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M-Estimators Converging to a Stable Limit
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We discuss the asymptotic linearization of multivariate M-estimators, when the
limit distribution is stable. We consider two different types of kernels: VC and bracket-
ing. When applied to the case of normal limits, our work improves the known results
to obtain the limit distribution of M-estimators. We give weak conditions for the
asymptotic normality of M-estimators over differentiable kernels. To obtain these
results, we present an inequality on empirical processes satisfying a bracketing
condition with respect to a norm smaller than the L2 norm. � 2000 Academic Press
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1. INTRODUCTION

We discuss the convergence of M-estimators to a stable (possibly normal)
limit distribution. Huber (1964) introduced M-estimators as a way to obtain
more robust estimators. Let (S, S, P) be a probability space and let [Xi]�

i=1

be a sequence of i.i.d.r.v.'s with values in S. Let X be a copy of X1 . Let 3
be a subset of Rd. Let g: S_3 � R be a function such that g( } , %): S � R
is measurable for each % # 3. Suppose that we want to estimate a parameter
%0 # 3 characterized by E[ g(X, %)& g(X, %0)]>0 for each %{%0 . An
M-estimator %� n over the kernel g(x, %) is a random variable %� n=%� n(X1 , ..., Xn)
satisfying

n&1 :
n

i=1

g(Xi , %� n)& inf
% # 3

n&1 :
n

i=1

g(Xi , %). (1.1)

Another type of M-estimator is %� n defined by

n&1 :
n

i=1

h(Xi , %� n)&0, (1.2)
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where h( } , %): S � Rd is a measurable function for each % # 3. Here, %� n is
estimating a value %0 characterized by E[h(X, %0)]=0. In general, the two
methods can give different estimates (see, for example, Bai et al., 1990).

There are many estimators that fall in the previous setup. It is well
known that maximum likelihood estimators are M-estimators. In this case
g(x, %)=&log f (x, %), where f (x, %), % # 3, is a family of densities. Crame� r
(1946) obtained the asymptotic normality of maximum likelihood estimators
assuming strong differentiability conditions. He even need to assume a third
derivative. Weaker differentiability assumptions for the asymptotic normality
of maximum likelihood estimators (or M-estimators) were imposed by
Daniels (1961), Huber (1964, 1967), Le Cam (1970), Ibragimov and
Has'minskii (1981), and Serfling (1981).

We will use the notation in empirical processes. For instance, we write

Pf =E[ f (X )] and Pn f =n&1 :
n

i=1

f (Xi),

where f is function on S. [=j] will denote a sequence of i.i.d.r.v.'s with
Pr[=j=1]=Pr[=j=&1]=1�2, which is independent of the sequence [Xj].
c will denote a constant which may vary from occurrence to occurrence.
Given a vector v, |v| will denote the Euclidean norm. Given a d_d matrix
A, we define the following norm &A& :=sup |b|�1 |b$Ab|.

To obtain the asymptotics of M-estimators we apply the delta method
(Taylor expansions). In the case in (1.1), under regularity conditions, there
are a function , and a positive definite symmetric matrix V such that

a2
n(Pn&P)(g( } , %+a&1

n %)& g( } , %0)&a&1
n %$,( } )) w�Pr 0,

E[ g(X, %)& g(X, %0)]=(%&%0)$ V(%&%0)+o( |%&%0 |2),

and

an(%� n&%0)+2&1V&1an(Pn&P) , w�Pr 0. (1.3)

If an(Pn&P) , converges in distribution and (1.3) holds, then an(%� n&%0)
also converges in distribution. Given the kernel g(x, %), ,(x) is chosen so
that (%&%0)$ ,(x) is the linear part in the Taylor expansion of g(x, %). an

is chosen so that an(Pn&P) , converges in distribution.
For the M-estimators defined as in (1.2), under some regularity condi-

tions, we have that

an(%� n&%0)+(H$(%0))&1 an(Pn&P) h( } , %0) w�Pr 0. (1.4)

If either (1.3) or (1.4) holds, the rate of convergence of the M-estimator
is determined by the influence function (which is either V&1,(x) or
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(H$(%0))&1 h( } , %0)). If the influence function has heavy tails, the rate of
convergence of the M-estimator is of an order of magnitude smaller than
n1�2. If g(x, %) has a bounded influence function (and some regularity condi-
tions hold), the M-estimator converges with rate n1�2 for any possible sample
distribution. If the influence function is not bounded, we have distributions
whose corresponding M-estimator converges with a rate slower than n1�2.
Hence, M-estimators over kernel with a bounded influence function are
preferable.

In Section 2, we present general principles to obtain (1.3) and (1.4).
In Section 3, we see how the conditions obtained in Section 2 are

satisfied for VC subgraph classes of functions. Asymptotic normality of
M-estimators using that a certain class of functions is a VC subgraph class
was first obtained by Pollard (1985). He considered the case when [ |%&%0 |&1

(g(x, %)& g(x, %0)&(%&%0)$ ,(x)) : |%&%0 |�$] is a VC subgraph class of
functions, for some $>0. Here, we consider the case when for some $0>0,
[g(x, %)& g(x, %0) : |%&%0 |�$0] is a VC subgraph class of functions. It is
easier to check that these classes are VC subgraph classes than the classes
of functions considered by Pollard.

In Section 4, we give some bracketing conditions in the class of functions
[g(x, %): % # 3 ] so that (1.3) or (1.4) holds. The asymptotic normality of
M-estimators under bracketing conditions has been considered by several
authors (see, for example, Huber, 1967; Pollard, 1985; Hoffmann�Jo% rgensen,
1994; and van der Vaart and Wellner, 1996). We present an inequality on the
tail of empirical processes by measuring the size of the brackets with respect
to a norm smaller than the L2 norm. Usually the brackets of size 2&k are func-
tions 2k such that E[(�n

j=1 =j 2k (Xj))
2]=nE[22

k (Xj)]�2&2k ; we impose
the weaker condition nE[(2k 2k (X1)) 7 (22k 22

k (X1))]�1. The norm deter-
mined by the previous inequality is a natural norm to consider. Klass (1980)
proved that if nE[(!1 �K(n)) 7 (!2

1 �K 2(n))]=1, where [!j] is a sequence
of i.i.d.r.v.'s with mean zero, and K(n) is a real number, then cK(n)�
E[ |�n

j=1 ! j |]�2K(n), where c is a universal positive constant. We apply
our results to obtain the asymptotics of M-estimators under very weak
differentiability conditions.

In Section 5, we apply the previous results to location estimators and
to the k-means. The location estimators appear when g(x, %)=\(x&%),
where \ is a function. The asymptotic normality of these estimators has
been considered by many authors (see, for example, Huber, 1964, 1967;
Serfling, 1981). We will see that, under certain conditions, these estimators
converge to a stable limit. The k clusters means is the M-estimator over the
kernel g(x, %)=min1�i�k |x&%(i )|2. Hartigan (1978) proved the asymptotic
normality of these M-estimators. Under certain conditions, these estimators
can converge to a stable limit. A better estimator (k-medians) of k clusters is
the M-estimator over g(x, %)=min1�i�k |x&%(i )|. The k-medians estimator
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is more robust than the k-means. We will see that the k-medians is asymptoti-
cally normal even for heavy tailed distributions.

2. A GENERAL APPROACH TO THE LINEARIZATION OF
M-ESTIMATORS

Our approach to obtain the asymptotics of M-estimator is to do Taylor
expansions. In this section, we give general conditions to get (1.3) and (1.4).
The next theorem follows from Theorem 3 in Arcones (1998).

Theorem 1. Let [Xi]�
i=1 be a sequence of i.i.d.r.v.'s with values in S. Let

3 be a subset of Rd. Let %0 be in the interior of 3. Let g: S_3 � R be a
function such that g( } , %): S � R is measurable for each % # 3. Let ,: S � Rd.
Let [an] be a sequence of positive numbers which converges to infinity such
that supn�1 n&1a2

n<�. Let [%� n=%� n(X1 , ..., Xn)] be a sequence of 3-valued
random variables. Suppose that:

(A.1) %� n w�Pr %0 and n&1 �n
i=1 g(Xi , %� n)�inf% # 3 n&1 �n

i=1 g(Xi , %)
+oPr (a&2

n ).

(A.2) There is a positive definite symmetric d_d matrix V such that

E[ g(X, %)& g(X, %0)]=(%&%0)$ V(%&%0)+o( |%&%0 |2),

as % � %0 .

(A.3) an(Pn&P) ,=OPr(1).

(A.4) For each 0<M<�,

sup
|%|�Ma n

&1
a2

n |(Pn&P) r( } , %)| w�Pr 0,

where

r(x, %)= g(x, %0+%)& g(x, %0)&%$,(x).

(A.5) For each {>0, there exists a $>0 such that

lim
M � �

lim sup
n � �

Pr { sup
|%&%0 |�$

a2
n |(Pn&P)(g( } , %0+%)& g( } , %0))|

{a2
n |%&%0 |2+M

�1==0.

Then,

an(%� n&%0)+2&1an(Pn&P) V&1, w�Pr 0. (2.1)
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Under (A.3), (A.5) is equivalent to the following: for each {>0, there
exists a $>0 such that

lim
M � �

lim sup
n � �

Pr { sup
|%|�$

a2
n |(Pn&P) r( } , %)|

{a2
n |%|2+M

�1==0.

We assume the existence and consistency of M-estimators, which could
be dealt with by different methods. Conditions (A.2)�(A.3) are elementary
conditions. In the next sections, we will use empirical processes to obtain
manageable conditions which imply (A.4) and (A.5).

We present the following theorem for the M-estimators in (1.2):

Theorem 2. Let [Xi]�
i=1 be a sequence of i.i.d.r.v.'s with values in S. Let

3 be a subset of Rd. Let h: S_3 � Rd be a function such that h( } , %): S �
Rd is measurable for each % # 3. Let %0 be in the interior of 3 such that
E[h(X, %0)]=0. Let [an] be a sequence of positive numbers which converges
to infinity such that supn�1 n&1a2

n<�. Let [%� n=%� n(X1 , ..., Xn)] be a
sequence of 3�valued random variables. Suppose that:

(B.1) %� n w�Pr %0 and ann&1 �n
i=1 h(Xi , %� n) w�Pr 0.

(B.2) H(%) := E[h ( X, % ) ] is differentiable at %0 with nonsingular
derivative.

(B.3) an(Pn&P) h( } , %0)=OPr (1).

(B.4) For each M<�,

sup
|%&%0 | �Ma n

&1
an |(Pn&P)(h( } , %)&h( } , %0))| w�Pr 0.

(B.5) For each {>0, there exists a $>0 such that

lim
M � �

lim sup
n � �

Pr { sup
|%&%0 |�$

an |(Pn&P)(h( } , %)&h( } , %0))|
{an |%&%0 |+M

�1==0.

Then,

an(%� n&%0)+(H$(%0))&1 an(Pn&P) h( } , %0) w�Pr 0. (2.2)

Proof. By (B.2), there are c, $0>0 such that if |%&%0 |�$0 , then

c |%&%0 |�|H(%)&H(%0)|.
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Take 0<{<c. If |%� n&%0 |�$0 , then

can |%� n&%0 |�an |H(%� n)&H(%0)|

�an |(Pn&P)(h( } , %� n)&h( } , %0))|

+an |(Pn&P) h( } , %0)|+an |Pnh( } , %� n)|

={an |%� n&%0 |+OPr(1).

This implies that an(%� n&%0)=OPr(1). We also have that

an |H$(%0)(%� n&%0)+(Pn&P) h( } , %0)|

�an |(Pn&P)(h( } , %0)&h( } , %� n))|+an |Pnh( } , %� n)|

+an |H(%� n)&H(%0)&H$(%0)(%� n&%0)|,

which converges to zero in probability. K

Conditions (B.1)�(B.3) are elementary conditions. Using empirical
processes, we will obtain usable conditions that imply (B.4) and (B.5). It
should be noted that (1.2) may have not solution when h is not continuous
in % (see, for example, Bai et al., 1990).

3. CONVERGENCE OF M-ESTIMATORS OVER
A VC SUBGRAPH CLASS OF FUNCTIONS

Given a set S and a collection of subsets C, for A/S, let 2C(A)=
card[A & C : C # C], let mC(n)=max[2C(A) : card(A)=n] and let s(C)=
inf [n: mC(n)<2n]. C is said to be a VC class of sets if s(C)<�. General
properties of VC classes of sets can be found in Chapters 9 and 11 in
Dudley (1984). Given a function f : S � R, the subgraph of f is the set
[(x, t) # S_R : 0�t� f (x) or f (x)�t�0]. A class of functions F is a
VC-subgraph class if the collection of subgraphs of F is a VC class. The
interest of these classes of functions lies in their good properties with respect
to covering numbers. Given a pseudometric space (T, d), the =-covering
number N(=, T, d ) is defined as

N(=, T, d )=min[n: there exists a covering of T by n balls of radius�=].

Given a positive measure + on (S, S) we define N2(=, F, +)=N(=, F, & }&L2(+)).
If F is a VC-subgraph class (Pollard, 1984, Prop. II. 25), then there
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are finite constants A and v such that, for each probability measure +
with +F 2<�,

N2(=, F, +)�A((+F 2)1�2�=)v, (3.1)

where F(x)=supf # F | f (x)| and A and v can be chosen depending only on
s(F), i.e. uniformly over all the classes of functions with the same number
s(F). By the maximal inequality for subgaussian processes in Theorem 3.1
in Marcus and Pisier (1981) there exists a constant c depending only on A,
v and p such that for any class of functions satisfying (3.1) and any p>0,

E _ sup
f # F } :

n

j=1

=j f (Xj)}
p

&�cE _} :
n

j=1

=j F(Xj)}
p

& . (3.2)

We apply Theorem 1 to get sufficient conditions for the convergence of the
M-estimator over a VC subgraph class of functions. First, we consider
condition (A.5) in Theorem 1.

Lemma 3. Given ;>0, suppose that:

(i) For some $0>0, [g(x, %)& g(x, %0) : |%&%0 |�$0] is a VC
subgraph class of functions.

(ii) For each M>0,

sup
|%|�M

a;
n |(Pn&P)(g( } , %0+a&1

n %)& g( } , %0))|=OPr(1).

(iii) There are constants q, c>0 such that

E[(M&1G$(X )) 7 (M&2G 2
$(X ))]�c$;M&1&q,

for each $>0 small enough and each M>0 large enough, where G$(x)=
sup |%|�$ | g(x, %0+%)& g(x, %0)|.

(iv) an=O(n1�;).

Then, for each {>0, there is a $>0 such that

lim
M � �

lim sup
n � �

Pr { sup
|%&%0 |�$

a;
n |(Pn&P)(g( } , %)& g( } , %0))|

{a;
n |%&%0 | 2+M

�1==0.
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Proof. We have that

sup
an

&1�|%&%0 |�$

a;
n |(Pn&P)(g( } , %)& g( } , %0))|

{a;
n |%&%0 | ;+M

� sup
1� j�[log(an$)]+1

sup
e j&1�an |%&%0 |�e j

({e( j&1) ;+M )&1 a;
n

_|(Pn&P)(g( } , %)& g( } , %0))|.

Hence,

Pr { sup
an

&1�|%&%0 |�$

a;
n |(Pn&P)(g( } , %)& g( } , %0))|

{a;
n |%&%0 | ;+M

�1=
� :

[log(an$)]+1

j=1

Pr { sup
an |%&%0 |�e j

a;
n |(Pn&P)(g( } , %)& g( } , %0))|

�e&;({e;j+M )= .

By symmetrization, (3.2) and hypothesis (iii)

Pr { sup
an |%&%0 |�e j

a;
n |(Pn&P)(g( } , %)& g( } , %0))|�e&;({e;j+M )=

�e;({e;j+M )&1 E _ sup
an |%&%0 | �e j

a;
n |(Pn&P)(g( } , %)& g( } , %0))|&

�2({e ;j+M)&1 a;
n n&1E _ sup

an |%&%0 |�e j } :
n

i=1

=i (g(X i , %)& g(Xi , %0))}&
�c({e;j+M )&1 a;

n n&1E _} :
n

i=1

=iGa n
&1 e j (Xi) }&

�c({e;j+M )&1 a;
n E[Ga n

&1e j (X ) IGa n&1 e j (X)�na n
&; ({e ;j+M )]

+c({e;j+M )&1 a;
n n&1(nE[G 2

an
&1e j (X ) IGa n&1e j (X )�nan

&; ({e ;j+M )])1�2

�c({e;j+M )&1 e;j (na&;
n ({e;j+M ))&q

+c({e;j+M )&1 (n&1a;
n)1�2 e;j�2(na&;

n ({e;j+M )) (1&q)�2.

Therefore, the claim follows. K

The following theorem gives the asymptotic distribution of M-estimators
under weak conditions:

Theorem 4. With the notation in Theorem 1, assume (A.1), (A.2), (A.3) and
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(A.6) For some $0>0, [g(x, %)& g(x, %0) : |%&%0 |�$0] is a VC
subgraph class of functions.

(A.7) For each M, '>0,

n Pr[n&1a2
nRan

&1 M (X )�'] � 0,

where RM (x)=sup |%|�M |r(x, %)|.

(A.8) There are constants q, c>0 such that

E[(M&1G$(X )) 7 (M&2G 2
$(X ))]�c$2M&1&q,

for each $>0 small enough and each M>0 large enough.

(A.9) For each % # Rd,

nE[(n&1a2
n |r(X, a&1

n %)| ) 7 (n&2a4
n r2(X, a&1

n %))] � 0.

Then, (2.1) holds.

Proof. We apply Theorem 1 and Lemma 3. We claim that by Theorem
2.4 in Arcones (1999), for each 0<M�, [a2

n(Pn&P)(g( } , %0+a&1
n t)&

g( } , %0)) : |t|�M] converges weakly. We need to prove that:

(C.1) For each |t|�M,

n Pr[n&1a2
n | g(X, %0+a&1

n t)& g(X, %0)|�2]=O(1).

(C.2) For each '>0,

lim
$ � 0

lim sup
n � �

n Pr { sup

|s&t|�$
|s| , |t| �M

n&1a2
n | g(X, %0+a&1

n t)& g(X, %0+a&1
n s)|�'=

=0.

(C.3) n&1a4
nE[G 2

an
&1 M (X) In&1 a2

nG 2
a n&1 M (X )�1]=O(1).

(C.4) lim
$ � 0

lim sup
n � �

sup

|s|, |t|�M
|s&t|�$

n&1a4
nE[ | g(X, %0+a&1

n t)

&g(X, %0+a &1
n s)| 2 In&1a 2

nG
2
an&1 M (X )�1]=0.

(C.5) lim
$ � 0

lim sup
n � �

sup

|s|, |t|�M
|s&t|�$

a2
n |E[(g(X, %0+a&1

n t)

&g(X, %0+a&1
n s)) In&1an

2 G
2
a n&1 M (X )�1]|=0.
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By the CLT for stable r.v.'s, for each 0<t<�, n Pr[n&1an |,(X )|�t]
=O(1). From this bound and (A.7), (C.1) follows.

We have that

n Pr { sup

|s&t|�$
|s| , |t| �M

n&1a2
n | g(X, %0+a&1

n t)& g(X, %0+a&1
n s)|�']

�n Pr[n&1an |,(X)|�3&1$&1']+2n Pr[n&1a2
nRan

&1 M (X )�3&1'].

This implies (C.2).
(C.3) follows from hypothesis (A.8).
As to Condition (C.4), given '>0, take k>0 such that

supn�1 n Pr[n&1an |,(X)|�k]�'. Given |s|, |t|�M with |s&t|�$, we
have that

n&1a4
nE[ | g(X, %0+a&1

n t)& g(X, %0+a&1
n s)| 2 In&1a 2

nGa n&1 M (X)�1]

�2'+n&1a4
nE[ | g(X, %0+a&1

n t)& g(X, %0+a&1
n s)| 2

_In&1a 2
nGa n&1 M (X )�1, n&1an |,(X )| <k]

�2'+3n&1a4
nE[ |r(X, a&1

n t)|2 In&1a2
n |r(X, an

&1 t)|<k+1]

+3n&1a4
n E[|r(X, a&1

n s)|2 In&1 a2
n |r(X, an

&1s)|<k+1]

+3n&1a4
n E[|a&1

n (t&s)$ ,(X)|2 In&1an |,(X )|<k].

(A.9) implies that 3n&1a4
n E[|r(X, a&1

n t)|2 In&1a2
n |r(X, an

&1 t)|<k+1] � 0. (A.3)
implies that n&1a2

nE[|,(X )|2 In&1 an |,(X )|<1]=O(1). (C.4) follows from the
previous estimations.

As to Condition (C.5), given '>0, by (A.8), we can take k>0 large so
that a2

nE[Ga n
&1M (X ) In&1a2

nG a n&1 M (X )�k]�'. Given |s|, |t|�M, we have that

a2
n E[| g(X, %0+a&1

n t)& g(X, %0+a&1
n s)| In&1an

2 Ga n&1 M (X)�1]

�a2
nE[| g(X, %0+a&1

n t)& g(X, %0+a&1
n s)|

_In&1a2
n Ga n&1M (X )�k, | g(X, %0+an

&1 t)& g(X, %0+an
&1s)| �']

+a2
nE[| g(X, %0+a&1

n t)& g(X, %0+a&1
n s)|

_Ik>n&1a2
n Ga n&1 M (X )�1, | g(X, %0+an

&1 t)& g(X, %0+a n
&1 s)| �']

+a2
nE[| g(X, %0+a&1

n t)& g(X, %0+a&1
n s)|

_In&1a2
n Ga n&1M (X )�1, | g(X, %0+an

&1 t)& g(X, %0+an
&1 s)| �']
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�2a2
nE[Ga n

&1M (X ) In&1a 2
nG a n&1 M(X )�k]

+2kn Pr[ | g(X, %0+a&1
n t)& g(X, %0+a&1

n s)|�']

+'a2
n Pr[n&1a2

nGan
&1M (X )�1]

�2'+2kn Pr[ | g(X, %0+a&1
n t)& g(X, %0+a&1

n s)|�']+'c,

which implies (C.5) via (C.2). Therefore, [a2
n(Pn&P)(g( } , %0+a&1

n t)&
g( } , %0)) : |t|�M] converges weakly. Since [an(Pn&P) %$,: |%|�M] also
converge weakly, so does [a2

n(Pn&P) r( } , a&1
n %): |%|�M]. (A.9) implies

that for each % # Rd a2
n(Pn&P) r( } , a&1

n %) w�Pr 0. Therefore, (A.4) holds. It
is easy to see that the conditions in Lemma 3 are satisfied. K

We present the following theorem for the M-estimators in (1.2).

Theorem 5. With the notation in Theorem 2, assume (B.1), (B.2), (B.3),

(B.6) For some $0>0, [h(x, %)&h(x, %0) : |%&%0 |�$0] is a VC sub-
graph class of functions.

(B.7) There are constants 0<q<1 and c>0 such that

E[(M&1H$(X )) 7 (M&2H 2
$(X ))]�c$M&1&q,

for each $>0 small enough and each M>0 large enough, where

H$(x)= sup
|%&%0 |�$

|h(x, %)&h(x, %0)|.

Then, (2.2) holds.

Proof. By symmetrization, (3.2) and hypothesis (B.7)

E _ sup
|%&%0 |�Ma n

&1
an |(Pn&P)(h( } , %)&h( } , %0))|&

�2n&1anE _ sup
|%&%0 |�Man

&1 } :
n

i=1

= i (h(Xi , %)&h(Xi , %0))}&
�cn&1an E _} :

n

i=1

=iHan
&1M (Xi)}&

�canE[Han
&1 (X) IH a n&1 M (X )�an

]

+c(n&1a2
n E[H 2

a n
&1M (X ) IH a n&1 M (X )�an

])1�2 � 0,

which gives (B.4). Lemma 3 implies (B.5). K
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4. CONVERGENCE OF M-ESTIMATORS UNDER
BRACKETING CONDITIONS

In this section, we consider the case when the class of functions satisfies
a bracketing condition. We present the following bound on empirical
processes over classes of functions that satisfy a bracketing condition:

Theorem 6. Let X1 , ..., Xn be independent r.v.'s with values in the
measurable spaces (S1 , S1), ..., (Sn , Sn), respectively. Let T be a parameter
set. Let fj ( } , t): Sj � R be a measurable function for each t # T and each
1� j�n. Let a�4. Let k0 be an integer. Suppose that for each k�k0 , there
exists a function ?k : T � T such that ?k (?k (t))=?k (t); ?k&1(t)=?k&1(s), if
?k (t)=?k (s) and

:
n

j=1

E[(2k 2j, k (Xj , ?k (t))) 7 (22k 22
j, k (Xj , ?k (t)))]�1

where

2j, k (x, ?k (t))= sup
s: ?k (s)=?k (t)

| fj (x, s)& f j (x, ?k (t))|.

Then,

Pr {sup
t # T } :

n

j=1

=j ( f (Xj , t)& f (Xj , ?k0
(t)))}�M=

� :
n

j=1

Pr {sup
t # T

2j, k0
(Xj , ?k0

(t))�M(a+2)&1 2&5&k0 (log Nk0+1)&1�2

_\ :
�

k=k0+2

2&k (log Nk)1�2+
&1

=+ :
�

k=k0

4N &a
k , (4.1)

for

M�24(a+2) :
�

k=k0+2

2&k (log Nk)1�2,

where Nk is the cardinality of ?k (T).

Proof. Without loss of generality, we may assume that Nk0
�2. First,

we prove that if

4(a+2) :
�

k=k0+2

2&k (log Nk)1�2�',
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then

Pr {sup
t # T } :

n

j=1

=j ( fj (Xj , t)& f j (Xj , ?k0
(t)))}�4'=

� :
n

j=1

Pr {sup
t # T

2j, k0
(Xj , ?k0

(t))�2&1&k0 (log Nk0+1)&1�2=+ :
�

k=k0

6N &a
k .

(4.2)

Let {j (t)=inf [k�k0 : 2j, k (Xj , ?k (t))>2&1&k (log Nk+1)&1�2]. Take k1>
k0 such that

n2&k1 (log 2)&1�2�'�2. (4.3)

We have that

:
n

j=1

=j ( fj (Xj , t)& f j (X j , ?k0
(t)))

= :
n

j=1

=j ( f j (Xj , t)& f (Xj , ?k0
(t))) I{j(t)=k0

+ :
n

j=1

=j ( fj (Xj , t)& f j(Xj , ?k1
(t))) I{j (t)�k1

+ :
n

j=1

:
k1&1

k=k0+1

=j ( f j (Xj , t)& f j (X j , ?k (t))) I{j (t)=k

+ :
n

j=1

:
k1

k=k0+1

=j ( f j (Xj , ?k (t))& fj (Xj , ?k&1(t))) I{j (t)�k

=: U (1)
n (t)+U (2)

n (t)+U (3)
n (t)+U (4)

n (t). (4.4)

Hence, we have that

Pr {sup
t # T } :

n

j=1

=j ( fj (Xj , t)& f j (Xj , ?k0
(t)))}�4'=

� :
4

j=1

Pr {sup
t # T

|U ( j )
n (t)|�'= . (4.5)

It {j (t)=k0 , then

2&1&k0 (log Nk0
)&1�2�2j, k0

(X, ?k0
(t)).
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So,

Pr {sup
t # T

|U (1)
n (t)|�'=

� :
n

j=1

Pr {sup
t # T

2j, k0
(Xj , ?k0

(t))�2&1&k0 (log Nk0+1)&1�2= . (4.6)

By (4.3)

|U (2)
n (t)|� :

n

j=1

2j, k1
(Xj , ?k1

(t)) I2j, k1
(Xj , ?k1

(t))�2&k1(log Nk1
)&1�2

�n2&k1 (log 2)&1�2�'�2.

Hence,

Pr {sup
t # T

|U (2)
n (t)|�'==0. (4.7)

It {j (t)=k, then

2&1&k (log Nk+1)&1�2<2j, k (X j , ?k (t))

�2j, k&1(Xj , ?k&1(t))�2&k (log Nk)&1�2.

Since u2E[(u&1 2j, k (Xj , ?k (t))) 7 (u&2 22
j, k (Xj , ?k (t)))] is nondecreasing,

we have that for 0<u�2&k,

:
n

j=1

uE[2j, k (Xj , ?k (t)) I2j, k (Xj , ?k (t))�u]

� :
n

j=1

2&2kE[(2k 2j, k (X j , ?k (t))) 7 (22k 22
j, k (Xj , ?k (t)))]�2&2k.

Thus,

:
n

j=1

E[2j, k (X j , ?k (t)) I{j (t)=k]

� :
n

j=1

E[2j, k (Xj , ?k (t)) I2j, k(Xj , ?k (t))>2&1&k (log Nk+1 )&1�2 ]

�21&k (log Nk+1)1�2.
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Since E[(u&12j, k (Xj , ?k (t))) 7 (u&2 22
j, k (Xj , ?k (t)))] is nonincreasing,

:
n

j=1

E[22
j, k (X j , ?k (t)) I{j (t)=k]

� :
n

j=1

E[22
j, k (X j , ?k (t)) I2j, k(Xj , ?k (t))�2&k (log 2)&1�2]�2&2k (log 2)&1.

From the previous estimations and the Bernstein inequality,

Pr {sup
t # T

|U (3)
n (t)|�'=

� :
k1

k=k0+1

:
t # Tk

Pr {} :
n

j=1

(2j, k (Xj , ?k (t)) I{j (t)=k

&E[2j, k (Xj , ?k (t)) I{j (t)=k])}�(a+1) 21&k (log Nk+1)1�2=
� :

k1&1

k=k0+1

:
t # Tk

2 exp \
&(a+1)2 22&2k log Nk+1

2 �n
j=1 E[22

j, k (Xj , ?k (t)) I{j (t)=k]
+(2�3) 21&k (log Nk)&1�2 (a+1) 21&k (log Nk+1)1�2+

� :
k1&1

k=k0+1

2Nk exp \&6(a+1)2 (log Nk)1�2 (log Nk+1)1�2

3(log 2)&1+4(a+1) +� :
k1

k=k0+1

2N &a
k ,

where Tk=?k (T ).
Since ?k & 1 (t) = ?k & 1 ( ?k (t) ) , | fj ( Xj , ?k (t) ) & fj ( Xj , ?k & 1 (t) ) | �

2j, k&1(Xj , ?k&1(t)). Hence,

Pr {sup
t # T

|U (4)
n (t)|�'=

� :
k1

k=k0+1

:
t # Tk

2 Pr {} :
n

j=1

=j ( fj (Xj , ?k (t))& f j (Xj , ?k&1(t))) I{j (t)�k }
�(a+2) 21&k (log Nk+1)1�2=

� :
k1

k=k0+1

2Nk

_exp \ &(a+2)2 22&2k log Nk+1

2 } 22&2k+(2�3) 2&k (log Nk)&1�2 (a+2) 21&k (log Nk+1)1�2+
� :

k1

k=k0+1

2N &a
k .
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(4.2) follows from (4.4)�(4.9) letting k1 go to infinity.
Given 0<*�1, the class of functions [*fj (x, t): t # T ] satisfies the

conditions in this theorem. So, by (4.2)

Pr {sup
t # T } :

n

j=1

=j ( fj (X j , t)& fj (Xj , ?k0
(t))) }

�*&124(a+2) :
�

k=k0+2

2&k (log Nk)1�2=
� :

n

j=1

Pr {sup
t # T

2j, k0
(Xj , ?k0

(t))�*&12&1&k0 (log Nk0+1)&1�2=
+ :

�

k=k0

4N &a
k ,

for each 0<*�1. (4.1) follows taking M=*&124(a+2) ��
k=k0+2_

2&k (log Nk)1�2. K

To check conditions (A.4), (A.5), (B.4), and (B.5), we will use the follow-
ing theorem:

Theorem 7. Let [Xi]�
i=1 be a sequence of i.i.d.r.v.'s with values in a measur-

able space (S, S). Let X be a copy of X1 . Let M, $0>0. Let r: S_(&$0 , $0)d

� R be a measurable function such that r( } , %) is a measurable function for
each % # (&$0 , $0)d. Let [an] and let [bn] be two sequences of positive
numbers bounded away from zero. Let 1<q<2 and let v>0. Suppose that:

(i) For each M, '>0,

n Pr {bnn&1 sup
|%|�M

|r(X, a&1
n %)|�'=� 0.

(ii) For each % # Rd,

nE[(n&1bn |r(X, a&1
n %)| ) 7 (n&2b2

nr2(X, a&1
n %))] � 0.

(iii) For each 1�an |%|�an $1 and each n large enough,

nE[(n&1bn {&1
0 a&q

n |%|&q |r(X, %)| ) 7 (n&2b2
n{&2

0 a&2q
n |%|&2q r2(X, %))]�1.

(iv) For each 0<$�1, each |%|�M, each 1�M�$1an and each n
large enough,

nE[min(bnn&1{&1
0 M&q$&1 2an

&1M (X, a&1
n %, a&1

n M$v),

b2
nn&2{&2

0 M&2q$&2 22
an

&1M (X, a&1
n %, a&1

n M$v))]�1,
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where

2M (X, %, $)= sup

|%| , |%+t| �M
t: |t| �$

|r(X, %+t)&r(X, %)|.

Then,

(a) For each 0<M<�,

sup
|%| �M }bnn&1 :

n

i=1

(r(Xi , a&1
n %)&E[r(Xi , a&1

n %)])} w�Pr 0.

(b) For each {>0, there exists a $>0 such that

lim
M � �

lim sup
n � �

Pr { sup
|%|�$

bn |(Pn&P) r( } , %)|
{a2

n |%&%0 |2+M
�1==0.

Proof. Define |%|� :=max1� j�d |%( j )|. To symmetrize in part (a), we
need to prove that for each {>0,

sup
|%| �M

Pr[bn |(Pn&P) r( } , a&1
n %)|�{] � 0. (4.10)

Take a function ?: [&M, M]d � [&M, M]d such that *(?([M, M]d ))
<�, and sup% # [&M, M] d |%&?(%)|��$v. By condition (ii),

sup
|%| �M

Pr[bn |(Pn&P) r( } , a&1
n ?(%))|�2&1{] � 0.

Condition (iv) implies that

sup
|%| �M

Pr[bn |(Pn&P)(r( } , a&1
n %)&r( } , a&1

n ?(%)))|�2&1{]

� sup
|%|�M

2{&1E _bnn&1 } :
n

j=1

(r(Xj , a&1
n %)&r(X j , a&1

n ?(%))) }&�8{&1{0 $.

So, (4.10) holds. From (4.10) and Lemma 2.5 in Gine� and Zinn (1984), we
may symmetrize the expression in (a). Hence, it suffices to prove that

sup
|%| �M }bnn&1 :

n

i=1

=ir(Xi , a&1
n %)} w�Pr 0.

Without loss of generality, we may assume that M and {0 are integers.
Let k be a positive integer. Let Ak=[&M+ j2&kv{&v

0 : 1� j�M{v
0 2kv+1].

It is easy to see that we may define ?k : T � T such that &?k (%)&%&�

�{&v
0 2&kv, the coordinates of ?k (%) are in Ak and ?k&1(t1)=?k&1(t2), if
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?k (t1)=?k (t2). Then, Nk=*?k (T)=(M{v
0 2vk+1)d. Take k0 large enough.

By Theorem 6,

Pr { sup
|%| �M }bnn&1 :

n

i=1

=i r(Xi , a&1
n %)}�{=

�n Pr { sup
|%| �M

bnn&1 |r(X, a&1
n %)|�c=+ :

�

k=k0

4N &a
k =: I+II,

where c is a finite constant. By hypothesis (i), I � 0. II can be made
arbitrarily small by letting k0 � �. Therefore, (a) follows.

As to (b), by part (a), it suffices to prove that

lim sup
M � �

lim
n � �

Pr { sup
an

&1�|%|��$

bn |(Pn&P) r( } , %)|
{a2

n |%| 2+M
�1==0.

First we prove that we may symmetrize. Take M such that sup0<x<� {0xq�
({x2+M)�2&4. By hypothesis (iii)

sup
an

&1�|%|��$
Pr {bn |(Pn&P) r( } , %)|

{a2
n |%| 2+M

�2&1=
�23 sup

a n
&1�|%|��$

aq
n |%|q {0

{a2
n |%|2+M

�2&1.

From this and using the inequality xy�:&1x:+;&1y;, for x, y>0 and
:&1+;&1=1, it suffices to prove that

lim
M � �

lim sup
n � �

:
[log(an $)]+1

j=1

Pr {a2
n n&1 sup

|%|��e j a n
&1 } :

n

i=1

=i r(Xi , %)}�Merj==0

(4.11)

where q<r<2. Let T=[% # Rd : |%| ��1]. Let k be a positive integer.
Without loss of generality, we may assume that {&1

0 is an integer. Let Ak=
[&1+ j2&kv{&v

0 : 1� j�{v
0 2kv+1]. ?k : T � T such that &?k (%)&%&��

{&v
0 2&kv, the coordinates of ?k (%) are in Aq and ?k&1(t1)=?k&1(t2), if

?k (t1)=?k (t2). Then, Nk=*?k (T )={vd
0 2dvk+d. Let a=4. Take b>

(log 2) dv(r&q)&1. Let kj=[ j�b]. Then, there exists an integer j0 , such
that

27 :
�

k=kj0
+2

2&k (log Nk)1�2�1.
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By part (a),

lim
M � �

lim sup
n � �

:
j0

j=1

Pr { sup
|%|��e j an

&1
n&1bn } :

n

i=1

=ir(Xi , %) }�Merj==0.

We apply Theorem 6 to j> j0 and f (x, %)=bnn&1e&q jr(x, a&1
n e j%). We

have that

Pr {n&1bn sup
|%|��1 } :

n

i=1

=ir(Xi , e ja&1
n %) }�Merj=

�Pr {n&1bn sup
|%|��1 } :

n

i=1

=i r(Xi , e ja&1
n ?qj

(%))}�2&1Merj=
+Pr {n&1bn sup

|%|��1 } :
n

i=1

=i (r(Xi , e j a&1
n %)

&r(Xi , e ja&1
n ?qj

(%))}�2&1Merj=
�Nkj

M&222e&2(r&q) j{2

+n Pr {bn n&1 sup
|%|��1

|r(X, e ja&1
n %)|

�erjM2&9&kj (log Nkj+1)&1�2 \ :
�

k=kj+2

2&k (log Nk)1�2+
&1

=
+ :

�

k=kj+2

4N &a
k

�cM&22v dj�b e&(r&q) j+cm&1j 2e& j(r&q)+c2& javd�b,

which implies that

lim
M � �

lim sup
n � �

:
[log(an$)]+1

j=1

Pr {bnn&1 sup
|%|��e j an

&1 } :
n

i=1

=i r(Xi , %)}�Merj=
� :

�

j= j0+1

c2& javd�b.

Since j0 can be taken arbitrarily large, (4.11) follows. K

Theorems 1 and 7 give the following:

Theorem 8. Under the notation in Theorem 1, suppose (A.1), (A.2),
(A.3), (A.9) and for some positive constants v, $0 , {0 and 1<q<2,
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(A.10) For each M, '>0,

n Pr {bnn&1 sup
|%| �M

|r(X, a&1
n %)|�'=� 0.

(A.11) For each 1�an |%|�$0 an ,

nE[(n&1a2
n a&q

n |%|&q r(X, %)| ) 7 (n&2a4
n a&2q

n |%|&2q r2(X, %))]�c.

(A.12)

nE[(a2
nn&1{&1

0 *&q$&1 2a n
&1*(X, a&1

n (%, a&1
n *$v))

7 (a4
nn&2{&2

0 *&2q$&2 22
a n

&1* (X, a&1
n %, a&1

n *$v))]�1,

for each $>0 small enough, each n large enough, each |%|�$, and each
1�*�$0 an , where

2M (x, %, $)= sup

|%+t| �M
t: |t|�$

|r(x, %+t)&r(x, %)|,

Then, (2.1) holds.

Pollard (1985) considered the asymptotic normality of M-estimators
assuming bracketing conditions. He assumed conditions on the class
[ |%&%0 |&1 (g(x, %)& g(x, %0)&(%&%0)$ ,(x)) : |%&%0 |�$0]. Instead, we
consider the simpler class [g(x, %)& g(x, %0)&(%&%0)$ ,(x) : |%&%0 |�$0].

Theorem 9 gives the following theorem for differentiable kernels:

Theorem 9. Suppose (A.1), (A.2) and

(A.13) g(x, } ): 3 � R is first differentiable with continuity in a
neighborhood of %0 and for some $0>0,

E _ sup
|%|�$0

" �g
�%

(X, %0+%)"
2

&<�.

Then, (2.1) holds with an=n1�2.

Proof. We apply Theorem 9. Let B(x)=sup |%|�$ & �g
�% (x, %0+%)&. It is

easy to see that for |%|�$0 , |r(x, %)|�|%| B(x) and for M�$0 �2, $�$0 �2
and |%|�$0 �2, 2M (x, %, $)�$B(x). From these estimations (A.3) and
(A.9)�(A.12) follow. K

Next, we consider another way to do the bracketing.
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Theorem 10. Let � be function from S into the set of d_d symmetric
matrices. Assume (A.1), (A.2), (A.3),

(A.14) E[&�(X )&]<�.

(A.15) lim$ � 0 E[sup |%|�$ |%|&2 |r(X, %)&%$�(X ) %|]=0.

Then, (2.1) holds.

Proof. We apply Theorem 1. Let B$(x)=sup |%| �$ |%|&2 |r(x, %)&
%$�(x) %|. By the LLN,

Pr { sup
|%| �Man

&1
a2

n |(Pn&P) r( } , %)|�'=
�Pr [M2 &(Pn&P) �(X )&+M2(Pn+P) Ba n

&1M (X )�'] � 0.

which implies (A.4).
If E[B$(X)]�3&1{, then

Pr { sup
|%|�$

a2
n |(Pn&P) r( } , %)|

{a2
n |%| 2+M

�1=
�Pr [&(Pn&P) �(X )&+(Pn+P) B$�{] � 0,

which implies (A.5). K

The next theorem follows directly from Theorem 10.

Theorem 11. Assume (A.1),

(A.15) g(x, } ): 3 � R is second differentiable with continuity in a
neighborhood of %0 .

(A.16) an(Pn&P) ,=OPr (1), where ,(x)= �g
�% (x, %0).

(A.17) E[ �g
�% (X, %0)]=0.

(A.18) V :=E[(�2g��%2)(X, %0)] is a positive definite symmetric matrix.

(A.19) For some $0>0,

E _ sup
|%|�$0

" �2g
�%2 (X, %0+%)"&<�,

Then, (2.1) holds.

In the particular case an=n1�2 and g(x, %)=&log f (x, %), where f (x, %),
% # 3 is a family of densities, previous result is very similar to Proposition
4 in Le Cam (1970). Jurec� kova� and Sen (1996) prove the asymptotic
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normality of multivariate M-estimators assuming third derivatives. Previous
theorem only needs second order derivatives.

For the M-estimators idefined by (1.2), Theorems 2 and 7 give the
following:

Theorem 12. With the notation in Theorem 2, assume (B.1), (B.2), (B.3),

(B.8) For each M, '>0,

n Pr {ann&1 sup
|%|�M

|h(X, %0+a&1
n %)&h(X, %0)|�'=� 0.

(B.9) For each % # Rd,

nE[(n&1an |h(X, %0+a&1
n %)&h(x, %0)|

7 (n&2a2
n |h(X, %0+a&1

n %)|&h(X, %0)|2)] � 0.

(B.10) For each 1�an |%|�an $1 and each n large enough,

nE[min(n&1an{&1
0 a&q

n |%|&q |h(X, %0+a&1
n %)|&h(X, %0)|,

n&2a2
n{&2

0 a&2q
n |%|&2q |h(X, %0+a&1

n %)|&h(X, %0)|2)]�1.

(B.11) For each 0<$�1, each |%|�M, each 1�M�$1 an and each
n large enough,

nE[min(an n&1{&1
0 M&q$&12an

&1M (X, a&1
n %, a&1

n M$v),

a2
nn&2{&2

0 M&2q$&2 22
an

&1M (X, a&1
n %, a&1

n M$v))]�1,

where

2M (X, %, $)= sup

|%| , |%+t| �M
t: |t| �$

|h(X, %0+a&1
n (%+t))&h(X, %0+a&1

n %)|.

Then, (2.2) holds.

The following theorem follows similarly to Theorem 10.

Theorem 13. Let � be function from S into the set of symmetric d_d
matrices. Assume (B.1), (B.3),

(B.8) E[�(X )] is nonsingular.

(B.9) lim$ � 0 E[ sup | % & %0 | � $ | % & %0 | &1 | h ( X, % ) & h ( X, %0 ) &
�(X )(%&%0)|]=0.

Then, (2.2) holds.
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Proof. We apply Theorem 2. (B.2) follows from the dominated con-
vergence theorem. Let B$(x)=sup |%|�$ |%|&1 |h(x, %0+%)&h(x, %0)&�(x) %|.
By the LLN,

Pr { sup
|%| �Ma n

&1
an |(Pn&P)(h( } , %0+%)&h( } , %0))|�'=

�n Pr[M &(Pn&P) �(X )&+M(Pn+P) Ban
&1M (X )�'] � 0.

which implies (B.4). (B.5) follows similarly. K

It is easy to see that conditions (B.8) and (B.9) hold, if h(x, %) is differen-
tiable with respect to % in a neighborhood of %0 , the matrix derivative is
continuous at %0 and for some $0>0, E[sup |%|�$0

& �h
�% (X, %0+%)&]<�.

5. SOME APPLICATIONS

An application of previous theorem is the following is the asymptotic
distribution of the M-estimators for the location parameter. Let [Xj]�

j=1 be
a sequence of i.i.d.r.v.'s with values in Rd. Let \ be a function on Rd. We
consider the M-estimator over g(x, %)=\(x&%).

Theorem 14. Assume the notation in Theorem 2 with d=1 and g(x, %)
=\(x&%), where \: R � R is a continuous function, nondecreasing on [0, �),
nonincreasing on (&�, 0] with lim inf |x| � � \(x)>\(x0), for each x0 # R.
Let Let %� n is any sequence of r.v. satisfying

n&1 :
n

j=1

\(Xj&%� n)= inf
% # R d

n&1 :
n

j=1

\(Xj&%).

Assume (A.2), (A.3), (A.7), (A.8), (A.9) and

(i) For each $>0,

inf
|%&%0 |�$

E[\(X&%)&\(X&%0)]>0.

Then, (2.1) holds.

Proof. We apply Theorem 4. To prove that the classes of functions
[\(x&%)&\(x&%0 : % # R] is a VC subgraph class, we have to show that
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[A% _ B% : % # Rd ] is a VC class of sets, where A% :=[(x$, t)$: 0�t�\(x&%)
&\(x&%0)] and B% :=[(x$, t)$: 0�t�\(x&%)&\(x&%0)]. Let \1(u)=
\(u) for u�0 and let \2(u)=\(u) for x�0. Let \&1

1 (t)=sup[u�0 : \(u)�t]
and let \&1

2 (t)=inf [u�0 : \(u)�t]. We have that A%=A$% _ A"% , where

A$% :=[(x$, t)$ : 0�t, x&%, y&Z$%&\&1
2 (t+\(x&%0))]

and

A"% :=[(x$, t)$ : 0�t, x&%, x&%& y&\&1
1 (t+\(x&%0))].

We have that [C(t1 , ..., tm): t1 , ..., tm # R] is a VC class, where C(t1 , ..., tm)
=[x # S : �m

j=1 tj fj (x)�0] and f1 , ..., fm are functions on S (Dudley,
1984, Theorem 9.2.1). We also have that if [Ct : t # T ] and [Dt : t # T ] are
VC classes, then so are [Ct & Dt : t # T ] and [Ct _ Dt : t # T ] (Dudley,
1984, Proposition 9.2.5). Hence, [A% : % # Rd] is a VC class. A similar
argument gives that [B% : % # Rd ] is a VC class.

Let l1=lim inf |x| � � \(x) and let {=l1&E[\(X&%0)]>0. Take =>0
and M>0 such that

(l1&=)(1&=)�E[\(X&%0)]+2&1{,

Pr[ |X |�M]�1&2=,

min(\(M), \(&M ))�l1&=.

For |%|�2M, we have that

n&1 :
n

i=1

\(Xj&%)�n&1 :
n

i=1

\(X j&%) I |Xj | �M

�n&1 :
n

i=1

min(\(M ), \(&M)) I |Xj |�M�(l1&=)(1&2=),

for n large enough. Hence, |%� n |�M, for n large enough.
By the law of the large numbers for VC subgraph classes of functions

(see Theorem 8.3 in Gine� and Zinn, 1984),

sup
|%&%0 | �M

|(Pn&P)(\( | }&%| )&\( | }&%0 | ))| � 0 a.s.

This and hypothesis (i) give the consistency of the M-estimator. The rest
of the conditions in Theorem 4 are assumed. K

Given a sequence of i.i.d.r.v.'s [Xj]�
j=1 , the k-means is the M-estimator

over the kernel g(x, %)=min1�i�k |x&% (i ) |2, where %=(%(1), ..., %(k))$.
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The next theorem show that the k-means can converge to a stable limit
distribution.

Theorem 15. Let [Xj]�
j=1 be a sequence of i.i.d.r.v.'s. Let g(x, %)=

min1�i�k |x&%(i ) | 2, where %=(%(1), ..., %(k))$. Let 1<:�2. Let [an] be a
sequence regularly varying of order 1�:. Suppose that:

(i) There exists a %0 # Rk with % (1)
0 < } } } <% (k)

0 such that E[ g(X, %)
&g(X, %0)]>0, for each %{%0 with %(1)� } } } �%(k).

(ii) an(Pn&P) , converges in distribution, where

,(x)=2((% (1)
0 &x) I(&�, 2&1 (% 0

(1)+%0
(2) ] ,

(%(2)
0 &x) I(2&1 (%0

(1)+%0
(2), 2&1 (%0

(2)+%0
(3)] , ...)$.

(iii) The distribution function FX of X is differentiable at % ( j, j+1)
0 :=

2&1(% ( j )
0 +% ( j+1)

0 ), for 1� j�k&1.

(iv) FX (% (1, 2)
0 )&2F $X (% (1, 2)

0 )(% (2)
0 &% (1)

0 )>0,

FX (% ( j, j+1)
0 )&FX (% ( j&1, j )

0 ))&2&1F $X (% ( j, j+1)
0 )(% ( j+1)

0 &% ( j )
0 )

&2&1F $X (% ( j, j+1)
0 )(% ( j )

0 &% ( j&1)
0 )>0,

for 2� j�k&1, and 1&FX (% (k&1, k)
0 )&2&1F $X (% (k&1, k)

0 )(% (k)
0 &% (k&1)

0 )>0.
Then, (2.1) holds, with V determined by

%$V%=(%(1))2 FX (%(1, 2)
0 )+ :

k&1

j=1

(%( j ))2 (FX (% ( j, j+1)
0 )&FX (% ( j&1, j )

0 )

+(%(k))2 (1&FX (% (k&1, k)
0 ))

&2&2 :
k&1

j=1

(%( j )+%( j+1))2 F $X (% ( j, j+1)
0 )(% ( j+1)

0 &% ( j )
0 ).

Proof. The result follows from Theorem 4. The consistency of the k
clusters means follows from Cuesta and Matran (1988).

We assume without loss of generality that

2&1(% (1)
0 +%(2)

0 )<2&1(%(1)+%(2))<2&1(% (2)
0 +% (3)

0 )<2&1(%(2)+%(3))< } } } .
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We have that

r(x, %)=(%(1)&% (1)
0 )2 I(&�, 2&1 (% 0

(1)+% 0
(2))]

+ :
k&1

j=2

(%( j )&% ( j )
0 )2 I(2&1 (% ( j&1)+% ( j)), 2&1 (%0

( j)+%0
( j+1) )]

+(%(k)&% (k)
0 )2 I(2&1(% (k&1)+% (k)), �)+ :

k&1

j=2

((%( j )&% ( j )
0 )2

+(2x&%( j )&%( j&1))(%( j )&%( j&1)) I(2&1 (%0
( j&1)+% 0

( j)), 2&1 (% ( j&1)+% ( j) )] .

(5.1)

Hence,

E[r(X, %)]&(%&%0)$ V(%&%0)

=& :
k&1

j=2

(%( j )&% ( j )
0 )2 (FX (%( j&1, j ))&FX (% ( j&1, j )

0 ))

+ :
k&1

j=2

(%( j )&% ( j )
0 )2 (FX (%( j&1, j ))&FX (% ( j&1, j )

0 ))

+ :
k

j=2

(E[(2X&%( j )&%( j&1))(%( j )&%( j&1)) I[%0
( j&1, j), % ( j&1, j) ]]

&2&2(%( j&1)+%( j )&% ( j&1)
0 &% ( j )

0 )2 F $X (% ( j&1, j )
0 )(% ( j )

0 &% ( j&1)
0 )).

Obviously,

(%( j )&% ( j )
0 )2 (F(%( j&1, j ))&F(% ( j&1, j )

0 ))=o( |%&%0 | 2)

and

(%( j )&% ( j )
0 )2 (FX (%( j&1, j ))&F(% ( j&1, j )

0 ))=o( |%&%0 |2).

By a change of variable

E[(2X&%( j )&%( j&1))(%( j )&%( j&1)) I[% 0
( j&1, j), % ( j&1, j ) ]]

=&|
% ( j&1, j )

% 0
( j&1, j )

2(FX (x)&FX (% ( j&1, j )
0 )(%( j )&% ( j&1)) dx

=&2&2(%( j&1)+%( j )&% ( j&1)
0 &% ( j )

0 )2 F $X (% ( j&1, j )
0 )(% ( j )

0 &% ( j&1)
0 )

+o( |%&%0 | 2).

(A.2) in Theorem 4 follows from previous estimations.
Condition (A.3) is assumed.

218 MIGUEL A. ARCONES



Next, we consider condition (A.6). The class of functions [g(x, %)&
g(x, %0) : % # Rk] is contained in the class

{ :
2k

j=1

(ajx+bj) I(cj&1, cj ]), where c0=&�, c2k=�, aj , b j , cj # R= .

We claim that this is VC subgraph class. Observe that

{(x, t)) # R2 : :
k

j=1

(ajx+bj) I(cj&1, cj ]
�t�0=

= .
2k

i=1

([(x, t): cj�x] & [(x, t): x>cj&1]

& [(x, t): aj x+bj�t] & [(x, t): t�0])

which is obtained by unions and intersections of sets of the form

{(x, t) # R2 : :
m

j=1

sj fj (x, t)�0= ,

s1 , ..., sm # R, for some functions f1 , ..., fm and some m<�. So, by Proposi-
tion 9.2.5 and Theorem 9.2.1 in Dudley (1984) the class of sets

{(x, t): :
2k

j=1

(ajx+bj) I(cj&1 , cj ]
�t�0= , aj , b j , cj # R

is a VC class. Since a similar argument applies to

{(x, t) # R2 : :
2k

j=1

(ajx+bj) I(cj&1, cj ]�t�0= ,

the class [g(x, %)& g(x, %0) : % # Rk] is a VC subgraph class.
From (5.1),

|r(x, %)|�|%&%0 |2+c |%&%0 | :
k&1

j=2

I(2&1 (%0
( j&1)+%0

( j)), 2&1 (% ( j&1)+% ( j))]

which gives conditions (A.7)�A.9). K

A better estimator of k clusters is the M-estimator over g(x, %)=
min1�i�k |x&%(i )|. The proof of the next theorem is omitted, since it is
similar to that of the previous one.

Theorem 16. Let [Xj]�
j=1 be a sequence of i.i.d.r.v.'s. Let g(x, %)=

min1�i�k |x&%(i )|, where %=(%(1), ..., %(k))$. Suppose that:
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(i) There exists a %0 # Rk with % (1)
0 < } } } <% (k)

0 such that E[ g(X, %)
& g(X, %0)]>0, for each %{%0 with %(1)� } } } �%(k).

(ii) The distribution function FX of X is differentiable at % ( j, j+1)
0 :=

2&1(% ( j )
0 +% ( j+1)

0 ), for 1� j�k&1, and at % ( j )
0 , for 1� j�k.

(iii) 2F $X (% (1)
0 )+F $X (% (1, 2)

0 )>0, and 2F $X (%(k)
0 )+F $X (% (k&1, k)

0 )>0 and,
for 2� j�k&1, 2F $X (% ( j )

0 )+F$X (% ( j&1, j )
0 )+F $X (% ( j . j+1)

0 )>0, for 2� j�k&1,
and 2F $X (% (k)

0 )+F $X (% (k&1, k)
0 )>0.

Then, (2.1) holds with

,(x)=(sign(% (1)
0 &x) I(&�, % 0

(1, 2) ] , sign(% (2)
0 &x) I(%0

(1, 2) , %0
(2, 3)] , ...)$,

and V is the symmetric matrix determined by

%$V%= :
k

j=1

2(%( j ))2 F $X (% ( j )
0 )+ :

k&1

j=1

((%( j ))2+(%( j+1))2) F $X (% ( j, j+1)
0 ).
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