\, en)> Where co= — 0, ¢y =0, a;, b, ¢; € [R{}.
j=1

We claim that this is VC subgraph class. Observe that

k
{(x, 1) eR>: Y (ax+b) I(le,c]_]>t>o}
j=1

2k
= ({0 ¢;=x) n{(x, 1):x>¢;_ 4}

i=1

N {(x, t):a;x+b;=th 0 {(x,1):1=0})

which is obtained by unions and intersections of sets of the form

{(x, HeR?: i s; f(x, 1) 20},

Jj=1

815 e S,y € R, for some functions f, ..., f,, and some m < co. So, by Proposi-

tion 9.2.5 and Theorem 9.2.1 in Dudley (1984) the class of sets

2k
{(X, l): Z (ajx-i-bj) I(legcj]>t>0}a Clj, bja CjeR

j=1

is a VC class. Since a similar argument applies to

2k
{(x, 1eR?: 21 (apx+b) I | 1<t SO},
=
the class {g(x, 0) — g(x, 0,) : 0 € R*} is a VC subgraph class.
From (5.1),
k—1

(2, ) < |0 — 041>+ 10— 0, Z Ta-1(04-1 4 o), 2-1(0U1 4 90)7]
j=2

which gives conditions (A.7)-A.9). |

A better estimator of k clusters is the M-estimator over g(x, 0)=
min; _; <, |x—0%|. The proof of the next theorem is omitted, since it is

similar to that of the previous one.

THEOREM 16. Let {X;} 2, be a sequence of iidruv’s. Let g(x,0)=

min, _; o |x— 09|, where 0= (0", ..., 0. Suppose that:
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(i) There exists a 0y € R* with 0V < ... <0 such that E[ g(X, 0)
—g(X, 0,)]>0, for each 0+ 0, with 0V < ... <0,

(il) The distribution function Fy of X is differentiable at 0§-7+" :=
2710+ 05+, for 1< j<k—1, and at 0§, for 1 < j<k.

(i) 2F%(00) + Fi(052)> 0, and 2F(0%) + Fie(0%~9) >0 and,
for 2<j<k — 1, 2F(09)) + Fi(05~ D) + Fie(057+ D) =0, for 2 < j<k—1,
and 2F"(0%) + Fiy (0% =19 > 0.

Then, (2.1) holds with

¢(x) = (sign(0f" — x) I 0027, sign(0g” —x) Lpi2 9297, ),

and V is the symmetric matrix determined by

k k—1
0Vo=3 A0 Fi(0f)+ X ((09)%+ (09 2)%) Fi(0F7+ D).
j=1 j=1
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