
Journal of Multivariate Analysis 100 (2009) 888–901

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Asymptotic expansions of test statistics for dimensionality and
additional information in canonical correlation analysis when the
dimension is large
Tetsuro Sakurai
Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, 112-8551, Japan

a r t i c l e i n f o

Article history:
Received 28 November 2007
Available online 16 September 2008

AMS 2000 subject classifications:
primary 62H20
secondary 62H15

Keywords:
Asymptotic expansion
Additional information
Canonical correlation analysis
Tests for dimensionality
High-dimensional framework

a b s t r a c t

This paper examines asymptotic expansions of test statistics for dimensionality and
additional information in canonical correlation analysis based on a sample of size N =
n + 1 on two sets of variables, i.e., xu; p1 × 1 and xv; p2 × 1. These problems are
related to dimension reduction. The asymptotic approximations of the statistics have been
studied extensively when dimensions p1 and p2 are fixed and the sample size N tends to
infinity. However, the approximations worsen as p1 and p2 increase. This paper derives
asymptotic expansions of the test statistics when both the sample size and dimension
are large, assuming that xu and xv have a joint (p1 + p2)-variate normal distribution.
Numerical simulations revealed that this approximation ismore accurate than the classical
approximation as the dimension increases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let xu and xv be two random vectors of p1 and p2 components with a joint (p1 + p2)-variate normal distribution with a
mean vector µ = (µ′u, µ

′
v)
′ and a covariance matrix

Σ =

(
Σuu Σuv
Σvu Σvv

)
,

whereΣuv is a p1 × p2 matrix. Without loss of generality we may assume p1 ≤ p2. Let ρ1 ≥ · · · ≥ ρp1 ≥ 0 be the possible
nonzero population canonical correlations between xu and xv . Note that ρ21 ≥ · · · ≥ ρ

2
p1 ≥ 0 are the characteristic roots of

Σ−1uu ΣuvΣ
−1
vv Σvu. The coefficient vectors αui and αvi of the ith canonical variables are defined as the solutions of

ΣuvΣ
−1
vv Σvuαui = ρ

2
i Σuuαui, α′uiΣuuαuj = δij,

ΣvuΣ
−1
uu Σuvαvi = ρ

2
i Σvvαvi, α′viΣvvαvj = δij,

where δij = 1 for i = j, 0 for i 6= j. Let k be the number of nonzero canonical correlations ρi. Then k = rank(Σuv) ≤ p1, and
the relationships between xu and xv can be summarized in terms of the first k canonical variates (α′uixu, α

′

vixv), i = 1, . . . , k.
In canonical correlation analysis, the number of nonzero canonical correlations, defines the dimensionality. Consider the

problem of testing the hypothesis that the smaller p1 − k canonical correlations are zero, i.e.,

Hdim : ρk > ρk+1 = · · · = ρp1 = 0.
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This problem is related to reducing the dimension of the canonical variables. Let S be the sample covariance matrix formed
from a sample of size N = n+ 1 of x = (x′u, x

′
v)
′. Corresponding to a partition of x, S is partitioned as

S =
(
Suu Suv
Svu Svv

)
.

The following test statistics have been considered (e.g., see Siotani, Hayakawa and Fujikoshi [11]):

LR = − log
p1∏

j=k+1

(1− r2j ), LH =
p1∑

j=k+1

r2j
1− r2j

, BNP =
p1∑

j=k+1

r2j , (1)

where r2j is the sample canonical correlation. Note that r
2
1 > · · · > r

2
p1 > 0 are the characteristic roots of S

−1
uu SuvS

−1
vv Svu.

Under a large sample framework,

A0: p1 and p2 are fixed, n→∞,

some asymptotic results have been obtained (e.g., Anderson [1] and Siotani et al. [11]). Note that these results will not work
well as dimension p1 or p2 increases. In order to overcome this weakness, we study the asymptotic distributions of these
statistics under a high-dimensional framework such that

A1: p1; fixed, p2 →∞, n→∞, p2/n→ c ∈ (0, 1).

Here, we note that m = n − p2 →∞ is implied by A1. In our asymptotic framework A1, we assume n ≥ p = p1 + p2. So,
we can use the properties of Sugiura and Fujikoshi [12], which are given in the Appendix.
In this paper we also consider asymptotic distributions of test statistics for a hypothesis concerning the sufficiency of the

redundancy of a subset of variables from each of xu and xv . This problem is related to reducing the dimension of the original
variables. In order to formulate the hypothesis, we partition xu and xv as xu = (x′1, x

′

2)
′, x1 : q1×1, x2 : q2×1, xv = (x′3, x

′

4)
′,

x3 : q3 × 1, x4 : q4 × 1 and αui, αvi, µu, µv,Σ comfortably:(
αui
αvi

)
=

α1iα2iα3i
α4i

 , (
µu
µv

)
=

µ1µ2µ3
µ4

 , Σ =

(
Σuu Σuv
Σvu Σvv

)
=

Σ11 Σ12 Σ13 Σ14
Σ21 Σ22 Σ23 Σ24
Σ31 Σ32 Σ33 Σ34
Σ41 Σ42 Σ43 Σ44

 .
Note that p1 = q1+ q2 and p2 = q3+ q4. Then, the hypothesis of the sufficiency of x1 and x3, or of the redundancy of x2 and
x4, is formulated as follows:

Hadd : α2i = 0, α4i = 0, (i = 1, . . . , k).

Let S be the sample covariance matrix formed from a sample of size N = n+ 1 of (x′u, x
′
v)
′. Corresponding to a partition of

Σ , S is partitioned as

S =
(
Suu Suv
Svu Svv

)
=

S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

 .
To test Hadd, we consider the statistic (Fujikoshi [4]) defined by

T =
∣∣∣∣S22·13 S24·13
S42·13 S44·13

∣∣∣∣ /{|S22·1||S44·3|}, (2)

which is a likelihood ratio statistic. Here, S22·1 = S22 − S21S−111 S12, S22·13 = S22 − S2(13)S
−1
(13)(13)S(13)2, S2(13) = (S21, S23), etc.

Fujikoshi [4] derived an asymptotic expansion for the distribution of T under A0. The approximation can be written as

P(−m log T ≤ x) = Gf (x)+
β

m2
{Gf+4(x)− Gf (x)} + O(m−2), (3)

where p = q1 + q2 + q3 + q4, r = q1 + q3, f = (q1 + q2)(q3 + q4)− q1q3,

m = n−
1
2
(p+ 1)−

1
2
q1q3(p− r)

f
,

β =
1
48

[{
q21 + q

2
2 + q

2
3 + q

2
4 − 5

}
f + 2q21q2p2 + 2p1q

2
3q4 + 2q2q4 {q1q2 + q3q4 − 3q1q3} − 3(q1q3)

2(p− r)2/f
]
.

However, the result will not work well as dimensions p1 and p2 increase. In order to overcome this weakness, we study
asymptotic expansions of the statistic under a high-dimensional framework such that

A2: p = p1 + p2 →∞, n→∞, p/n→ c ∈ (0, 1).
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Here, we note that m = n − p → ∞ is implied by A2. Numerical simulations revealed that our approximation becomes
more accurate than the classical approximation as the dimension increases. Similar approximations have been proposed in
the MANOVA model and discriminant analysis. Fujikoshi, Himeno and Wakaki [5] derived asymptotic distributions of test
statistics for dimensionality in canonical discriminant analysis under A1. Tonda and Fujikoshi [13] derived an asymptotic
expansion of the distribution of Wilks’ lambda statistic Λ in the MANOVA model under A1. Wakaki [14] derived similar
results for Λ in the MANOVA model under a different high-dimensional framework. For examples of other distributional
results in a high-dimensional framework in which both the dimension and sample size are large, see Bai [2], Johnstone [6],
Ledoit and Wolf [9], and Raudys and Young [10], etc.

2. Distributions of tests for dimensionality

In this section we consider the distribution of the three test statistics (1) under framework A1. When we consider the
distributions of the statistics in (1), without loss of generality we may assume

Σ =

(
Ip1 P̃ ′

P̃ Ip2

)
, P̃ = (P ,O), P = diag(ρ1, . . . , ρp1),

since the statistics are expressed as functions of the characteristic roots of S−1uu SuvS
−1
vv Svu. Let A = nS. Corresponding to a

partition of x, A is partitioned as

A =
(
Auu Auv
Avu Avv

)
.

Let

`2i =
r2i
1− r2i

, i = 1, . . . , p1.

These are the characteristic roots of A−1uu·vAuvA
−1
vv Avu.

Let U and V be the matrices defined by

U =
1
√
p2

{
AuvA−1vv Avu − (p2Ip1 + nΓ

2)
}
and V =

1
√
m
(Auu·v −mIp1), (4)

respectively. Then we obtain the following theorem.

Theorem 1. Under assumption A1, each of the elements of U and V is asymptotically and independently distributed as a normal
distribution, more precisely

vii
d
→ N(0, 2), vij

d
→ N(0, 1), i 6= j,

uii
d
→ N

(
0, 2

(
1+ 2

n
p2
γ 2i +

n
p2
γ 4i

))
, uij

d
→ N

(
0, 1+

n
p2
γ 4i

)
, i 6= j,

where γ 2i = ρ
2
i /(1− ρ

2
i ) and

d
→ denotes convergence in distribution.

The proof of Theorem 1 is given in the Appendix. From Theorem 1 we can obtain the asymptotic distributions of three
test statistics in (1).

2.1. Null distributions

In this section we consider the null distribution of the three test statistics under framework A1 and

A1.1: ρ21 > · · · > ρ2k > ρ2k+1 = · · · = ρ
2
p1 = 0.

Consider the transformed test statistics of LR, LH and BNP in (1) defined by

TLR =
√
p2

(
1+

m
p2

){
log

p1∏
j=k+1

(1+ `2j )− (p1 − k) log
(
1+

p2
m

)}
,

TLH =
√
p2

{
m
p2

p1∑
j=k+1

`2j − (p1 − k)

}
,

TBNP =
√
p2

(
1+

m
p2

){(
1+

m
p2

) p1∑
j=k+1

`2j

1+ `2j
− (p1 − k)

}
.

(5)
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Then TLR, TLH and TBNP can be expanded (see the Appendix) as

TG = tr
(
U22 −

√
p2
m
V22

)
+ O∗1/2, (6)

where G = LR, LH, BNP ,

U =
(
U11 U12
U21 U22

)
, V =

(
V11 V12
V21 V22

)
,

U12 and V12 are k× (p1 − k)matrices. Here, the notation O∗i denotes a term of the ith order with respect to (n
−1, p−12 ,m

−1).
From Theorem 1, each of the diagonal elements of U22 and V22 is asymptotically distributed as N(0, 2). Therefore, we obtain
the following theorem.

Theorem 2. Under assumption A1 and A1.1,

TG
σG

d
→ N(0, 1),

where G = LR, LH, BNP, and

σG =

√
2(p1 − k)

(
1+

p2
m

)
.

2.2. Non-null distribution

In this section we derive the asymptotic non-null distributions of the three test statistics for dimensionality under the
alternative hypothesis:

Kdim : ρb > ρb+1 = · · · = ρp1 = 0, k < b ≤ p1.

For simplicity, we assume that the first b canonical correlations are different, i.e.,

A1.2: ρ21 > · · · > ρ2b > ρ2b+1 = · · · = ρ
2
p1 = 0.

This is equivalent to γ 21 > · · · > γ 2b > γ 2b+1 = · · · = γ
2
p1 = 0. Let

T ∗LR =
√
p2

(
1+

m
p2

){
log

p1∏
j=k+1

(1+ `2j )− log
p1∏

j=k+1

(
1+

p2
m

(
1+

n
p2
γ 2j

))}
,

T ∗LH =
√
p2

{
m
p2

p1∑
j=k+1

`2j −
m
p2

p1∑
j=k+1

p2
m

(
1+

n
p2
γ 2j

)}
,

T ∗BNP =
√
p2

(
1+

m
p2

)
(
1+

m
p2

) p1∑
j=k+1

`2j

1+ `2j
−

(
1+

m
p2

) p1∑
j=k+1

p2
m

(
1+ n

p2
γ 2j

)
1+ p2

m

(
1+ n

p2
γ 2j

)
 .

(7)

Then TLR, TLH and TBNP can be expanded (see the Appendix) as

T ∗G =
b∑

j=k+1

dcj

(
ujj −

√
p2
m

(
1+

n
p2
γ 2j

)
vjj

)
+ tr

(
Ũ22 −

√
p2
m
Ṽ22

)
+ O∗1/2, (8)

where

dj =
1+ p2

m

1+ p2
m

(
1+ n

p2
γ 2j

) , U =
(
Ũ11 Ũ12
Ũ21 Ũ22

)
, V =

(
Ṽ11 Ṽ12
Ṽ21 Ṽ22

)
,

Ũ12 and Ṽ12 are b× (p1 − b)matrices. Here, the notation G and c is used, such that

c =

{1, when G = LR,
0, when G = LH,
2, when G = BNP.
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Using Theorems 1 and 2, we obtain the following theorem.

Theorem 3. Let T ∗G be the transformed test statistics defined by (7), where G = LR, LH, BNP. Then, under assumption A1 and
A1.2,

T ∗G
σ ∗G

d
→ N(0, 1),

where

σ ∗G
2
= 2

b∑
j=k+1

d2cj

{(
1+ 2

n
p2
γ 2j +

n
p2
γ 4j

)}
+ 2(p1 − b)

(
1+

p2
m

)
.

2.3. Asymptotic power

On the basis of the asymptotic distributions of the three statistics in Theorem 3, we obtain their asymptotic powers. Let
δG = TG − T ∗G . Then

δLR =
√
m

1+ p2
m√
p2
m

 b∑
j=k+1

log

(
1+

p2
m nγ

2
j(

1+ p2
m

)
p2

)
,

δLH =
√
p2

b∑
j=k+1

nγ 2j
p2
,

δBNP =
√
p2
(
1+

p2
m

)1+
p2
m

p2
m

b∑
j=k+1

p2
m

(
1+ p2

m

)
1+ p2

m

(
1+ n

p2
γ 2j

) − (b− k)
 .

We have

PD = Pr(TG > σGzα) = Pr(T ∗G > σGzα − δG),

where zα is the upper 100α% points of the standard normal distribution.
Using Theorem 3, the asymptotic power with a level of significance α is expressed under A1 as

lim PD = Φ
(
δG − σGzα

σ ∗G

)
,

whereΦ is the distribution function of the standard normal distribution. Under assumption A1,

p2
m
=

p2
n− p2

=
1

n
p2
− 1
→

1
1
c − 1

=
c
1− c

> 0.

Therefore, we can obtain δG →∞ so that the asymptotic power is 1.

3. Distributions of tests for additional information

We are interested in the distribution of T in (2). According to Theorem 2 in [4], T under Hadd is expressed as a product of
two independent variables, i.e.,

T = T1 × T2, T1 ∼ Λ(p2, q2, n− p1), T2 ∼ Λ(q4, q1, n− r), (9)

where p1 = q1 + q2, p2 = q3 + q4, r = q1 + q3. Here, we denote the distribution ofΛ = |A|/|A+ B| byΛ(p, q, n), where A
and B have independent Wishart distributionsWp(n,Σ) andWp(q,Σ), respectively.
Let Λ be a statistic that is distributed as Λ(p, q, n). Tonda and Fujikoshi [13] derived an asymptotic expansion formula

of the distribution ofΛwhen q is fixed, n→∞, p→∞with p/n→ c ∈ (0, 1). For our derivation, we use their result. Let

TF =
− logΛ−mF

dF
,

where

mF =
q∑
j=1

log
n+ j
n− p+ j

, d2F =
2
p

q∑
j=1

p2

(n+ j)(n− p+ j)
.
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Then, the characteristic function of TF can be expanded as

CTF (t) = e
−
1
2 t
2

{
1+

2∑
α=1

κ
(2α−1)
F (it)2α−1 +

3∑
α=1

κ
(2α)
F (it)2α

}
+ o(p−1),

where the κ (α)F s are defined by

κ
(1)
F =

1
√
p
τ1, κ

(3)
F =

1
√
p
τ3, κ

(2)
F =

1
p

(
τ2 +

τ 21 − τ(11)

2

)
,

κ
(4)
F =

1
p

(
τ4 + τ1τ3 − τ(13)

)
, κ

(6)
F =

1
p

(
τ6 +

τ 23 − τ(33)

2

)
,

τi =

q∑
k=1

ωikτik, τ(ij) =

q∑
k=1

ω
i+j
k τikτjk.

(10)

Here the coefficients τij and ωj are given by

τ1j =
aj√

2(1+ aj)
, τ3j =

2+ aj
3
√
2(1+ aj)

, τ2j =
aj(4+ 3aj)
4(1+ aj)

,

τ4j =
3+ 5aj + 2a2j
6(1+ aj)

, τ6j =
(2+ aj)2

36(1+ aj)
, ωj =

aj
d
√
1+ aj

,

where aj = p/(n− p+ j) and d =
∑q
j=1 p

2
{(n+ j)(n− p+ j)}−1.

On the other hand, Wakaki [14] derived an asymptotic expansion formula for the distribution ofΛwhen all three values
of p, q and n tend to infinity with p/n→ c1 ∈ (0, 1) and q/n→ c2 ∈ (0, 1). For our derivation, we also use his result. Let

TW =
− logΛ−mW

dW
,

wheremW = τ (1), d2W = τ
(2),

τ (s) = (−1)s
{
ψ (s−1)
q

(
n− p+ q
2

)
− ψ (s−1)

q

(
n+ q
2

)}
,

ψ (s)
q =

q∑
j=1

ψ (s)
(
a−

j− 1
2

)
, (s = 0, 1, . . . ; a > 0),

and ψ (s)(a) is the polygamma function defined as

ψ (s)(a) =
(
d
da

)s
logΓ (a) =


−C +

∞∑
k=0

(
1
1+ k

−
1
k+ a

)
, (s = 0),

∞∑
k=0

(−1)s+1s!
(k+ a)s+1

, (s = 1, 2, . . .).

Then, the characteristic function of TW can be expanded as

CTW (t) = e
−
1
2 t
2

{
1+

2∑
α=1

κ
(2α−1)
W (it)2α−1 +

3∑
α=1

κ
(2α)
W (it)2α

}
+ o(p−1),

where the κ (α)W s are defined by κ
(1)
W = κ

(2)
W = 0,

κ
(3)
W = τ

(3)/
(
τ (2)

)3/2
, κ

(4)
W = τ

(4)/
(
τ (2)

)2
, κ

(6)
W =

(
κ
(3)
W

)2
. (11)

Using these results, we can obtain the asymptotic distribution of T in (2) under various high-dimensional frameworks
satisfying A2.
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3.1. Null distribution under A2

In our framework A2, the conditions ‘‘p → ∞’’ and ‘‘one of q1, q2, q3, q4 → ∞’’ are equivalent. Under p1 ≤ p2, the
condition can be realized as one of the following 12 cases.

q1 q2 q3 q4 q1 q2 q3 q4
(i) f f f ∞ (vii) ∞ f f ∞

(ii) f f ∞ f (viii) ∞ f ∞ f
(iii) f f ∞ ∞ (ix) ∞ f ∞ ∞

(iv) f ∞ f ∞ (x) ∞ ∞ f ∞

(v) f ∞ ∞ f (xi) ∞ ∞ ∞ f
(vi) f ∞ ∞ ∞ (xii) ∞ ∞ ∞ ∞

Here f and∞ in the qi column denote ‘‘qi is fixed’’ and ‘‘qi →∞’’, respectively. We can obtain an asymptotic expansion of
the distribution of T in all of the cases except (ii). For case (ii), we apply the approximations in the other cases. On the basis
of a numerical simulation, we shall see that our approximations even in situation (ii) are good.
We have seen that T1 and T2 have the following asymptotic means and variances:

E(− log Tj) ≈ mj, Var(− log Tj) ≈ dj,

and hence

E(− log T ) ≈ m1 +m2, Var(− log T ) ≈ d,

where d =
(
d21 + d

2
2

)−1/2. Note thatmj and dj are given by [13,14], respectively, depending on situations (i)–(xii). Let TH be
the standardization of T defined by

TH =
− log T − (m1 +m2)

d
.

Let TH1 denote the standardization of T under (i), (iii), and (viii), TH2 under (iv), (vi), and (xi), TH3 under (v), TH4 under (vii),
and (ix), and TH5 under (x) and (xii). Then we obtain the following theorem.

Theorem 4. Let TG be the standardization of T defined by (2). Then, the null distribution of TG can be expanded as

P(TG ≤ x) = Φ(x)− φ(x) [a1(x)+ a2(x)]+ o(p−1), (12)

where G = H1–H5, Φ(x) and φ(x) are the distribution and density function of the standard normal distribution, respectively,
and the aj(x) s are defined by

a1(x) = κ (1) + κ (3)h2(x), a2(x) = κ (2)h1(x)+ κ (4)h3(x)+ κ (6)h5(x). (13)

Here, hj(x) is the jth Hermite polynomial; in particular, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − x, h4(x) = x4 − 6x2 + 3,
h5(x) = x5 − 10x3 + 15x, and the κ (α) s are given by

κ (1) = κ̃
(1)
1 + κ̃

(1)
2 , κ (3) = κ̃

(3)
1 + κ̃

(3)
2 , κ (2) = κ̃

(2)
1 + κ̃

(2)
2 + κ̃

(1)
1 κ̃

(1)
2 ,

κ (4) = κ̃
(4)
1 + κ̃

(4)
2 + κ̃

(1)
1 κ̃

(3)
2 + κ̃

(3)
1 κ̃

(1)
2 , κ (6) = κ̃

(6)
1 + κ̃

(6)
2 + κ̃

(3)
1 κ̃

(3)
2 ,

where κ̃ (α)j = w
α
j κ

(α)
j and wj = dj/d. Furthermore the κ

(α)
j s are given by (10) and (11), respectively. For a detailed definition,

see Table A.1 in the Appendix.

The proof of Theorem 4 is given in the Appendix.
Using the coefficients aj(x) of the asymptotic expansion (12), we can obtain the Cornish–Fisher expansion. Let x and tG(x)

denote the percentage point of the limiting distribution of TG and the corresponding percentage points of TG, respectively,
that is

P(TG ≤ tG(x)) = Φ(x), G = H1–H5.

Then from (12), tG(x) can be expanded as

tG(x) = x+ a1(x)+
{
a1(x)a′1(x)−

1
2
xa1(x)2 + a2(x)

}
+ o(p−1)

= t̃G(x)+ o(p−1). (14)
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4. Simulation results

In this section we compare our high-dimensional approximations (denoted as H) with the classical approximations
(denoted as C) based on the asymptotic distribution under a large sample framework such that p1 and p2 are fixed and
n tends to infinity. The numerical accuracy is studied for the upper percentage points and the actual test size.

4.1. Null distributions of tests for dimensionality

It is well known that under the large sample framework, the three statistics

−n log
p1∏

j=k+1

(1− r2j ), n
p1∑

j=k+1

r2j
1− r2j

, n
p1∑

j=k+1

r2j

are asymptotically distributed as the χ2-distribution with (p1 − k)(p2 − k) degrees of freedom (e.g., see Siotani et al. [11]).
Under the high-dimensional framework the three statistics TG/σG are distributed asymptotically (see Theorem 2) asN(0, 1),
where σG =

√
2(p1 − k)(1+ p2/m) and G = LR, LH, BNP . To facilitate understanding, let tC = n−1χ2(p1−k)(p2−k),α ,

tLR·H = (p1 − k) log
(
1+

p2
m

)
+ p−1/22

(
1+

m
p2

)−1
zα,

tLH·H =
p2
m

{
(p1 − k)+ σLH × p

−1/2
2 zα

}
,

tBNP·H =
(
1+

m
p2

)−1 {
(p1 − k)+ σBNP × p

−1/2
2

(
1+

m
p2

)−1
zα

}
,

where χ2(p1−k)(p2−k),α and zα are the 100(1–α)% points of the χ
2-distribution with (p1 − k)(p2 − k) degrees of freedom and

the standard normal distribution, respectively.
The values of p1, n, p2 and P were chosen as follows:

(p1 + p2, n); (10, 50), (20, 50), (30, 50), (40, 50), (10, 100), (15, 100),
(20, 100), (50, 100), (70, 100), (90, 100)(10, 100),

(p1,P ) : (3, diag(0.9, 0.6, 0.0)), (p1,P ) : (4, diag(0.9, 0.6, 0.0, 0.0)),

Table 1 shows the estimated upper 5% points based on a Monte Carlo simulation, the approximated critical points using our
method, tLR·H , tLH·H , tBNP·H , and the classical approximations tC . Table 2 shows the corresponding actual test sizes. We are
interested in the behavior when the dimension is large and close to the sample size.
From Tables 1 and 2, the chi-square type approximation tC , αLR·C , αLH·C , αBNP·C performs well when p is less than 10.

However, the chi-square type approximation is poor when p is greater than 10.When p is large, αLR·C and αLH·C are close to 1
and αBNP·C is close to 0. The normal type approximations αLR·C , αLH·C and αBNP·C perform well when the dimension p is close
to half of N . When k = 2, αLH·C performs well when the dimension p close to N .

4.2. Test for additional information

It is easy to obtain Cornish–Fisher expansion of the large sample approximation (3). In fact, the expansion (3) can be
written as

P(−m log T ≤ x) = Gf (x)+ gf (x)
1
m2
p̃1(x)+ o(m−2), (15)

where gf (x) is the density function of the chi-square variable with f degrees of freedom and the coefficient p̃1(x) is defined
by

p̃1(x) = β
2∑
i=1

2xi

i∏
j=1
f + 2(j− 1)

.

Similarly let

P(−m log T ≤ t̃(x)) = Gf (x).

Then the Cornish–Fisher expansion can be written in the same way as in (14), that is,

t̃(x) = x+
1
m2
p̃1(x)+ o(m−2)

= t̃C + O(m−2). (16)
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Table 1
Upper 5% points of LR, LH , BNP for dimensionality

N p p2 SimuLR tLR·H SimuLH tLH·H SimuBNP tBNP·H tC

p1 = 3, k = 2,P = diag(0.9, 0.6, 0.0)

50 10 7 0.24b 0.29a 0.28b 0.32a 0.23b 0.28a 0.23
50 20 17 0.60b 0.65a 0.83 0.88a 1.30 1.69 0.51
50 30 27 1.04 1.11a 1.83 1.91a 3.63 5.12 0.77
50 40 37 1.71 1.79a 4.67 4.65a 7.69 11.44 1.02
100 10 7 0.12b 0.14a 0.12b 0.15a 0.09b 0.10a 0.11
100 15 12 0.20b 0.22a 0.22b 0.24a 0.22b 0.25a 0.18
100 20 17 0.28b 0.29a 0.32b 0.33a 0.43 0.48a 0.25
100 50 47 0.82 0.84a 1.28 1.28a 4.10 4.84 0.62
100 70 67 1.33 1.38a 2.82 2.86a 8.82 11.97 0.86
100 90 87 2.35 2.41a 9.84 9.73a 15.61 23.85 1.09

p1 = 4, k = 2,P = diag(0.9, 0.6, 0.0, 0.0)

50 10 7 0.24b 0.29a 0.28b 0.32a 0.23b 0.28a 0.23
50 20 17 0.60b 0.65a 0.83 0.88a 1.30 1.69 0.51
50 30 27 1.04 1.11a 1.83 1.91a 3.63 5.12 0.77
50 40 37 1.71 1.79a 4.67 4.65a 7.69 11.44 1.02
100 10 7 0.12b 0.14a 0.12b 0.15a 0.09b 0.10a 0.11
100 15 12 0.20b 0.22a 0.22b 0.24a 0.22b 0.25a 0.18
100 20 17 0.28b 0.29a 0.32b 0.33a 0.43 0.48a 0.25
100 50 47 0.82 0.84a 1.28 1.28a 4.10 4.84 0.62
100 70 67 1.33 1.38a 2.82 2.86a 8.82 11.97 0.86
100 90 87 2.35 2.41a 9.84 9.73a 15.61 23.85 1.09
a Denotes |SimuG − tG·H | ≤ 10−1 , where G = LR, LH, BNP .
b Denotes |SimuG − tC | ≤ 10−1 , where G = LR, LH, BNP .

Table 2
The corresponding actual test sizes of LR, LH , BNP for dimensionality.

N p p2 αLR·H αLR·C αLH·H αLH·C αBNP·H αBNP·C

p1 = 3, k = 2,P = diag(0.9, 0.6, 0.0)

50 10 7 0.021 0.070 0.023 0.102 0.017 0.041a
50 20 17 0.026 0.155 0.035 0.351 0.017 0.016
50 30 27 0.024 0.406 0.040a 0.787 0.012 0.001
50 40 37 0.025 0.837 0.051a 0.991 0.004 0.000
100 10 7 0.023 0.058a 0.025 0.074 0.021 0.046a
100 15 12 0.032 0.074 0.035 0.111 0.028 0.043a
100 20 17 0.038 0.097 0.042a 0.173 0.032 0.041a
100 50 47 0.039 0.465 0.052a 0.845 0.025 0.006
100 70 67 0.026 0.895 0.044a 0.998 0.011 0.000
100 90 87 0.024 1.000 0.054a 1.000 0.002 0.000

p1 = 4, k = 2,P = diag(0.9, 0.6, 0.0, 0.0)

50 10 7 0.011 0.072 0.016 0.114 0.006 0.039
50 20 17 0.023 0.209 0.038 0.502 0.011 0.019
50 30 27 0.022 0.623 0.053a 0.948 0.008 0.004
50 40 37 0.034 0.979 0.092 1.000 0.007 0.000
100 10 7 0.009 0.061 0.012 0.078 0.007 0.044a
100 15 12 0.018 0.078 0.022 0.131 0.014 0.039
100 20 17 0.025 0.115 0.032 0.214 0.018 0.040a
100 50 47 0.028 0.684 0.051a 0.975 0.017 0.008
100 70 67 0.033 0.990 0.063 1.000 0.016 0.000
100 90 87 0.039 1.000 0.109 1.000 0.007 0.000
a Denotes the approximation in [0.040, 0.060].

For comparison, let tC = m−1 × t̃C tG = m1 +m2 + d× t̃G(x), where G = H1–H5.
Table 3 gives the upper 5% points based on a Monte Carlo simulation (Simu), and the approximated critical points of our

method, tH1 ∼ tH5, and the classical approximations tA0. Table 4 gives the corresponding actual test sizes. We are interested
in the behavior when the dimension is large and close to the sample size.
From Tables 3 and 4, the chi-square type approximation tC , αC performs well when p is less than 8. In contrast, the

chi-square type approximations are poor when the smallest of q1, q2, q3, and q4 is large. When p is large, the normal type
approximations tH1 ∼ tH5, αH1 ∼ αH5 perform better than the chi-square type approximation. Furthermore, when the
sample size is much larger than the dimension, the performance of the normal type approximation is similar to that of a
large sample approximation. In particular, the approximations tH5 and αH5 are the best of these approximation for all cases.
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Table 3
Upper 5% points of test statistic for additional information

N p q1 q2 q3 q4 Simu tC tH1 tH2 tH3 tH4 tH5

50 8 2 2 2 2 0.47 0.47a 0.47a 0.47a 0.47a 0.47a 0.47a
50 48 2 2 2 42 13.12 10.36 12.78 13.08a 12.94 12.88 13.17a
50 48 2 2 42 2 8.97 6.55 8.60 8.93a 8.77 8.62 8.95a
50 48 2 2 22 22 12.05 10.14 11.63 11.93 11.78 11.72 12.02a
50 48 2 22 2 22 31.83 28.70 31.52 31.88a 31.52 31.52 31.89a
50 48 2 22 22 2 30.75 27.75 30.37 30.74a 30.52 30.37 30.74a
50 48 22 2 2 22 30.68 27.75 30.37 30.59a 30.37 30.52 30.74a
50 48 22 2 22 2 10.79 10.21 10.53 10.82a 10.58 10.58 10.86a
50 48 12 12 12 12 28.05 27.69 27.61 27.97a 27.62 27.62 27.98a
100 8 2 2 2 2 0.22 0.22a 0.22a 0.22a 0.22a 0.22a 0.22a
100 48 12 12 12 12 6.81 6.88a 6.81a 6.82a 6.81a 6.81a 6.82a
100 88 2 2 42 42 7.98 7.55 7.96a 7.98a 7.98a 7.97a 8.00a
100 88 2 42 2 42 42.28 40.69 42.22a 42.28a 42.22a 42.22a 42.28a
100 88 2 42 42 2 41.22 39.69 41.14a 41.19a 41.18a 41.14a 41.19a
100 88 42 2 2 42 41.20 39.69 41.14a 41.15a 41.14a 41.18a 41.19a
100 88 42 2 42 2 6.90 6.83a 6.87a 6.89a 6.87a 6.87a 6.89a
100 96 24 24 24 24 51.66 51.45 51.39 51.58a 51.39 51.39 51.59a
100 98 2 2 2 92 16.10 10.92 15.72 16.04a 15.90 15.83 16.13a
100 98 2 2 92 2 10.41 6.26 10.06 10.41a 10.26 10.09 10.44a
100 98 2 32 32 32 15.13 15.15a 15.14a 15.14a 15.14a 15.14a 15.14a
100 98 32 2 32 32 45.60 41.89 45.12 45.34 45.12 45.28 45.50a

a Denotes the approximation in Simu±10−1 .

Table 4
The corresponding actual test sizes of the test statistic for additional information

N p q1 q2 q3 q4 αC αH1 αH2 αH3 αH4 αH5

50 8 2 2 2 2 0.051a 0.052a 0.051a 0.052a 0.052a 0.051a
50 48 2 2 2 42 0.502 0.072 0.052a 0.059a 0.063 0.047a
50 48 2 2 42 2 0.472 0.075 0.052a 0.062 0.073 0.051a
50 48 2 2 22 22 0.281 0.080 0.057a 0.068 0.074 0.052a
50 48 2 22 2 22 0.420 0.065 0.048a 0.065 0.065 0.048a
50 48 2 22 22 2 0.389 0.071 0.051a 0.063 0.071 0.051a
50 48 22 2 2 22 0.383 0.066 0.055a 0.066 0.057a 0.047a
50 48 22 2 22 2 0.097 0.067 0.049a 0.064 0.064 0.046a
50 48 12 12 12 12 0.070 0.074 0.054a 0.074 0.074 0.053a
100 8 2 2 2 2 0.049a 0.049a 0.049a 0.049a 0.049a 0.049a
100 48 12 12 12 12 0.037 0.050a 0.050a 0.050a 0.050a 0.050a
100 88 2 2 42 42 0.147 0.053a 0.050a 0.050a 0.051a 0.048a
100 88 2 42 2 42 0.293 0.055a 0.050a 0.055a 0.055a 0.050a
100 88 2 42 42 2 0.270 0.056a 0.052a 0.053a 0.056a 0.052a
100 88 42 2 2 42 0.275 0.054a 0.053a 0.054a 0.051a 0.051a
100 88 42 2 42 2 0.061 0.056a 0.052a 0.055a 0.055a 0.052a
100 96 24 24 24 24 0.059a 0.063 0.053a 0.063 0.063 0.053a
100 98 2 2 2 92 0.961 0.075 0.053a 0.061 0.067 0.048a
100 98 2 2 92 2 0.923 0.072 0.050a 0.058a 0.070 0.048a
100 98 2 32 32 32 0.046a 0.048a 0.048a 0.048a 0.048a 0.048a
100 98 32 2 32 32 0.467 0.071 0.061 0.070 0.064 0.053a

a Denotes the approximation in [0.040, 0.060].

5. Concluding remarks and discussion

In this paper we obtained asymptotic approximations of test statistics for dimensionality and additional information
in canonical correlation analysis under high-dimensional frameworks A1 and A2. By means of simulation experiments
(Tables 1–4), it was shown that the high-dimensional approximations are better than the large sample approximations
for a wide range of (p, q, n) with large p. The high-dimensional asymptotic approximations are useful for the distributions
of test statistics for dimensionality and additional information in such situations.
However, it is pointed out that thehigh-dimensional approximations for tests of dimensionalityworsenwhen q is large on

test statistics for dimensionality. An approach to overcoming the fault is to derive asymptotic distributions of test statistics
for dimensionality in canonical correlations under the following high-dimensional framework:

q→∞, p→∞, n→∞, c1 = p/n, c2 = q/n→ c01, c02 ∈ [0, 1).

This problem and the extension to a class of elliptical distributions, etc., are left as future research. In addition, we do not
discuss whether the estimated dimension based on a sequential test procedure with high-dimensional approximation is
convergent in probability to the true dimension, though the problem is important.
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Appendix. Proofs of the theorem and derivation of the asymptotic expansions

Proof of Theorem 1

For our derivation, we use the following properties (see Sugiura and Fujikoshi [12]):

(a) Auu·v ∼ Wp1(m,∆), where∆ = Ip1 − P 2 andm = n− p2.
(b) LetW be the first p1 × p1 submatrix of Avv . Then, givenW , AuvA−1vv Avu ∼ Wp1(p2,∆;PWP ), and AuvA−1vv Avu and Auu·v
are independent.

(c) W ∼ Wp1(n, Ip1),W and Auu·v are independent.

When we consider the distribution of a function of the canonical correlations r1 > · · · > rq, without loss of generality, we
may assume that:

(a′) Auu·v ∼ Wp1(m, Ip1).

(b′) LetW be the first p1 × p1 submatrix of Avv . Then, givenW , AuvA−1vv Avu ∼ Wp1(p2, Ip2;ΓWΓ ), where Γ = ∆
−
1
2P , and

AuvA−1vv Avu and Auu·v are independent.
(c′) W ∼ Wp1(n, Ip1),W and Auu·v are independent.

The characteristic function of U in (4) can be expressed as

CU(T ) = E[exp(itrTU)]
= EW [E[exp(itrTU)|W ]] ,

where T is a real symmetric matrix whose (i, j) element is given by (1 + δij)tij/2 for every real value tij. Here, δij is the
Kronecker delta, i.e., δii = 1, δij = 0 (i 6= j). The conditional characteristic function can be evaluated as

CU(T |W ) = E[exp(itrTU)|W ]

= exp
(
−
1
√
p2
itrT (p2Ip1 + nΓ

2)

) ∣∣∣∣Ip1 − 2i
√
p2
T
∣∣∣∣−
p2
2

×etr

[
i
√
p2
ΓWΓ T

(
Ip1 −

2i
√
p2
T
)−1]

= etr
(
−T 2 + i

√
n
p2
Γ GΓ T − 2

n
p2
Γ 2T 2

)
× {1+ o∗(1)},

where G = 1
√
n (W − nI) and o

∗

i denotes a term that tends to 0 under a high-dimensional framework A1. Therefore,

CU(T ) =
∫
CU(T |W )f (W )dW

= etr
(
−T 2 − 2

n
p2
Γ 2T 2 −

n
p2
(Γ TΓ )2

)
× {1+ o∗(1)}.

Similarly, the characteristic function of V can be expanded as

CV (T ) = etr(−T 2)× {1+ o∗(1)}.

Using these results we can expand CV ,U(T1, T2) for the joint characteristic function of V and U as follows:

CV ,U(T1, T2) = E[exp(itrT1V + itrT2U)]
= CV (T1)× EW [CU(T2|W )]

= etr(−T 21 )etr
(
−T 22 − 2

n
p2
Γ 2T 22 −

n
p2
(Γ T2Γ )2

)
× {1+ o∗(1)}.

Therefore we can obtain Theorem 1.
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Derivation of (6) and (8)

For our derivation of (6) and (8), we consider a perturbation expansion of

Q = A
−
1
2

uu·vAuvA−1vv AvuA
−
1
2

uu·v.

We can write AuvA−1vv Avu and Auu·v in terms of U and V as

AuvA−1vv Avu = p2

(
Ip1 +

n
p2
Γ 2
)
+
√
p2U, Auu·v = m

(
Ip1 +

1
√
m
V
)
, (A.1)

and hence

Q = A−1/2uu·v AuvA
−1
vv AvuA

−1/2
uu·v

=
1
m

(
Ip1 +

1
√
m
V
)−1/2 {

p2

(
Ip1 +

n
p2
Γ 2
)
+
√
p2U

}(
Ip1 +

1
√
m
V
)−1/2

.

Therefore, Q can be expanded as

Q =
p2
m

(
Ip1 −

1
√
m
V + O∗1

){(
Ip1 +

n
p2
Γ 2
)
+
√
p2U

}(
Ip1 −

1
√
m
V + O∗1

)
=
p2
m

(
Ip1 +

n
p2
Γ 2
)
+
1
√
m

{√
p2
m
U −

1
2
V
p2
m

(
Ip1 +

n
p2
Γ 2
)
−
1
2
p2
m

(
Ip1 +

n
p2
Γ 2
)
V
}
+ O∗1. (A.2)

Here, the notation O∗i denotes a term of the ith order with respect to (n
−1, p−12 ,m

−1).
Derivation of the asymptotic distribution of TG in (6). Note that `21, . . . , `

2
p1 are the characteristic roots of Q =

A
−
1
2

uu·vAuvA−1vv AvuA
−
1
2

uu·v . Using the fact that Q has a perturbation expansion as in (A.2), it can be seen (see Lawley [7,8] and
Fujikoshi [3]) that the last p1 − k characteristic roots `2k+1, . . . , `

2
p1 are the characteristic roots of

D =
p2
m
Ip1−k +

1
√
m

(√
p2
m
U22 −

p2
m
V22

)
+ O∗1, (A.3)

under A1.2. Here U22 and V22 are the last (p1− k)× (p1− k) submatrices of U and V , respectively. From (A.3) we can expand
TLR, TLH , and TBNP as follows:

TLR =
√
p2

(
1+

m
p2

){ p1∑
j=k+1

{
log

(
1+

p2
m
+ `2j −

p2
m

)}
− .(p1 − k) log

(
1+

p2
m

)}

=
√
p2

(
1+

m
p2

){ p1∑
j=k+1

{
log

(
1+

p2
m

)
+

1
1+ p2

m

(
`2j −

p2
m

)
+ O∗1/2

}
− (p1 − k) log

(
1+

p2
m

)}

= tr
(
U22 −

√
p2
m
V22

)
+ O∗1/2,

TLH =
√
p2

{
m
p2

{
p2
m
(p1 − k)+

1
√
m
tr
(√
p2
m
U22 −

p2
m
V22

)
+ O∗1/2

}
− (p1 − k)

}
= tr

(
U22 −

√
p2
m
V22

)
+ O∗1/2,

TBNP =
√
p2

(
1+

m
p2

){(
1+

m
p2

)(
p2
m

(
1+

m
p2

)−1
(p1 − k)

+
1
√
m

(
1+

m
p2

)−2
tr
(√
p2
m
U22 −

p2
m
V22

))
− (p1 − k)+ O∗1/2

}
= tr

(
U22 −

√
p2
m
V22

)
+ O∗1/2.

Therefore we can combine the above three expressions as (6).
Derivation of the asymptotic distribution of T ∗G in (8). Using a perturbation expansion ofQ in (A.2) and a general result (e.g., see
Siotani, Hayakawa and Fujikoshi [11]) for a perturbation expansion of its characteristic root, we can obtain

√
m
{
`2j −

p2
m

(
1+

n
p2
γ 2j

)}
=

√
p2
m
ujj −

p2
m

(
1+

n
p2
γ 2j

)
vjj + O∗1/2, j = k+ 1, . . . , b. (A.4)
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Further, from A1.2 the last p1 − b characteristic roots `2b+1, . . . , `
2
p1 are the characteristic roots of

Q̃ =
p2
m
Ip1−b +

1
√
m

(√
p2
m
Ũ22 −

p2
m
Ṽ22

)
+ O∗1/2, (A.5)

where

U =
(
Ũ11 Ũ12
Ũ21 Ũ22

)
, V =

(
Ṽ11 Ṽ12
Ṽ21 Ṽ22

)
,

and Ũ12 and Ṽ12 are b× (p1 − b)matrices. Using (A.4) and (A.5) we can express T ∗LR, T
∗

LH and T
∗

BNP as follows:

T ∗LR =
p1∑

j=k+1

 1+ p2
m

1+ p2
m

(
1+ n

p2
γ 2j

)√m
p2

(√
p2
m
ujj −

p2
m

(
1+

n
p2
γ 2j

)
vjj

)
+tr

(
Ũ22 −

√
p2
m
Ṽ22

)
+ O∗1/2,

T ∗LH =
b∑

j=k+1

{√
m
p2

(√
p2
m
ujj −

p2
m

(
1+

n
p2
γ 2j

)
vjj

)}
+tr

(
Ũ22 −

√
p2
m
Ṽ22

)
+ O∗1/2,

T ∗BNP =
p1∑

j=k+1


(
1+ p2

m

)2(
1+ p2

m

(
1+ n

p2
γ 2j

))2√mp2
(√
p2
m
ujj −

p2
m

(
1+

n
p2
γ 2j

)
vjj

)
+tr

(
Ũ22 −

√
p2
m
Ṽ22

)
+ O∗1/2.

Therefore we can combine the above three expressions as (8).

Proof of Theorem 4

To prove Theorem 4, we consider the characteristic function CH(t). Noting that TH = w1T̃1 + w2T̃2 with wj = dj/d, the
characteristic function CH(t) of TH is expressed as

CTH (t) = CT̃1(w1t)CT̃2(w2t),

where T̃j are defined by the standardization of− log Tj. Then the characteristic function of TH is expressed by

CTH (t) = e
−
1
2 t
2

{
1+

2∑
α=1

κ (2α−1)(it)2α−1 +
3∑
α=1

κ (2α)(it)2α
}
+ o(p−1),

where

κ (1) = κ̃
(1)
1 + κ̃

(1)
2 , κ (3) = κ̃

(3)
1 + κ̃

(3)
2 , κ (2) = κ̃

(2)
1 + κ̃

(2)
2 + κ̃

(1)
1 κ̃

(1)
2 ,

κ (4) = κ̃
(4)
1 + κ̃

(4)
2 + κ̃

(1)
1 κ̃

(3)
2 + κ̃

(3)
1 κ̃

(1)
2 , κ (6) = κ̃

(6)
1 + κ̃

(6)
2 + κ̃

(3)
1 κ̃

(3)
2 .

(A.6)

Here the κ̃ (α)j are defined by κ̃ (α)j = w
α
j κ

(α)
j , where the κ

(α)
j are given by (10) and (11), respectively.

For convenience, let (qinf , qfix) be defined by

(qinf , qfix) =
{
(q4, q1), under q4 →∞, q1 : fixed,
(q1, q4), under q1 →∞, q4 : fixed.

Then,mj, dj, κ
(α)
j are obtained from the following table.

Here, F(a, b, c) andW (a, b, c) show that (mj, dj, κ
(α)
j ) are defined from (mF , dF , κ

(α)
F ) or (mW , dW , κ

(α)
W ) by substituting

(n, p, q) for (a, b, c), respectively. UsingΛ(p, q, n) = Λ(q, p, n+ q− p), cases (viii) and (xi) can be obtained. Note that case
(v) is obtained by using the fact that

T = T ′1 × T
′

2, T ′1 ∼ Λ(p1, q4, n− p1), T ′2 ∼ Λ(q2, q3, n− r).

By inverting the characteristic function of TG we can obtain Theorem 4.
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Table A.1
The definition ofmi , di and κ

(α)
i in test statistics for additional information

m1, d1, κ
(α)
1 m2, d2, κ

(α)
2

TH1 F(p2, q2, n− p1) F(qinf , qfix, n− r)
TH2 W (p2, q2, n− p1) F(qinf , qfix, n− r)
TH3 F(p1, q4, n− p2) W (q2, q3, n− r)
TH4 F(p2, q2, n− p1) W (q4, q1, n− r)
TH5 W (p2, q2, n− p1) W (q4, q1, n− r)
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