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a b s t r a c t

We consider the problem of calculating distance correlation coefficients between random
vectors whose joint distributions belong to the class of Lancaster distributions. We
derive under mild convergence conditions a general series representation for the distance
covariance for these distributions. To illustrate the general theory, we apply the series
representation to derive explicit expressions for the distance covariance and distance
correlation coefficients for the bivariate normal distribution and its generalizations of
Lancaster type, the multivariate normal distributions, and the bivariate gamma, Poisson,
and negative binomial distributions which are of Lancaster type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The concepts of distance covariance and distance correlation, introduced by Székely, et al. [27,31], have been shown to
be widely applicable for measuring dependence between collections of random variables. As examples of the ubiquity of
distance correlation methods, we note the results on distance correlation given recently by: Székely, et al. [21,28–31], on
statistical inference; Sejdinovic, et al. [26], on machine learning; Kong, et al. [10], on familial relationships and mortality;
Zhou [33], on nonlinear time series; Lyons [17], on abstract metric spaces; Martínez-Gómez, et al. [18] and Richards,
et al. [20], on large astrophysical databases; Dueck, et al. [5], on high-dimensional inference and the analysis of wind data;
and Dueck, et al. [6], on a connection with singular integrals on Euclidean spaces.

A result which is of fundamental importance in distance correlation theory is the explicit formula for the empirical
distance correlation coefficient [31, pp. 2773–2774]. By combining that explicit formula with the fast algorithm of Huo
and Székely [9], it becomes straightforward to apply distance correlation methods to real-world data sets.

On the other hand, the calculation of population distance correlation coefficients remains an intractable problem
generally. Székely, et al. [31, pp. 2785–2786] calculated the distance correlation coefficient for the bivariate normal

∗ Corresponding author.
E-mail address: richards@stat.psu.edu (D. Richards).

http://dx.doi.org/10.1016/j.jmva.2016.10.012
0047-259X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2016.10.012
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2016.10.012&domain=pdf
mailto:richards@stat.psu.edu
http://dx.doi.org/10.1016/j.jmva.2016.10.012


20 J. Dueck et al. / Journal of Multivariate Analysis 154 (2017) 19–39

distribution; Dueck, et al. [4, Appendix] extended that result to the general multivariate normal distribution; and Dueck,
et al. [5] calculated the affinely invariant distance correlation coefficient for themultivariate normal distribution. Otherwise,
no such results are yet available for any other distribution. Hence, the state of distance correlation theory hitherto is that
the empirical coefficients can be calculated readily but the opposite holds for their population counterparts, generally.
Consequently, itwas not possible to calculate distance correlation coefficients explicitly for given nonnormal distributions in
terms of the usual parameters that parametrize these distributions, or to ascertain for nonnormal distributions any analogs
of the limit theorems derived by Dueck, et al. [5, Section 4].

We describe in detail the difficulties arising in attempts to calculate the population distance correlation coefficients. Let
p and q be positive integers. For column vectors s ∈ Rp and t ∈ Rq, denote by ∥s∥ and ∥t∥ the standard Euclidean norms on
the corresponding spaces; thus, if s = (s1, . . . , sp)⊤ then ∥s∥ = (s21 + · · · + s2p)

1/2, and similarly for ∥t∥. Given vectors u and
v of the same dimension, we let ⟨u, v⟩ be the standard Euclidean scalar product of u and v. For jointly distributed random
vectors (X, Y ) ∈ Rp

× Rq and non-random vectors (s, t) ∈ Rp
× Rq, let

ψX,Y (s, t) = E exp

i⟨s, X⟩ + i⟨t, Y ⟩


,

i =
√

−1, be the joint characteristic function of (X, Y ), and let ψX (s) = ψX,Y (s, 0) and ψY (t) = ψX,Y (0, t) be the
corresponding marginal characteristic functions. For any z ∈ C, let |z|2 denote the squared modulus of z; also, we use
the notation

γp =
π (p+1)/2

Γ

(p + 1)/2

 . (1.1)

In the case of distributions with finite first moments, Székely, et al. [31, p. 2772] defined V(X, Y ), the distance covariance
between X and Y , to be the positive square-root of

V2(X, Y ) =
1
γpγq


Rp+q

|ψX,Y (s, t)− ψX (s)ψY (t)|2

∥s∥p+1 ∥t∥q+1
ds dt (1.2)

and they defined the distance correlation coefficient between X and Y as

R(X, Y ) =
V(X, Y )

√
V(X, X)V(Y , Y )

(1.3)

if both V(X, X) and V(Y , Y ) are strictly positive, and otherwise to be zero [31, p. 2773]. For distributions with finite first
moments we have 0 ≤ R(X, Y ) ≤ 1, and R(X, Y ) = 0 if and only if X and Y are mutually independent.

For given random vectors X and Y , the fundamental obstacle in calculating the population distance correlation coefficient
(1.3) is the computation of the singular integral (1.2). In particular, the singular nature of the integrand precludes evaluation
of the integral by expanding the numerator, |ψX,Y (s, t) − ψX (s)ψY (t)|2, and subsequent term-by-term integration of each
of the resulting three terms.

In this paper, we calculate the distance correlation coefficients for pairs (X, Y ) of random vectors whose joint distri-
butions are in the class of Lancaster distributions, a class of probability distributions made prominent by Lancaster [15,16]
and Sarmanov [24]. The distribution functions of the Lancaster family arewell-known to have attractive expansions in terms
of certain orthogonal functions (Koudou [14]; Diaconis, et al. [3]). By applying those expansions, we obtain explicit expres-
sions for the distance covariance and distance correlation coefficients.

Consequently, we derive under mild convergence conditions a general formula for the distance covariance for the
Lancaster distributions.We apply the general formula to obtain explicit expressions for the distance covariance and distance
correlation for the bivariate normal distributions and some of its generalizations, for the multivariate normal distributions,
and for bivariate gamma, Poisson, and negative binomial distributions. We remark that explicit results can also be obtained
for other Lancaster-type expansions obtained by Bar-Lev, et al. [2]; however, wewill omit the details for other cases because
the formulas derived here are entirely representative of other cases.

2. The Lancaster distributions

To recapitulate the class of Lancaster distributions we generally follow the standard notation in that area, as given by
Koudou [13,14]; cf., Lancaster [16], Pommeret [19], or Diaconis, et al. [3, Section 6].

Let (X, µ) and (Y, ν) be locally compact, separable probability spaces, such that L2(µ) and L2(ν) are separable. Let σ , a
probability measure on X × Y, have marginal distributions µ and ν; then there exist functions Kσ and Lσ such that

σ(dx, dy) = Kσ (x, dy)µ(dx) = Lσ (dx, y)ν(dy).

We note that Kσ and Lσ represent the conditional distributions of Y given X = x, and X given Y = y, respectively.
Let C denote a countable index set with a zero element, denoted by 0. Let {Pn : n ∈ C} and {Qn : n ∈ C} be sequences

of functions on X and Y which form orthonormal bases for the separable Hilbert spaces L2(µ) and L2(ν), respectively. We
assume, by convention, that P0 ≡ 1 and Q0 ≡ 1.
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Since the tensor product Hilbert space L2(µ ⊗ ν) ≡ L2(µ) ⊗ L2(ν) is separable there holds, for σ ∈ L2(µ ⊗ ν), the
expansion

σ(dx, dy) =


m∈C


n∈C

ρm,nPm(x)Qn(y) µ(dx) ν(dy), (2.1)

(x, y) ∈ X × Y. Letting δm,n denote Kronecker’s delta, the probability measure σ is called a Lancaster distribution if there
exists a nonnegative sequence {ρn : n ∈ C} such that

Pm(x)Qn(y) σ (dx, dy) = ρm δm,n

for all m, n ∈ C; in particular, ρ0 = 1. The sequence {ρn : n ∈ C} is called a Lancaster sequence, and the expansion (2.1)
reduces to

σ(dx, dy) =


n∈C

ρnPn(x)Qn(y)µ(dx)ν(dy).

Koudou [13, pp. 255–256] characterized the Lancaster sequences {ρn : n ∈ C} such that the associated probability
distribution σ is absolutely continuous with respect to µ⊗ ν and has Radon–Nikodym derivative

σ(dx, dy)
µ(dx) ν(dy)

=


n∈C

ρn Pn(x)Qn(y) ∈ L2(µ⊗ ν),

(x, y) ∈ X × Y.
In the sequel, we consider the case in which X = Rp and Y = Rq and the underlying random vectors X ∈ Rp and

Y ∈ Rq have joint distribution σ andmarginal distributionsµ and ν, respectively.We assume thatµ, ν, and σ are absolutely
continuous with respect to Lebesgue measure or counting measure on the respective sample spaces and we denote their
corresponding probability density functions by φX , φY , and φX,Y , respectively. This yields the expansion,

φX,Y (x, y) = φX (x) φY (y)

n∈C

ρn Pn(x)Qn(y). (2.2)

We will refer to (2.2) as the Lancaster expansion of the joint density function φX,Y .

3. Examples of Lancaster expansions

In this section, we provide examples of Lancaster expansions (2.2) for the bivariate normal distribution and some
of its generalizations, the multivariate normal distributions, and the bivariate gamma, Poisson, and negative binomial
distributions. In the sequel, we denote by N0 the set of nonnegative integers.

3.1. The bivariate normal distribution and some of its generalizations

Let (X, Y ) follow a bivariate normal distribution with mean vector 0 and covariance matrix

Σ =


1 ρ
ρ 1


,

denoted by (X, Y ) ∼ N2(0,Σ). The joint probability density function of (X, Y ) is

φX,Y (x, y; ρ) =
1
2π
(1 − ρ2)

−
1
2 exp


−

x2 + y2 − 2ρ x y
2(1 − ρ2)


,

x, y ∈ R, and the marginal density functions are given by

φX (x) = φY (x) =
1

√
2π

exp

−

1
2x

2 .
In this case, the index set C is N0. For n ∈ N0, let

Hn(x) = (−1)n exp
 1
2x

2)
 d
dx

n
exp


−

1
2x

2 ,
x ∈ R, denote the nth Hermite polynomial, n = 0, 1, 2, . . .. It is well-known that the polynomials {Hn : n ∈ N0} are
orthogonal with respect to the standard normal distribution and form a complete orthogonal basis for the Hilbert space
L2(X). Also, the Lancaster expansion of φX,Y is given by the classical formula of Mehler, which states that, for x, y ∈ R,

φX,Y (x, y; ρ) = φX (x) φY (y)
∞
n=0

ρn

n!
Hn(x)Hn(y), (3.1)

and this series converges absolutely for all x, y ∈ R.
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We remark that there are numerous extensions of Mehler’s formula which represent Lancaster-type expansions for
generalizations of the bivariate normal distribution. Sarmanov and Bratoeva [25] consider series expansions of the form

φX,Y (x, y) = φX (x) φY (y)
∞
n=0

ρn

n!
Hn(x)Hn(y), (3.2)

x, y ∈ R, where the sequence of real numbers {ρn : n = 0, 1, 2, . . .} satisfies


∞

n=0 ρ
2
n < ∞. Sarmanov and Bratoeva proved

that for the expansion (3.2) to be nonnegative, and therefore to be a valid probability density function, it is necessary and
sufficient that the sequence {ρn} be the moment sequence of a random variable ξ supported on the interval [−1, 1].

An example of this generalization is the case in which φX,Y is a mixture of bivariate normal densities; put in the formula

φX,Y (x, y) =
1
2


φX,Y (x, y; ρ)+ φX,Y (x, y; −ρ)


= φX (x)φY (y)

∞
n=0

ρ2n

(2n)!
H2n(x)H2n(y); (3.3)

this corresponds to the case in (3.2) in which

ρn =


ρn, n even
0, n odd.

Thismixture density also provides an example of a distribution for which the Pearson correlation coefficient is zerowhereas
the distance correlation is positive.

3.2. The multivariate normal distribution

Let X ∈ Rp and Y ∈ Rq be random vectors such that (X, Y ) ∼ Np+q(0,Σ), a (p + q)-dimensional multivariate normal
distribution with mean vector 0 and positive definite covariance matrix

Σ =


ΣX ΣXY
ΣYX ΣY


(3.4)

where ΣX ,ΣY , and ΣXY = ΣYX
′ are p × p, q × q and p × q matrices, respectively. We denote by φX,Y the joint probability

density function of (X, Y ), and by φX and φY the marginal density functions of X and Y , respectively.
We now describe the Lancaster expansion of φX,Y , a result derived in [32]. In this case, the index set C is Np×q

0 , the set of
p × qmatrices with nonnegative integer entries.

For a matrix of summation indices N = (Nrc) ∈ Np×q
0 , define N ! =

p
r=1

q
c=1 Nrc !. For r = 1, . . . , p, let

Nr• =

q
c=1

Nrc

and set N∗• = (N1•, . . . ,Np•). Similarly, for each c = 1, . . . , q, define

N•c =

p
r=1

Nrc

and set N•∗ = (N•1, . . . ,N•q). Further, we define

N•• =

p
r=1

q
c=1

Nrc,

and note that N•• =
p

r=1 Nr• =
q

c=1 N•c .
Denoting by (ΣXY )rc the (r, c)th entry ofΣXY , we also define

ΣXY
N

=

p
r=1

q
c=1

[(ΣXY )rc]
Nrc .

We now introduce the multivariate Hermite polynomials. For any p ∈ N, k = (k1, . . . , kp) ∈ Np
0, and x = (x1, . . . , xp) ∈

Rp, define xk = xk11 · · · xkpp and define the differential operator,
−
∂

∂x

k

=


−
∂

∂x1

k1
· · ·


−
∂

∂xp

kp

.
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The kthmultivariate Hermite polynomialwith respect to the marginal density function φX is defined as

Hk(x;ΣX ) =
1

φX (x)


−
∂

∂x

k

φX (x). (3.5)

The Lancaster expansion of the multivariate normal density function φX,Y is given by the generalized Mehler formula [32]:

φX,Y (x, y) = φX (x) φY (y)


N∈Np×q
0

ΣXY
N

N !
HN∗•

(x;ΣX )HN•∗
(y;ΣY ), (3.6)

with absolute convergence for all x ∈ Rp, y ∈ Rq.
To calculate the affinely invariant distance correlation coefficient between X and Y , as defined by Dueck, et al. (2014),

we need the Lancaster expansion of the joint density function of the standardized random vectors X = ΣX
−1/2 X andY = ΣY

−1/2 Y . It is straightforward to verify that (X,Y ) ∼ Np+q(0,Λ)where

Λ =


Ip ΛXY
ΛXY

′ Iq


(3.7)

withΛXY = ΣX
−1/2ΣXY ΣY

−1/2, and then we deduce from (3.6) that the Lancaster expansion for (X,Y ) is
φX,Y (x, y) = φX (x) φY (y) 

N∈Np×q
0

ΛXY
N

N !
HN∗•

(x; Ip)HN•∗
(y; Iq). (3.8)

3.3. The bivariate gamma distribution

The Lancaster expansion for a bivariate gamma distribution, which was derived by Sarmanov [23,22], can be stated as
follows (see Kotz, et al. [11, pp. 437–438]).

For α > −1 and n ∈ N0, the classical Laguerre polynomial is defined by

L(α)n (x) =
1
n!

x−α exp(x)
 d
dx

n
xn+α exp(−x)

=
(α + 1)n

n!

n
j=0

(−n)j
(α + 1)j

xj

j!
, (3.9)

x > 0, where

(α)n =
Γ (α + n)
Γ (α)

= α(α + 1) · · · (α + n − 1),

n = 0, 1, 2, . . . , denotes the rising factorial. By standardizing the classical Laguerre polynomial, we obtain the orthonormal
version [8],

L(α)n (x) =


(α + 1)n

n!

−1/2 L(α)n (x) =


(α + 1)n

n!

1/2 n
j=0

(−n)j
(α + 1)j

xj

j!
.

Letλ ∈ (0, 1), and letα andβ satisfyα ≥ β > 0. Sarmanov [23,22] derived for certain bivariate gamma randomvariables
(X, Y ) the joint probability density function,

φX,Y (x, y) = φX (x) φY (y)
∞
n=0

anL(α−1)
n (x) L(β−1)

n (y), (3.10)

x, y > 0, where

an =


(β)n

(α)n

1/2

λn, (3.11)

n = 0, 1, 2, . . .. The corresponding marginal density functions are

φX (x) =
1

Γ (α)
xα−1 exp(−x)

and

φY (y) =
1

Γ (β)
yβ−1 exp(−y),
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which we recognize as the density functions of one-dimensional gamma random variables with index parameters α and β ,
respectively.

We remark that ifα = β then the density function (3.10) reduces to the Kibble–Moran bivariate gamma density function,
Corr(X, Y ) = λ [11, pp. 436–437], and (3.10) represents the Lancaster expansion for (X, Y ). On the other hand, if α ≠ β
then Corr(X, Y ) ≢ λ.

More generally, Griffiths [8] showed that a series expansion of the form

φX,Y (x, y) = φX (x) φY (y)
∞
n=0

ρnL(α−1)
n (x) L(β−1)

n (y) (3.12)

represents a valid bivariate probability density if and only if

ρn =


(β)n

(α)n

1/2

λn, (3.13)

where λn is the moment sequence of a random variable ξ concentrated on [0, 1].

3.4. The bivariate Poisson distribution

For a > 0 and x, n ∈ N0, let

Cn(x; a) =

an

n!

1/2 n
k=0

(−1)k

n
k


x
k


k!
ak

(3.14)

denote the Poisson–Charlier polynomial of degree n. For λ ∈ [0, 1], Koudou [14, Section 5] (cf., Bar-Lev, et al. [2],
Pommeret [19]) showed that there exists a bivariate random vector (X, Y )with probability density function

φX,Y (x, y) = φX (x) φY (y)
∞
n=0

λn Cn(x; a) Cn(y; a), (3.15)

x, y ∈ N0. The corresponding marginal density functions φX and φY are given by

φX (k) = φY (k) =
ak exp(−a)

k!
,

k ∈ N0, so that X and Y are distributed marginally according to a Poisson distribution with parameter a. The series (3.15) is
an expansion of Lancaster type, a special case of (2.2), and the resulting distribution is called a bivariate Poisson distribution.

3.5. The bivariate negative binomial distribution

The orthonormal polynomials for the classical univariate negative binomial distribution are the (normalized) Meixner
polynomials, given by

Mβ,c
n (x) =

 cn (β)n
n!

1/2 n
k=0

(−n)k (−x)k
(β)k k!


1 − c−1k , (3.16)

forβ > 0, 0 < c < 1, and x ∈ N. Koudou [14, Section 6] showed, by an approach similar to that used for the bivariate Poisson
distribution, that there exists a bivariate random variable (X, Y ), with identical marginal negative binomial densities,

φX (x) = φY (x) = (1 − c)β
cx (β)x

x!
,

x ∈ N0, and with joint probability density function,

φX,Y (x, y) = φX (x) φY (y)
∞
n=0

λn Mβ,c
n (x)Mβ,c

n (y), (3.17)

where x, y ∈ N0, and 0 ≤ λ < 1. The expansion (3.17) represents a Lancaster expansion of the joint density function.
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4. Distance correlation coefficients for Lancaster distributions

In this section, we derive a general series expression for the distance correlation coefficients for Lancaster distributions
with density functions of the form (2.2). For a joint density function φX,Y given by (2.2) and n ∈ C, we introduce the notation

Pn(s) = E exp(i ⟨s, X⟩) Pn(X), (4.1)

s ∈ Rp, and

Qn(t) = E exp(i ⟨t, Y ⟩)Qn(Y ), (4.2)

t ∈ Rq. To verify that the expectation in (4.1) converges absolutely for all s ∈ Rp, we apply the Cauchy–Schwarz inequality
to obtain

E| exp(i⟨s, X⟩)Pn(X)| ≤

E| exp(i⟨s, X⟩)|2

1/2
·

E|Pn(X)|2

1/2
= 1,

because {Pn : n ∈ C} is an orthonormal basis for the Hilbert space L2(µ). In particular,

|Pn(s)| ≤ E| exp(i⟨s, X⟩)Pn(X)| ≤ 1,

for all s ∈ Rp and, similarly, |Qn(t)| ≤ 1 for all t ∈ Rq.
In the following result, we will use the notation

Aj,k =


Rp

Pj(s)Pk(−s)
ds

∥s∥p+1

and

Bj,k =


Rq

Qj(t)Qk(−t)
dt

∥t∥q+1
,

j, k ∈ C, whenever these integrals converge absolutely.
We now state the main result.

Theorem 4.1. Suppose that the random vectors X ∈ Rp and Y ∈ Rq have the joint probability density function (2.2). Then,

V2(X, Y ) =
1
γpγq


j∈C,j≠0


k∈C,k≠0

ρj ρk Aj,k Bj,k, (4.3)

whenever the sum converges absolutely.

Proof. Rewriting the Lancaster expansion (2.2) in the form,

φX,Y (x, y)− φX (x) φY (y) = φX (x) φY (y)


n∈C,n≠0

ρnPn(x)Qn(y),

and taking Fourier transforms on both sides of this identity, we obtain for all s ∈ Rp and t ∈ Rq the expansion

ψX,Y (s, t)− ψX (s) ψY (t) =


n∈C,n≠0

ρnPn(s)Qn(t). (4.4)

This identity is valid subject to the requirement that we may interchange summation and integration, which is justified by
the assumption that the sum in the final result converges absolutely. Using (4.4) we deduce that

|ψX,Y (s, t)− ψX (s)ψY (t)|2 =

ψX,Y (s, t)− ψX (s)ψY (t)


ψX,Y (s, t)− ψX (s)ψY (t)


=


j∈C,j≠0


k∈C,k≠0

ρj ρk Pj(s)Pk(−s)Qj(t)Qk(−t).

Next, we integrate this expansion with respect to the measures ds/∥s∥p+1 and dt/∥t∥q+1; this requires that we again
interchange summation and integration which, by assumption, we are able to do. On carrying through these procedures,
we obtain (4.3). �

Remark 4.2. We note that Theorem 4.1 can be extended to the more general α-distance covariance and correlation
measures treated by Székely, et al. [31, p. 2784]. For α ∈ (0, 2), define

γp,α =
2πp/2 Γ


1 −

1
2α


α2αΓ

 1
2 (p + α)


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and let

V2
α(X, Y ) =

1
γp,αγq,α


Rp+q

|ψX,Y (s, t)− ψX (s)ψY (t)|2

∥s∥p+α ∥t∥q+α
ds dt

be the α-distance covariance between the random vectors X and Y . Further, define

Aj,k(α) =


Rp

Pj(s)Pk(−s)
ds

∥s∥p+α

and

Bj,k(α) =


Rq

Qj(t)Qk(−t)
dt

∥t∥q+α
,

j, k ∈ C, whenever these integrals converge absolutely. Then, the extension of Theorem 4.1 to the α-distance covariance
measures is that

V2
α(X, Y ) =

1
γp,αγq,α


j∈C,j≠0


k∈C,k≠0

ρj ρk Aj,k(α)Bj,k(α),

whenever the sum converges absolutely. The proof of this result is similar to the proof of Theorem 4.1.

5. Examples

In this section, we establish the versatility of Theorem 4.1 by applying it to compute the distance correlation coefficients
for the bivariate normal, multivariate normal, and bivariate gamma, Poisson, and negative binomial distributions. We verify
for each example the absolute convergence of the series resulting from Theorem 4.1, for that convergence property cannot
be obtained in general from the general theorem. In developing each example, we retain the corresponding notation in
Section 3. We also remark that the crucial singular integral in the theory of distance correlation [6,31] is evaluated in terms
of the gamma function; however, even slight generalizations of that integral can be evaluated only in terms of the Gaussian
or the confluent hypergeometric series; this explains the appearance of those series in the ensuing examples.

5.1. The bivariate normal distribution and some of its generalizations

In the sequel, we use the standard double-factorial notation,

n!! = n(n − 2)(n − 4) · · · =

1, if n = −1, 0
n(n − 2)(n − 4) · · · 1, if n = 1, 3, 5, 7, . . .
n(n − 2)(n − 4) · · · 2, if n = 2, 4, 6, 8, . . .

Proposition 5.1. Let (X, Y ) ∼ N2(0,Σ), a bivariate normal distribution with correlation coefficient ρ . Then,

V2(X, Y ) = 4π−1
∞
ℓ=1

((2ℓ− 3)!!)2

(2ℓ)!


1 − 2−(2ℓ−1)ρ2ℓ, (5.1)

and this series converges absolutely for all ρ ∈ (−1, 1).

Proof. Starting with the Lancaster expansion of the bivariate normal density function, as given in (3.1), and using the
definitions of Pn and Qn in (4.1) and (4.2), respectively, we obtain by substitution and integration-by-parts,

Pn(s) = Qn(s) =


∞

−∞

exp(isx)
1

√
2π

exp

−

1
2x

2 Hn(x)dx

= (is)n exp

−

1
2 s

2 ,
s ∈ R. Therefore,

Aj,k = Bj,k = (−1)k ij+k


∞

−∞

sj+k−2 exp(−s2) ds,

=


(−1)k ij+k π1/2  1

2

(j+k−2)/2
(j + k − 3)!!, if j + k is even

0, otherwise
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since the latter integral is a moment of the N (0, 1
2 ) distribution. By Theorem 4.1, we obtain

V2(X, Y ) =
4
π


j, k>0

j+k even

ρ j+k

j! k!

 1
2

j+k 
(j + k − 3)!!

2
.

Setting j + k = 2ℓwith ℓ ≥ 1, the double series reduces to

V2(X, Y ) =
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ((2ℓ− 3)!!)2


j,k≥1

j+k=2ℓ

1
j! k!

=
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ ((2ℓ− 3)!!)2

(2ℓ)!

2ℓ−1
j=1

(2ℓ)!
j! (2ℓ− j)!

=
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ ((2ℓ− 3)!!)2

(2ℓ)!
(22ℓ

− 2),

which is the same as (5.1).
The absolute convergence of (5.1) can be verified by comparison with a geometric series. Moreover, it can be shown that

the series reduces to the explicit formula,

4
π


ρ sin−1 ρ +


1 − ρ2 − ρ sin−1 ρ/2 −


4 − ρ2 + 1


(5.2)

which is identical with the result obtained by Székely, et al. [31, pp. 2785–2786]. �

Having obtained V(X, Y ), we let ρ → 1− to obtain the distance variances V(X, X) and V(Y , Y ); here, we are applying
a well-known result that if (X, Y ) ∼ N2(0,Σ) where Var(X) = Var(Y ) and ρ = 1 then X = Y , almost surely. By applying
properties of Gauss’ hypergeometric series, as was done by Dueck, et al. [5, p. 2318], we obtain

V2(X, X) = V2(Y , Y ) =
4
3

−
4(

√
3 − 1)
π

.

It is straightforward to extend the above results to generalizations of the type given in Eq. (3.2).

Corollary 5.2. Let (X, Y ) be a bivariate random variable distributed according to a density function as given in (3.2). Then

V2(X, Y ) =
4
π


j, k>0

j+k even

ρj ρk

j! k!

 1
2

j+k 
(j + k − 3)!!

2
. (5.3)

For the example given in (3.3), the series expansion in (5.3) reduces to an explicit formula similar to (5.2).

Corollary 5.3. Let (X, Y ) be a bivariate randomvariable distributed according to a density function as given in (3.2)withρn = ρn

for n even and ρn = 0 for n odd. Then

V2(X, Y ) =
4
π

ρ
2
sin−1 ρ +

1
2


1 − ρ2 − ρ sin−1 ρ/2 −


4 − ρ2 +

3
2


. (5.4)

Proof. Proceeding as in the case of the bivariate normal distribution, we obtain

V2(X, Y ) =
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ((2ℓ− 3)!!)2


j,k≥1
j+k=ℓ

1
(2j)! (2k)!

=
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ ((2ℓ− 3)!!)2

(2ℓ)!

ℓ−1
j=1

(2ℓ)!
(2j)! (2ℓ− 2j)!

=
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ ((2ℓ− 3)!!)2

(2ℓ)!
(22ℓ−1

− 2).
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Using the standard notation, 2F1, for Gauss’ hypergeometric function we see that

V2(X, Y ) =
4
π

∞
ℓ=1

ρ2ℓ( 12 )
2ℓ (2

ℓ (− 1
2 )ℓ)

2

22ℓ ℓ! ( 12 )ℓ
(22ℓ−1

− 2)

=
4
π


1
2


2F1(− 1

2 ,−
1
2 ;

1
2 ; ρ

2)− 1

− 2


2F1(− 1

2 ,−
1
2 ;

1
2 ;

1
4ρ

2)− 1

.

It is well-known (see Andrews, Askey, and Roy [1, pages 64 and 94]) that

2F1(− 1
2 ,−

1
2 ;

1
2 ; ρ

2) = ρ sin−1 ρ + (1 − ρ2)1/2.

On applying this formula to the above expression, we obtain (5.4). �

5.2. The multivariate normal distribution

In this subsection, we will make extensive use of the notation Nr•,N•c,N∗•,N•∗, and N•• from Section 3.2 for the multi-
index matrix N ∈ Np×q

0 . We now establish the following result.

Proposition 5.4. Suppose that (X, Y ) ∼ Np+q(0,Σ), whereΣ is given in (3.4). Then the affinely invariant distance covariance,V2(X, Y ), is given by

V2(X, Y ) =
1

γp γq


J≠0,K ≠0

AJ ,K BJ ,K
Λ

J
XY

J !
ΛK

XY

K !
, (5.5)

where the sums are taken over all non-zero J ,K ∈ Np×q
0 such that all components of J∗• + K∗• and J•∗ + K•∗ are even,

AJ ,K =
Γ

 1
2 (J•• + K•• − 1)


Γ

 1
2 (J•• + K••)+

1
2p

 p
r=1

Γ
 1
2 (Jr• + Kr• + 1)


(5.6)

and

BJ ,K =
Γ

 1
2 (J•• + K•• − 1)


Γ

 1
2 (J•• + K••)+

1
2q

 q
c=1

Γ
 1
2 (J•c + K•c + 1)


. (5.7)

Proof. In this case, the index set C is Np×q
0 , and we write the Lancaster expansion (3.8) of (X,Y ) in the form

φX,Y (x, y)− φX (x) φY (y) = φX (x) φY (y)
N≠0

ΛN
XY

N !
HN∗•

(x; Ip)HN•∗
(y; Iq).

To calculate the Fourier transform PN corresponding to X , we apply the definition (3.5) of the multivariate Hermite
polynomials and integration-by-parts to deduce that for s ∈ Rp,

PN (s) =


Rp

exp(i⟨s, x⟩) φX (x)HN∗•
(x; Ip) dx

= (−1)N••


Rp

exp(i⟨s, x⟩)

∂

∂x

N∗•

φX (x) dx
=


Rp
φX (x)


∂

∂x

N∗•

exp(i⟨s, x⟩) dx

= (is)N∗•


Rp
φX (x) exp(i⟨s, x⟩) dx

= iN•• sN∗• exp(− 1
2 ⟨s, s⟩).

Similarly,

QN (t) = iN•• tN•∗ exp(− 1
2 ⟨t, t⟩),

t ∈ Rq. Therefore,
Rp

PJ (s)PK (−s)
ds

∥s∥p+1
= (−1)K•• iJ••+K••


Rp

sJ∗•+K∗• exp(−⟨s, s⟩)
ds

∥s∥p+1
.
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We now change variables to hyperspherical coordinates: s = rω, where r > 0 and ω = (ω1, . . . , ωp) ∈ Sp−1, the unit
sphere in Rp. Then the latter integral reduces to

R+

r J••+K••−2 exp(−r2) dr ·


Sp−1

ωJ∗•+K∗•dω.

The integral over R+ is evaluated by replacing r by r1/2, and we obtain its value as 1
2 Γ

 1
2 (J•• + K•• − 1)


.

It is easy to see that the integral over Sp−1 equals zero if any component of J∗• + K∗• is odd. For the case in which each
component of J∗• + K∗• is even, we obtain

Sp−1
ωJ∗•+K∗•dω = A(Sp−1) E(ωJ∗•+K∗•),

where A(Sp−1) = 2πp/2/Γ ( 12p) is the surface area of Sp−1 and ω now is a uniformly distributed random vector on Sp−1. It is
well-known that the random vector (ω2

1, . . . , ω
2
p) ∼ D( 12 , . . . ,

1
2 ), a Dirichlet distribution with parameters ( 12 , . . . ,

1
2 ); so,

by a classical formula for the moments of the Dirichlet distribution [11, p. 488],

E(ωJ∗•+K∗•) =
Γ ( 12p)

[Γ ( 12 )]
p

p
r=1

Γ ( 12 (Jr• + Kr• + 1))

Γ ( 12 (J•• + K••)+
1
2p)

.

Collecting together these results, we obtain
Rp

PJ (s)PK (−s)
ds

∥s∥p+1
= (−1)K•• (−1)(J••+K••)/2 AJ ,K ,

where AJ ,K is given in (5.6). A similar expression can be obtained for
Rq

QJ (t)QK (−t)
dt

∥t∥q+1
,

from which the final result (5.5) follows. �

As a consequence of Proposition 5.4, we now derive the value of the affinely invariant distance variance, V2(X, X), when
X has a multivariate normal distribution. We remark that the derivation of this result given by Dueck, et al. [5, Corollary 3.3]
utilized the theory of zonal polynomials, whereas the proof which we now give is by a simpler method.

Corollary 5.5 (Dueck, et al. [5, Corollary 3.3]). Suppose that (X, Y ) ∼ N2p(0,Σ), whereΣ in (3.4) satisfiesΛXY = ρ Ip in (3.7).
Then

V2(X, Y ) = 4π
γ 2
p−1

γ 2
p


2F1(− 1

2 ,−
1
2 ;

1
2p; ρ

2)− 2 2F1(− 1
2 ,−

1
2 ;

1
2p;

1
4ρ

2)+ 1


(5.8)

and

V2(X, X) = 4π
γ 2
p−1

γ 2
p


Γ ( 12p)Γ (

1
2p + 1)

Γ
 1
2 (p + 1)

2 − 2 2F1

−

1
2 ,−

1
2 ;

1
2p;

1
4


+ 1


. (5.9)

Proof. Setting p = q andΛXY = ρIp in (5.5), we obtain

γ 2
p

V2(X, Y ) =

 
J≠0,K ≠0

J∗•+K∗•,J•∗+K•∗ even

AJ ,K BJ ,K
(ρIp)J+K

J !K !
. (5.10)

By decomposing the set of all (J ,K ) into a disjoint union,

{(J ,K ) : J + K ≠ 0} = {(J ,K ) : J ≠ 0,K ≠ 0} ∪ {(J ,K ) : J = 0,K ≠ 0} ∪ {(J ,K ) : J ≠ 0,K = 0},

and noting that the summand in (5.10) is symmetric in (J ,K ), we obtain

γ 2
p

V2(X, Y ) =

 
J+K ≠0

J∗•+K∗•,J•∗+K•∗ even

AJ ,K BJ ,K
(ρIp)J+K

J !K !
− 2

 
J=0,K ≠0

J∗•+K∗•,J•∗+K•∗ even

AJ ,K BJ ,K
(ρIp)J+K

J !K !
. (5.11)
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Note that

(ρIp)J+K
=

p
r=1

p
c=1

(ρδrc)
Jrc+Krc =

p
r=1

(ρδrr)
Jrr+Krr ·


r≠c

(ρδrc)
Jrc+Krc .

This is non-zero iff Jrc = Krc = 0 for all r ≠ c , in which case J and K are diagonal matrices, and then we have

(ρIp)J+K
= ρ J11+···+Jpp+K11+···+Kpp ,

J∗• + K∗• = (J11 + K11, . . . , Jpp + Kpp) = J•∗ + K•∗,

and

J ! =

p
r=1

Jrr !, K ! =

p
r=1

Krr !.

Therefore,

AJ ,K = BJ ,K =
Γ

 1
2 (J11 + · · · + Jpp + K11 + · · · + Kpp − 1)


Γ

 1
2 (J11 + · · · + Jpp + K11 + · · · + Kpp)+

1
2p

 p
r=1

Γ
 1
2 (Jrr + Krr + 1)


,

and this yields for the first term in (5.11)

 
J+K ≠0

J∗•+K∗•,J•∗+K•∗ even

AJ ,K BJ ,K
(ρIp)J+K

J !K !
=


n1,...,np≥0

n1+···+np≠0


J11+K11=2n1,...,Jpp+Kpp=2np

A2
J ,K
ρ J11+···+Jpp+K11+···+Kpp

J !K !

=


n1,...,np≥0 and even

n1+···+np≠0

ρ2n1+···+2np


Γ


n1 + · · · + np −

1
2


Γ


n1 + · · · + np +

1
2p

 p
r=1

Γ

nr +

1
2

2

×


J11+K11=2n1,...,Jpp+Kpp=2np

1
J !K !

. (5.12)

Since 
J11+K11=2n1,...,Jpp+Kpp=2np

1
J !K !

=

p
r=1

 
Jrr+Krr=2nr

1
Jrr ! Krr !


=

p
r=1

22nr

(2nr)!
,

we obtain that (5.12) equals


n1,...,np≥0

n1+···+np≠0


Γ


n1 + · · · + np −

1
2


Γ


n1 + · · · + np +

1
2p

 p
r=1

Γ

nr +

1
2

2 p
r=1

22nrρ2nr

(2nr)!

=

∞
n=1


Γ


n −

1
2


Γ


n +

1
2p

2

(2ρ)2n


n1+···+np=n

p
r=1


Γ


nr +

1
2

2
(2nr)!

.

However,


n1+···+np=n

p
r=1


Γ


nr +

1
2

2
(2nr)!

=


n1+···+np=n

p
r=1


( 12 )nrΓ (

1
2 )

2
22nr nr !(

1
2 )nr

=
πp

22n


n1+···+np=n

p
r=1

( 12 )nr

nr !

=
πp

22n

( 12p)n
n!

,
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so we obtain that the first term in (5.11) is given by
∞
n=1


Γ


n −

1
2


Γ


n +

1
2p

2

(2ρ)2n
πp

22n

( 12p)n
n!

=

∞
n=1


Γ (− 1

2 )(−
1
2 )n

Γ ( 12p)(
1
2p)n

2

ρ2nπp (
1
2p)n
n!

= πp [Γ (− 1
2 )]

2

[Γ ( 12p)]
2

∞
n=1

(− 1
2 )n(−

1
2 )n

( 12p)n

ρ2n

n!

= 4πγ 2
p−1


2F1(− 1

2 ,−
1
2 ;

1
2p; ρ

2)− 1

.

By similar arguments, we obtain for the second term in (5.11): 
J=0,K ≠0

J∗•+K∗•,J•∗+K•∗ are even

AJ ,K BJ ,K
(ρIp)J+K

J !K !
= 4πγ 2

p−1


2F1(− 1

2 ,−
1
2 ;

1
2p;

1
4ρ

2)− 1

.

Collecting together these results yields (5.8).
Setting ρ = 1 and applying Gauss’ theorem for the value of 2F1(a; , b; c; 1), we deduce that V(X, X) is given by (5.9). �

We remark that the absolute convergence of the series in Corollary 5.5 follows from the absolute convergence of Gauss’
hypergeometric series. As a consequence, the series (5.5) converges absolutely because the matrixΛ has norm less than 1.

5.3. The bivariate gamma distribution

Proposition 5.6. Suppose that the random vector (X, Y ) is distributed according to a Sarmanov bivariate gamma distribution,
as given by (3.10). Then,

V2(X, Y ) = 22(2−α−β)
∞

j,k=1

aj ak Aj,k(α) Aj,k(β), (5.13)

where

Aj,k(α) = 2−j−k

(α)j (α)k

j! k!

1/2

×
Γ (2α + j + k − 1)
Γ (α + j)Γ (α + k) 2F1 (−j − k + 2, 1 − α − j; 2 − 2α − j − k; 2) .

Proof. By (3.10), there holds the expansion,

φX,Y (x, y)− φX (x) φY (y) = φX (x) φY (y)
∞
n=1

anL(α−1)
n (x) L(β−1)

n (y),

x, y > 0. Then, it follows from (4.1) that for s ∈ R,

Pn(s) =


∞

0
exp(isx) L(α−1)

n (x) φX (x) dx

=
1

Γ (α)


∞

0
exp


−(1 − is)x


xα−1 L(α−1)

n (x) dx.

By a direct calculation using (3.9), we obtain

Pn(s) =


(α)n

n!

1/2

(1 − is)−α

1 − (1 − is)−1n

=


(α)n

n!

1/2

(1 − is)−(α+n) (−is)n

and, analogously,

Qn(t) =


(β)n

n!

1/2

(1 − it)−(β+n) (−it)n,

t ∈ R.
We now calculate the integral

R
Pj(s)Pk(−s)

ds
s2

≡


(α)j

j!
(α)k

k!

1/2

i−j+k


R
g(s)ds, (5.14)
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where

g(s) = sj+k−2 (1 − is)−(α+j) (1 + is)−(α+k), (5.15)

s ∈ R. To calculate the integral on the right-hand side of (5.14), we utilize Cauchy’s beta integral [1, p. 48] which provides
that, for a, u, v ∈ C such that Re(a) > 0 and Re(u + v) > 1,

R
(1 − is)−u (1 + ias)−v ds = 2π

Γ (u + v − 1)
Γ (u)Γ (v)

au−1 (a + 1)1−u−v. (5.16)

To differentiate the left-hand side of (5.16)m times with respect to a, we apply the formula, ∂
∂a

m
(1 + ias)−v = (−i)msm(v)m (1 + ias)−v−m

;

by differentiating under the integral we obtain ∂
∂a

m


R
(1 − is)−u (1 + ias)−vds = (−i)m(v)m


R
sm (1 − is)−u (1 + ias)−v−m ds.

To differentiate the right-hand side of (5.16)m times with respect to a, we apply Leibniz’s formula, ∂
∂a

m
au−1 (a + 1)1−u−v


=

m
ℓ=0


m
ℓ

 ∂
∂a

ℓ
au−1


·

 ∂
∂a

m−ℓ

(a + 1)1−u−v

.

Noting that 
m
ℓ


=
(−1)ℓ(−m)ℓ

ℓ!
, ∂

∂a

ℓ
au−1

= (−1)ℓ au−1−ℓ (1 − u)ℓ,

and  ∂
∂a

m−ℓ

(a + 1)1−u−v
= (−1)m (a + 1)1−u−v−m+ℓ (u + v − 1)m

(2 − u − v − m)ℓ
,

we obtain ∂
∂a

m
au−1 (a + 1)1−u−v


= (−1)mau−1(a + 1)1−u−v−m(u + v − 1)m

m
ℓ=0

(−m)ℓ (1 − u)ℓ
ℓ! (2 − u − v − m)ℓ

a−ℓ (a + 1)ℓ

= (−1)mau−1(a + 1)1−u−v−m(u + v − 1)m 2F1

−m, 1 − u; 2 − u − v − m;

a + 1
a


.

Comparing the derivatives of the left- and right-hand sides of (5.16), we obtain
R
sm (1 − is)−u (1 + ias)−v−m ds = 2π (−i)m au−1(a + 1)1−u−v−m Γ (u + v − 1)

Γ (u)Γ (v)

×
(u + v − 1)m

(v)m
2F1


−m, 1 − u; 2 − u − v − m;

a + 1
a


.

Substituting a = 1,m = j + k − 2, u = α + j, and v = α + k − m ≡ α − j + 2, the latter equation reduces to
R
g(s)ds = 2−2α−j−k+2 π (−i)j+k−2 Γ (2α + 1)

Γ (α + j)Γ (α − j + 2)

×
(2α + 1)j+k−2

(α − j + 2)j+k−2
2F1


−j − k + 2, 1 − α − j; 2 − 2α − j − k; 2


.

Therefore,
R

Pj(s)Pk(−s)
ds
s2

= 2−2α+1π (−1)j−1

(α)j (α)k

j! k!

1/2
Γ (2α + j + k − 1)
Γ (α + j)Γ (α + k)

× 2F1

−j − k + 2, 1 − α − j; 2 − 2α − j − k; 2


,

and similarly for Y . Substituting these expressions into Theorem4.1 and simplifying the outcome,we obtain the series (5.13)
as a formal expression for V2(X, Y ).
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Finally, we verify that (5.13) converges absolutely. By (5.15),
R

|g(s)| ds =


R

|s|j+k−2 (1 + s2)−(2α+j+k)/2 ds.

Making the change-of-variables s2 = t/(1 − t), the latter integral is transformed to 1

0
t
1
2 (j+k−3) (1 − t)α−

1
2 dt = B

 1
2 (j + k − 1), α +

1
2


, (5.17)

where B(·, ·) is the classical beta function, and this integral converges absolutely because j + k − 1 > 0 and α + 1/2 > 0
for all j, k ∈ N and α > 0. Hence, to establish that (5.13) converges absolutely, we have only to show that the series

∞
j=1

∞
k=1

aj ak


(α)j(β)j

(j!)2

1/2 
(α)k (β)k

(k!)2

1/2

× B
 1
2 (j + k − 1), α +

1
2


B
 1
2 (j + k − 1), β +

1
2


(5.18)

converges absolutely.
For j + k ≥ 3, it follows from (5.17) that

B
 1
2 (j + k − 1), α +

1
2


≤

 1

0
(1 − t)α−

1
2 dt =

1
α +

1
2

.

Therefore, (5.18) is bounded above by

β2λ2 B( 12 , α +
1
2 ) B(

1
2 , β +

1
2 )+

1
(α +

1
2 )(β +

1
2 )


j, k≥1
j+k≥3

(β)j

(j!)
(β)k

(k!)
λj+k

≤ β2λ2 B( 12 , α +
1
2 ) B(

1
2 , β +

1
2 )+

1
(α +

1
2 )(β +

1
2 )

 ∞
j=0

(β)j

(j!)
λj

 ∞
k=0

(β)k

(k!)
λk


= β2λ2 B( 12 , α +

1
2 ) B(

1
2 , β +

1
2 )+

1
(α +

1
2 )(β +

1
2 )
(1 − λ)−2β ,

for λ ∈ [0, 1). Hence (5.18), and then also (5.13), converges absolutely for all α, β and all λ ∈ [0, 1). �

In calculating the distance variances V(X, X) and V(Y , Y ), it is only the marginal distributions of X and Y which are
relevant. Therefore, wemay assume that X and Y have any joint distribution forwhich themarginal distributions are gamma
with parameters α and β , respectively.

Holdingα fixed and settingβ = α, the Sarmanov bivariate gammadistribution reduces to the Kibble–Moran distribution,
and the characteristic function of (X, Y ) is

ψX,Y (t1, t2) =

(1 − it1)(1 − it2)+ λt1t2

−α
, (5.19)

see [11, p. 436]. Next, we let λ → 1−; then ψX,Y (t1, t2) converges to
1 − i(t1 + t2)

−α
≡ E exp


i(t1 + t2)X


,

proving that if λ = 1 then X = Y , almost surely. Therefore, the distance variance V(X, X) is a limiting case of V(X, Y ), viz.,

V2(X, X) =
1
γ 2
1


R2

|ψX (s + t)− ψX (s)ψX (t)|2
ds
s2

dt
t2

= lim
λ→1−

1
γ 2
1


R2

|ψX,Y (s, t)− ψX (s)ψY (t)|2
ds
s2

dt
t2


β=α

= lim
λ→1−

V2(X, Y )

β=α

.

Analogously, by holding β fixed and then setting α = β , we obtain

V2(Y , Y ) = lim
λ→1−

V2(X, Y )

α=β

.

As a remark on the gamma distributions, note that if we replace aj in (5.13) by [(β)j/(α)j]
1/2 λj then the result above

generalizes to the distribution functions introduced by Griffiths [8]; see also (3.12) and (3.13).
As noted in Section 5.3, if α ≠ β then Corr(X, Y ) ≢ λ, and then it is impractical to compare Corr(X, Y ) with ρ, the

correlation coefficient in the bivariate normal case. If α = β then Corr(X, Y ) = λ, so wewill consider only the case in which
α = β .
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Fig. 1. Graphs of the difference between the distance correlation coefficient of the Kibble–Moran bivariate gamma distribution, with shape parameter α,
and the distance correlation coefficient of the bivariate normal distribution. The graphs are given for the cases in which α = 0.1, 1, and 10.

In Fig. 1, we graph the difference between the distance correlation coefficient of the Kibble–Moran bivariate gamma
distribution,with shape parameterα, and the distance correlation coefficient of the bivariate normal distribution. The graphs
are given for the cases in which α = 0.1, 1, 10. Fig. 1 suggests that the distance correlation coefficient R(X, Y ) converges,
as α → ∞, to the distance correlation coefficient for the bivariate normal distribution.

This result can be proved as follows: Let (X, Y )α denote a bivariate gamma random variable with probability density
function (3.10) where α = β . It follows from the characteristic function (5.19) that if (X1, Y1)α, . . . , (Xn, Yn)α are
independent, identically distributed randomvectorswith the samedistribution as (X, Y )α then (X1, Y1)α+· · ·+(Xn, Yn)α has
the same distribution as (X, Y )nα . Since (X, Y )α has finite mean and covariance matrix then, by the Central Limit Theorem,
(X, Y )nα − E(X, Y )nα converges, as n → ∞, to a bivariate normal distribution, so R((X, Y )nα) converges to the distance
correlation coefficient of the bivariate normal distribution.

Equivalently, as α → ∞,R((X, Y )α) converges to the distance correlation coefficient of the bivariate normal
distribution. Moreover, as the graphs indicates, the rate of convergence is rapid. Indeed, for α = 0.1, we observe from Fig. 1
that themaximum absolute difference betweenR((X, Y )α) and the distance correlation of the bivariate normal distribution
is less than 0.02; and at α = 10, the maximum absolute difference already is negligible.

5.4. The bivariate Poisson distribution

Proposition 5.7. Suppose that the random vector (X, Y ) is distributed according to a bivariate Poisson distribution, as given
by (3.15). Then

V2(X, Y ) =

∞
j,k=1

4j+k−1

j! k!
(λa)j+k A2

jk, (5.20)

where

Ajk =
1

(j − 1)!

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−1)ℓ( 12 )ℓ (

1
2 )j−ℓ−1 1F1(j − ℓ−

1
2 ; j; −4a)

for j ≥ k, and Ajk = Akj for j < k.

Proof. By (3.15) and (4.1), we have

Pn(s) = Qn(s) = E exp(isX) Cn(X; a),

s ∈ R. Substituting the definition (3.14) of the Poisson–Charlier polynomials Cn into the expectation and reversing the order
of summation, we obtain

Pn(s) = Qn(s) =

∞
x=0

exp(isx)Cn(x; a)
e−aax

x!

=

an

n!

1/2
(1 − eis)n exp


−a(1 − eis)


.
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Therefore, for j, k ≥ 1,
R

Pj(s)Pk(−s)
ds
s2

=

aj+k

j! k!

1/2


R
(1 − eis)j (1 − e−is)k exp


−a(1 − eis + 1 − e−is)

 ds
s2

=

aj+k

j! k!

1/2


R
(1 − eis)j (1 − e−is)k exp


−2a(1 − cos s)

ds
s2
. (5.21)

Changing variables in this integral from s to−s shows that the integral is symmetric in j and k; thereforewe assume, without
loss of generality, that j ≥ k. We now write

(1 − eis)j(1 − e−is)k = (1 − eis)j−k(1 − eis)k(1 − e−is)k

= (1 − eis)j−k(2(1 − cos s))k,

and apply the binomial theorem in the form,

(1 − eis)j−k
= (1 − cos s − i sin s)j−k

=

j−k
ℓ=0


j − k
ℓ


(−i sin s)ℓ(1 − cos s)j−k−ℓ.

Then, it follows that the integral in (5.21) equals

2k
j−k
ℓ=0


j − k
ℓ


(−i)ℓ


R
(sin s)ℓ(1 − cos s)j−ℓ exp


−2a(1 − cos s)

ds
s2
. (5.22)

Expanding the exponential term,

exp

−2a(1 − cos s)


=

∞
m=0

(−2a)m

m!
(1 − cos s)m,

applying the half-angle identities, sin s = 2 sin 1
2 s cos

1
2 s and 1 − cos s = 2(sin 1

2 s)
2, and integrating term-by-term, we

deduce that (5.22) equals

2k
j−k
ℓ=0


j − k
ℓ


(−i)ℓ

∞
m=0

(−2a)m

m!


R
(2 sin 1

2 s cos
1
2 s)

ℓ(2(sin 1
2 s)

2)j−ℓ+m ds
s2

=

j−k
ℓ=0


j − k
ℓ


(−i)ℓ

∞
m=0

(−a)m

m!
2j+k+2m


R
(cos 1

2 s)
ℓ(sin 1

2 s)
2(j+m)−ℓ ds

s2
. (5.23)

If ℓ is odd then the latter integral is an odd function of s, so the integral equals 0. Hence, (5.23) equals

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−i)2ℓ

∞
m=0

(−a)m

m!
2j+k+2m


R
(cos 1

2 s)
2ℓ(sin 1

2 s)
2(j+m−ℓ) ds

s2
,

where ⌊(j − k)/2⌋ denotes the greatest integer less than or equal to (j − k)/2.
Next, we introduce the formula

R
(cos 1

2 s)
2ℓ(sin 1

2 s)
2k ds

s2
=
(2ℓ− 1)!! (2k − 3)!!
(2ℓ+ 2k − 2)!!

π

2
, (5.24)

ℓ = 0, 1, 2 . . . , k = 1, 2, 3, . . .. This result is well-known for the case in which ℓ = 0 (see [7, p. 483, 3.821(10)]), and the
general case can be established by induction on ℓwith the inductive step being obtained by writing

(cos 1
2 s)

2(ℓ+1)
≡ (cos 1

2 s)
2ℓ(cos 1

2 s)
2

= (cos 1
2 s)

2ℓ(1 − sin2 1
2 s).

Hence, we find that (5.23) equals

π

2

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−1)ℓ(2ℓ− 1)!!

∞
m=0

(−a)m

m!
2j+k+2m (2(j + m − ℓ)− 3)!!

(2(j + m)− 2)!!
.
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Writing each double factorial in terms of rising factorials, and simplifying the resulting expressions, we find that this sum
equals

π

2

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−1)ℓ(2ℓ− 1)!! 2j+k−ℓ

 1
2


j−ℓ−1

(j − 1)!

∞
m=0

(−a)m

m!
22m


j − ℓ−

1
2


m

(j)m

= π
2j+k−1

(j − 1)!

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−1)ℓ( 12 )ℓ (

1
2 )j−ℓ−1 1F1(j − ℓ−

1
2 ; j; −4a).

Substituting this result into (5.23), we obtain
R

Pj(s)Pk(−s)
ds
s2

= π
aj+k

j! k!

1/2 2j+k−1

(j − 1)!

⌊(j−k)/2⌋
ℓ=0


j − k
2ℓ


(−1)ℓ( 12 )ℓ (

1
2 )j−ℓ−1 1F1(j − ℓ−

1
2 ; j; −4a).

Substituting this result into Theorem 4.1 and simplifying the outcome, we obtain the series (5.20) as a formal expression for
V2(X, Y ).

Finally, we establish the absolute convergence of the series (5.20). On applying to (5.21) the identity

|1 − eis| = |1 − e−is
| =


2(1 − cos s)

1/2
= 2


sin2 1

2 s
1/2

and the inequality

exp

−2(1 − cos s)


≤ 1,

s ∈ R, we obtain
R

Pj(s)Pk(−s)
ds
s2

 ≤

aj+k

j! k!

1/2


R
|1 − eis|j|1 − eis|k exp


−2a(1 − cos s)

ds
s2

≤

 (4a)j+k

j! k!

1/2


R


sin2 1

2 s
(j+k)/2 ds

s2
.

By the Cauchy–Schwarz inequality,
R


sin2 1

2 s
(j+k)/2 ds

s2
≡


R


sin2 1

2 s
j/2sin2 1

2 s
k/2 ds

s2

≤


R


sin2 1

2 s
j ds
s2

1/2 
R


sin2 1

2 s
k ds

s2

1/2

.

Since (2k − 3)!!/(2k − 2)!! ≤ 1 for all k ∈ N then it follows from (5.24) with ℓ = 0 that
R


sin2 1

2 s
j ds
s2

≤ π;

therefore,
R

Pj(s)Pk(−s)
ds
s2

 ≤

 (4a)j+k

j! k!

1/2
π,

and the same holds for the functions Qj. Substituting these bounds into the general series expansion (4.3), we obtain the
upper bound

V2(X, Y ) ≤

∞
j=1

∞
k=1

(4λa)j+k

j! k!
=


exp(4λa)− 1

2
< ∞,

for all λ ∈ [0, 1] and a > 0. Therefore, the series (5.20) converges absolutely. �

To calculate the distance variance, the argument given in the bivariate gamma case remains valid here. By Koudou
[14, p. 103], the characteristic function of (X, Y ) is

ψX,Y (s, t) = exp

a(1 − λ)(eis − 1)+ a(1 − λ)(eit − 1)+ aλ(ei(s+t)

− 1)

.

Therefore,

lim
λ→1−

ψX,Y (s, t) = exp

a(ei(s+t)

− 1)


≡ ψX (s + t),

so we obtain

V2(X, X) = V2(Y , Y ) = lim
λ→1−

V2(X, Y ).
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5.5. The bivariate negative binomial distribution

Proposition 5.8. Suppose that the random vector (X, Y ) is distributed according to a bivariate negative binomial distribution,
as given by (3.17). Then,

V2(X, Y ) = (1 − c)4β
∞

j,k=1

(β)j (β)k

j! k!
(1 + c2)−2β−2j22k(λc)j+kA2

jk, (5.25)

where

Ajk =

j−k
ℓ1,ℓ2=0


j − k
ℓ1


j − k
ℓ2


(−c)ℓ1(−1)ℓ2(|ℓ1 − ℓ2|)!

∞
ℓ=0

(β + j)− ℓ

ℓ!


2c

1 + c2

ℓ

×

|ℓ1−ℓ2|
m=0

(−2)m(m)|ℓ1−ℓ2|
(|ℓ1 − ℓ2| − m)! (2m)!

2k+m−1 ( 12 )k+m−1

(k + m − 1)! 2F1(−ℓ, k + m −
1
2 ; k + m; 2),

for j ≥ k, and Ajk = Akj for j < k.

Proof. By (3.17),

φX,Y (x, y)− φX (x) φY (y) = φX (x) φY (y)
∞
n=1

λnMβ,c
n (x)Mβ,c

n (y),

x, y ∈ N0. Then, it follows from (4.1) that for s ∈ R,

Pn(s) = Qn(s) = E exp(isX)Mβ,c
n (X)

=

∞
x=0

exp(isx)Mβ,c
n (x) (1 − c)β

cx (β)x
x!

.

Substituting the definition of the Meixner polynomial as given in (3.16), we obtain

Pn(s) = (1 − c)β
 cn (β)n

n!

1/2 ∞
x=0

exp(isx)
cx (β)x

x!

n
k=0

(−n)k (−x)k
(β)k k!


1 − c−1k .

Letting u ≡ ceis and interchanging the order of summation, we obtain

Pn(s) = (1 − c)β
 cn (β)n

n!

1/2 n
k=0

(−n)k
(β)k k!

(1 − c−1)k
∞
x=0

ux (−x)k(β)x
x!

. (5.26)

Noting that

(−x)kux
= (−1)kuk


d
du

k

ux,

we obtain
∞
x=0

ux (−x)k(β)x
x!

= (−1)kuk


d
du

k ∞
x=0

ux (β)x

x!

= (−1)kuk


d
du

k

(1 − u)−β

= (−1)k(β)kuk(1 − u)−β−k.

Substituting this result into the inner summation in (5.26) and simplifying the resulting expression, we obtain

Pn(s) = (1 − c)β
 cn (β)n

n!

1/2
(1 − ceis)−β

n
k=0

(−n)k
k!


(1 − c)eis

1 − ceis

k

= (1 − c)β
 cn (β)n

n!

1/2
(1 − ceis)−β


1 −

(1 − c)eis

1 − ceis

n

= (1 − c)β
 cn (β)n

n!

1/2
(1 − ceis)−β−n(1 − eis)n.
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Therefore, for j, k ≥ 1,
R

Pj(s)Pk(−s)
ds
s2

= (1 − c)2β
 c j+k (β)j(β)k

j! k!

1/2
×


R
(1 − ceis)−β−j(1 − ce−is)−β−k (1 − eis)j (1 − e−is)k

ds
s2
.

(5.27)

Changing the variable of integration from s to −s shows that (5.27) is symmetric in j and k; so we assume, without loss of
generality, that j ≥ k.

Next, we write the integrand in (5.27) in the form

(1 − ceis)−β−j(1 − ce−is)−β−k (1 − eis)j (1 − e−is)k

= [(1 − ceis)(1 − ce−is)]−β−j
[(1 − eis)(1 − e−is)]k(1 − ce−is)j−k(1 − eis)j−k

= (1 + c2 − 2c cos s)−β−j
[2(1 − cos s)]k(1 − ce−is)j−k(1 − eis)j−k

= 2k(1 + c2)−β−j

1 −

2c
1 + c2

cos s
−β−j

(1 − cos s)k(1 − ce−is)j−k(1 − eis)j−k.

By the binomial theorem,

(1 − ce−is)j−k(1 − eis)j−k
=

j−k
ℓ1,ℓ2=0


j − k
ℓ1


j − k
ℓ2


(−c)ℓ1(−1)ℓ2ei(ℓ2−ℓ1)s,

so it follows that the integral in (5.27) is a linear combination of integrals of the form
R


1 −

2c
1 + c2

cos s
−β−j

(1 − cos s)k e−i(ℓ1−ℓ2)s
ds
s2

which, after symmetrizing with s replaced by −s, equals

1
2


R


1 −

2c
1 + c2

cos s
−β−j

(1 − cos s)k [e−i(ℓ1−ℓ2)s + ei(ℓ1−ℓ2)s]
ds
s2

=


R


1 −

2c
1 + c2

cos s
−β−j

(1 − cos s)k cos

(ℓ1 − ℓ2)s

ds
s2
.

To calculate this integral, we write
1 −

2c
1 + c2

cos s
−β−j

=

∞
ℓ=0

(β + j)ℓ
ℓ!

 2c
1 + c2

cos s
ℓ
,

and apply the Chebyshev polynomials Tn, given by

cos

(ℓ1 − ℓ2)s


= Tℓ1−ℓ2(cos s) = (|ℓ1 − ℓ2|)!

|ℓ1−ℓ2|
m=0

(−2)m
(m)|ℓ1−ℓ2|

(|ℓ1 − ℓ2| − m)! (2m)!
(1 − cos s)m;

see [7, p. 1056, 8.942(1)]. Then, we see that we need to calculate
R
(cos s)ℓ(1 − cos s)k+m ds

s2
.

Using the standard half-angle transformations for the cosine function and applying (5.24), we obtain
R
(cos s)ℓ (1 − cos s)k+m ds

s2
=


R
(1 − 2 sin2 1

2 s)
ℓ (2 sin2 1

2 s)
k+m ds

s2

= 2k+m
ℓ

r=0


ℓ

r


(−2)r


R
(sin2 1

2 s)
r+k+m ds

s2

= 2k+m−1π

ℓ
r=0


ℓ

r


(−2)r

(2r + 2k + 2m − 3)!!
(2r + 2k + 2m − 2)!!

. (5.28)

Expressing these double factorials in terms of rising factorials, we find that (5.28) equals

π
2k+m−1( 12 )k+m−1

(k + m − 1)! 2F1(−ℓ, k + m −
1
2 ; k + m; 2).

Collecting together all terms, we obtain (5.25).
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Finally, a proof of the absolute convergence of (5.25) can be obtained using arguments similar to those used to establish
convergence in the previous subsections. �

6. Summary and conclusions

We have derived a general series expansion for the distance covariance and distance correlation coefficients for the class
of Lancaster distributions. This result resolves the fundamental obstacle arising in calculating the singular integrals used to
define distance correlation. We have established the utility of the result by applying it to derive the distance correlation for
the bivariate normal distribution and its generalizations of Lancaster type, the multivariate normal distributions, and the
bivariate gamma, Poisson, and negative binomial distributions which are of Lancaster type.

In computing any of the series obtained in this paper, we can derive upper bounds on the maximum discrepancy arising
from the use of a finite number of terms of the series by applying well-known methods of Kotz, et al. [12] together with
classical bounds for the various hypergeometric series appearing in the expansions.
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[20] M.T. Richards, D.St.P. Richards, E. Martínez-Gómez, Interpreting the distance correlation results for the COMBO-17 survey, Astrophys. J. Lett. 784

(2014) L34.
[21] M.L. Rizzo, G.J. Székely, Disco analysis: A nonparametric extension of analysis of variance, Ann. Appl. Stat. 4 (2010) 1034–1055.
[22] I. Sarmanov, An approximate calculation of correlation coefficients between functions of dependent random variables, Math. Notes Acad. Sci. USSR 7

(1970) 372–377.
[23] I. Sarmanov, Gamma-correlation process and its properties, Dokl. Akad. Nauk SSSR 191 (1970) 30.
[24] O. Sarmanov, Generalized normal correlation and two-dimensional fréchet classes, Sov. Math. Dokl. 25 (1966) 1207–1222.
[25] O. Sarmanov, Z. Bratoeva, Probabilistic properties of bilinear expansions of Hermite polynomials, Theory Probab. Appl 12 (1967) 470–481.
[26] D. Sejdinovic, B. Sriperumbudur, A. Gretton, K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing, Ann. Statist.

41 (2013) 2263–2291.
[27] G.J. Székely, M.L. Rizzo, Brownian distance covariance, Ann. Appl. Stat. 3 (2009) 1236–1265.
[28] G.J. Székely, M.L. Rizzo, On the uniqueness of distance covariance, Statist. Probab. Lett. 82 (2012) 2278–2282.
[29] G.J. Székely, M.L. Rizzo, The distance correlation t-test of independence in high dimension, J. Multivariate Anal. 117 (2013) 193–213.
[30] G.J. Székely, M.L. Rizzo, Partial distance correlation with methods for dissimilarities, Ann. Statist. 42 (2014) 2382–2412.
[31] G.J. Székely, M.L. Rizzo, N.K. Bakirov, Measuring and testing dependence by correlation of distances, Ann. Statist. 35 (2007) 2769–2794.
[32] C.S. Withers, S. Nadarajah, Expansions for the multivariate normal, J. Multivariate Anal. 101 (2010) 1311–1316.
[33] Z. Zhou, Measuring nonlinear dependence in time-series, a distance correlation approach, J. Time Series Anal. 33 (2012) 438–457.

http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref1
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref2
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref3
http://arxiv.org/math.ST/1210.2482v2
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref5
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref6
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref7
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref8
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref9
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref10
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref11
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref12
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref13
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref14
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref15
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref16
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref17
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref18
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref19
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref20
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref21
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref22
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref23
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref24
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref25
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref26
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref27
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref28
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref29
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref30
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref31
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref32
http://refhub.elsevier.com/S0047-259X(16)30124-5/sbref33

	Distance correlation coefficients for Lancaster distributions
	Introduction
	The Lancaster distributions
	Examples of Lancaster expansions
	The bivariate normal distribution and some of its generalizations
	The multivariate normal distribution
	The bivariate gamma distribution
	The bivariate Poisson distribution
	The bivariate negative binomial distribution

	Distance correlation coefficients for Lancaster distributions
	Examples
	The bivariate normal distribution and some of its generalizations
	The multivariate normal distribution
	The bivariate gamma distribution
	The bivariate Poisson distribution
	The bivariate negative binomial distribution

	Summary and conclusions
	Acknowledgments
	References


