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A simulation study is carried out to compare the performance of various asymptotic
representations.
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1. Introduction

The estimation of unknown regression parameters in linear models has been extensively studied. The least squares
estimate (LSE) is widely used in practice and its finite and asymptotic distribution theory has been well developed; see
for example the texts by Davidson and MacKinnon [11] and Rao and Toutenburg [26]. For linear models with heavy-tailed
errors, the LSE may perform poorly and robust estimates are attractive alternatives. The last three decades have witnessed
a rapid growth in quantile estimation and other robust procedures. See [17,14,19] for excellent treatments.

Consider the p-variate linear model:

yi = xTi β + ei, i = 1, 2, . . . , n, (1)

whereAT denotes thematrix transpose, and xi = (xi1, xi2, . . . , xip)T , 1 ≤ i ≤ n, are p×1 knowndeterministic design vectors.
As a typical robust estimation procedure, let ρ be a convex function and we estimate the unknown parameter vector β by
the minimizer

β̂n = argmin
β∈Rp

n−
i=1

ρ(yi − xTi β). (2)

Note that, ρ(u) = u2 leads to LSE. Other popular choices of ρ include quantile regression with ρ(x) = αx+ + (1−α)(−x)+,
0 < α < 1, where x+ = max(0, x), Huber’s procedure [17]with ρ(x) = (x21{|x| > c})/2+(cx−c2/2)1{|x| ≤ c}, c > 0, and
Lq regressionwith ρ(x) = |x|q, 1 ≤ q ≤ 2. In the literature, asymptotic properties of β̂n−β have been studiedmainly under
the assumption that the errors are independent (Bassett and Koenker [5], Babu [3], Bai et al. [4] and He and Shao [15] among
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others) or strong mixing [13,23,10] or short-range dependent [33]. See the latter paper for additional references for robust
estimation under independence and weak dependence. Hampel et al. [14] argued that many science and engineering data
exhibit significant temporal dependence and the assumption of independence is violated; see Chapter 8 therein. However,
there seem to be few results on robust estimators of linear models with long memory (or long-range dependent) errors.

Recently processes with both heavy tails and long memory have received considerable attention. Willinger et al. [32]
showed that self-similarity and heavy tails exist in network traffic data, while Rachev and Mittnik [25] did an extensive
empirical study and showed that high frequency asset return data exhibited both long memory and heavy tails. To the
best of our knowledge, most of the existing results focused on estimation and inference of long memory and heavy-tail
parameters, while little attention was paid to regression analysis. The latter problem is clearly of great interest if one wants
to include covariates or predictors into the model for explanatory purpose.

The paper aims to study properties of β̂n under the assumption that the errors ei in model (1) are long memory as well
as heavy tailed; see Section 2.1 for assumptions on the error structure. It is shown that asymptotic behavior of β̂n is very
different from that obtainedunder independence andweakdependence.Wewill also provideBahadur representations of the
robust estimates of model (1). Those representations are useful for further analysis of the asymptotics of robust estimates.

The rest of the paper is structured as follows. Regularity conditions are given in Section 2. Section 3 presents main results
including consistency and asymptotic distributions of robust estimates. Section 5 provides proofs and Section 4 presents a
simulation study.

2. Preliminaries

We now introduce some notation. For a vector v = (v1, . . . , vp) ∈ Rp, let |v| = (
∑p

i=1 v
2
i )

1/2. For a p× pmatrix A, define
|A| = sup{|Av| : |v| = 1}. For a random vector V, write V ∈ Lq (q > 0) if ‖V‖q := [E(|V|

q)]1/q < ∞. Let (ηn) be a sequence
of random variables and (dn) a positive sequence. We write ηn = op(dn) if ηn/dn → 0 in probability and ηn = Op(dn) if
ηn/dn is bounded in probability. Denote by ⇒ the weak convergence. Let C i, i ∈ N, be the collection of functions that have
ith order continuous derivatives. Let C denote a generic constant independent of n and its value may vary from place to
place.

2.1. The error structure

We assume that (ei) is a moving average process

ei =

∞−
j=0

ajεi−j, (3)

where εj, j ∈ Z, are independent and identically distributed (iid) random variables with mean 0 and εj ∈ D(α), α ∈ (1, 2).
Here D(α) denotes the α-stable domain of attraction (see [9]); namely, there exists real sequences (An) and (Bn) such that
A−1
n (ε1 + · · · + εn)− Bn converges to an α-stable law whose characteristic function is

ϕ(t) = exp(−σ α|t|α(1 −
√

−1ϱwα(t))+
√

−1µt), wherewα(t) = tan
παsgn(t)

2
. (4)

Here σ , µ and ϱ (−1 ≤ ϱ ≤ 1) are the scale, shift and skewness parameters, respectively, and
√

−1 is the imaginary unit.
Let Fε be the distribution function of εj and fε = F ′

ε be its density. Then εj ∈ D(α) can be characterized by

1 − Fε(u) =
c1 + o(1)

uα
L(u) and Fε(−u) =

c2 + o(1)
uα

L(u) as u → ∞, (5)

where c1, c2 ≥ 0, c1 + c2 > 0 and L is a slowly varying function, i.e., limx→∞ L(tx)/L(x) = 1, for all t > 0 (cf. [7]). It is easy
to see that inf{x : P(|εi| > x) ≤ 1/n} = n1/αL1(n), where L1 is also a slowly varying function. Observe that εi ∈ Lα′

, for all
α′

∈ (0, α), and α is called the heavy-tail index, and E(ε2i ) = ∞. If ϱ = µ = 0, then (4) becomes the symmetric-α-stable
(SαS) law. In this case (5) holds with L(t) = 1, c1 = c2 = σ α/(2Cα), where Cα = cos(απ/2)Γ (2 − α)/(1 − α).

Let εα(u), u ∈ R, be a two-sided Levyα-stable process [28]with independent increments, εα(0) = 0, and εα(u+t)−εα(u)
having characteristic function ϕ(t) (cf. (4)) with µ = 0. By Theorem 2.7 in [29], in the space D[0, 1] of functions that are
right continuous and have left limit, we have the weak convergence

lim
n→∞


1

n1/αL1(n)

⌊nu⌋−
i=1

εi, 0 ≤ u ≤ 1


= {εα(u), 0 ≤ u ≤ 1}, (6)

where ⌊v⌋ = max{j ∈ Z : j ≤ v}. See also [2].
For the coefficients (aj)∞0 , we assume a0 = 1, and, for j ≥ 1,

aj = j−γ l(j), 1/α < γ < 1, where l(·) is a slowly varying function. (7)
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By Kolmogorov’s three series theorem [9], under (7), ei is well defined. The partial sum process e1 + · · · + ek, after proper
normalization, converges to linear fractional stable motion in an appropriate sense; see [2].

Under (7),
∑

∞

i=0 |ai| = ∞, which implies strong dependence. Note that, under our model, all autocovariances of
the process (ei) equal infinity. Hence our definition of long memory is different from the usual one which says that the
autocovariances decay slowly. McElroy and Politis [22] give an example of a heavy-tailed long memory process that has
infinite variance and finite autocovariances. The parameter γ controls the magnitude of the memory, with smaller γ
indicating stronger dependence. An important special case is the fractionally integrated ARIMA (FARIMA) processes [16].
For such processes ajj1−d

→ c0, where c0 is a constant. So (7) holds with γ = 1 − d, where d ∈ (0, 1 − α−1).

2.2. Regularity conditions

Without loss of generality, we assume throughout the paper that the true parameter β0 = 0. Define Xn = (x1, . . . , xn)T .
Assume thatΣn := XT

nXn =
∑n

i=1 xix
T
i is non-singular for sufficiently large n. We shall consider the transformed model

yi = zTi,nθn + ei, where zi,n = Σ−1/2
n xi and θn = Σ1/2

n β. (8)

Observe that θ̂n = Σ
1/2
n β̂n is a minimizer of

∑n
i=1 ρ(ei − z′

i,nθ) and that, by definition, zi,n = (zi,1,n, zi,2,n, . . . , zi,p,n)T

satisfies
∑n

i=1 zi,nz
T
i,n = Idp, the p × p identity matrix. For q > 0, let sn(q) =

∑n
i=1 |zi,n|q. Let mn = max1≤i≤n |zi,n|.

Then sn(2) = p ≤ nm2
n. It may occur that nm2

n → ∞. For example, let p = 1, xi = i−1/3. Then Σn/(3n1/3) → 1 and
mn(3n1/3)1/2 → 1 and n1/2mn → ∞. Since Σn is non-singular for all large n, we can pick p linearly independent xis and
denote this p × p sub-matrix of X by X∗. Then X∗ is non-singular and X∗Σ

−1
n XT

∗
= O(m2

n). Hence

|Σ−1
n | = O(mn). (9)

Assume that ρ is absolutely continuous with derivative ψ = ρ ′. We now impose some regularity conditions on ψ , zi,n
and εi.
(A1) |ψ(x)| ≤ C(1 + |x|) for all x ∈ R, and E[ψ(ei)] = 0.
(A2) fε ∈ Cr , and |f (i)ε (x)| ≤ C(1 + |x|)−α−1L(|x|) for all x ∈ R, i = 0, . . . , r .
(A3) φ(x) := E[ψ(ei + x)] has a strictly positive derivative at 0.
(A4) Let dn = n1−γ+1/αL1(n)l(n) and kn = |dn|mn. Assumemnkn = o(1).

A few remarks are in order. Condition (A1) controls the tail of ψ . For M-estimation with long memory and heavy-tailed
errors, previous results require that ψ is bounded [21]. The latter restriction excludes the important Lq regression with
1 < q ≤ 2 [35]. Our (A1) allows a wider range of ρ.

Condition (A2) is for technical purpose and it is not theweakest possible. Its purpose is to guarantee sufficient smoothness
of conditional expectations ofψ(ei + x); see Lemma 1 below. It is satisfied if εi is SαS. In this case fε is r times differentiable
and f (r)ε (x) ∼ C |x|−1−r−αL(|x|) as x → ±∞ [18].

Condition (A3) is a natural condition for θn to be estimable. Under (A1) and (A2) with r = 1, φ is differentiable (see
Lemma 1).

Under Condition (A4), since nm2
n ≥ p, kn ≥ p1/2n−1/2

|dn| ≥ n1/2−γ+1/α
|L1(n)l(n)|. Observe that 1/2 − γ + 1/α > 0 in

view of 1/α < γ < 1 and 1 < α < 2. Then for any c ∈ (0, 1/2−γ +1/α), we have nc
= o(kn) andmn = o(n−c). Condition

(A4) is needed for the weak consistency of the M-estimate β̂n. For linear models with independent errors, the condition
mn = o(1) is needed for consistency [12]. In this case θ̂n = Op(1). So β̂n = op(1) undermn = o(1). On the other hand, under
long memory, |θ̂n| = Op(kn) (Theorem 1), so (A4) is natural. Note that, ifmn = O(n−1/2), then (A4) always holds.

3. Main results

3.1. Consistency

Theorem 1. Let β̂n,ls be the LSE of (1); let Un =
∑n

i=1 zi,nei. Suppose that (A1), (A3), (A4) holds and that (A2) holds with r = 2.
Then |θ̂n| = Op(kn) and |θ̂n − Un| = op(kn). Consequently |β̂n| = op(1) and |β̂n − β̂n,ls| = op(1).

Theorem 1 asserts that θ̂n can be approximated by Un, which is often easier to deal with due to its linearity structure. It
also asserts that the M-estimate β̂n and the LSE β̂n,ls are asymptotically first order equivalent. Several authors have already
noticed this phenomenon, but under more restrictive conditions; see [6] for subordinated Gaussian processes and [21] for
bounded ψ with a special design matrix under which mn = O(n−1/2). We will obtain a more precise order of β̂n − β̂n,ls via
Bahadur representations of θ̂n (cf. Theorem 3).

3.2. Bahadur representations

To establish an asymptotic expansion of θ̂n, we need
(A5) Let theM-processΞn(θ) =

∑n
i=1 ψ(ei − zTi,nθ)zi,n. Assume |Ξn(θ̂n)| = Op(mn).
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Condition (A5) is natural. If ψ is continuous, Ξn(θ̂n) = 0. For quantile regression, ψ is discontinuous, by Babu [3], |Ξn(θ̂n)|
≤ (p + 1)mn almost surely if (A2) holds with r = 0.

For Bahadur representations ofM-estimates, we approximate θ̂n by the linear form

Vn :=

n−
i=1

ψ(ei)zi,n. (10)

(See [15,3,33].) Under (A5) and slightly stronger conditions than those in Theorem 1, we have Theorems 2 and 3, which
concern approximations of θ̂n by Vn and Un, respectively.

Theorem 2. Let (A2) hold with r = p + 1. Assume (A3)–(A5) and

|ψ(x)| ≤ C(1 + |x|)α0 for some α0 < α/2. (11)

Let π(x) = ‖ψ(ei + x)− ψ(ei)‖2; let (cn) be a positive sequence with cn → ∞. Then

|φ′(0)θ̂n − Vn| = Op((τ
1/2
n (rnkn) log n + rnmnk2n)) (12)

where rn = min{cn, (knmn)
−1/2

} and τn(x) =
∑n

i=1 |zi,n|2[π2(|zi,n|x)+ π2(−|zi,n|x)].

Clearly (11) implies that π(x) exists. Under our setting, π(x) → 0 as x → 0. To demonstrate this, observe that since
ψ is nondecreasing and ei has a continuous distribution function, ψ(ei + x) − ψ(ei) → 0 almost surely as x → 0. Since
‖ψ(ei +1)−ψ(ei −1)‖2

2 < ∞, π(x) → 0 as x → 0 by the Lebesgue Dominant Convergence Theorem (LDCT). In particular,
if π(x) → 0 at some polynomial rate, we have the following corollary.

Corollary 1. Recall sn(q) =
∑n

i=1 |zi,n|q. Let π(x) = O(|x|λ) for some λ > 0. Then under the conditions of Theorem 2,

|φ′(0)θ̂n − Vn| = Op(kλns
1/2
n (2 + 2λ) log n + mnk2n). (13)

By Theorem2, for any positive sequence (cn)with cn → ∞, we have |φ′(0)θ̂n−Vn| = Op(cλn k
λ
ns

1/2
n (2+2λ) log n+cnmnk2n).

Since cn → ∞ can be arbitrarily slow, (13) follows.

Example 1. Assume (A2) with r = 0. For quantile regression with ρ(x) = αx+ + (1 − α)(−x)+, ψ(x) = α − I{x ≤ 0} and
‖ψ(ei + x) − ψ(ei)‖2

2 = |
 0
−x fe(t)dt|. So π(x)

2
= O(|x|). For Huber’s function ρ(x) = (x2I{|x| ≤ c})/2 + (c|x| − c2/2)

I{|x| > c}, c > 0, we have ψ ′(x) = I{−c ≤ x ≤ c}. Thus π(x)2 = E[
 x
0 ψ

′(ei + t)dt]2 ≤ x2. Then λ = 1. Since
sn(4) ≤ m2

n
∑n

i=1 |zi,n|2 = pm2
n and nc

= o(kn) for c ∈ (0, 1/2 − γ + 1/α), we have kns
1/2
n (4) log n = o(mnk2n). So the

bound in (13) becomes O(k2nmn). For Lq regression with 1 < q < 2, Arcones [1] showed that if q ≠ 3/2, then π(x) =

O(|x|min(2,2q−1)/2). If q = 3/2, then π(x) = O(|x| log(1/|x|)). �

Theorem 3. Let the conditions of Theorem 2 be satisfied. (i)We have

|θ̂n − Un| = Op(nη + τ 1/2n (rnkn) log n + rnmnk2n) (14)

for η satisfying 1/2−γ +1/α > η > η0 := 1/2−γ +1/α− (γ −1/α)2/γ . (ii) If π(x) = O(|x|λ) for some λ > 0 as x → 0.
Then

|β̂n − β̂n,ls| = Op(mnnη + mnkλns
1/2
n (2 + 2λ) log n + m2

nk
2
n). (15)

The bound (14) in Theorem 3 is sharper than the one in Theorem 1. To see this, let rn = (mnkn)−1/2. Under (A4), rn → ∞,
rnmnk2n = o(kn), and τn(rnkn) = o(1) since π(x) → 0 as x → 0. Note that, nη = o(kn). Hence (14) is sharper.

Remark 1. Suppose mn = O(n−1/2). Thenm2
nk

2
n = O(mnnη). By simple calculations,

n|dn|−1
|β̂n − β̂n,ls| = Op(n−η1), for any 0 < η1 < η∗, (16)

where η∗
= min{(γ −1/α)2/γ , 1/2+(λ−1)(γ −1/α)}. This is sharper than the op(1) bound in [21]. More importantly, we

see from (16) that, even though β̂n and β̂n,ls are asymptotically equivalent, magnitude of the dependence and the tail of the
errors aswell as the quantity λ determine the speed atwhich β̂n−β̂n,ls converges to 0.We assume for now λ ≥ 1/2, as it will
be satisfied by all quantile, Huber and Lq regressions (cf. Example 1). Let K = γ − 1/α. Since 1/α < γ < 1 and 1 < α < 2,
we have by elementary calculations that K 2/γ < 1/2 + (λ − 1)(γ − 1/α). Then η∗

= K 2/γ . Note that, H = 1 − K
is the Hurst index of the error process (ei). So lighter tails and weaker dependence lead to faster convergence when λ
≥ 1/2. �
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3.3. Limiting distributions of M-estimates

We now present a limit theory for our M-estimators under conditions (B1) and (B2) below. Let xj = (x1j, . . . , xnj),
j = 1, . . . , p. For v = (v1, . . . , vn), define the function hv(·) : [0, 1] → R by hv(t) = v⌊nt⌋+1, 0 ≤ t < 1, and hv(1) = vn.

(B1) hxj(·) converge uniformly on [0, 1] to continuous functions gj(·), j = 1, . . . , p.
(B2) Let g = (g1, . . . , gp)T . Assume that the matrix G :=

 1
0 g(t)gT (t)dt is non-singular.

Theorem 4. Assume (A1), (A3), (B1), (B2), and that (A2) holds with r = 2. Then

nγ−1/α

L1(n)l(n)
β̂n ⇒ G−1

∫
∞

−∞

[∫ 1

0
g(x)(x − u)−γ+ dx

]
dεα(u) := G−1Lg(ε). (17)

Remark 2. Under (B1) and (B2),wehave n−1Σn → G andmax1≤i≤n |xi| = O(1). Thusmn = max1≤i≤n |Σ
−1/2
n xi| = O(n−1/2).

In particular, condition (A4) is always satisfied. As a special case, if xij = gj(i/n), where gj(·) is continuous on [0, 1], then
condition (B1) is always satisfied. This type of design was discussed in [21]. �

Remark 3. We see from the above theorem that the M-estimator and the LSE are not only first order equivalent, but are
also equally efficient. Since theM-estimator is robust to additive outliers, it is preferred when long memory and heavy tails
are present. �

Remark 4. To apply Theorem 4 for statistical inference of β , we need to know or estimate slowly varying functions L1(n)
and l(n) and parameters α, σ , ϱ and γ . The distribution of Lg(ε) can be approximated by plugging in the estimated values
of α, σ , ϱ and γ . Kokoszka and Taqqu [20] and Taqqu and Teverovsky [30] discussed parameter estimation of heavy-tailed
FARIMA processes. Resnick and Stărică [27] considered heavy tail index estimation for longmemory and heavy-tailed linear
processes. Chapter 8 of [24] contains a discussion on estimating slowly varying functions using subsampling. We expect
that, using their techniques, we can estimate L1(n), l(n), α, σ , ϱ and γ from the estimated residuals êi = yi − xTi β̂n of model
(1), and establish a related asymptotic theory. However, the latter problem seems nontrivial and we leave it as an open
problem. �

Example 2 (Polynomial Design). Let xij = (i/n)j−1, i = 1, . . . , n, j = 1, . . . , p. Then condition (B1) holds with gj(x) = xj. So
Gij = 1/(i + j + 1), 1 ≤ i, j ≤ p. G is the Hilbert matrix and it is non-singular. Hence Theorem 4 and previous theorems are
applicable.

4. A simulation study

The Bahadur representation plays an important role in understanding the asymptotic behavior of the estimates. In
Section 3.2, we proposed two such representations under longmemory and heavy tails. The accuracy of the approximations
depends on the strength of the dependence and the thickness of the tails of the error process. Here we shall carry out a
simulation study and compare the sensitivity of the Vn and Un representations to parameter values α and γ . Accuracy of the
two approximations is compared in Section 4.2.

4.1. Performance of representations

Consider the simple regression model:

yi = β1 + β2
i
n

+ ei, i = 1, 2, . . . , n, (18)

where ei has the form (3), ai = (i + 1)−γ and εi are iid standard SαS random variables. Let the true parameter (β1, β2) =

(0, 0). In our simulation we use the LAD regression, which corresponds to Example 1 with α = 0.5. Then (16) holds with
η∗

= K 2/γ , K = γ − 1/α; see Remark 1. From (13) and the discussion in Example 2, we have

|β̂n − U∗

n | = Op(n−η1), for any 0 < η1 < ηu, (19)

where U∗
n = β̂n,ls = Σ

−1/2
n Un and ηu = (γ − 1/α)(2 − 1/(αγ )) = K 2/γ + K , and

|β̂n − V ∗

n | = Op(n−η2), for any 0 < η2 < ηv, (20)

where V ∗
n = Σ

−1/2
n Vnf −1

e (0), fe is the density of ei, and ηv = min{K/2 + 1/2, 2K}.
Let n = 1000.We generate standard SαS variables by the algorithm in [8]. Using the convolution structure in process (3),

we can apply the circular embedding and the fast Fourier transform algorithm; see [34]. Applying a version of the algorithm
in their paper, we generate 6000 series of length 1000. For each generated series, quantile estimation of β was carried
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Fig. 1. Estimated absolute deviation errors of U∗
n representation for fixed α.

Fig. 2. Estimated absolute deviation errors of U∗
n representation for fixed γ .

out and U∗
n and V ∗

n were calculated. To assess the accuracy of the approximations, we compute the sample mean absolute
deviation errors (MADE) of β̂n − U∗

n and β̂n − V ∗
n .

Figs. 1–4 show the U∗
n and V ∗

n approximations for the slope parameter β2. The results for the intercept parameter β1 are
similar. From those four graphs we see that for both the U∗

n and V ∗
n representations, the mean absolute deviation error is

small when the heavy-tail indexα or thememory index γ is sufficiently large. Furthermore, for fixed α, approximation error
decreases as the memory index γ increases, which indicates that shorter memory leads to more accurate approximations.
This finding is consistent with our theoretical assertions in (19) and (20). Similar conclusions can be drawn in the case of
fixed memory index γ . On the other hand, we see relatively large approximation errors on the left edges of some of the
graphs. This is because parameters ηu and ηv are very small on the left edge of the graphs.

4.2. Comparison of the Un and Vn approximations

We see from Figs. 1–4 that, for the same combination of α’s and γ ’s, the U∗
n approximation usually starts with some

smaller value than the V ∗
n approximation on the left region, yet ends with relatively larger errors. This suggests that the U∗

n
representation is better when the Hurst index H is large, but worse when H is small. For a more detailed study, we choose
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Fig. 3. Estimated absolute deviation errors of V ∗
n representation for fixed α.

Fig. 4. Estimated absolute deviation errors of V ∗
n representation for fixed γ .

the same model and the simulation method as those in the last subsection; the only difference is that we now fix the Hurst
indexH , and according to thisH , we choose different combinations ofα and γ .We use two levels ofH ,H = .95 as simulation
for large index and H = .7 for small index. The results are showed in Figs. 5 and 6, respectively.

Our simulation results support our claim. Note from (19) and (20), order of the U∗
n approximation is always higher than

that of the V ∗
n approximation, as ηu ≤ ηv . However, as we found in our results, when the Hurst index is large, and thus the

large sample behavior is violated, the U∗
n representationmay perform better. A new theory is needed in order to explain this

interesting phenomena.
Note also that, the U∗

n representation decreases fast as the heavy tail index α increases, while the V ∗
n representation is

relatively stable. This is consistent with (19) and (20) in the sense that ηv increases as α increases, while ηu does not change
if we fix H .

5. Proofs of results in Section 3

We first introduce some notation. For k ∈ Z define the projection operator

PkV = E[V|Fk] − E[V|Fk−1], V ∈ L1, where Fk = (. . . , εk−1, εk).
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Fig. 5. Estimated absolute deviation errors of U∗
n and V ∗

n representations for fixed Hurst index H = .95.

Fig. 6. Estimated absolute deviation errors of U∗
n and V ∗

n representations for fixed Hurst index H = .7.

Introduce the truncated processes

en,k =

k−
i=−∞

an−iεi and ēn,k =

n−
i=k

an−iεi. (21)

Then en,k is Fk-measurable. Recall a0 = 1. Let

ψn,δ(x) = E[ψ(x + δ + ēn,1)] and ψ∞,δ(x) = E[ψ(x + δ + en)]. (22)

Note φ(x) = ψ∞,0(x) = ψ∞,x(0). For a function f , let f (x; δ) = sup|t|≤δ |f (x + t)|, δ > 0.

Lemma 1. Let n ∈ N and δ ∈ [−1, 1]. Under Conditions (A1) and (A2), ψn,δ(·) and ψ∞,δ(·) are r times differentiable.
Furthermore, we have |ψ

(i)
n,δ(x)| ≤ C(1 + |x|) uniformly in n ∈ N and δ ∈ [−1, 1], and |ψ

(i)
∞,δ(x)| ≤ C(1 + |x|), i = 0, 1, . . . , r.

Proof. Let Fn,1(x) := P(ēn,1 ≤ x) be the distribution function of ēn,1; let fn,1 = F ′

n,1 be its density. Let Γn = ēn,1 − εn. Then
Fn,1(x) = E[Fε(x − Γn)]. By the LDCT,

f (i)n,1(x) = E[f (i)ε (x − Γn)] for i = 0, 1, . . . , r. (23)

By Condition (A2), for i = 0, 1, . . . , r , f (i)ε (u; 1) ≤ C(1 + |u|)−2−ι for some ι > 0. So∫
R

|ψ(y)|f (i)n,1(y − δ − x; 1)dy = E
[∫

R
|ψ(y)|f (i)ε (y − δ − x − Γn; 1)dy

]
= E

[∫
R

|ψ(u + δ + x + Γn)|f (i)ε (u; 1)du
]

≤ CE
[∫

R
(1 + |u|)(1 + |δ|)(1 + |x|)(1 + |Γn|)f (i)ε (u; 1)du

]
≤ C(1 + |x|)

∫
R
(1 + |u|)f (i)ε (u; 1)du ≤ C(1 + |x|).



Z. Zhou, W.B. Wu / Journal of Multivariate Analysis 102 (2011) 349–362 357

Since ψn,δ(x) = −


R ψ(y)fn,1(y − δ − x)dy, by the LDCT, ψn,δ(x) is r times differentiable, and |ψ
(i)
n,δ(x)| ≤ C(1 + |x|). The

conclusions about ψ (i)
∞,δ(x), i ≥ 1, similarly follow. �

Lemma 2. Let m ∈ N. For a triangular array of m-vectors {γi,n, i = 1, 2, . . . , n} with max1≤i≤n |γi,n| = O(1), we have for
sufficiently small η > 0 that n−

i=1

γi,nei


α−η

= O(|dn|). (24)

Proof. We only need to considerm = 1, since the general case follows by considering each coordinate of
∑n

i=1 γi,nei. Write
ai = 0 if i < 0. Recall dn = n1−γ+1/αL1(n)l(n).

Let χj,n = nγ−1
|l−1(n)|

∑n
i=1 γi,nai−j. By Lemma 3(a) in [2],

E

 n−
i=1

γi,nei
dn


α−η

= E

 ∞−
j=−∞

χj,nεj

n1/αL1(n)


α−η

≤
C
n
max

−
j

|χj,n|
α−η,

−
j

|χj,n|
α+η


. (25)

Write In =
∑

−n−1
j=−∞

|χj,n|
α−η , IIn =

∑0
j=−n |χj,n|

α−η and IIIn =
∑n

j=1 |χj,n|
α−η . By Karamata’s theorem, IIIn ≤ Cn[nγ−1

|l−1(n)|
∑n

i=1 |i−γ l(i)|]α−η
≤ Cn. Let Sa(n) =

∑n
i=1 |ai|. Then Sa(n) = O(n1−γ

|l(n)|), and, for sufficiently small η > 0,

In ≤ C
−n−1−
j=−∞

[nγ−1
|l−1(n)|(Sa(n − j)− Sa(−j))]α−η

≤ C
∞−

j=n+1

[nγ−1
|l−1(n)|n|a1+j|]

α−η
≤ Cn.

Similarly, IIn ≤ Cn. So
∑

j |χj,n|
α−η

= O(n). Similar arguments also imply
∑

j |χj,n|
α+η

= O(n). Hence (24) follows from
(25). �

Lemma 3. Assume (A1) and (A2) with r = 2. Let α1 ∈ (1/γ , α) and v ∈ [1, α1]. Then

sup
|δ|≤1

‖ψn−1,δ(en,1)− ψn,δ(en,0)− ψ ′

∞,δ(0)an−1ε1‖v = O(|an−1|
α1/v + |an−1|An(α1)

1/α1), (26)

where An(q) =
∑

∞

i=n |ai|q, q > 0.

Proof. Letϖ = an−1ε1, U = ψn,δ(en,1)−ψn,δ(en,0)−ψ ′

n,δ(en,0)ϖ and V = ψn,δ(en,1)−ψn−1,δ(en,1). Below we shall show
that ‖U‖v = O(|αn−1|

α1/v), ‖V‖v = O(|an−1|
α1/v) and

‖ψ ′

n,δ(en,0)− ψ ′

∞,δ(0)‖v = O(A1/α1
n (α1)). (27)

Then (26) follows from

ψn−1,δ(en,1)− ψn,δ(en,0)− ψ ′

∞,δ(0)ϖ = U − V − (ψ ′

n,δ(en,0)− ψ ′

∞,δ(0))ϖ.

For U , note that,

E[|U|
v
]/2v−1

≤ E[|U1|ϖ|≤1|
v
] + E[|U1|ϖ |>1|

v
]

≤ E[|ψ ′′

n,δ(en,0; 1)|ϖ |
2 1|ϖ |≤1|

v
] + 3v−1E[|ψn,δ(en,1)|

v1|ϖ |>1]

+ 3v−1E[|ψn,δ(en,0)|
v1|ϖ |>1] + 3v−1E[|ψ ′

n,0(en,0)|
v
|ϖ |

v1|ϖ|>1]

=: I∗n + II∗n + III∗n + IV∗

n.

By Lemma 1, since en,0 andϖ are independent and 2v > α1, we have I∗n = O(|an−1|
α1). Similarly, III∗n + IV∗

n = O(|an−1|
α1).

Then ‖U‖v = O(|αn−1|
α1/v), since, again by Lemma 1,

II∗n/3
v−1

= E[|ψn,δ(en,0 +ϖ)|v1|ϖ>1|]

≤ CE[1 + |en,0|]
vE[(1 + |ϖ |)v1|ϖ |>1]

≤ CE[(1 + |ϖ |)v1|ϖ |>1]

≤ CE[|ϖ |
v1|ϖ |>1] ≤ CE|ϖ |

α1 = O(|an−1|
α1).

Let V ∗
= ψn−1,δ(en,1+an−1ε

′

1)−ψn−1,δ(en,1)−ψ
′

n−1,δ(en,1)an−1ε
′

1, where {ε′

i, i ∈ Z} is an iid copy of {εi, i ∈ Z}. Similarly
as U , ‖V ∗

‖v = O(|an−1|
α1/v). Hence, we have ‖V‖v = O(|an−1|

α1/v) in view ofψn,δ(x)−ψn−1,δ(x) = E[ψn−1,δ(x+an−1ε
′

1)−
ψn−1,δ(x)− ψ ′

n−1,δ(x)an−1ε
′

1], and Jensen’s inequality.
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Now we show (27). By the LDCT, ψ ′

∞,δ(0) = E[ψ ′

n,δ(en,0)]. Let e
∗

n,0 =
∑0

i=−∞
an−iε

′

i . By the Bahr–Esseen inequality [31],
‖en,0‖α1 = ‖e∗

n,0‖α1 ≤ CAn(α1)
1/α1 . Note that,

‖ψ ′

n,δ(en,0)− ψ ′

∞,δ(0)‖v = ‖E[ψ ′

n,δ(en,0)− ψ ′

n,δ(e
∗

n,0)|F0]‖v

≤ ‖ψ ′

n,δ(en,0)− ψ ′

n,δ(e
∗

n,0)‖v

≤ ‖ψ ′

n,δ(en,0)− ψ ′

n,δ(0)‖v + ‖ψ ′

n,δ(e
∗

n,0)− ψ ′

n,δ(0)‖v
= 2‖ψ ′

n,δ(en,0)− ψ ′

n,δ(0)‖v
≤ 2I′n + 2II′n + 2III′n,

where, by Taylor’s expansion, I′n = ‖ψ ′′

n,δ(0; 1)en,01|en,0|≤1‖v , II′n = ‖ψ ′

n,δ(0)1|en,0|>1‖v and III′n = ‖ψ ′

n,δ(en,0)1|en,0|>1‖v . Note

that, I′n ≤ C‖en,0‖v ≤ C‖en,0‖α1 = O(A1/α1
n (α1)), II′n ≤ CP(|en,0| ≥ 1)1/v ≤ C‖en,0‖

1/v
α1 = O(A1/v

n (α1)) and III′n satisfies

III′n ≤ CE[(1 + |en,0|)
v1|en,0|>1]

1/v
≤ CE[(1 + |en,0|)

α11|en,0|>1]
1/v

≤ CE[|en,0|
α1 ]

1/v
= O(A1/v

n (α1)) = O(A1/α1
n (α1)).

So (27) holds. �

Proposition 1. Let v > α1/(2α1γ − 1). Under the assumptions of Lemma 3, for any triangular array of m-vectors {cin, i =

1, 2, . . . , n}, m ∈ N, we have

sup
|δ|≤1

 n−
i=1

[ψ(ei + δ)− E[ψ(ei + δ)] − φ′(δ)ei]cin


v

= O(n1/2−γ ′
+1/vς1/2(n)), (28)

where 1/v < γ ′ < γ0 := min{(α1γ )/v, 2γ − 1/α1} and ς(n) =
∑n

i=1 |cin|2.

Proof. Let Ti = ψ(ei+δ)−E[ψ(ei+δ)]−φ′(δ)ei,ωi = ‖P1Ti‖v andΩi =
∑

∞

j=i ω
v
j . Then

∑n
i=1 Ticin =

∑n
j=−∞

Pj[
∑n

i=1 Ticin]
and {Pj[

∑n
i=1 Ticin], j ∈ Z} is a sequence of martingale differences. By the Bahr–Esseen inequality [31], n−

i=1

Ticin


v

v

≤ 2
n−

j=−∞

Pj


n−

i=1

Ticin


v

v

≤ 2
n−

j=−∞


n−

i=1

ωi−j+1|cin|

v
≤ 2

n−
j=−∞

ςv/2(n)


n−

i=1

ω2
i−j+1

v/2

= 2ςv/2(n)




−n−
j=−∞

+

0−
j=−n+1

+

n−
j=1


n−

i=1

ω2
i−j+1

v/2
=: 2ςv/2(n)(I∗∗

n + II∗∗

n + III∗∗

n ).

By Lemma 3 and since P1Tn = ψn−1,δ(en,1) − ψn,δ(en,0) − ψ ′

∞,δ(0)an−1ε1, we have ωn = O(n−γ ′

) and Ωn = O(n1−vγ ′

).
Using similar arguments as in the proof of Lemma 2, we have I∗∗

n + II∗∗
n + III∗∗

n = O(nv/2+1−vγ ′

). So (28) follows. �

Remark 5. Clearly 1/v < γ0 if and only if v > α1/(2α1γ − 1). If so, γ ′
∈ (1/v, γ0) exists.

Corollary 2. Assume (A1) and (A2) with r = 2. Then for any triangular array of m-vectors {cin, i = 1, 2, . . . , n}, we have for
some v0 ∈ (1, α) that

sup
|δ|≤1

 n−
i=1

[ψ(ei + δ)− E[ψ(ei + δ)] − φ′(δ)ei]cin


v0

= O(nης1/2(n)) (29)

for all η satisfying 1/2 − γ + 1/α > η > 1/2 − γ + 1/α − (γ − 1/α)2/γ .

Proof. In (28), let v = (γ α2
1)/(2γα1 − 1) and α1 ↑ α. Then the order is arbitrarily close to nη0ς1/2(n) with η0 = 1/2 −

γ + 1/α − (γ − 1/α)2/γ . So Corollary 2 holds. �

Proof of Theorem 1. Let zθ,i,n = zTi,nθ , where |θ | ≤ Ckn, θ ∈ Rp. Recall kn = |dn|mn. By (A4), max1≤i≤n |zθ,i,n| → 0. By
Corollary 2, for n large enough,

sup
0≤t≤1

 n−
i=1

[ψ(ei − zθ,i,nt)− E[ψ(ei − zθ,i,nt)] − φ′(−zθ,i,nt)ei]zθ,i,n


v0

= O(nηkn), (30)
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where η is defined in Corollary 2. Note that, nηkn = o(k2n). By Lemma 1, sup0≤t≤1 |φ′(0) − φ′(−zθ,i,nt)| = O(|zθ,i,n|). Since
mnkn = m2

n|dn| → 0, by Lemma 2,

sup
0≤t≤1

 n−
i=1

zθ,i,n[φ′(0)− φ′(−zθ,i,nt)]ei


α−η

≤ C(mnkn)2|dn| = o(k2n). (31)

Let πi(θ) = ρ(ei − zθ,i,n)− ρ(ei)+ zθ,i,nφ′(0)ei. Note that,
n−

i=1

[πi(θ)− Eπi(θ)] = −

∫ 1

0

n−
i=1

[ψ(ei − zθ,i,nt)− E[ψ(ei − zθ,i,nt)] − φ′(−zθ,i,nt)ei]zθ,i,ndt

+

∫ 1

0

n−
i=1

zθ,i,n[φ′(0)− φ′(−zθ,i,nt)]eidt.

Hence by (30) and (31), we have for any fixed θ with |θ | ≤ Ckn that n−
i=1

[πi(θ)− Eπi(θ)]

 = op(k2n). (32)

By Lemma 1 in [4],

E[πi(θ)] =
1
2
φ′(0)

n−
i=1

|zTi,nθ |
2
+ o


n−

i=1

|zTi,nθ |
2



=
1
2
φ′(0)

n−
i=1

θ T zi,nzTi,nθ + o


n−

i=1

θ T zi,nzTi,nθ



=
1
2
φ′(0)|θ |2 + o(k2n). (33)

Hence, we have by (32) and (33) that n−
i=1

[ρ(ei − zTi,nθ)− ρ(ei)+ φ′(0)zTi,nθei] − φ′(0)|θ |2/2

 = op(k2n). (34)

Now a standard argument using properties of convex functions entails |θ̂n − Un| = op(kn); see the proofs of Theorems 2.2
and 2.4 in [4]. Details are omitted. By (9) and (A4), since β̂n = Σ

−1/2
n θ̂n and β̂n,ls = Σ

−1/2
n Un, the rest of the theorem easily

follows. �

Proof of Theorem 2. Let ψ1(x) = E[ψ(x + εi)] and ẽi = ei − εi. From Lemma 1 we see that ψ1(·) and φ(·) are r = p + 1
times differentiable, and |ψ

(i)
1 (x)| + |φ(i)(x)| ≤ C(1 + |x|) for i = 0, . . . , r . Note that, Ξn(θ) =

∑n
i=1 ψ(ei − zθ,i,n)zi,n,

zθ,i,n = zTi,nθ . Then

∆n(θ) := Ξn(θ)− E[Ξn(θ)] = Mn(θ)+ Nn(θ)+ Gn(θ), (35)

where

Mn(θ) =

n−
i=1

[ψ(ei − zθ,i,n)] − [ψ1(ẽi − zθ,i,n)]zi,n,

Nn(θ) =

n−
i=1

[ψ1(ẽi − zθ,i,n)− φ(−zθ,i,n)− φ′(−zθ,i,n)ẽi]zi,n,

Gn(θ) =

n−
i=1

φ′(−zθ,i,n)ẽizi,n.

The summands of Mn(θ) form an L2 martingale difference with respect to the filtration σ(Fi). We will use Lemma 4 in
[33] to bound the oscillation rate ofMn(θ). Our Lemma 1 implies that condition (A5) in [33] holds. On the other hand, since
rnkn → ∞ and rnknmn → 0, his condition (16) will be satisfied if we choose rnkn as δn there. Thus,

sup
|θ |≤rnkn

|Mn(θ)− Mn(0)| = Op(τ
1/2
n (rnkn) log n + n−3). (36)
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Let J = {j1, . . . , jq} ⊆ {1, . . . , p} be a nonempty index set, 1 ≤ j1 < · · · < jq. For u = (u1, · · · , up) ∈ Rp, let
uJ = (u111∈J , . . . , up1p∈J). Writewi,J = zi,n × zi,j1,n × · · · × zi,jq,n. Recall that zi,n = (zi,1,n, . . . , zi,p,n)T . Write∫ θJ

0

∂qNn(uJ)

∂uJ
duJ =

∫ θj1

0
· · ·

∫ θjq

0

∂qNn(uJ)

∂uj1 · · · ∂ujq
duj1 · · · dujq .

By Lemma 1 and the LDCT, φ(q)(−zuJ ,i,n) = E[ψ
(q)
1 (ẽi − zuJ ,i,n)]. If |u| ≤ p1/2rnkn, then max1≤i≤n |zuJ ,i,n| = O(rnknmn) → 0.

By similar arguments as those of Corollary 2,∂qNn(uJ)

∂uJ


v0

=

 n−
i=1

[ψ
(q)
1 (ẽi − zuJ ,i,n)− φ(q)(−zuJ ,i,n)− φ(q+1)(−zuJ ,i,n)ẽi]wi,J


v0

= O

nη


n−
i=1

|wi,J |
2

1/2
 = O(nηs1/2n (2 + 2q)), (37)

uniformly over |u| ≤ p1/2rnkn. Hence sup
|θ |≤rnkn

∫ θJ

0

∂qNn(uJ)

∂uJ

 duJ


v0

≤

∫ rnkn

−rnkn
· · ·

∫ rnkn

−rnkn

∂qNn(uJ)

∂uJ

 duJ


v0

≤

∫ rnkn

−rnkn
· · ·

∫ rnkn

−rnkn

∂qNn(uJ)

∂uJ


v0

duJ

= O(rqnk
q
nn
ηs1/2n (2 + 2q)). (38)

Since s1/2n (2 + 2q) ≤ mq−1
n s1/2n (4) and rnknmn = o(1), (38) implies sup

|θ |≤rnkn
|Nn(θ)− Nn(0)|


v0

=

 sup
|θ |≤rnkn

 −
J⊆{1,...,p}

∫ θJ

0
[∂ |J|Nn(uJ)/uJ ]duJ



v0

= O(rnknnηs1/2n (4)). (39)

Similarly, φ′(·) is p times differentiable, and |φr+1(x)| ≤ C(1 + |x|) for r = 0, . . . , p. Furthermore, by Lemma 2, for any u
with |u| ≤ p1/2rnkn,∂qGn(uJ)

∂uJ


α−η

=

 n−
i=1

φq+1(−zuJ ,i,n)ẽiwi,J


α−η

= O(mq+1
n |dn|).

Therefore, we obtain by rnknmn = o(1) that sup
|θ |≤rnkn

|Gn(θ)− Gn(0)|

α−η

≤ Crnknm2
n|dn| = O(rnmnk2n). (40)

Since sn(4) = O(m2
n) and nη = o(kn), by (36), (39) and (40),

sup
|θ |≤rnkn

|∆n(θ)−∆n(0)| = Op(τ
1/2
n (rnkn) log n + rnmnk2n). (41)

Since θ̂n = Op(kn), we have by (41) that

|∆n(θ̂n)−∆n(0)| = Op(τ
1/2
n (rnkn) log n + rnmnk2n). (42)

Furthermore, by Lemma 1 and Taylor’s expansion, we get
n−

i=1

φ(−zTi,nθ̂n)zi,n = −φ′(0)
n−

i=1

zi,nzTi,nθ̂n +

n−
i=1

O(|zTi,nθ̂n|
2
|zi,n|)

= −φ′(0)θ̂n + O


mn

n−
i=1

θ̂ Tn zi,nz
T
i,nθ̂n


= −φ′(0)θ̂n + Op(mnk2n). (43)

Plugging (43) into (42), since mn = o(rnmnk2n), we have (12) in view of (A5). �
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Proof of Theorem 3. Applying Corollary 2 with δ = 0 and cin = zi,n, we have

|Vn − φ′(0)Un| =

 n−
i=1

[ψ(ei)− φ′(0)ei]zi,n

 = Op(nη).

By (12), (i) follows. Since β̂n − β̂n,ls = Σ
−1/2
n (θ̂n − Un), by (9), we have (ii). �

To prove Theorem 4, we need the following lemma.

Lemma 4. Under the conditions of Theorem 4, we have

d−1
n

n−
i=1

xiei ⇒

∫
∞

−∞

[∫ 1

0
g(x)(x − u)−γ+ dx

]
dεα(u). (44)

Proof. Let hn(u) = (hx1(u), . . . , hxp(u))T . For c ∈ Rp with |c| = 1, let hn,c(u) = cThn(u) and gc(u) = cTg(u). By the
Cramer–Wold device, to prove (44), it suffices to show that

d−1
n

n−
i=1

hn,c


i − 1
n


ei ⇒

∫
∞

−∞

[∫ 1

0
gc(x)(x − u)−γ+ dx

]
dεα(u). (45)

To prove (45), we shall apply Theorem 4 in [2]. By (B1), hn,c(·) converges to gc(·) uniformly on [0,1] and gc(·) is continuous.
Let ai = 0 if i < 0, l∗(x) = l(x) if x ≥ 0 and l∗(x) = 0 if x < 0. Define

ζn(u) =

n−
i=1

hn,c


i − 1
n


(i − ⌊nu⌋)−γ+ l∗(i − ⌊nu⌋).

Interpret 0−γ
= 0 in the above definition. Let ε∗

i = εi/(n1/αL1(n)). Then

n−
i=1

hn,c


i − 1
n


ei/(n1/αL1(n)) =

∞−
j=−∞


n−

i=1

hn,c


i − 1
n


ai−j


ε∗

j

=

∞−
j=−∞

ζn(j/n)ε∗

j + ϑ(n), (46)

where ϑ(n) =
∑n

i=1 hn,c((i − 1)/n)ε∗

i . Since max1≤i≤n |hn,c((i − 1)/n)| = O(1), it is easy to see that |ϑ(n)| = Op(1).
Let ζ ∗

n (u) = ζn(u)/(n1−γ l(n)). By (46),

d−1
n

n−
i=1

hn,c


i − 1
n


ei =

∞−
j=−∞

ζ ∗

n (j/n)ε
∗

j + op(1). (47)

By the uniform convergence theorem for slowly varying functions (see Theorem 1.2.1 of [7]),

ζ ∗

n (u) →

∫ 1

0
gc(x)(x − u)−γ+ dx (48)

point-wise on R. On the other hand, we see that for n ∈ N,

|ζ ∗

n (u)|
α±η

+

∫ 1

0
gc(x)(x − u)−γ+ dx

α±η

≤ C
∫ 1

0
(x − u)−γ+ dx

α±η

.

Note that, the right-hand side of the above inequality is integrable over R for sufficiently small positive η. Thus (48)
also holds in the sense of convergence in Lα,η = {f : ‖f ‖α,η < ∞} [2], where ‖f ‖α,η = max(‖f ‖α−η, ‖f ‖α+η)

α−η ,
‖f ‖q = [


R |f (x)|qdx]1/q. Hence by their Theorem 4, we have

∞−
j=−∞

ζ ∗

n (j/n)ε
∗

j ⇒

∫
∞

−∞

[∫ 1

0
gc(x)(x − u)−γ+ dx

]
dεα(u). (49)

Together with (47), we conclude that Lemma 4 holds. �
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Proof of Theorem 4. Let κn = n−1/2dn. Under assumptions of Theorem 4, there exists 0 < C1 ≤ C2 < ∞, such that
C1n−1/2

≤ mn ≤ C2n−1/2 for sufficiently large n. Hence, we have kn/C2 ≤ |κn| ≤ kn/C1. Recall that kn = mn|dn|. Therefore,
by Theorem 1,

|κ−1
n θ̂n − κ−1

n Un| = op(1), where κ−1
n Un = n1/2Σ−1/2

n d−1
n

n−
i=1

xiei. (50)

Recall Lg(ε) =


∞

−∞
[
 1
0 g(x)(x − u)−γ+ dx]dεα(u). By Lemma 4 and (50),

κ−1
n θ̂n ⇒ G−1/2Lg(ε) (51)

since n1/2Σ
−1/2
n → G−1/2. Noting that θ̂n = Σ

1/2
n β̂n, Theorem 4 follows. �
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