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Higher Order Asymptotic Theory for Discriminant
Analysis in Exponential Families of Distributions

MasaNoBU TANIGUCHI

Osaka University, Toyonaka 560, Japan

This paper deals with the problem of classifying a multivariate observation X
into one of two populations /7,: p(x; w"'}e S and IT,: p(x; w'?') € S, where S is an
exponential family of distributions and w'"’ and w'? are unknown parameters. Let
3 be a class of appropriate estimators {(#!, w'?') of (w'!), w**') based on training
samples. Then we develop the higher order asymptotic theory for a class of
classification satistics D= [W | W =log{p(X; @ /p(X; ')}, (W1, wH)eT]
The associated probabilities of misclassification of both kinds M(1) are evaluated
up to second order of the reciprocal of the sample sizes. A classification statistic W
is said to be second order asymptotically best in D if it minimizes M(W) up to
second order. A sufficient condition for W to be second order asymptotically best
in D is given. Our results are very general and give us a unified view in discriminant
analysis. As special results, the Anderson W, the Cochran and Bliss classification
statistic, and the quadratic classification statistic are shown to be second order
asymptotically best in D in each suitable classification problem. Also. discriminant
analysis in a curved exponential family is discussed. ¢ 1994 Academic Press, Inc.

1. INTRODUCTION

First, consider the problem of classifying an observation X into one of
two populations I7,: N,(p'", £) and I7,: N,(n**', ') (we call this problem
D1). If all the parameters are known, the log likelihood ratio

Wip®,n'®, Z)=[X—(u"+p?)27 2 (n" —p?)

gives the optimal classification rule which minimizes the associated
probabilities of misclassification of both kinds. If all the parameters are
unknown, and if the training samples X", .., X{) and X{?, .., X{;? drawn
from 71, and I1,, respectively, are available Anderson proposed the plug-in
version W, = WD, 4?, £, where i, i'®, and X are the best unbiased
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estimators of p', p'? and X, respectively. However, in general statistical
theory, the best unbiased estimator of g(€) is not equal to g (the best
unbiased estimator of #), where g(-) is a known function. Since the
associated probabilities of misclassification are involved functions of the
parameters the optimality of Anderson’s W, is not obvious in the sense of
the best unbiased estimation.

In the asymptotic approach Okamoto (1963) gave an asymptotic
expansion of the distribution of W, up to terms of second order with
respect to (N, ', N, ' n""), where n=N, +N,—2. Siotani and Wang
(1977) added third order terms to Okamoto’s expansion and compared it
with that of another method. For the problem of classification between
TN, ((p", n'), 2) and IT,: N (0", '), £) (we call this problem D2),
Memon and Okamoto (1970) derived an asymptotic expansion of the
distribution of the Cochran and Bliss classification statistic up to the
order of (N, % N;2 n ?). For the problem of classification between
a,:N,u" 2) and MT,: N (n'?,Z,) (we call this problem D3), Han
(1970), and Wakaki (1990) derived asymptotic expansions for the
quadratic classification statistics up to the order of (N, N, n ')
Regarding asymptotic expansions in various discriminant problems, Siotani
(1982) gave an extensive review. However, it seems that there has been no
approach based on higher order asymptotic theory.

In this paper we investigate the problem of classifying an observation X
into one of two populations

,: p(x;w'") eS8
and

II,: p(x; w?)eS,

where S is an exponential family of distributions, and w'"’ and w'?' are
unknown parameters. Let 3 be a class of appropriate estimators (3", #*)
of (w'", w?) based on training samples. For simplicity we assume that the
sample sizes satisfy N, =n, N,=cn, where c¢ is a fixed positive constant.
Then we define a class of classification statistics by

D= [W| W=log{p(X; w'")/p(X; ™)}, 0", W) e 3]

We evaluate the associated probabilities of misclassification of both kinds
M(W) for D up to O(n?). Then W is said to be kth order asymptoticaily
best in D if W minimizes M(W) up to O(n %) (k =1, 2). A sufficient condi-
tion for W to be kth order asymptotically best in D is given. As special
results, it is shown that the Anderson W, the Cochran and Bliss classifica-
tion statistic, and the quadratic classification statistic are second order
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asymptotically best in D in the problems D1, D2, and D3, respectively. The
merits of our approach are as follows:

(1) Since the family S of distributions includes many popular families
of distributions (e.g., normal, gamma, binomial, etc.), the results are not
restricted to the family of normal distributions.

(2) We can deal with the problems DI, D2, and D3 in a unified
theory,

Therefore our results give us a very general and unified view for
discriminant analysis.

Recently Amari (1985) developed differential geometry of statistical
inference for a curved exponential family M. Following his theory, we
discuss in Section 4 the problem of classification between

I q(x; 'y eM and I, q(x; u™MeM,

where »'" and u'® are unknown parameters. Then the higher order
asymptotic results are elucidated.

2. HiGHER ORDER ASYMPTOTIC THEORY FOR
DISCRIMINANT ANALYSIS IN AN EXPONENTIAL FAMILY

A family S= {p(x; #)} of distributions is called an exponential family if
the density function can be written in the form

p(x; 0)=exp{0'x,— y(0)} (2.1)

with respect to some carrier measure P(x), by choosing an adequate
parametrization 6 = (6') and adequate variables x = (x;) (e.g., Amari, 1985).
Here we adopt the Einstein summation convention, The parameter 8 is
called the natural parameter of the exponential family. This family S
includes many popular families of distributions (e.g., normal, gamma,
binomial, etc.).

ExampLE 1. Consider the class of multivariate normal distributions
S={N,n Z)}, where p=(yu,,..,u,) and Z={o,}. The probability
density function is given by

(2r) 72 {det L'} 2 exp{ — (v, ~ w;) 6%y, — 1,)/2}, (22)

where ¢7 is the (i, j)th element of £~ ! If we define the parameter
0=(6',..0), r=p+p(p+1)/2, by
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0 =puo?, j=1,.,p,
1 __ 111 2 _ 1
gl = _lgl g7 = _Lge,

62p+1_____0,12’ 02p+2=_0.13 ,6r= ___o,p—l.p’

5 e

and the new variable x=(x,, .., x,) by

_ 2 2
Xy =Pl Xp= Vs Xy 1= Pl e X2, = Vs

(2.3)
x2p+ 1= ViV, x2p+ 2= ViV s X = Yp-1 yp’

then (2.2) can be rewritten as (2.1), where

1 o 1 -
w(0) :’2_’ log 2n + 5 log det £ 45 (8", ... 0) £7(8",...6"),

2
with
_29p+1 _92p+l _93;7——[
= sym . 6
—260%

In this case the dominating measure P(x) is concentrated on the manifold
defined by the relation (2.3). In what follows, it is convenient to introduce
a new coordinate system w=(w*)=(w',..,w"), so that 8=6(w). By this
coordinate system, we also denote S = { p(x; w)}.

Now consider the problem of classifying a p-dimensional observation
into one of two populations

o px;w)eS
and

II,: p(x; w'?)eS,

where w=(u',v') with u=(u,,..,u,) and v=(vy,..,0v,), t+s=r,
reparametrizing by ' =0(w) for i=1,.,sand '=0(v) for i=s+1, .., r,
and furthermore w* = (%", vy, u® =@, ., u®y (k=1,2). This
setting includes many classification problems as special cases.

ExampLe 2. Classification between J1,: N,(n'", 2) and I7,: N (p?, 2),
where ' = (u{", .., u$"Y (i=1,2) and X = {a,}, becomes our problem if
we set u=(u", .., ul’y with s=p and v=(0,,..,0,, 61, 053, .,
6, 1,) with 1=p(p+1)/2.
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ExampLE 3. Classification between IH,: N,((u""", n'), 2) and I
N?, '), Z), where p@=(ul", ., p) (i=1,2), n=(n,n,_,),
and X' = {0}, becomes our problem if we set ¥ = (u{", .., u!) with s =4
and v=(n), .., Np_4s Oi1s 0y Oz Oy3,.,0,_,,) With t=p—g+
pip+1)/2

ExaMpLE 4. Classification between J7,: N,(p'", Z,) and 11,: N,(p®, Z,),
where p''=(u{", ., u") and X, ={6{'} (i=1,2), also becomes our
problem if we set

o o B v .
U= (ul, o, 5, ol s 0, o2, 6\, .6 L)

with s=p+ p(p+1)/2 and 1 =0.

Now we return to the general problem. It is desired that the observation
X be classified into I1,: p(x; w"') eS8 or IT,: p(x; w'?)eS. If both the
parameters w'"’ and w'®) are known the optimal classification rule is based
on the statistic

W(X; wh, w®y=log{ p(X; w")/p(X; w?)}. (2.4)

That is, the classification regions R,={x; W(x;w'", w?)>0} and
R, = {x; W(x; w", w?) <0} minimize the misclassification probability

[ pocw®ydPe)+ [ plx; w®) dP(x)

(e.g., Anderson, 1984). In most applications the parameters w''’ and w'?
are unknown and must be inferred from samples, one from each popula-
tion. To treat this case we investigate the behavior of the misclassification
probability

P{W(X; »V, ) <0 IT,} + P{W(X; W, w2) >0 I,}
= pi l)(I | wiil) 4 pt 21('}: | w2, say,
where 1= (4", 4%, ¢’y is a nonrandom point in a neighborhood of
A=W, ', vy,
Initially, we make the following assumption.
Assumption 1. The misclassification probability

PRI w4 PG W) (=M(R), say)

is five times continuously differentiable with respect to 1 in a neighborhood
of 4.
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Let 1* and A* be the ath component of 4 and A, respectively, and
put d=dimZ=dim A We abbreviate @/éi* as &, (a=1, .., d). Since
Wi(X; w'", w?) gives the best classification region, M(Z) is minimized at A.
It follows from Assumption ] that

o, M(2)=0, a=1,..4d (2.5)
and

the matrix {3,0,M(A);, f=1,..,d} >0, (2.6)

where the inequality >0 means nonnegative definiteness. By a Taylor
expansion we have

M(Z) = M(2) + 33" — 2*)(1# — A9){8,8,M(1)}
+ 1A% = 2%)(AF = 2P)T7 = A7) {8,8,0,M(4)}
+ (2% — AP — APYAT — A7) (A%~ 2°){8,0,0,0, M(4)}
+ higher order terms of (71 —A). (2.7)

We treat the case in which we have a sample from each of two exponential
family distributions. That is, a sample X{",., XY is drawn from
,: p(x;w)eS, and X, ., XY) is drawn from I7,: p(x; w'*)eS. Let
X% be the jth component of X*, k =1, 2. Then the log likelihood based
on X{", ., X{) and X{?, ., X§) is

K} N;

Ny 5
LW, u? 0)=3% /@ v) Y XP+ 3 /@ 0) Y XP

=1 i=1 j=1 i=1

14 Ny N3
+ Y 0oy ey xpl

J=s5+1 i=1 i=1

= N (8(w')) — Ny (0(w'™))). (2.8)

To develop the asymptotic theory of estimation of 4 based on the training
samples, we need the following assumptions.

Assumption 2. N,=n, N,=cn, where c is a fixed positive constant.
We deal with a class of estimators 4= (", 42, ¢')’ of 4, which satisfy
Assumption 3.

E(i)—i=o0(1), (29)

and 0, =0/6A% and E are interchangeable.
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To avoid many sophisticated regularity conditions we simply assume the
validity of the Edgeworth expansion for A in the following form (see
Bhattacharya and Rao, 1976; Bhattacharya and Ghosh, 1978).

Assumption 4. Let P, be the probability distribution of \/n(i—4)
(=v, say). Then it holds that for every bounded, Borel-measurable function
f of v on R,

—o(n~2), (2.10)

iv/h_er‘e F,=F,(v), v=(v", .. v7), is the formal Edgeworth expansion of
n(A—4).

Let 3 be the class of estimators 4 satisfying all the assumptions above.
We propose the plug-in version of W(X;w'", w®)) as a classification
statistic and denote the class of them by

D= {W | W=WX;w, @), with w® =@, 6y, i=1,2}

Sometimes the notation W = W(i) is used. Then the misclassification
probability based on WeD is E{M(ﬂ)} where the expectation is taken
according to the distribution of 4. The purpose of this paper is to determine
which W(1) (¢ D) minimizes E{M(4)} in the sense of asymptotic theory
with respect to n. The following lemma gives a useful evaluation.

LEmMma 1. For ieB,

E{M(i)} = M(3) +}{2,0,M(2)} E{(d* - 2)(4" - 2")}
+1{8,0,0, M(A)} E{(A*— A*)(AF — AP)(A7 = A7)}
+24{0.0,40,0,M(2)}

x E{(A% = A)AP = iB) 07 = 242 =A%)} + o(n ™ 2),

where i* is the ath element of A.

We give the proofs of lemmas and theorems in Section 5. Now we can
find a classification statistic W(A)eD which minimizes EM(A) up to order
O(n~"). Such a classification statistic W(A) is said to be first order
asymptotically best. Discussion in the proof of Lemma 1 leads to

E{M(1)}= M(A)+ - 0.0, M(2)) } E{/n(A* = 2%) /n(if — "))

+o(nY), for ie3. (2.11)
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In view of (2.11), W(4) is first order asymptotically best if 1 minimizes
(0,0, M(})} E{/n(3* —i*) /n(if — 1%)}. (2.12)
Let # be a (d x d)-matrix whose (a, f)thelementis [, =n"'E(6,L)dzL),
where L is the abbreviated notation of (2.8) and d, = d/64* Then we have

THEOREM 1. A classification statistic W(Ai) is first order asymptotically
best in D if the estimator A has the stochastic expansion

. 1
\/;1(}.“~/{“)=1’”76’HL+0P(1), x=1,..4d (2.13)
n

where 1°F is the (a, B)th element of F .

The following corollary holds since the first order stochastic expansion of
the maximum likelihood estimator is given by (2.13) (e.g., Takeuchi and
Morimune, 1985, p. 190).

COROLLARY . Let }:ML be the maximum likelihood estimator of A. Then
W(Awuw) is first order asymptotically best in D.

We proceed to discuss the higher order asymptotic optimality in a class
of classification statistics. Let % be the class of estimators 4 which satisfy
the following conditions:

(i) A has the stochastic expansion
. 1 )
\/ﬁ(,{“—;f)=2“+7_— Q*+o,(n™ %),  a=1,.,d  (214)
n

where Z*=1*n""2 0L{34", and Q*=0,(1).
(ii) The second order bias of / is evaluated as

E{/n(* =iy = (A Sn+on "), a=1,.,d  (215)

where u*(4)= E(Q*}, and is continuously differentiable with respect to 4.

We also introduce a class of bias-adjusted estimators defined by
I
n

@*:{ﬁ.*:(i", ey a2 gL ), ze@}.

For this class #*, define the class of classification statistics by

Fr={W*| W*=W(i*), i*cy*}.
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If W(i*)e #* minimizes E{M(4)} up to order O(n"?), it is said to be
second order asymptotically best in & *.

THEOREM 2. (1) For A*e%*, it holds that
: 1
E{M(A*)} = M(2) + 5~ {0,0,M(1)} - 1"
1 1 » -
+55 {00, M) H{Cov(Q, @)} + 5 {0,050, M(4)} - ™

(8,040,0s M) {IPI° + I7IP 4 1%} 4 o(n~?),
(2.16)

+ 24n?

where ¢**" are independent of the choice of an estimator in #*.
(2) Let ‘,fm be the bias-adjusted maximum likelihood estimator of A.
Then W* = W(A¥,) is second order asymptotically best in F*.

It may be noted that (2.16) describes the higher order asymptotic
structure of E{M(A*)} clearly. Concrete examples of our results are given
in the next section.

3. EXAMPLES

In this section we show that the resuits in Section 2 give a unified view
of many multivariate works done for Examples 2, 3, and 4 and that some
famous classification statistics are second order asymptotically best in & *.
For a general review on asymptotic expansions of classification statistics we
may refer to Siotani (1982).

(1) Classification between I1,: N (0", X) and I1,: N ,(0'®, X) stated in
Example 2. Let
Wy=[X—HX"+XP)) § (XD X,

where

Ni
XO=N'Y XD (i=1,2),

j=1

1 M - _
e R DI IEE LA L

i=1

N2
+ Y (X® X)X —Xm)'}, (3.1)

i=1
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which is known to be Anderson’s classification statistic (e.g., Anderson,
1984. Okamoto (1963) gave the second order asymptotic expansion of W,
and further, Siotani and Wang (1977) gave the third order one. In our
notation we can set

A= p? (vec XYYy,  I=@", @, (vec L)Y,

where vec Z—(a“,... Cpps i3y 03,000, ,) and vec £ = (6, s & pp>
&IZ, 613,-- [P ,,) Then
M(Z)_J exp (x—a,)%/2b} dx
+ ——CX —(x—a,)*/2b} dx,
jo 2 P 2)72b)
where

a= [0 — 3@ +@?)) £ ‘(u“’ RY) (=1,2)

=(fl“) (2>) 5oy ( () _ )
Also, the maximum likelihood estimators of u'", ‘¥, and X are given by
TS A T

and
. N +N,-2
Z‘MLz__li_;_ s
N, + N,

respectively. It is easy to see that a bias-adjusted maximum likelihood
estimator of 2 is given by

. " 2 .
F¥, =2 b
ML ML+N1 TN, <ML
and
S—ZhL=0,n"?). (32)

In view of (3.2), the difference between S and L%, does not disturb our
asymptotic theory up to O(n~?). Therefore, from Theorem 2 Anderson’s
W, is shown to be second order asymptotically best in & *.

Next we discuss the following covariate discriminant problem.



DISCRIMINANT ANALYSIS IN EXPONENTIAL FAMILIES 179

(IT) Classification of X = (x’, ¥'Y into one of the two populations
N (", 'Y, Z) and IT,: N,((n?,n'), X) stated in Example 3. Let
XO = x, y Y, X = (x0T y ) and XP = (x(P y DY, L X =
(x ‘ff,)’ y&%)) be the training samples from /7, and /T, respectively. Cochran
and Bliss (1946) proposed the classification statistic

W= [x* — 3(XF +%3)] 5, &} —x¥),

where x* = x — §,5,'y, X li,- — 8185,V X, = XX XN, ¥ =
Zk-l Y2"/N., 51142‘511—51252/2 S,,, and

S=<Sll S]2>’
SZI S22
which is given by the same definition as (3.1). Memon and Okamoto

(1970) gave the second order asymptotic expansion of the distribution of
Wgg. In this case

WX w'D, w'®) =[x = Zp2p y—m) — 3+ u?)] 255w —p?),
(33)

where £,,,=2,, - X,,2,,'%,, and
2::(211 212).
2y n

A=, 0@, (vec ZY),  i=(j'

We set
YRR, (vec £)Y,

where
fz(z‘jll 2:12)
221 222
Then,
= 0 1 5 .
M(A)_j'm\/ﬂexp{-(x—c,)/zh,dx
= 1
+ exp{ —(x —c,)/2h) dx,
fo m p{ {2k}
where

o,=[p?"=E,E5 (m—8) — RO +a) ) ELLED D) (1=1,2),
h=@D—-q?y Z05,-2L,E5Y 20, -£,585"Y £ 5@ — ),
211.2=f11‘flzf{2221a
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and [ is the g x q identity matrix. The likelihood of the training samples is

. , 1 ]
L=Q2m) 7N M2 E ] [Z5] ] MM 2 exp [—5 tr 2.}

2 N;
x{z T Ix - — 5, v —m)]

i=1 k=1
x [x)—p =X, Z 0Ny *n)]’}

2

1 N ) .
—itrEn'{Z Y (yL”—n)(yL"—n)'H- (3.4)

i=1 k=1
By a slight modification of Fujikoshi and Kanazawa (1976) we can see that

the maximization of L with respect to p'"), p, n, 2,2 5", and 2. is
. u N, <225 1.2
achieved at

where

Q:<Qn ?12>=N1+N2—2
Q2,0 2y

As in the previous example it is shown that the Cochran and Bliss
classification statistic W&y is asymptotically equivalent to the plug-in

version W(A#%,) of W. Thus it follows from Theorem 2 that W¥, is second
order asymptotically best in F *.

We end this section with the following example.

(IIT)  Classification between I1,: N, (0", Z\) and I1,: N,(n'?, %) stated
in Example 4. In this case,

WX W, W)= — (X —pD) 2, (X —p )+ YX —p@) £, /(X —p'?)
—3log |2 2, = 50", n? 2, F,)  (say).

When &, and 2, are known and proportional, Han (1969) derived an
asymptotic expansion of the distribution of Q(X!,X?, ¥,, X,) up to
O(n~?). For the case in which 2, and X, are unknown circular matrices,
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Han (1970) gave an asymptotic expansion of the distribution of
(X1, X2 8., 8,) up to O(n— "), where

UM o
Si=w—7 L (XP-XOXO-Xy  (i=1,2)

i j=1

Under the assumption that X, and X, are proportional and unknown,
Wakaki (1990) derived an asymptytotic expansion for Q(X'", X¥.s,, S,)
up to O(n™'). Returning to our general result in Theorem 2 we can see
that the plug-in version W(i¥,) of W is asymptotically equivalent to
—10(X™M, X, S, S,) up to O(n " ?) without the circular or the propor-
tional assumption. Therefore all Qs in the works cited above are second
order asymptotically best in & *. However, if we do not assume some
special covariance structure, the explicit expression for M(4) is usually
difficult to obtain. If we assume X, =y 'I,, y,>0 (i=1, 2), where I, is the
p X p identity matrix (see Wakaki, 1990), we can evaluate M(1) as follows.
Let

A=, w vy,
Z=(~(1)', TN A
N
a=§()}2_ﬂ/l),
l ?1“}72 }7‘_}72 ’
T Yita¥2 - . i o
bi=2('}7 ]_-; ) (”(l)_u(Z)) (ll(”"ll(z’)‘-z‘logyl/yz
i 2
)/‘,-2'})2 PYi

(1 =) (" = p) + == log /72,
Then it is not difficult to show that

ME=] oxDdc+ L 0(x: 7) dx,

where @,(x; ) is the probability density function having the characteristic
function

e"™(1 - 2itd) ~"? exp{itd,a/(1 - 2i1d)},  reR’.
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4. DISCRIMINANT ANALYSIS IN A CURVED EXPONENTIAL FAMILY

Amari (1985) developed differential geometry of statistical inference for
a curved exponential family

M = [q(x;u) | q(x; u) =exp{0'(u) x,— Y(B(u))}]
embedded in the exponential family

S=[p(x;0) [ p(x; 8) =exp{O'x,— y(0)}],

where u = (u', ..., u?)" and g <r=dim 6. Here the term “curved” stems from
the requirement that the dimension of the minimal sufficient statistic exceed
that of the parameter space. In this section we consider the problem of
classifying an observation X into one of two populations 71,: g(x; u""') e M
and I7,: q(x; w'®)e M. where vV = (4?1, ., u'?9) (i=1, 2} are unknown,
and u'" #u'?. Suppose that X{", .., X\ and X{*, ., X'J) are the training
samples drawn from 7, and I7,, respectively. Henceforth we make the
following assumptions;
(i) N,=cN, for some constant ¢ > 0.

(ii) The partial derivatives ¢/d06', 8/du’, etc., exist up to necessary
orders and are interchangeable with E.

(i) The Edgeworth expansions for the estimators (7, i, etc., are valid.
The log likelihood based on the training samples is written as

L (l) uZl Z 0’(14'”) Z X11l+ Z gj(u(’l Z X(2l

i=1 i=] i=1 i=1

= N (0(u")) = Ny (8(u?))), (4.1)

where X *' is the jth element of X{*’ (k =1, 2). Sufficient statistics here are

L%

Define 7*'= (T, ..., T*¥?y (k =1, 2). It is easy to show that

E(T")=2,y(Bu'"))=n""  (say),
E(T)=04(0u'?))=n®  (say),
where 0,=0/00’ (see Amari, 1985). The parameters n' D= (gl gy
(k=1, 2) are called the expectation parameters. Since they depend on the

unknown parameters u*’ (k=1,2), we sometimes use the notations
" =n“w®) (k=1,2).
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Turning to the estimation problem, consider the estimation of u'®
(k=1,2)in M by T® (k=1, 2) in S. This leads us to the equations
T(“='](”(ﬁ“)), T(2)="121(ﬁ(21)

which cannot be solved in 4% (k=1, 2), since dim T%'=r > g =dim u'*’,
Therefore we introduce new exira coordinates v = (p%) ! . ptkhr—ay
(k=1,2) so that w® = (w1 w*-r) = (@ ) become coordinate
systems in S. Then the equations

T“)='7(”(ﬁ“), ﬁll))’ T(2)=r[(2)(12(2), *(2)) (4‘2)

can be uniquely solved with respect to 4’ and 6%, where we note that the
conditions 7 (u®, 0) = n"(u*) (k=1,2) are assumed. Fixing u'"’ and
u®, we locally define

A(u(”, u(21)___ {“ | n= (n(l)" ,I(Z)‘)" ult = 'j(”(’?“))a u'? = ﬁ(z)(nu))},

which is called the ancillary family associated with the estimators #'"’ and
#'¥. We can see that the determination of the estimators &%’ of «'*) is in
one to one correspondence with the set A(u'"), u'?).

For our classification problem,

W(X; ut™, u®) =log {g(X; uV)/g(X; u®)}
gives the optimal classification rule if #'") and «‘*' are known. Define
M (Z)=P{W.(X;a", a?) <0 | I} + P{W(X;a", ) > 0| M,},

where Z,= (", 4*") is a nonrandom point in a neighbourhood of
Ac= (@, Py, We set

F={A | A= @", a?y, 4" and 4® are defined by (4.2)

and ne A", u?) if U eM (k=1,2)},

D= (W, | W= WX; ", a®), I = (4", d®") e %},
Sometimes the notation W, = W,(1,) is used. The classification statistic
W.(4.) is called kth order asymptotically best if it minimizes EM_(4.) up
to order Oén %) (k =1, 2). We state the following theorem without a proof

because the discussion of Section 3, together with that of Chapter 5 in
Amari (1985), proves it with a slight modification.

THEOREM 3. Assume that

d g
W=E {————5ulk,,a log g(X; 1'*") =5 log q(X;n"")}=O, (4.3)

683/48,2-2
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for k=1,2; a=1,...q, and k=1, ..,r—q, where g are evaluated at
n* = N (u®), 0). (We simply denote this assumption by A(u'", u'?) L M.)

(1) If an estimator 4 € & satisfies A(u'", u?) L M, then W.= W(4.)
is first order asymptotically best in &,. In particular, if Aoy is the maximum
likelihood etimator of A_, then Wc(icML) is first order asymptotically best
in Z..

(2) Let W ¥ be the class of estimators 4* which satisfy A(u'", u®y 1 M
and are bias-adjusted in the manner of Section 2, and define

FEr={WE| WE==W(i¥), 2t e W)

If EQ‘ML is the bias-adjusted maximum likelihood estimator of A, then
W.(A%aL) is second order asympiotically best in F ¥.

ExaMpPLE 5. Consider the problem of classification between I7;:
N (n(u"), Z(u'")) and I1,: N ,(n(u'?), Z(u?)), where the functional forms
of u(-) and Z(-) are known, and dim ') =dim «'¥ < p+ p(p+1)/2. It is
assumed that #'V#u® and #'" and «'® are unknown. The model
N (n(u'"), Z(u'")) includes the factor analysis model, etc., as special cases
(see Lawley and Maxwell, 1971). All the results in Theorem 3 can be
applied to this problem.

5. PROOFS

Proof of Lemma 1. Since M(Z) is the sum of two probabilities, it is
bounded by 2 almost surely. It follows from Assumption 4 that

E{M(i)}:deM(2+—Lv) dF,(v) +o(n ). (5.1)

NG

Using a fundamental property of the Edgeworth approximation, if we
choose a positive constant ¢, appropriately, we obtain

j M</1+—1-—v> an(v)szf dF,(v)=o(n ). (5.2)
4 4

7
where 4, = {v| |v'| <cq /logn, ..., [vY| <cy+/logn}. Hence, by (5.1)

E{M(i)}:L M(2+ o) dr )+ o(n2). (5.3)

)
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We expand M(4 + (1/\/;)1)) of (5.3) in the fifth order Taylor series, leading
to

E(M(D} =] M)+ 0{8, MUD} /it et 2,0, M(D) 20
1
+ - +Zl~— voP0°{0,040,8,M(A)} ) dF,(v) + o(n 7).  (5.4)
Recall that 6,M(4)=0, and note Lemma 2.1 of Bhattacharya and Ghosh
(1978) to complete the proof.
Proof of Theorem 1. Differentiation of (2.9) with respect to A* yields

E{\/Z(Z”—iﬂ)j_— (61L)}=5(az,ﬁ)+o(l), (5.5)
n

where d(a, §) is Kronecker’s delta. Let M and V(4) be the (d x d)-matrices
{0 M(/l)} and E{\/— (A% — i%) \/_(/1”~/5)}} respectively. From (2.12),
if ~ minimizes tr MV(4) subject to (5.5), then W(A) gives the first order
asymptotically best classification. Since M >0 by (2.6), a solution of our
problem is given by the solution. of the problem

min; V(1)
(5.6)
subject to (5.5),

where min is taken in the sense of the nonnegative definiteness >. From
(5.5), the solution must satisfy

Jnix == aﬂ\-/_— (94L) + lower order terms (5.7)

for some matrix {A**}. Substituting (5.7) into (5.5) we have A** =1~

Proof of Theorem 2. We do not give the details of calculation because
they are very troublesome, and the methods are essentially similar to those
of Takeuchi and Morimune (1985, p. 192), Amari (1985), and Taniguchi
(1991). Let S*=/n(i* — A7), a=1, .., d. Then it can be shown that

E(5°5"8")=cum(S*, S*, §7) +o(n"'?)
1
=3 T

1
-3 E{Z*Z"Z7} +o(n™ '), (5.9)

L0, I5 4 170 17 + 1740, 1]
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where cum{,, } is the joint cumulant of {,,}. Here E{Z*Z%Z"}=
O(n~'"?) and is independent of the choice of an estimator. Also, we can
show that

E(S*S"S'S%) =cum(S* S*)cum(S?, %)+ cum(S* S7) cum(S*, $9)
+cum(S* S%) cum(S¥ S)+O(n 1) (5.10)
Combining (5.8), (5.9), and (5.10) with Lemma 1, we obtain (2.16) for

iFedy*
Turning to the proof of (2), let

Z.=n "23,L, Zyg=n "2{0,0,L—Ed,0,L),
1 .

Ry =E (; 2,040, L), T =E(Z,Z,),

Koyg, = NE(Z,Z,Z,), My s=E(Z,,Z.,).

Then, for A* e #%*, the following relations hold:

E(Z,;ZVQ“) = _[:t:'(Ja’ﬂv + Ka'[i'y) + 0(1 ), (51 1 )
E(Z, 7,30 = 1731, 17 T ys+ My oyt o(l).  (5.12)

Here 0% = Q* — u*(4). In Eq. (2.16), only the matrix H(Q) = {Cov(Q* Q*)}
depends on the choice of an estimator. Therefore we are led to the problem

min H(Q)
¢ (5.13)
subject to (5.11) and (5.12),

which is similar to (5.6). We can show that the solution of (5.13) is given
by

Q* = I"1"Z, Z,+ LU I*INR,Z, 7.,  a=1,..d,

LY

which are exactly the second order terms in the stochastic expansion of the
maximum likelihood estimator of A.
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