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1. Introduction

Let x, and x, be two random vectors of p; and p, components with a joint (p; + p,)-variate normal distribution with a
mean vector u = (i), ;)" and a covariance matrix

X X
2= (5 5.
where X, is a p; x p, matrix. Without loss of generality we may assume p; < p,.Let p; > --- > pp, > 0 be the possible
nonzero population canonical correlations between x,, and x,.. Note that pf > ..o > pjl > 0 are the characteristic roots of
> 1%, 215, The coefficient vectors a; and a,; of the ith canonical variables are defined as the solutions of
Zuw EU_U] Zoultyi = P} Duuui, oy Dyutyj = 8jj.
T Bt = p} Zpvetvi, 0 Tyt = 8,

where §; = 1fori = j,0fori # j. Let k be the number of nonzero canonical correlations p;. Then k = rank(X,,) < p;, and
the relationships between ¥, and ¥, can be summarized in terms of the first k canonical variates (o X, a,X,),i=1,..., k.

In canonical correlation analysis, the number of nonzero canonical correlations, defines the dimensionality. Consider the
problem of testing the hypothesis that the smaller p; — k canonical correlations are zero, i.e.,

Hgim : px > Pkg1 =+ = pp, = 0.
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This problem is related to reducing the dimension of the canonical variables. Let S be the sample covariance matrix formed
from a sample of size N = n + 1 of x = (x], x,)’. Corresponding to a partition of ¥, S is partitioned as

S S
S — uu uv .
(SUU SUU>

The following test statistics have been considered (e.g., see Siotani, Hayakawa and Fujikoshi [11]):

D1 D1 r2 D1
_ 2 _ J _ 2
IR=—log [[(1=1), H= > =t BNP = )" 17, (1)
j=k+1 j=k+1 j j=k+1
where r? is the sample canonical correlation. Note that r12 > e > rgl > 0 are the characteristic roots of S;SWS;J‘SW.

Under a large sample framework,
AO: p;and p, are fixed, n — oo,

some asymptotic results have been obtained (e.g., Anderson [1] and Siotani et al. [11]). Note that these results will not work
well as dimension p; or p, increases. In order to overcome this weakness, we study the asymptotic distributions of these
statistics under a high-dimensional framework such that

Al: pq;fixed, p, > 00, n—o00, py/n—ce(0,1).

Here, we note that m = n — p, — oo is implied by A1. In our asymptotic framework A1, we assume n > p = p; + p». So,
we can use the properties of Sugiura and Fujikoshi [12], which are given in the Appendix.

In this paper we also consider asymptotic distributions of test statistics for a hypothesis concerning the sufficiency of the
redundancy of a subset of variables from each of x, and x,. This problem is related to reducing the dimension of the original
variables. In order to formulate the hypothesis, we partition x, and 8, asx, = (¥}, %5)", %1 : q1 X 1, : g2 X 1, %, = (¥}, X},)’,
X3:q3 X 1,X; 1 q4 x 1and oy, o0yi, Ly, Uy, X comfortably:

o “1 X Y2 Y3z Xu

(%i) _ | (Mu) _ | #2 > <Euu Zuv) _ |22 Xn X Zu
i asi |’ Ky us |’ DINTED I Y31 X3 X3z Xy
7Y M o Xp T Xy

Note that p; = q1 4+ q2 and p, = g3 + q4. Then, the hypothesis of the sufficiency of ¥; and x3, or of the redundancy of x, and
X4, is formulated as follows:

Hagq i a2i =0, a4 =0, i=1,...,k).

', X,)'. Corresponding to a partition of

Let S be the sample covariance matrix formed from a sample of size N = n + 1 of (x,, x|,

X, S is partitioned as

S11 Siz2 S13 Sus

S — Sw Sw) _ | S21 S22 Sz S
S Sw S31 Sz S33 S

S41 Saz S43 Sua

To test H.qq, we consider the statistic (Fujikoshi [4]) defined by

S$2213  S2413
S213 S4a13

/{1522.111S44.3}, (2)

which is a likelihood ratio statistic. Here, Sy3.1 = Sy — 52151_11512, Sy2.13 =Sy — 52(13)55;)(13)5(13)2. S213) = (S21, S23), etc.
Fujikoshi [4] derived an asymptotic expansion for the distribution of T under AO. The approximation can be written as

B _
P(—mlogT < x) = Gy (x) + W{Gf“(") —Gr(®)} +0(m™?), (3)
wherep =q1 + ¢ + @3+ qa, 7 = q1 + ¢3,.f = (1 + q2)(g3 + q4) — q1G3,
1 1q1q3(p—1)
=n—— 1) — ——"—7
m=n 2(p—{— ) 3 7

1
B=1 ({7 + a5 + @ + a5 — 5} + 2430202 + 2010304 + 20204 {0102 + G304 — 3¢103} — 3(q193)*(p — 1)°/f] .

However, the result will not work well as dimensions p; and p, increase. In order to overcome this weakness, we study
asymptotic expansions of the statistic under a high-dimensional framework such that

A2: p=pi+p,— 00, n—oo, p/n—ce(0,1).
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Here, we note that m = n — p — oo is implied by A2. Numerical simulations revealed that our approximation becomes
more accurate than the classical approximation as the dimension increases. Similar approximations have been proposed in
the MANOVA model and discriminant analysis. Fujikoshi, Himeno and Wakaki [5] derived asymptotic distributions of test
statistics for dimensionality in canonical discriminant analysis under Al. Tonda and Fujikoshi [13] derived an asymptotic
expansion of the distribution of Wilks’ lambda statistic A in the MANOVA model under A1. Wakaki [14] derived similar
results for A in the MANOVA model under a different high-dimensional framework. For examples of other distributional
results in a high-dimensional framework in which both the dimension and sample size are large, see Bai [2], Johnstone [6],
Ledoit and Wolf [9], and Raudys and Young [10], etc.

2. Distributions of tests for dimensionality

In this section we consider the distribution of the three test statistics (1) under framework A1l. When we consider the
distributions of the statistics in (1), without loss of generality we may assume

= Ipl J/ p = 0] =d 1% P
) = ~ P =(P P = dia .
P Ipz P ( ’ )a 1 g( 1, P pl)’

since the statistics are expressed as functions of the characteristic roots of SJSHUSI;}SW. Let A = nS. Corresponding to a
partition of x, A is partitioned as

_ A Aw
A= (Aw An)

[ g— i=1,...,p;.

Let

ot -1 -1
These are the characteristic roots of A,/ AuwAy, Avu-

Let U and V be the matrices defined by

— 1 -1 2 —
U= {AwAy A — (D2lp, + 0%} and V =

\/p>2 v

respectively. Then we obtain the following theorem.

(Auu-v - mlpl)v (4)

1
Jm

Theorem 1. Under assumption A1, each of the elements of U and V is asymptotically and independently distributed as a normal
distribution, more precisely

vi > N(0,2), ;> N©,1), i#j

d n n 4 d n 4 . .
Ui > N0, 2|14+ 2—y" + — , uj—> N0, 14+ —y" ), i#],
D2 P2 D2

d o
where y? = p? /(1 — p?) and — denotes convergence in distribution.

The proof of Theorem 1 is given in the Appendix. From Theorem 1 we can obtain the asymptotic distributions of three
test statistics in (1).

2.1. Null distributions

In this section we consider the null distribution of the three test statistics under framework A1 and
ALl pf > >pf>ppy=-=p; =0.

Consider the transformed test statistics of LR, LH and BNP in (1) defined by

m D1 p
TLR=@<1+172> {log 1_[ (1—|—€j2)—(p1—k)log<1+r;)},

=kt

D1
TLHzﬁz{zzzf—(p]—k)}, (5)

Jj=k+1

m m\ & £
Tanp = 1+ — 1+ — L _(pi—ky.
BNP \/Ig< +p2>{< +pz> Z 1+€f (P )}

j=k+1
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Then Ty, T; and Tgyp can be expanded (see the Appendix) as

To=tr{Uxp — pivzz +07/2s (6)
m

where G = LR, LH, BNP,
_(Un Un _ (Vi Vi
Uy Uxn)’ Vor Ve )

Us, and Vi, are k x (py — k) matrices. Here, the notation O] denotes a term of the ith order with respect to (n™", pz_l, m~1).
From Theorem 1, each of the diagonal elements of U,; and V5, is asymptotically distributed as N (0, 2). Therefore, we obtain
the following theorem.

1

Theorem 2. Under assumption Al and Al.1,
T
= 5 N, 1),
oG

where G = LR, LH, BNP, and
o = \/2(p1 — K (1 n p—z).
m

2.2. Non-null distribution

In this section we derive the asymptotic non-null distributions of the three test statistics for dimensionality under the
alternative hypothesis:

Kdim : pp > ppt1="---=pp, =0, k<b=<pq.
For simplicity, we assume that the first b canonical correlations are different, i.e.,
Al2: pi > > pf > Py :--.:p;1 =0.
This is equivalent to y? > -+ > 32 > y2, = --- = y2 = 0. Let
n
Tﬁe=vpz< )!logn(1+€2)—logn(l+<1+yjz>>},
Jj=k+1 Jj=k+1 D2
m D2 n o,
T} = /P2 { 2 — <1+yj>},
jk2+1 | ) ];1 m | ) (7)
o 5 (1+27)
m m j
(2|02 £l £ 5
p2 P2/ S5 1+ p2 jk+1l—|—%2(1+ )/])

Then Ty, Ty and Tgnp can be expanded (see the Appendix) as

Tg = Z dc <uﬂ | — (1 =+ — ) vﬂ) + tr (&22 — /%‘722) + OT/Z’ (8)

j=k+1
p - -
d = + = U= (Un U12> (Vn V12
jo— ) nd ) i )
P2 .2 Uy Uxp Vor Vo
14 2 (1 + 1y, )
Uqp and Vqp are b x (p1 — b) matrices. Here, the notation G and c is used, such that

{1, when G = LR,
C =

where

0, whenG=1IH,
2, when G = BNP.
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Using Theorems 1 and 2, we obtain the following theorem.

Theorem 3. Let T} be the transformed test statistics defined by (7), where G = LR, LH, BNP. Then, under assumption Al and
Al.2,
T*
¢ 5 N@. 1)
o¢

where

b
2 2 n o, n 4 ( Pz)
=2 d 1+2—vy; — 2 —-b(1+—=).
E ; {( + pzyj +p2yj>}+ (p1—Db) +m

Jj=k+1

2.3. Asymptotic power

On the basis of the asymptotic distributions of the three statistics in Theorem 3, we obtain their asymptotic powers. Let
8(; =T¢ — TéfThen

1+P2 yz
Sk =+/m \/» Zlog<1+(+ ,
m

Jj=k+1 )pz

2

sm—fz

j=k+1 Pz
B (14 %)
P2
114+ (1+p2yj)

b
e = B (14 22) 1 1 P> ~ -1

We have
PD = Pr(TG > GGZa) = PT(TS > 0GZa — 86)’

where z, is the upper 100a% points of the standard normal distribution.
Using Theorem 3, the asymptotic power with a level of significance « is expressed under A1 as

8¢ — 06z
limPy = @ (i) ,
o¢
where @ is the distribution function of the standard normal distribution. Under assumption A1,

pp_ pp 1 1 0
m o n—p, Z_1 1 1=
D2 ™ E_l c

Therefore, we can obtain §¢ — oo so that the asymptotic power is 1.

3. Distributions of tests for additional information

We are interested in the distribution of T in (2). According to Theorem 2 in [4], T under H,qq is expressed as a product of
two independent variables, i.e.,

T=T xT,, Ti~A@2,qn—p1), To~A(qs,q,n—r), 9)

where p; = q1 + q2, P2 = q3 + 44,7 = q1 + gs3. Here, we denote the distribution of A = |A|/|A + B| by A(p, g, n), where A
and B have independent Wishart distributions W, (n, £) and W, (q, X'), respectively.

Let A be a statistic that is distributed as A(p, g, n). Tonda and Fujikoshi [13] derived an asymptotic expansion formula
of the distribution of A when q is fixed, n — oo, p — oo withp/n — ¢ € (0, 1). For our derivation, we use their result. Let

—log A —m
T = 084 7M.
dr
where
2

q n+] 2 q p
me=dlog s =Y
= n—p+j p = m+jn—p+j)
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Then, the characteristic function of Tz can be expanded as
- 2 3
Cr(t) =e2' {1 D D (O R e S (it)“} +o™),
a=1 a=1

where the «\*'s are defined by

1 1 T 733
Kp(4) = 0 (a4 1113 — T(13)) KéG) = » <T6 +2—= 5 ¢ )> ) (10)

q q
_ i _ i+j
Ti = E Wy Tik,  T(j) = E Wy " Tik T«
k=1 k=1

Here the coefficients 7;; and w; are given by

. a; . 2 + q; . aj(4+3aj)
j= —F7— 3= T 2=
' 20 +q) '3 /2(01+q) T 4+ )
U ks A U . ) U B
YT 6 +a) T YT 36(1+a) T dfitgq

where g =p/(n—p+j)andd = YL pH{(n+)(n—p+i)}~".
On the other hand, Wakaki [14] derived an asymptotic expansion formula for the distribution of A when all three values
of p, q and n tend to infinity with p/n — ¢; € (0, 1) and g/n — ¢, € (0, 1). For our derivation, we also use his result. Let

—logA—m
Ty = g w,
dw

wheremy = v, d2, = t@,

() _ (s—1) n—p+gq (s—1) n+dq

6 —(—1)5{ qs (2 _ qs T s
q j—1

53)=ZW(S)<C’_T)’ (s=0,1,...;a>0),
j=1

and ¥ (a) is the polygamma function defined as

e 1 1
@ 9 Sl I — _C+k2_;<1+k_k+a>’ (s=0),
Y (a) = a0 ) o8 (@ =1 (—1)*1s!

— (k + a)5+l ’

Then, the characteristic function of Ty, can be expanded as

2 3
Cr,, () = e 2 {1 +) kg a4y K‘(,ﬁ‘”(it)z"‘} +o(ph,
a=1 a=1

where the K‘(,ff)s are defined by K‘(,t}) = K‘(,ﬁ) =0,

3/2 2 2
K‘ES) = r(3)/ (1(2)) / , K\E:/‘) = r(4)/ (‘L'(Z)) , K‘(,S) = (K‘S)) . (11)

Using these results, we can obtain the asymptotic distribution of T in (2) under various high-dimensional frameworks

satisfying A2.
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3.1. Null distribution under A2

In our framework A2, the conditions “p — o0” and “one of q1, g2, g3, g4 — 00" are equivalent. Under p; < p,, the
condition can be realized as one of the following 12 cases.

a1 G2 g3 Q4 1 92 Q43 Q4
@ (f f f oo (vii)|oo f f o0
) | f f oo f | (vili)| oo f oo f
(iii) | f f 00 00| (ix) | oo f o0 o0
(iv) | f oo f oo | (X) o oo f 00
(v) | f o oo f (xi) o0 o0 oo f
(vi) | f o0 00 00| (xii) | co o0 o0 oo

Here f and oo in the g; column denote “g; is fixed” and “q; — 00", respectively. We can obtain an asymptotic expansion of
the distribution of T in all of the cases except (ii). For case (ii), we apply the approximations in the other cases. On the basis
of a numerical simulation, we shall see that our approximations even in situation (ii) are good.

We have seen that T; and T, have the following asymptotic means and variances:

E(—logT;) ~ m;, Var(—logT)) ~ d,
and hence

E(—logT) ~ my + my, Var(—logT) ~ d,

where d = (d% + d%)q/z. Note that m; and d; are given by [13,14], respectively, depending on situations (i)-(xii). Let Ty; be
the standardization of T defined by
—logT — (my + my)
Ty = .
d
Let Ty denote the standardization of T under (i), (iii), and (viii), Ty under (iv), (vi), and (xi), Ty3 under (v), Ty4 under (vii),
and (ix), and Tys under (x) and (xii). Then we obtain the following theorem.

Theorem 4. Let T; be the standardization of T defined by (2). Then, the null distribution of T can be expanded as

P(Te < %) = ®(x) — ¢(X) [a:1(0) + R ()] + 0™, (12)

where G = H1-H5, @ (x) and ¢(x) are the distribution and density function of the standard normal distribution, respectively,
and the a;(x) s are defined by

a(0) =P+, a0 =cPhi ) +cPhy() + c©hs (x). (13)

Here, hj(x) is the jth Hermite polynomial; in particular, hy(x) = x, hy(x) = x> — 1, h3(x) = x> — x, ha(x) = x* — 6x2 + 3,
hs(x) = x> — 10x> + 15x, and the k@ s are given by

1), -~ . . ~2) | ~Q) |, ~(D~(
K(])=K1()+K2(), K(3)=K1(3)—|—K£3), K(2)=K1()+K£)+K1( )Kz()’
~4) | ~(@ , ~D=B) , ~B3)=( ~(6) , ~(6) ;| ~3)~(3
K@ :K1< ) +K§ ) +K]( )K2()+K1( )Kz( ), «® :K]( ) +K2()+K]( )KZ( ),
where /Zj(“) = wj“/cj(“) and w; = d;/d. Furthermore the Kj(“) s are given by (10) and (11), respectively. For a detailed definition,

see Table A.1 in the Appendix.

The proof of Theorem 4 is given in the Appendix.
Using the coefficients a;(x) of the asymptotic expansion (12), we can obtain the Cornish-Fisher expansion. Let x and t¢(x)

denote the percentage point of the limiting distribution of T¢ and the corresponding percentage points of Tg, respectively,
that is

P(T; < tc(x)) = ®(x),  G=HI-H5.

Then from (12), t;(x) can be expanded as
te®) = x+a;(x) + {al(X)a’l(X) - %XCH(X)Z + az(X)} +o(p™")

=) +o(p ). (14)
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4. Simulation results
In this section we compare our high-dimensional approximations (denoted as H) with the classical approximations

(denoted as C) based on the asymptotic distribution under a large sample framework such that p; and p, are fixed and
n tends to infinity. The numerical accuracy is studied for the upper percentage points and the actual test size.

4.1. Null distributions of tests for dimensionality

It is well known that under the large sample framework, the three statistics

P1 p1 r2 p1
2 j 2
—nlog 1- r; ), n > n r;
=kt i 1] =kt

are asymptotically distributed as the y2-distribution with (p; — k)(p, — k) degrees of freedom (e.g., see Siotani et al. [11]).
Under the high-dimensional framework the three statistics Tg /o are distributed asymptotically (see Theorem 2)as N(0, 1),
where o = +/2(p; — k)(1 + p,/m) and G = LR, LH, BNP. To facilitate understanding, let tc = ”_1X§;1_k)(p2_k>,w

-1

- m
tirn = (p1 — k) log (1 + pi) +p, 172 (1 + 7> Zas
m D2

D2 -
tign = m [(Pl — k) +ow xp, l/zla} )

m\ ! i m\ !
tpven = | 1+ — (p1 — k) + ogwp X p, 14+ — Zo [ »
D2 D2

where X(zpl—k)(pz—k),oz and z,, are the 100(1-«)% points of the x2-distribution with (p; — k)(p, — k) degrees of freedom and
the standard normal distribution, respectively.
The values of pq, n, p, and & were chosen as follows:

(p1 + p2, m); (10, 50), (20, 50), (30, 50), (40, 50), (10, 100), (15, 100),
(20, 100), (50, 100), (70, 100), (90, 100)(10, 100),
(1, P) : (3, diag(0.9, 0.6, 0.0)), (p1, ) : (4, diag(0.9, 0.6, 0.0, 0.0)),

Table 1 shows the estimated upper 5% points based on a Monte Carlo simulation, the approximated critical points using our
method, t;r.y, tiy.H, tenp., and the classical approximations tc. Table 2 shows the corresponding actual test sizes. We are
interested in the behavior when the dimension is large and close to the sample size.

From Tables 1 and 2, the chi-square type approximation tc, ar.c, ®ry.c, &pnp.c performs well when p is less than 10.
However, the chi-square type approximation is poor when p is greater than 10. When p is large, og.c and oy.c are close to 1
and apyp.c is close to 0. The normal type approximations o g.c, @;y.c and agyp.c perform well when the dimension p is close
to half of N. When k = 2, o;y.c performs well when the dimension p close to N.

4.2. Test for additional information

It is easy to obtain Cornish-Fisher expansion of the large sample approximation (3). In fact, the expansion (3) can be
written as

P(—mlogT <x) = Gf(X)+gf(X) pl(X)+0(m) (15)

where g (x) is the density function of the chi—square variable with f degrees of freedom and the coefficient p; (x) is defined
by

Pr(x) = ﬂ}j

’1Hf+zo—n

j=1
Similarly let
P(—mlogT < t(x)) = Gy (x).
Then the Cornish-Fisher expansion can be written in the same way as in (14), that is,

tx) =x+ 2p1(x)+0(m %)
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Table 1
Upper 5% points of LR, LH, BNP for dimensionality
N p D2 Simugg tRH Simugy tiHH Simugyp teNp-H tc
p1 =3, k=2, » = diag(0.9, 0.6, 0.0)
50 10 7 0.24° 0.29° 0.28° 0.32° 0.23° 0.28° 0.23
50 20 17 0.60P 0.65° 0.83 0.88? 1.30 1.69 051
50 30 27 1.04 1.112 1.83 1912 3.63 5.12 0.77
50 40 37 1.71 1.79% 467 4,65 7.69 11.44 1.02
100 10 7 0.12° 0.14 0.12° 0.15° 0.09° 0.10° 0.11
100 15 12 0.20° 0.22° 0.22° 0.24° 0.22° 0.25% 0.18
100 20 17 0.28° 0.29° 0.32° 0.33? 0.43 0.482 0.25
100 50 47 0.82 0.84 1.28 1.28% 4.10 484 0.62
100 70 67 1.33 1.382 2.82 2.86° 8.82 11.97 0.86
100 90 87 2.35 2.41° 9.84 9.73? 15.61 23.85 1.09
p1 =4, k=2, 2 = diag(0.9, 0.6, 0.0, 0.0)
50 10 7 0.24° 0.29° 0.28° 0.322 0.23° 0.28? 0.23
50 20 17 0.60P 0.652 0.83 0.882 1.30 1.69 051
50 30 27 1.04 1.112 1.83 1.91° 3.63 5.12 0.77
50 40 37 1.71 1.79* 467 465 7.69 11.44 1.02
100 10 7 0.12° 0.14 0.12° 0.15° 0.09° 0.10° 0.11
100 15 12 0.20° 0.222 0.22° 0.24° 0.22° 0.25° 0.18
100 20 17 0.28° 0.29° 0.32° 0.33? 0.43 0.48° 0.25
100 50 47 0.82 0.84° 1.28 1.28% 4.10 484 0.62
100 70 67 1.33 1.382 2.82 2.86° 8.82 11.97 0.86
100 90 87 2.35 2.41° 9.84 9.73? 15.61 23.85 1.09
3 Denotes |Simug — tg.y| < 107!, where G = LR, LH, BNP.
b Denotes |Simug — tc| < 10!, where G = LR, LH, BNP.
Table 2
The corresponding actual test sizes of LR, LH, BNP for dimensionality.
N p b2 QR-H QIR.C QIH.-H QH.C O'BNP-H QBNp.C
p1 =3, k=2, » = diag(0.9, 0.6, 0.0)
50 10 7 0.021 0.070 0.023 0.102 0.017 0.0412
50 20 17 0.026 0.155 0.035 0.351 0.017 0.016
50 30 27 0.024 0.406 0.040° 0.787 0.012 0.001
50 40 37 0.025 0.837 0.0512 0.991 0.004 0.000
100 10 7 0.023 0.058? 0.025 0.074 0.021 0.046°
100 15 12 0.032 0.074 0.035 0.111 0.028 0.043?
100 20 17 0.038 0.097 0.042? 0.173 0.032 0.0412
100 50 47 0.039 0.465 0.052? 0.845 0.025 0.006
100 70 67 0.026 0.895 0.044° 0.998 0.011 0.000
100 90 87 0.024 1.000 0.054? 1.000 0.002 0.000
p1 =4, k=2, 2 = diag(0.9, 0.6, 0.0, 0.0)
50 10 7 0.011 0.072 0.016 0.114 0.006 0.039
50 20 17 0.023 0.209 0.038 0.502 0.011 0.019
50 30 27 0.022 0.623 0.053? 0.948 0.008 0.004
50 40 37 0.034 0.979 0.092 1.000 0.007 0.000
100 10 7 0.009 0.061 0.012 0.078 0.007 0.044?
100 15 12 0.018 0.078 0.022 0.131 0.014 0.039
100 20 17 0.025 0.115 0.032 0.214 0.018 0.040?
100 50 47 0.028 0.684 0.0512 0.975 0.017 0.008
100 70 67 0.033 0.990 0.063 1.000 0.016 0.000
100 90 87 0.039 1.000 0.109 1.000 0.007 0.000

¢ Denotes the approximation in [0.040, 0.060].

For comparison, let tr = m~! x t¢ t¢ = my + my + d x tc(x), where G = H1-H5.
Table 3 gives the upper 5% points based on a Monte Carlo simulation (Simu), and the approximated critical points of our
method, ty; ~ tys, and the classical approximations tsg. Table 4 gives the corresponding actual test sizes. We are interested

in the behavior when the dimension is large and close to the sample size.

From Tables 3 and 4, the chi-square type approximation tc, oc performs well when p is less than 8. In contrast, the
chi-square type approximations are poor when the smallest of q1, g2, g3, and q4 is large. When p is large, the normal type
approximations ty1 ~ tys, ayq ~ ays perform better than the chi-square type approximation. Furthermore, when the
sample size is much larger than the dimension, the performance of the normal type approximation is similar to that of a
large sample approximation. In particular, the approximations tys and ays are the best of these approximation for all cases.
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Table 3
Upper 5% points of test statistic for additional information
N p ['f} Q2 q3 qa Simu tc ty1 th2 ths tHa ths
50 8 2 2 2 2 0.47 0.472 0.47° 0472 0.47° 0.47°2 0472
50 48 2 2 2 42 13.12 10.36 12.78 13.08° 12.94 12.88 13.17¢
50 48 2 2 42 2 8.97 6.55 8.60 8.93° 8.77 8.62 8.95?
50 48 2 2 22 22 12.05 10.14 11.63 11.93 11.78 11.72 12.022
50 48 2 22 2 22 31.83 28.70 31.52 31.88* 31.52 31.52 31.89%
50 48 2 22 22 2 30.75 27.75 30.37 30.74% 30.52 30.37 30.74%
50 48 22 2 2 22 30.68 27.75 30.37 30.59¢ 30.37 30.52 30.74°
50 48 22 2 22 2 10.79 10.21 10.53 10.822 10.58 10.58 10.86%
50 48 12 12 12 12 28.05 27.69 27.61 27.97° 27.62 27.62 27.982
100 8 2 2 2 2 0.22 0.22¢ 0.22¢ 0.22¢ 0.222 0.22¢ 0.22¢
100 48 12 12 12 12 6.81 6.88% 6.81° 6.822 6.81° 6.81% 6.822
100 88 2 2 42 42 7.98 7.55 7.96° 7.98* 7.98* 7.97° 8.00*
100 88 2 42 2 42 42.28 40.69 42.22? 42.28° 42.22° 42.22? 42.28
100 88 2 42 42 2 41.22 39.69 41.14° 41.19° 41.18% 41.14° 41.19°
100 88 42 2 2 42 41.20 39.69 41.142 41.15% 41.14% 41.182 41.19°
100 88 42 2 42 2 6.90 6.83* 6.87° 6.89% 6.87° 6.87° 6.89%
100 96 24 24 24 24 51.66 51.45 51.39 51.58 51.39 51.39 51.59%
100 98 2 2 2 92 16.10 10.92 15.72 16.04% 15.90 15.83 16.132
100 98 2 2 92 2 10.41 6.26 10.06 10.41° 10.26 10.09 10.44°
100 98 2 32 32 32 15.13 15.15° 15.14° 15.142 15.14° 15.14* 15.142
100 98 32 2 32 32 45.60 41.89 45.12 45.34 45.12 45.28 45.50°

? Denotes the approximation in Simu 107",

Table 4
The corresponding actual test sizes of the test statistic for additional information
N p q1 a2 q3 da oc OH1 OH2 QH3 OH4 HS
50 8 2 2 2 2 0.051* 0.0522 0.051* 0.052% 0.052% 0.051*
50 48 2 2 2 42 0.502 0.072 0.052° 0.059? 0.063 0.0472
50 48 2 2 42 2 0.472 0.075 0.052° 0.062 0.073 0.051*
50 48 2 2 22 22 0.281 0.080 0.0572 0.068 0.074 0.052°
50 48 2 22 2 22 0.420 0.065 0.048* 0.065 0.065 0.048*
50 48 2 22 22 2 0.389 0.071 0.051° 0.063 0.071 0.051*
50 48 22 2 2 22 0.383 0.066 0.055° 0.066 0.057% 0.0472
50 48 22 2 22 2 0.097 0.067 0.049* 0.064 0.064 0.046%
50 48 12 12 12 12 0.070 0.074 0.054? 0.074 0.074 0.053?
100 8 2 2 2 2 0.049* 0.049* 0.049? 0.049* 0.049* 0.049?
100 48 12 12 12 12 0.037 0.050* 0.050* 0.050* 0.050* 0.050*
100 88 2 2 42 42 0.147 0.053* 0.050? 0.050* 0.051* 0.048*
100 88 2 42 2 42 0.293 0.055% 0.050? 0.055% 0.055% 0.050?
100 88 2 42 42 2 0.270 0.056° 0.052? 0.053? 0.056° 0.052?
100 88 42 2 2 42 0.275 0.054% 0.053* 0.054* 0.051* 0.051*
100 88 42 2 42 2 0.061 0.056* 0.052° 0.055% 0.055% 0.052?
100 96 24 24 24 24 0.059? 0.063 0.053? 0.063 0.063 0.053%
100 98 2 2 2 92 0.961 0.075 0.053* 0.061 0.067 0.048*
100 98 2 2 92 2 0.923 0.072 0.050? 0.058* 0.070 0.048*
100 98 2 32 32 32 0.046° 0.048* 0.048° 0.048* 0.048* 0.048*
100 98 32 2 32 32 0.467 0.071 0.061 0.070 0.064 0.053*

¢ Denotes the approximation in [0.040, 0.060].
5. Concluding remarks and discussion

In this paper we obtained asymptotic approximations of test statistics for dimensionality and additional information
in canonical correlation analysis under high-dimensional frameworks A1 and A2. By means of simulation experiments
(Tables 1-4), it was shown that the high-dimensional approximations are better than the large sample approximations
for a wide range of (p, g, n) with large p. The high-dimensional asymptotic approximations are useful for the distributions
of test statistics for dimensionality and additional information in such situations.

However, it is pointed out that the high-dimensional approximations for tests of dimensionality worsen when q is large on
test statistics for dimensionality. An approach to overcoming the fault is to derive asymptotic distributions of test statistics
for dimensionality in canonical correlations under the following high-dimensional framework:

q—> 00, p—>o00, Nn— 00, C;=p/n, c;=q/n— Co1,Cp €[0,1).

This problem and the extension to a class of elliptical distributions, etc., are left as future research. In addition, we do not
discuss whether the estimated dimension based on a sequential test procedure with high-dimensional approximation is
convergent in probability to the true dimension, though the problem is important.
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Appendix. Proofs of the theorem and derivation of the asymptotic expansions
Proof of Theorem 1

For our derivation, we use the following properties (see Sugiura and Fujikoshi [12]):

() Auw ~ W, (m, A), where A = I, — P?andm = n — p,.

(b) Let W be the first p; x p; submatrix of A,,. Then, given W, Ay, A, /Ay ~ Wy, (D2, A; PWP), and Ay A, Ay and Ay
are independent.

() W~ W, (n,I,), W and Ay,., are independent.

When we consider the distribution of a function of the canonical correlations r; > --- > ry, without loss of generality, we
may assume that:

(@) A ~ Wy, (m, Ip,).

(b’) Let W be the first p; x p; submatrix of A,,. Then, given W,A,JUAU*U‘AUu ~ Wy, (D2, Ip,; TWTI), where I' = A‘%JP, and
AwA;, Ay and Ay, are independent.
() W~ W, (n,Ip,), W and Ay,., are independent.

The characteristic function of U in (4) can be expressed as

Cy(T) = E[exp(itrTU)]
= Ew [E[exp(itrTU)|W]],

where T is a real symmetric matrix whose (i, j) element is given by (1 + §;)t;;/2 for every real value t;. Here, §; is the
Kronecker delta, i.e., ; = 1, §; = 0 (i # j). The conditional characteristic function can be evaluated as

Cy(T|W) = E[exp(itrTU)|W]

1171

VP2 N
xetr |:iFWFT (I — 21T>1:|
VP2 S/

[n n
etr <—T2 +i/—IGI'T — 2—F2T2> x {1+ 0" (1)},
D2

D2

1
exp (——itrT(szp1 + nFZ))

where G = ﬁ(W — nl) and o] denotes a term that tends to 0 under a high-dimensional framework A1. Therefore,

Cy(T)

f Co (TIW)F (W)dW

etr (=12 — 2212 — L (P12} x (14 0% (1))
p2 P2 ’

Similarly, the characteristic function of V can be expanded as
Cy(T) = etr(=T%) x {1+ o*(1)}.
Using these results we can expand Cy y (T, T») for the joint characteristic function of V and U as follows:

CV,U(Tl’ Tz) = E[exp(itrT1V + 1trT2U)]
= Cy(T1) x Ew [Cy(T2IW)]

n n
etr(—T})etr (—T22 —2—TI*T} - —(rnr)z) x {1+ 0" (1}
D2 D2

Therefore we can obtain Theorem 1.
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Derivation of (6) and (8)
For our derivation of (6) and (8), we consider a perturbation expansion of
_1 . _1
Q = Auu?vAuvAvv AvuAuu?v .

We can write A,,A7 A,y and Ay, in terms of U and V as

n
AwA ) A = D (11,1 + p—r2> +VPU, Ay =m (1;,1 + (A1)
2

and hence
Q — A” 1/2A A lA A 1/2

uu-v uu-v

o) o) ] )

Therefore, Q can be expanded as

Q_lr);(Im— v+o*>{<m+ F)Jm/;TzU}(Ip1 }v+o*)
n —

p2 1 p2 1 po 2 _1p n ., N
r — —U - -V — — (I —I“ |V 07. A2
m<m+p >+~/m{ m 2 m(p1+p " 2m ’”+p2 +0O; (A2)

Here, the notation O} denotes a term of the ith order with respect to (n™!, p; !, m™1).
Derivation of the asymptotic distribution of T; in (6). Note that Ez,...,ﬁgl are the characteristic roots of Q =
1

)

_1 _1
Auu?vAwAv‘U1Avu wiy. Using the fact that Q has a perturbation expansion as in (A.2), it can be seen (see Lawley [7,8] and
Fujikoshi [3]) that the last p; — k characteristic roots Zi SR TR 651 are the characteristic roots of

P2 1 /P2 P2 N
D=—"I,_ — Uy, — 7\/ 07, A3
o ik + N ( 22 22) + (A.3)

under A1.2. Here Uy, and V5, are the last (p; — k) x (p; — k) submatrices of U and V, respectively. From (A.3) we can expand
Tir, Tiy, and Tgyp as follows:

TLR=JIT2(1+Z){I’Z1{105(1++EZ m)] (Pl—k)lOg( +I:;)]

Jj=k+1

—ﬁ(1+ﬂ) i{log(l—!—pz>+ ! (z? )+O }—(p —k)log(1+&)
2 P2/ ;5 m/ 1482\ v 1 m
| D2 "
= {r (Uzz — szz) + O]/zy
m 1
Ty = «/ITZ{FTZ {%(Pl —k)+ \/ﬁtl‘<,/p2U22 - p2V22> +OT/2} — (1 = k)}
| D2
tr <U22 — EVZZ) +O1/2»
-1
m m P2
p 1+—> (1+—) <1+ ) (1 —k)
ﬁ( p2 : D2 m p2 1
1 m\ \/ITz P2 )
+—=(1+—) tr U ——V — (@1 —k+07]
«/E( p2> ( 22 22 (1 ) 1/2
P2
=tr <U22 - \/;VH) + 072

Therefore we can combine the above three expressions as (6).

Derivation of the asymptotic distribution of T in (8). Using a perturbation expansion of Q in (A.2) and a general result (e.g., see
Siotani, Hayakawa and Fujikoshi [11]) for a perturbation expansion of its characteristic root, we can obtain

[p p
f{ez (1+py])} ;zujj T;<1+py)vﬂ+ol/2, j=k+1,....b. (A4)

Tpnp
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Further, from A1.2 the last p; — b characteristic roots Kﬁ STIN (lz,] are the characteristic roots of

Q= + (P2 —p—v + 0t (A5)
pl—b «/ﬁ m 22 22 1/2° 3

where
U= (Ull (!12) (Vll ‘:/12)
U21 U22 ’ VZl V22 '
and Uy, and V5 are b x (p1 — b) matrices. Using (A.4) and (A.5) we can express T}, Tj}; and Tjy,, as follows:
P1 1+ D2 n
T = Z m pzu pz ]+fy,2 Vi
tR : 1422 (14 y2 Pz b m sz Y
Jj=k+1 m 2 )/j
—+tr (Uzz — pz‘722> + OT/Z’
V m
b
m P2 D2 n
- EIE -2 (2]
LH j:/XH;] D2 m ) m D J gl
+tr (022 =/ pz‘~/22> + 01/2,
m
! (1+ Q)Z m p2 p2 n
TBNP = Z m 1 ( Euﬂ — E (1 + f)/f) Uy)
=kt (14_%2(4_13],])) p2 P2
2
+tr (022 =4/ %‘bz) + 01/2

Therefore we can combine the above three expressions as (8).

Proof of Theorem 4

To prove Theorem 4, we consider the characteristic function Cy (t). Noting that Ty = wﬁl + wﬁz with w; = d;/d, the
characteristic function Cy (t) of Ty is expressed as

Cry () = G, (w1 G, (wat),

where TJ are defined by the standardization of — log T;. Then the characteristic function of Ty is expressed by

2 3
Cr,, (t) = e—%rz {1 + ZK(Za—l)(it)Za—l + ZK(Za)(it)Za + O(p—l)7

a=1 o=1
where
(1) — E(l) + E(U @ = 12(3) + lz@) pav: (2) + K(Z) + K(l)Kz(l), (A6)
@ = (4) +I'€(4) —|—K(]) (3) +IZ1(3) (1) «©® — IZ](G) +/Z(6) —|—IZ(3)I{2(3). :
Here the IZ;O‘ are defined by Ej = wj"‘lcj(a) where the /cj(a) are given by (10) and (11), respectively.

For convenience, let (qiys, qsx) be defined by

(qi ) = (qa, q1), underqs — o0, ¢ : fixed,
ins> 4) =\ (g1, q4), under q; — 00, qq : fixed.

Then, mj, d;, /c] ) are obtained from the following table.

Here, F(a, b, ¢) and W (a, b, c¢) show that (m;, d;, /cj(a)) are defined from (mg, dr, KF(“)) or (my, dy, K‘;‘;)) by substituting
(n, p, q) for (a, b, c), respectively. Using A(p, q, n) = A(q, p, n+ q — p), cases (viii) and (xi) can be obtained. Note that case
(v) is obtained by using the fact that

T=T xTy, Ty~ A(Pi,qasn—p1), Ty~ A(G2,qs,n—T).

By inverting the characteristic function of T; we can obtain Theorem 4.
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Table A.1
The definition of m;, d; and K,.(“) in test statistics for additional information
my, di, k% My, da, e

Ty1 F(p2, g2, n — p1) F(qinf, Gfix, m — 1)
Tha W(p2, g2, n — p1) F(Ginf, Gpixs 1 —T)
Tus F(p1,q4,n — p2) W(q2, g3, n—1)
Tha F(p2, g2, n — p1) W(q4,q1,n—r)
Tus W (p2, g2, n — p1) W(q4,q1,n—1)
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