JOURNAL OF MULTIVARIATE ANALYSIS 48, 315-346 (1994)

Holomorphic Processes in Banach Spaces and
Banach Algebras

T. J. RaNSFORD*

D.P.MM.S., Cambridge CB2 18B, United Kingdom

The main result is that if F is an analytic multifunction and B, is a complex
Brownian motion, then F(8,) is a subholomorphic process. It has previously been
shown that such processes enjoy many interesting sample-path properties. As
special cases of the theorem above, we recover

fholomorphic = f(B,) is a local conformal martingale,

¢ subharmonic = ¢(B,) is a local submartingale.

We also prove a stochastic form of Radd’s theorem, and a holomorphic selection
theorem for convex-valued subholomorphic processes of a nature quite different
from the usual type of measurable selection theorem. #1994 Academic Press, Inc.

INTRODUCTION

If Fis an analytic multifunction and B, is a complex Brownian motion,
then what sort of stochastic process is F(B,)?

Analytic multifunctions are a set-valued generalization of holomorphic
functions. Though originally conceived in the context of several complex
variables [13], they have found applications in a number of other areas,
including spectral theory [15, 20, 22], uniform algebras [20, 21], inter-
polation spaces [16, 22, 24], polynomial hulls [3,23], and complex
dynamics [2]. The question above is prompted by the desire to extend the
classic theorem of P. Lévy that a holomorphic function f of B, is itself a
time-changed Brownian motion. Lévy’s theorem can be proved via the
intermediate step that f(B,) is a local conformal martingale (see [8]), and
we attempt to answer our question in these terms. In fact what we prove
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is that F(B,) is a subholomorphic process. This class of set-valued processes
was introduced in [ 18], where it was shown that they possess many inter-
esting sample-path properties, among them: a downcrossing inequality,
forward and reverse martingale convergence theorems, non-entry into
polar sets, local and global maximum principles, an interpolation theorem,
and assorted results concerning variation of size. As particular cases of our
theorem, we recover:

fholomorphic = f(B,) is a local conformal martingale;

¢ subharmonic = ¢(B,) is a local submartingale.

Since there are some important analytic multifunctions defined on infinite-
dimensional spaces, for example, the spectrum in a Banach algebra, we
develop our theory in the setting of a general Banach space.

This paper is a sequel to [18] and leans heavily on the results therein,
but for the convenience of the reader all the main definitions are repeated.
Here, in more detail, is a plan of the contents. After establishing some basic
notation in Section 0, we extend the theory of holomorphic and subhar-
monic processes to infinite dimensions in Sections 1 and 2, respectively. The
key result that an analytic multifunction of a holomorphic process is sub-
holomorphic is proved in Section 3, and then applied to Brownian motion
in Section 4 to give an answer to the question posed above. The paper
concludes with two further links between holomorphic, subharmonic and
subholomorphic processes: a stochastic form of Radé’s theorem in Section 5
and a holomorphic selection theorem in Section 6.

0. PRELIMINARIES

This section summarizes the background material on stochastic
processes used in the paper. For the most part we follow the notation and
conventions of [4], and this is also a good reference for further details.

Throughout the paper it is assumed that we are given a complete prob-
ability space (22, X, P), together with (except in Section 4) a complete, right
continuous filtration F. By the latter is meant a family {%#,_} U {# :0<
r< oo} of sub-o-fields of X satisfying

(a) FH_cFKcF (0<s<i<w),
(b) Fo=0(U,co %)

(C) %=ﬂ\>l‘%(0<t<w)a

(d) P(A)=0=>Ae%F _.

A process is a function X defined on [0, oc] x 2 which is (Z[0, ]
® 2')-measurable, It is adapted if, for each te€ [0, v ], the map w— X(1, )
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TP L)

is #-measurable. It is customary to write X(t, w) as X,(w), and the “w” is
usually omitted. Given I7e #[0, co ]® 2, the indicator of II is the process
1,; defined by

(i (hw)ed,
1”(”“’)—{0 it (4 w)¢ll

If AeZ then 1 ,qx, is usually written simply as 1 ,.

Evanescent sets, namely subsets of [0, oo ] x 4 where P(A) =0, are always
to be treated as negligible. Consequently, we identify indistinguishable
processes, that is, processes X, Y such that {(r,w): X, (w)# Y, (w)} is
evanescent. Thus a statement like “X is a continuous process” really means

P({we: t— X (w)iscontinuous on [0, c0]})=1.

Note that a countable union of evanescent sets is again evanescent.

A random time is a map T: Q — [0, oo ] which is Z-measurable. We iden-
tify random times which are equal almost surely. Let X be a process and
let S, T be random times. The stopped process X7 is defined by

X'(1, 0) = X(T(@) A 1, ),
and the delayed process X by
SX(t, w) = X(S(w) v t, w).
We write ((S, TT for the stochastic interval
{(r, )€ [0, 0] x2: S(w)<t1<T(w)},

with similar definitions for [S, 7)), ((S, 7)) and [§, T]. Notice that unlike
[4] we allow points of the form (o0, w) to be included in ((S, T} and
[S, T]. If (T,) is an increasing sequence of random times, then

T, 1 T'means {J ((0, 7)) = ((0, T)),

k21

T, 11 Tmeans | (0, T,] = ((0, T)).

k=1

We shall need a version of Zorn’s lemma for random times.

0.1. THEOREM [18, Thm. 0.1] Ler I" be a non-empty set of random times
such that, whenever (T,) is a sequence in I" and T, 1T, then Tel. Then I’
has a maximal element, ie., there exists Sel such that (S'el” and
S=8)=5==-.
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A random time T is a stopping time if {weQ:T(w)<t}eH for all
te [0, oo ]. It is a predictable time if there exists an increasing sequence (7)
of stopping times, satisfying {weQ: T, (w)=0}€e%_ for each k, such
that 7, 17 T. In fact by [4, Chap. IV, Sect. 77] these (T, ) may themselves
be chosen to be predictable times.

The predictable o-field on [0, «c]x (2, denoted by £, is the o-field
generated by all sets of the form {0} x4 (4e %, )and (1, ©]x B (Be %)
(together with the evanescent sets). It can be shown that a random time T
is a stopping time if and only if ((7, o] € 2, and that it is a predictable
time if and only if [T, oc] €2 (see [4, Chap.1V]). A process X is called
predictable if it is #-measurable; examples include all adapted, left con-
tinuous processes X such that X, is .% -measurable. Predictable times
often arise as the first exit time of a predictable, right continuous process
X from an open set U. This is a consequence of the next theorem applied
with 7= {(f, w): X,(w)¢ U}.

0.2. THEOREM [4, Chap. 1V, Sect. 87(d)]. Let IT1e P, and suppose that
IT is closed from the right (ie., if (t,,w)ell for all k and t |1, then
(1, w)ye Il). Let

Dy(w)=inf{120:(1, w)e T},

where inf J = co. Then D is a predictable time.

We shall need some notation for set-valued processes. This is taken
directly from [18, Sect. 3. Writing x(C) for the collection of all compact
subsets of C (including ¢F), our processes will be maps K: [0, co] — x(C)
(defined, as usual, up to evanescent sets) such that, for each open U in C,

{(t, w): K(w)c U} eB[0, 0]®@2.
Given such a K, and given ITe #[0, 0] ® X, we define the process Ky, by

K1, w) if (r,w)ell,
(%] if (r,w)¢ll

When 7= [0, 0] x A for some A€, we frequently abuse notation and
write Ky , instead of Ky ;. The notations K™ and *K are defined just as for
single-valued processes, and we write K*’| K to mean that (K*") is a
sequence of processes such that, for all (¢, w)e [0, o],

KXH(I’ (U):{

K@) > KP(w)--- and ) K¥(w)=K, ()

k=1

Given a process K : [0, o] — k(C), we say that:
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(a) K is bounded if there exists a bounded subset B of C such that
K,(w)c B for all 1, w;

(b) K is predictable if, for every open U in C, the set
{(t, w): K(w) < U} belongs to 2;

(¢) K is upper semicontinuous if, for almost every we 2 and every
open U in C, the set {r: K(w)= U} is open in [0, oo ];

(d) K is weakly right lower semicontinuous if, for almost every we 2
and every closed C in C, the set {r: 3K, (w)<= C} is closed from the right.

Measurability problems for such processes are considered in {19], but
everything needed in this paper is easily deducible from Theorem 0.2.

A real-valued adapted process X is a submartingale (with respect to F)
if, whenever 0<s<r< oo, the random variable X, is integrable and
satisfies E[X,| %] = X,. If both X and — X are submartingales then X is a
martingale. A complex-valued process is a martingale if both its real and
imaginary parts are.

Given a random variable Ye L(Z; C), the process X,=E[ Y| %] has a
right continuous version which is unique up to indistinguishability (see
[4, Chap. VI, Sect.4]). We always take this version. If, moreover,
Ye L}#,_;C), then X is a right continuous martingale which satisfies
sup, E|X,|*< o0, and conversely, every such martingale has the form
E[Y|#] for some unique random variable YeL*(%,.;C) (see [4,
Chap. VI, Sect. 4, 6]). We denote by .# the set of all such martingales. The
vector space .# thus inherits the Hilbert space structure of L*(Z, ;C),
namely, the inner product

(M,N):=E[M_N_] (M,Ne .#),

and the corresponding norm

IMy:=(EM,|*)"? (MeH).
Given a subspace & of #, we write

Fti={MeM (M, Ly=0forall Le £},
P:={Me M McZ},
#:={Le¥:Liscontinuous and Lye L (%,_)},
P4={Le  :Le(¥)},

Y :={Le¥ :Ly=0},
%, :={Le ¥ : Lisreal-valued}.
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If &’ is another subspace of .# and ¥ < ¥*, then ¥ @ ¥’ denotes the
orthogonal direct sum.

Finally, we mention briefly how this extends to vector-valued processes.
More details can be found in [5]. Let (£, |-]) be a complex Banach space,
which we also assume is separable to avoid measurability difficulties. We
denote by .#(E) the space of processes X: [0, o] — E of the form X, =
E[Y | #], where Ye L)(#, ; E). Each X e .#(E) is a right continuous mar-
tingale satisfying sup, £ |X,|*> < coc, and conversely, if E has the Radon-
Nikodym property (in particular, if E is a dual Banach space), then every
such martingale belongs to .#(E). The space .#(E) inherits the Banach-
space structure of L*(#, ; E), namely, the norm

Xl = (E1X,1)"? (Xe H(E)).

Processes in .#(E) satisfy a form of Doob’s inequality.

0.3 THEOREM. [f Xe€ . #(E) then |X| is a right continuous submartingale,
and

[sup IX, 1> <2 IX]>.

Proof. As E is separable, we can find a sequence (£,) in the unit ball
of E* such that |x| =sup, |£,(x)| for all xe £. Then for 0<s <1< o0 we
have

E[IX A1 # ] = E[sup [&(X ) F ] = sup [S(ELX, | Z#T)
k k

=sup, |&(X,)| =IX,].

Hence |X| is a submartingale, and it is evidently right continuous. The
Doob inequality now follows from [4, Chap. V, Sect. 24]. 1}

1. VECTOR-VALUED PROCESSES AND HOLOMORPHIC FUNCTIONS

The idea of a holomorphic stochastic process was developed in [18,
Sect. 1], where the interaction with holomorphic functions was also
explored. Qur aim in this section is to extend these ideas to processes
taking values in a Banach space.

We begin by recalling the basic definition in the scalar-valued case.

DermNiTiON [ 18, Defn. 1.27]. A holomorphic atlas for % is a vector
subspace # of .#¢ such that:
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(a) if Ze s then Z? is a martingale;
(b) if Z=Z,e L}%_), then Ze #;
(c) fMe.#<, then M=Z+ W for some Z, We .

For the rest of this section # denotes a fixed holomorphic atlas for &,
and (E, [-|) a separable complex Banach space.

1.1. DErFINITION. Let Ze . #(E).

(a) Z is a simple holomorphic process if
Z,=Y WVx,
j=1

where W'We# and x;€E (j=1,..,n), and n=1. The space of such
processes is denoed by #,(E).

(b) Z is a holomorphic process if there are simpie holomorphic pro-
cesses (Z'%)) such that |Z — Z'®||, —» 0. The space of holomorphic processes
is denoted by #(E).

Remarks. (a) The space #(E) remains unchanged if the norm |-| on
E is replaced by an equivalent one.

(b) Clearly all processes in #,(E) are continuous. Since the
continuous processes in #(E) form a closed subspace of .#(E) (a
consequence of Doob’s inequality, Theorem 0.3}, it follows that in fact all
processes in J#(E) are continuous.

(c) Obviously Z e #(E) implies that Z_ e L*(X; E). Also it follows
easily from [ 18, Thm. 1.4] that Z € #(E) implies £(Z) € # for each € E*,
In fact, as we now show, these two properties characterize #(FE), at least
for a wide class of spaces £.

Recall that E has the bounded approximation property if there exists a
constant C such that for each ¢ >0 and each compact subset K of E, we
can find a finite-rank operator y on E with

yl<C and sup [y(x)—x| <e
xe K

Every Banach space with a Schauder basis has the bounded approximation
property, so this includes most of the classical Banach spaces. For more
details, see [11].

1.2. THEOREM. Suppose that E has the bounded approximation property.
Let Z: [0, o] — E be a process such that .. e L (X, E) and E(ZL)e ¥ for
each E€ E*. Then Z e #(E).
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Proof. We first show that Ze .#(E). As E is separable, there is a
sequence (&,) in E* which separates points of E. For each %, since
E(Z) e H < #, there is a subset 2, of @ with P(2,)=1 such that

ELEHZ )\ F)=E¢(2) forall (7, w)e[0, o0] x£2,.

As the &, separate points, it follows that
E[Z_ |F])=1, forall (s, w)e[0, ao]x(ﬂ Qk>.
k

Thus Z e .#(E).
Now take £> 0. Since Z € L*(X; E), there exists J > 0 such that

PA)<d=>|Z, 1,4l <e/(C+1),

where C is the constant occurring in the definition of the bounded
approximation property. As E is separable, we can find a compact subset
K such that

P(Z. e E\K)<3.

By the bounded approximation property, there is a finite rank operator y
on E with

yl<C and sup |p(x)—x| <e.

xe K

As &(Z)e # for each £ e E*, it follows that v(Z)e #(F). Also

IMZY=ZIL < WHZ. ) ~Z ) Vg, cpoonl HHOZL) = Z ) Lz, o il
SICH+DIZ, 1, pogllate

< 2e.

As ¢ is arbitrary, we deduce that Ze #(E). |

The next result lists some basic stability properties of #(E), mirroring
those of #. They are all easy consequences of Definition 1.1 and [18,
Thm. 1.4].

1.3. THEOREM. (a) IfZe #(E)and Ae F,_, then Ll ;€ #(E).
(b)Y If Ze H(E) and T is a stopping time, then L € X' (E).

) If Ze HM(E) and (Z*) is a sequence in H(E) such that
(2%~ Z], >0, then Ze€ ¥ (E).

(d) IfZ=ZyeLX%,_;E), then Ze #(E).



HOLOMORPHIC PROCESSES 323

(e) If Z'"™esH(E,) (m=1,.,n), where E,, .. E, are separable
complex Banach spaces, then (2", .., Z"")e #(E, x --- x E,)) (with any of
the usual norms on the product).

The rest of this section explores the interaction between holomorphic
processes and holomorphic functions, culminating in Theorem 1.8. We
shall be led to consider products of processes, and this makes it more
natural to work with H™-type spaces than H>-type ones. Accordingly we
make the following definition.

1.4. DEFINITION. ¥ *(E)={Ze #(E): L e L*(ZF..; E)}.

The space # < (E) becomes a Banach space when endowed with the
norm
1ZY . = NZ |l -

However, norm-convergence is too strong for our purposes, and the
following lemma is more useful.

1.5. LEMMA. Let Z®' e # ™ (E) (k> 1) and let Z: [0, | — E be a right
continuous process. Suppose that 7\¥) — Z, almost surely for each t, and that
sup, |1Z¥) . =C < 0. Then Z e # <(E).

Proof. For each t we have |Z'°|| , < |Z*|| , < C< 0. There Z¥' - Z,
almost surely and boundedly, and hence in L*(#,; E) by the dominated
convergence theorem. It follows that Z e #(E) and that [Z*'—Z|j, - 0.
By Theorem 1.3(¢c) we deduce that Ze#(F), and since |Z,|<
sup, |Z¥’] < C almost surely, we obtain Z e # ™ (E). |

We shall need to know that bounded holomorphic processes are
approximable by simple holomorphic processes that are also bounded. The
next result fulfils this role, and is actually more general than we need now;
its full strength will be used later.

1.6. LEMMA. Let Ze€ 3 (E) and let C be a closed subset of E such that
Z,eC for all t, w. Then, given £> 0, there exist (LZ*')e #,(E) such that

dist(Z'®, CY<e  forallk,t,w
and
sup |ZF—Z,| > 0a.s. as k- co.

In particular, if € #*(E), then (taking C to be the ball of radius |Z\..)
the Z™) can be chosen so that

1Z¥ o SNZY o +e
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and
|Z% —Z),—-0 as k— oo,

Proof. We may suppose without loss of generality that 0e C. By
definition of #(E), we can find processes (W*')e #(E) such that
[W® —Z|,< 2% for each k. Define random times (7)) by

T,=inf{r>0:dist(W*, C)>¢}.
By Theorem 0.2 each T, is a predictable time. For each k set
YARES (Wm)rk I(Tk>0)'

Then Z'¥) e #,(E) and dist(Z!¥, C) <e¢ for all k, 1, . Now applying the
Chebychev and Doob inequalities yields

P(T, <o)< P(sup W' —Z,| >¢)
< E[sup (W' —Z,%]/¢?
<4 Hw(kb_ ZH%/CZ
<4.2 %2

so by the first Borel-Cantelli lemma, P(T, = oo for all large enough k)= 1.
Thus sup, |Z%*'—Z,| - 0 almost surely, provided that sup, [W*' —Z | -0
almost surely. And indeed, using Doob’s inequality once again we have

Y sup (W&~ 7|

1 '

<2y IWW-2Z],<252 “< o,
1 i

2

so that in fact 3 sup, [W'*) — Z | < oo almost surely. |

The proof of the main theorem will make use of the following special
case. It may be regarded as a vector-valued generalization of the crucial
fact that the product of two processes in # ™ again belongs to »# > [18,
Coro. 1.10].

1.7. LeMMA. Let E,, .., E,, F be separable complex Banach spaces and
let B:E,x --- xE,— F be a continuous n-linear map. If L' € # *“(E,,)
(m=1,..,n), then B(Z'D, ..., Z') e # *(F).

Proof. 1f the Z'" belong to # *(E,,)n H(E,), then this is an easy
consequence of the result about # = mentioned above [18, Coro. 1.10].

The general case follows by an obvious approximation argument, using
Lemmas 1.6 and 1.5. ||
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We now state our main result.

1.8. THEOREM. Let E and F be separable complex Banach spaces, let U
be an open subset of E, and let f: U — F be a bounded holomorphic function.
If Ze #(E)and Z,e U for all t, w, then f(L)e #*(F).

Remarks. (a) By holomorphic is meant Fréchet differentiable on U.
Thus f has derivatives of all orders on U, the nth derivative at x being a
continuous symmetric n-linear map D"f(x). Ex --- x E > F. We shall write
D"f(x; h) for D"f(x)(h, .., h). In this notation Cauchy’s inequality becomes

1D7f (x; W)l < n!'sup | f] - [Ih|/dist(x, 2U)T".
1%

For further information about holomorphic functions see, for example,
[(12].

(b) The finite-dimensional version of Theorem 1.8 was proved
in [18, Thm.19]. We have already made use of the special case
[18, Coro. 1.10] in the proof of the last lemma.

(c) 1In the course of the proof of Theorem 1.8, it will be convenient
to exploit the following technical device, first introduced in [18,
Defn. 1.17]. Given a predictable time S, we define

SH =LY F; VD {ZeAH :Zs=0}.

It was shown in [18, Thm. 1.18] that s is a holomorphic atlas (with
respect to a modified filtration).

Proof of Theorem 1.8. Let I be the set of predictable times 7 such that
f(Z7Ye #>(F). By Theorem 1.3(d), we certainly have Oe I Also from
Lemma 1.5 it follows that if T,el” and 7,77, then Te[l. Thus by
Theorem 0.1 I” has a maximal element, S say. The result will follow once
we have proved that S= .

Suppose then, for a contradiction, that S #Z co. Choose 6 >0 such that

P(S< o and dist(Z g, dU) > 26)>0,
and then set

T=inf{t=>8:|Z,~Zs|=bordist(Z,, 3U)<25}.

By Theorem 0.2 T is a predictable time, and by construction 7> S and
T £ S. We claim that f(Z7)e # *(F). If so, then Te I, giving the required
contradiction to the maximality of S.
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It remains to justify the claim. By Taylor’s theorem

fes}

f(ZT)‘f(ZS)z Z (V"”an(zs;zr—zs) Lirs 5)s (*)

n=1
the convergence being uniform, since by Cauchy’s inequality

I(Un) DLs; "= L) Lrsns) Ssup | f]-27"  foralln.
v

Now for each »n, the random variable D"f(Zg) 1.5, belongs to
L*(Fs_, LE, F)), where #¥"(E, F) denotes the space of continuous
n-linear maps of Ex --- x £ to F. Hence in particular

D'f(Zs) 1 (rs 5, € (SH)* (LT(E, F)).

It is also evident that

Z7—Z5e (SH#)* (E).

Applying Lemma 1.7, with §: *(E, F)x Ex --- x E— F given by

ﬂ(a’ Xy ooy xn) = a(xl’ ey xn)a

and with 5 replaced by S, we conclude that
D'f(Zyg; y AR ZS) Lirs s € (SHY* (F).

This holds for each n>=1, so from (x) it follows that f(Z7)-—
f(Z5) e (3#)* (F). Now at t =0 we have f(Z])— f(Z3)=0, and so in fact
S(ZT)—f(Z%) e #=(F). Finally, since we already know that f(Z5)e
K> (F), it follows that f(Z7)e s *(F), as claimed. ||

2. SUBHARMONIC PROCESSES AND PLURISUBHARMONIC FUNCTIONS

Subharmonic processes were introduced in [18, Sect. 2] as a stochastic
analogue of subharmonic functions. They possess a wide range of properties,
which can be used to analyse holomorphic processes, the key connection
being the fact [18, Thm. 2.127] that a plurisubharmonic function of a
holomorphic process is a subharmonic process. Our goal in this section is
to extend this result to processes with values in a Banach space.

We begin by recalling the basic definition.
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DEeFINITION [{8, Defn. 2.17. A process &: [0, o] — [ — o0, o0) is sub-
harmonic if it is bounded above, predictable, right continuous, and satisfies

E[®,|F]12D, as.

whenever 0<s< < 00. The class of such processes is denoted by &.

For the rest of this section, # denotes a fixed holomorphic atlas and
(E, |-|) a separable complex Banach space.

We recall that, given an open subset U of E, a function
@: U— [— o0, o0} is plurisubharmonic if it is upper semicontinuous, and if
for all x, y € E the map

I p(x+Ay): {ieC:x+AdyeU}»[~xc, )

is subharmonic. For further details, see [12]. Our main result is the
foillowing theorem.

2.1. THEOREM. Let U be open in E and let ¢:U—[—o0, 0) be a
plurisubharmonic function which is bounded above on U. If Z € X (E) and
Z,eU for all 1, w, then o(Z)e &.

Remark. The finite-dimensional version of this result was proved in
{18, Thm. 2.127]. It will be used in the proof below.

Proof. Assume first that ¢ is also continuous, and that there exists
Jd > 0 such that dist(Z,, dU) > é for all 1, w. Using Lemma 1.6 we can find
processes (Z%)) e #;(E) such that Z!* e U for all k, 1, @ and

sup |Z¥) ~Z,| »0as. as k— oo.
H

Now ¢(Z'¥)e & for each k, by the finite-dimensional result mentioned
above. As ¢ is continuous, it follows from [18, Thm. 2.9(i)] that ¢(Z)e &
in this case.

Now let us consider the general case. Without loss of generality, we can
suppose that U contains the unit ball of E. Let k> 2 and set

U= {xeU:dist(x, oU) > 1/k},
T,=inf{t>0:dist(Z,, U) < 2/k}.

Then T is a predictable time by Theorem 0.2, and hence Z'“1,, ., €
H(E) by Theorem 1.3. Also Z*1 4., U, for all 1, w. For re (0, 1/k)
define ¢,: U, = [ — 0, o0) by

@,(x)=sup @(x +h).
bl <r

683:482-11
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Clearly ¢, is lower semicontinuous on U,. Also, using Hadamard’s three-
circles theorem (see, e.g, [l, p.166, Thm.4]) we have that for
O<r<s<lj/kand xe U,

log(1/k)—log s) logs—logr
@, gl——}0 | @,
(%) <log(1/k) —logr ) (10g(l/k) —log r) SLLlp

from which it follows that ¢, is upper semicontinuous on U,, and hence
continuous there. It is also easily checked that ¢, is plurisubharmonic.
Thus by the first part of the proof ¢, (Z™1 1 .4)€¥. Now ¢,| ¢ on U,
as r—0, so by [18, Thm. 2.9(i))], @¢(Z7“1 1, > o)) € &. Finally, T, 1 o as
k — o0, so by [18, Thm. 2.9(i)] again we have ¢p(Z)e &. |

When Ze . #(E) is bounded and predictable, then it follows from
Theorem 0.3 that |Z| € .#. If further Z is holomorphic we can improve on
this.

2.2. COrROLLARY. (a) [IfZe A ™ (E) thenlogl|l|eZ.

(b) If Ze#>(A), where A is a separable Banach algebra, then
log p(Z)e &, where p denotes the spectral radius. Hence also p(Z)e &.

Proof. Both log|x| and logp(x) are plurisubharmonic functions
(the latter by Vesentini’s theorem [ 1, Thm. 1.2.1]), so this is an immediate
consequence of Theorem 2.1. The final clause in (b) follows from
[18, Prop. 2.8(iv)]. |}

We shall give another proof of Corollary 2.2 in Section 5. Given the
result in (b), it is natural to ask how the whole spectrum Sp(Z) behaves.
An answer is provided by the next section.

3. SUBHOLOMORPHIC PROCESSES AND ANALYTIC MULTIFUNCTIONS

Subholomorphic proceses were introduced and studied in [18,
Sect. 3,41, the idea being that they provided a stochastic analogue of
analytic multifunctions. In this section we make a direct link between the
two concepts by showing that an analytic multifunction of a holomorphic
process is a subholomorphic process.

We begin by recalling the basic definitions.

Dermnition {18, Defn. 3.1, 3.3, 34]. (a) We denote by J the class of
all processes K: [0, o] — k(C) which are bounded, predictable, upper
semicontinuous and weakly right lower semicontinuous (see Section 0).
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(b) Given a subclass ¢ of ¥ and a process K: [0, o] — x(C), we
say K has local @-selections if it satisfies the following condition: given any
predictable time R # oo, there exist processes (L%), ., € 2, and a predict-
able time R’ = R with R’ # R, such that that

Kge |J LY on {R<R'},

k=2t

and such that for all k> 1
L(k]lqk, xS Ktz &7 on {R<R}

(c) Given a holomorphic atlas 4, the class 3¢ of subholomorphic
processes is the smallest subclass & of " satisfying:

(i) if Sis a predictable time and Ze (*#')*, then {Z} ¢ , € P;
(ii) if Ke X and there exists a sequence (K*') in 2 such that
K% | K, then Ke Z;
(iii) if Ke A and K has local Z-selections, then Ke 2.

For the rest of this section, # denotes a fixed holomorphic atlas for #,
and (E, |-|) a separable complex Banach space.

An open set P in a complex Banach space is called pseudoconvex if the
function x+» —logdist(x, éP) is plurisubharmonic on P. It remains
pseudoconvex if the norm is replaced by any equivalent one. For further
information about pseudoconvexity see, for example, [12].

Let U be an open subset of E. A map F: U - k(C) is upper semi-
continuous if, for each open V< C, the set {xe U: F(x)< V'} is open in U.
It is called an analytic multifunction if, in addition, the set

[(x,2)eUxC:z¢ F(x)}

is pseudoconvex in £x C (with any of its usual norms). Simple examples
include F(x)= {f(x)}, where fU—C is holomorphic, and F(x)=
4(0, e*™)), where ¢@:U—[—oc, o0) is plurisubharmonic. For more
information about analytic multifunctions see the references cited in the
Introduction, particularly [20, 21].

We first consider what happens in finite dimensions.

3.1. THEOREM. Let n>=1, let V be open in C", and let F: V — «k(C) be a
bounded analytic multifunction. Let K", .., K'""e ¥ #, and suppose that
KM% .. x K"V for all 1, . Then F(K'V, ..., K'Y e X #, where

FKY, KM= {Flzi, v 2) 1 (2 ey 2) €K% o x KM

Remarks. (a) In fact this result goes beyond what was promised, since
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it covers analytic multifunctions of subholomorphic processes, not just
holomorphic ones. If anything, this makes the proof easier!

(b) By taking as particular F’s the two examples cited just before
Theorem 3.1, we see that it contains [ 18, Thm. 3.12, 3.17] as special cases.
Its proof also follows similar lines, and so we omit some of the details,
highlighting only the main points of difference.

Let U be open in £. A map F: U — X' (C) is lower semicontinuous if, for
each closed C < C, the set {xe U: F(x)< C} is closed in U.

3.2. LEMMA. Let n, V, F be as in Theorem 3.1, let KV, ., K" e X", and
suppose that K\"'x -.. xK\"<V for all t,w. Then F(KY, .., K™ is
bounded, predictable and upper semicontinuous. If further F is lower
semicontinuous, then F(K'Y, .., K")e .

Proof. This is just like the proof of [ 18, Lemma 3.13], the point to note
being that

SF(K'D, . K™Yye F@K™, ., aK™)  forall 1, w,

which follows easily from the one-variable result [17, Prop. 2.1]. |}

Let ¥ be open in C". Following [257], we call an analytic multifunction
F: V- k(C) locally trivial if V can be covered by open subsets on each
of which the graph of F is a union of graphs of holomorphic functions. A
simple separability argument then shows that there is a countable open
cover (V) of ¥V, such that for each j there exists a sequence of holomorphic
functions f,: V;,— C for which

F@)={) {fu(®)} (zeV))
k

3.3. LeMMA. Let n, V, F be as in Theorem 3.1, and assume further that
F is locally trivial. Let Z,.,Z"e# ™, and suppose that Z,:=
(ZM, ., ZYe V for all 1, w. Then F{(Z)Ye XK .

Proof. As Fis locally trivial, it is certainly lower semicontinuous, so by
Lemma 3.2 we have F(Z)e . Thus it suffices to check that F(Z) has local

A # -selections.
Let R be a predictable time with R # oc. Take (V) and (f) as in the
preamble to the Lemma. Then there exists j such that

P(R<wand Zze V;)>0.

Using Theorem 0.2, we can find a predictable time R’ > R with R’ # R such
that

{Z) Y rn =V, on {R<R'}
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For m=1, .., n, define L": [0, oo] — x(C) by

— NR
L(m)—{Z(m} Xir R1X{R<R}-

By [18, Thm. 3.7] each L""’ e #'#, and so by [18, Thm. 3.127 it follows
that f, (L"), .., L") e #'# for all k. Also

FZ) yr rp=JLlLY, s L) X1k p1 on {R<R'}.
k
Hence F(Z) does indeed have local ¢ # -selections. |}

34. LEMMA. Let n, V, F be as in Theorem 3.1, and assume further that F
is locally trivial. Let U,,.., U, be open subsets of C such that
Uyx - xU,c V. Let m be an integer with 0<m<n, let K" e ¥ #(U))
(j=1,..,m) and let ZV e (3 )" (U,) (j=m+1, .., n), where the S, are
predictable times. Then

FIKD, oy K A Z 0 s 1w g0 0 A2} Xy 2 1) EXH.

Proof. This is by induction on m, just as in the proof of
{18, Lemma 3.14], using Lemma 3.3 as its starting point instead of
(18, Thm.197. §

35. LeMMA. Let n,V, F and K'", .., K" be as in Theorem 3.1, and
assume further that F is locally trivial. Then F(K'V, .., K" e X' #.

Proof. By Lemma 3.2 we have F(K'", .., K")e X", so it is enough to
show that F(K'V, .., K') has local ¥ #-selections. This is done just as
in the proof of [18, Thm.3.12], using Lemma 3.4 instead of [18,
Lemma 3.14]. |

Proof of Theorem 3.1. Let (V;),,, be relatively compact open subsets
of ¥ such that V,cV,,, for all j and {J, V,=V. Given j> 1, define a
predictable time 7T; by

T=inf{r20: K"x -.. x K" &V, },
and for m=1, .., n, define L"™): [0, ] — x(C) by

L(”’)= (K(m))T, X(T,>0)-

Then each L' e ¥ # by [18, Thm.3.7], and L'V x ..- x L' = V, for all
1, w. Now by an approximation theorem of Stodkowski [25], there exist
locally trivial analytic multifunctions F,: ¥V, — x(C) such that F,(z)| F(z)
for each ze ¥V, From Lemma3.5 we have F,(L'",.,L")eXs for
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each &, and so it follows by [18, Coro. 3.20] that F(L'", ., L™)e ¥ . In
other words

FKY, . K(n))T’X(1}>0)ef=#~ (*)

This is true for each j. Since 7,1 cc, we deduce that F(K'V, ., K') is
weakly right lower semicontinuous. From Lemma 3.2 we already know
that it is bounded, predictable and upper semicontinuous, and hence
FIKY, ., K™)ed. Also (+) implies that FK', ., K"™) has local
X A -selections, and so finally we obtain F(K'", .., K" )e ¥ #. |

We now extend to infinite dimensions.

3.6. THEOREM. Let E be a separable complex Banach space, let U be an
open subset of E, and let F; U — x(C) be a bounded analytic multifunction.
Let Ze #(E), and suppose that L,e U for all t, w. Then F(L)e X # .

Remark. By taking as particular F’s the two examples cited just before
Theorem 3.1, we recover Theorem 1.8 (at least for scalar-valued functions)
and Theorem 2.1. Nevertheless, it seems worth including the more elemen-
tary proofs given in Sections 1 and 2 because they avoid the difficult
theorem in [25].

Proof. We can suppose throughout, without loss of generality, that U
contains the unit ball of E.

Assume first that Z is also bounded, and that there exists 6 € (0, 1) such
that dist(Z,, ¢U) = 395 for all ¢, w. Put

U'={xelU:dist(x, 0U)>é},

and for 0 <r<d define F,: U' - k(C) by

F(x)=() | F(x+h).

s>r [hi<gs

Then F, is an analytic multifunction for each r (this follows from standard
properties of pseudoconvex sets—see, e.g., [12, Sect. 37]), and F,(x)| F(x)
as r—0 for each xeU’. Now by Lemma 1.6 we can find processes
(ZY)e #,(E) such that ZV e U’ for all j, 1, w and

sup |2 —Z,] ~0as. as j— oo.
¢

Replacing the ZY) by a subsequence, if necessary, we can further ensure
that

P(sup |2V —Z,|=2277)<27/ for all j.
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Define predictable times (R;) and (S,) by
R=inf{t>0:(ZV'-Z, 22"},
S, =inf R,.

=k

Then P(Sp<0)<Y,,,27/=227% so by Borel-Cantelli St as
k — cc. Fix k= 2. Then for all j >k we have

NZ5 gm0y — 2% (gm0l o <277,
and so
Fl/j(Z(j)Skl(Sk>0))lF(ZSkl(Sk>0)) as j— oo

Moreover, since Z'Y'51 g, . o € #(E) n H# “(E), it follows by Theorem 3.1
that F,;(Z""%*1 g, . o)) € X' for each j. Hence by [18, Coro. 3.20]

F(Z% (5, . o)) € XK.

Since S, 1 v, we deduce, as in the proof of Theorem 3.1, that F(Z)e A H#".
Now let us consider the general case. Let k> 2, and set

U,={xeU:|x| <kanddist(x, dU) > 1/k },
T,=inf{t>0:|Z,| = k/2and dist(Z,, OU) < 2/k}.
Then Z[*1 1, € U, for all 1, w, so by the first part of the proof
F(Z™ 1,5 0))€ X H,

and hence, once again, we deduce that F(Z)e ¥ #. |

Finally, we can answer the question raised at the end of the previous
section.

3.7. CorROLLARY. Let A be a separable complex Banach algebra, and let
Ze #™(A). Then Sp(L)e A #, where Sp denotes the spectrum.

Proof. This follows immediately from the fact that Sp: 4 — «(C) is an
analytic multifunction (see, e.g., [15,207). [

4. BROWNIAN MOTION

We asked in the Introduction what sort of process one gets by taking an
analytic multifunction of Brownian motion. In this section we apply the
preceding theory to obtain an answer.
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For the time being, we assume that (£2, X, P) is a complete probability
space, but with no filtration & or holomorphic atlas 5 given as yet.

4.1. DEefFINITION. (a) A process B: [0, «0))— C is a complex Brownian
motion if it is continuous, B, =0, and for some constant ce R

E[e'ReVB—BD|g = “FG-02  (JeC,0<s<I<x),

where %, denotes the o-field generated by {B,: 0<r<s} together with the
P-null sets. We call B normalized if, in addition, ¢= 1. (This represents a
slight change of terminology from [18, p. 145].)

(b) A processs B: [0, ©))— E is an E-valued Brownian motion if £(B)
is a complex Brownian motion for each e E*.

4.2. THEOREM. Let B be an E-valued Brownian motion on (82, X, P),
and let F,_ be a complete sub-a-field of X which is independent of
o(B,:te [0, ov)). Define

F=0(F_,{B,:s5€[0,11}) (0<r<0)
3’730:0( U ﬁ,)

Then:

(a) F is a complete, right continuous filtration on (2,2, P) with
respect to which B is a martingale;

(b) there is a unique holomorphic atlas # for F such that B" € #(E)
Jfor each bounded stopping time T. ‘

In proving Theorem 4.2, we shall need some information about the
structure of E-valued Brownian motion. This is provided by the following
result, whose proof is deferred to the end of the section as it is rather technical.

43, LeMMA. Let B be an E-valued Browian motion. Then B is a
continuous process with B,e L(Z; E) for all te [0, o). Moreover, there
exist independent normalized complex Brownian motions BV, B'®, .. and
strongly linearly independent vectors X,, X, ..€ E (ie, X, ¢Span{x,:j#k}
Sfor each k) such that for all te [0, o0)

B, Y BUx,

i=1

2
EI:sup ]—»0 as n— . (*)

LR

Remark. The sequences (B"’) and (x,) may be finite, in which case we
simply have B=3"7 BYx, for some n.



HOLOMORPHIC PROCESSES 335

Proof of Theorem 4.2. (a) Choose B", x; satisfying the conclusion of
Lemma 4.3. As the x, are strongly linearly independent, the Hahn-Banach
theorem provides functionals (¢;) € E* such that £;(x,) =6, for all j, k. In
particular, B’ =¢,(B) for all j. It follows easily that for all 7 [0, o)

F=0(F ,{BY :0<s<t,j=1,2,..)}),

so by [18, Lemma 1.11 or 1.13 (whichever is appropriate)], & is a
complete, right continuous filtration on (£2, 2, P). By the same result, each
B! is a martingale with respect to 4, and so it follows from () that B
is also a martingale.

(b) Let # be the class of processes of the form

Z,=U+Y | HY By, (%)
i YO
J
where Ue L*(%,_), and the H") are & -predictable processes with
ZED |H)? ds]< .
; 0

By (18, Thm.1.12 or 1.14 (whichever is appropriate)], this is a
holomorphic atlas for . Now given a bounded stopping time T, we have

(B‘”)T:L ‘ 1110, - dB'"’

and so (BY)"es# for all j. Hence Y)_, (BY')" x,& #(E) for each n.
Finally, putting t = ess sup 7, we have

|

and so B" e #(E).

2

B Y (BY)7x,

2
]—»0 as n— o,
=1

<E[sup IB,— Y. BYX,

st Jj=1

2

To show that # is unique, suppose that ' is another holomorphic
atlas satisfying (b). Then for each bounded stopping time T we have
(BU)T=¢,(B")e s’ for all j, and using [18, Thm. 1.6] we deduce that
Z e #' whenever Z has the form (*x). In other words, #° < #'. Therefore
also J, c #, where, for example,

Hy={Z:ZeH,Z,=0}
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(see Section 0), and since
M=HDH=H DK
(see [18, Thm. 1.47), it follows that # =#". |}

Remark. Using the strong Markov property of Brownian motion, it is
not hard to show that if T is a stopping time with P(T < c0)=1, then

E|B7|?= E(T)E |B,|>.

Hence if E(T) < oo, then we still have BT € #(E).

We can now at last prove the promised result about analytic multifunc-
tions and Brownian motion.

4.4. THEOREM. Let U be an open subset of E containing 0, and let
F: U k(C) be an analytic multifunction. Let B be an E-valued Brownian
motion, and set

T=inf{r=0:B,¢ U}.

Then there exist F -predictable times (T,) with T A1 T such that
FB™ e XA for all k, where F and H# are respectively the filtration and
the holomorphic atlas associated to B by Theorem 4.2.

Proof. By scaling we can suppose, without loss of generality, that
F(0)c 4(0, 1). For k> 1 define

Uy={xeU: F(x)=4(0, k)},
To=k A inf{r =0 :dist(B,, dU,) < l/k}.

Then the T, are # -predictable times such that 7, 1T 7. Also each T, is
bounded, so B e #(E) by Theorem 4.2. Moreover B/*e U, for all ¢, w,
a set upon which F is bounded. Hence by Theore 3.6 F(B™)e ¥ . |

Appendix: Proof of Lemma 4.3

The proof proceeds via two auxiliary lemmas.

We shall call a complex-valued random variable complex Gaussian if its
real and imaginary parts are independent normal random variables with
the same variance. It is easily checked that two complex Gaussian random
variables G,, G, are independent if and only if E[G,G,]=0.

4.5. LeMMA. Let G: (2, 2, P) > E be a random variable such that £(G)
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is complex Gaussian for each e E*. Then Ge L*(X; E), and there exist
Xy,X2,...€Eand &, &,,...€ E* such that:

(a) E[E(G)E(G)]=2d,;

-0 as n-— oo,

(b) NG T £(G)x,

Jj=1

Remarks. (a) The sequences (x;) and (£;) may be finite, in which case
we just have G =3Y1 {,(G)x; for some n. All that follows will be written as
if the sequences were infinite, but the interpretation for the finite case will
be obvious.

{b) This lemma appears to folklore (see, e.g., [14]), but a proof is
included for the sake of completeness.

Proof. By a theorem of Fernique [7], there exists £¢>0 such that
E[e°'6"] < o0, so certainly G e L3(Z, E).

As E is separable, there is a sequence (n,) in E* that separates points
of E. The sequence (7,(G)) is contained in L*(X), so its closed linear span
in L*(X) is a separable Hilbert space, H say. Using the Gram-Schmidt
algorithm, we can find a sequence (¢;)e £* such that (:fj(G)/\/E) is
orthonormal basis for H. In particular this ensures that (a) holds. For each
Jset x;= E[£;(G) G/2]: we shall show that (b) holds.

As the ¢, (G) are orthogonal complex Gaussians, they are independent.
Thus if we set 4, =a(&,(G), ..., £,(G)), then

§(G),  jsn
0, j>n

E[2,(G)|4,] ={

Also, since (& j(G)/\/E) is an orthonormal basis for H, for each 5, we have

m(G)= Y E[nd{G) E(G)//21¢,(G)//2,
=1

with convergence in L*(X), and therefore

n

E(n(G)1%9.1= Z E[M:(G)E(G)218,(G)= T mil(x,)¢,(G).

j=1 j=1

As the n, separate points of E, we conclude that for each »

E[G|9]1=Y &(G)x,

J=1

Thus (b) follows from the L2-martingale convergence theorem. ||
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4.6. LeMMA. Let B be an FE-valued Brownian motion on (£2, 2, P),
and suppose that &, &,,..€ E* satisfy E[Z,(B)E(B;)]=204. Then
E(B), £5(B), ... are independent normalized complex Brownian motions on
(2,2, P)

Proof. The &,(B) are complex Brownian motions, because B is an
E-valued one, and are normalized since £ [é_,(Bl)[2 =2 for all j. The main
point is prove is independence. For this, it suffices to show that, given
O=1t,<t, < --- <t,, the random variables

{é_/(BI/)— éj(BI/ 1) 12 ]’ I= ]’ ey p}

are independent. Since they are complex Gaussian, it is enough to prove
that they are mutually orthogonal, and as the &;(B) have independent
increments anyway, this amounts to showing that, given j, k, [, m with j#k
and 1</, m<p, we have

E[éj(Bn—Bu,l)ék(Blm‘B,mfl)]=0. (T)

Case 1: [#m. In this case, for each e E*

E[é(Bn_BI,,l)é(Btm_ Br,,,,, |)] =0

because complex Brownian motion has independent increments. In par-
ticular, this holds when £=¢,+i¢,, so (f) follows from the polarization
identity.

Case 2: l=m. For each (€ E*

E|¢(B,)—SB, )N =(~1, 1) -EIEB)I?

so by the polarization identity again

E[¢;(B,—B, )& (B, —B, )]=(,—1, ) E[{;(B)¢(B,)]=0.

Thus (1) holds in this case too. ||

Proof of Lemma 4.3. Set G=B,, and choose x,X,,..€E and
&1, &y, . € E* as in Lemma 4.5. By Lemma 4.6, if BV =¢,(B) (j=1,2,..),
then B'Y, B, .. are independent normalized complex Brownian motions
on (£, %, P). In particular, for each te [0, c0) and each nZ=2m =1, the
(n—m+ 1)-tuples

(B, .., B") and (\/; B, ., \/; B



HOLOMORPHIC PROCESSES 339

have the same distribution, and using this together with Theorem 0.3 yields

n 2 n 2
E[sup Y BUX; ]<4E Y. BU)x;
s<tlj=m j=m
n 2
=41-E|Y BY'x,
J=m
n 2
=41-E| Y &(G)x,| .
J=m

Now the partial sums Y} &,(G)x; are Cauchy in L*(Z; E), because by
Lemma 4.5 they converge to G. By the inequality above and completeness,
it follows that there exists a process X: [0, o0))— E such that for each
te (0, oo}

xs— Z B,(\'j)x/

2
]—»0 as n— oC.
=1

E l:sup

s<t

In particular, X is continuous, and X,e LXX; E) for all 1[0, ov). To
finish the proof, we show that B=X.
For each £ = E* and each 1 [0, )

2

E |E(B,) - &(X,)I?

I

lim E](é— Z C(’Q)f,) (B)

2n - L j:l

2

lim t-E((é— Y C(xj)é_,) (B,)

no j=1

3

lim t-Elé(G—an 5,(G)x,>

o i=1

=0.

Hence ¢(B,) = ¢(X,) almost surely for each e E* and each 1€ [0, o0). As
E(B) and ¢(X) are both continuous processes, it follows that {(B)=¢(X)
for each ¢e E*. Finally, as countably many ¢ separate points of E, we
deduce that B=X. |

5. RADO’s THEOREM

Radé’s theorem for subharmonic functions states that, given a non-
negative function ¢ in the plane, log ¢(z) is subharmonic if and only if
le*’| @(z) is subharmonic for each xe C (see [1, p. 169, Thm. 9]). A weaker
version, which suffices for many purposes, is that log ¢(z) is subharmonic
if and only if e"*'¢(z) is subharmonic for each harmonic function 4. In this
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section we prove a stochastic analogue of this theorem, and then give two
applications.

We first prove a lemma, which may be of independent interest. Recall
from Section 0 that .#° denotes the subspace of continuous, predictable
processes in .#, and that .# is its orthogonal complement, the purely
discontinuous processes.

5.1. LEMMA. Let @€ & be non-negative, let N € Ilﬂ,"a be bounded, and let
Y:R— [0, c0) be a convex function. Then y(N)D is a submartingale.

Proof. There exist C* convex functions ¥*:: R — [0, o) such that
v |y, If y%(N)D is a submartingale for each k, then by the monotone
convergence theorem so is (N )®. Therefore we can suppose, without loss
of generality, that ¥ is C”. Also, by [18, Thm. 2.27] there exist bounded,
continuous, predictable submartingales (@'*') such that ®*' | ¢. Thus we
can similarly assume that ¢ is bounded and continuous.

We now proceed to make a further reduction. By [4, Chap. VII, Sect. 8]
@ may be decomposed as @ = M + A, where M: [0, 0] — R is a right con-
tinuous martingale, and A4: [0, oo] — R is a predictable, increasing process
with 4,=0. As both @ and A are predictable, so is M, which implies that
M is continuous (see [6, Part 2, Chap. IV, Sect. 23(a)]), and hence A is
also continuous. For k =1 define predictable times (7)) by

T,=inf{tr=20:{M, =k}

These T, T o0 as k — oo, so if Y(N) P 14, ., is a submartingale for each
k, then by the dominated convergence theorem so is (N)®. Moreover we
have

Ti __aq T Tk
P Al(T,(>0)—A’1 kll'rk>0)+A l(Tk>0)-

Thus we are reduced to the case @ =M + A, where M e .#;, and is boun-
ded, and where A is bounded, continous, predictable and increasing, with
Ag=0.

Assume now that i and @ have the special form described above. Apply-
ing Ito’s formula [4, Chap. VIII, Sect.27] with F(x, y)=¥(x)y, and
noting that M e .#%, and Ne .#% are orthogonal, we get

VN, )M, +

(0.1]

l//(N,)cb,{ W (No) o+ (N, ) &, dN, |

0, 1]

+[J0'wuv\ Jdd,+ T {W(NI= YN, )=/ (N, YN, N, )}dx].

Osy<t
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The first bracket is a martingale. Also, as ¥ is convex,

W) —v(x)—y'(xNy—x)} =0  forall x, yeR,

and hence the second bracket is an adapted increasing process. Therefore
Y(N)® is submartingale, as desired. |

We can now prove the promised version of Rad6’s theorem.

5.2. THEOREM. Let &: [0, o] — [0, o0) be a process. Then log ®e & if
and only if eM® e & for each bounded M e H5,.

Proof. Suppose that log @ e &. If M e .#¢ is bounded, then M e &, so
that (M +log @)e ¥, and hence eMPec.¥ by [18, Prop.2.8(iv)] (with
Y(x)=e")

Conversely, suppose that eM® e ¥ for each bounded M e .#;,. Taking
M =0, we see in particular that @ €.¥, so @ is bounded above, predictable
and right continuous, and hence so also is log @. We can suppose too,
without loss of generality, that log @ is bounded below (otherwise replace
@ by (@ + 1/k). and then let k — oo, using [18, Thm. 2.9(ii)]).

It remains to show that log @ is a submartingale. Fix r, se [0, o0 ] with
r<s, and define a process X: [0, o] - R by

X,=—E[log®,[|#] (1[0, x]).

This is a bounded, right continuous martingale, so we can decompose it as
X=M+ N, where Me #¢ and Ne .#2. For k > 1 define predictable times

(Ty) by
T =inf{t>0:|M|,>k}.

Then M™l ,.0€#% and is bounded, so by hypothesis
exp(M ™1 7, . 0))PeF. Also N1 1, o € #% and is bounded, so applying
Lemma 5.1 (with (x) = e*) we deduce that

exp(N 7+ 7y > 0)) CXP(MTI‘] (Te>0)P

is a submartingale, i.e., that exp(X"“l 5, .,,)® is a submartingale. Since
T, 1 as k— o0, it follows using the dominated convergence theorem that
e*® is a submargingale. In particular,

eX®, < E[e"® | F])=E[1|#£]=1,

and so
log ¢r< —Xr= E[log (p_‘l.%],

showing that log @ is indeed a submartingale. ||
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As an immediate application of Theorem 5.2 we have the following
result, which was previously obtained in [18, p.174] under the extra
assumption that & supports a holomorphic atlas. The new proof shows
that this assumption is unnecessary.

5.3. CorOLLARY. [flog @, log ¥ e, then log(® + V)e ¥,

We can also use Theorem 5.2 to give an easy proof of an earlier result
n this paper.

Second Proof of Corollary 2.2. (a) Given a bounded Me .#%, the
definition of holomorphic atlas yields a We # with Re W= M. From
Theorem 1.8 we have ¢ Z e # ™ (E), and so by Theorem 0.3 |e"Z| € &, or
in other words e |Z|e.%. Hence by Theorem 5.2 we conclude that
log |Z| e &.

(b) The spectral radius formula implies that log p(Z) is the limit
of the decreasing sequence of processes 2 "‘log|szl. By Theorem 1.8
(or indeed Lemma 1.7) we know that Z% € # *(A) for all k, and so from
part (a) we have log |Z*|e#. The result now follows from
[18, Thm.29(i)]. 1

6. A HOLOMORPHIC SELECTION THEOREM

Holomorphic selection theorems for analytic multifunctions provide a
means of establishing the existence of holomorphic functions with
prescribed boundary values, a tool which has proved useful in complex
analysis, interpolation speces and control theory (see, e.g., [3, 9, 23, 24]).
In this section we prove a stochastic analogue of this for holomorphic
processes.

As always, # denotes a fixed holomorphic atlas for #.

6.1. THEOREM. Assume that # = . #°. Let Ke ¥ H, and suppose that K
is convex-valued. Then, given Ue L™(%#,) with Ue K, a.s., there exists
Ze H ™ such that

Zy=Ua.s. and Z. €K, as.

Remarks. (a) The assumption that .# = .# ¢ is true, for example, when
F is the filtration of Theorem 4.2 (see [18, Thm. 1.11, 1.13]) and, more
generally, whenever & is generated by a continuous Hunt process.
However, Theorem 6.1 may well still be valid even if .# # .#¢: possibly
some result like Lemma 5.1 is needed to take care of .4,
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{b) Clearly, a necessary condition for U to exist is that K, # & as.
By a simple measurable selection theorem (see, e.g., [10, Thm. 1.07), this
is also sufficient. Even if this does not hold, a result can still be salvaged
by setting
S=inf{r=0:K,#J},

and working with Ky ¢ 1% (s<«)> using [18, Thm. 3.7, 38].

(c) By analogy with analytic multifunctions, Theorem 6.1 may still
hold if “convex” is replaced by “polynomially convex and connected” (see
[9]). In any case, given any Ke ¥ #, the theorem can be applied to its
convex hull conv (K), because conv(K)e ¢ ([18, Coro. 3.16]).

Proof. Replacing K by K— {U} (the vecror difference, which belongs
to A # by [18, Coro.3.15]), we can suppose, without loss of generality,
that U=0 as. Let & be the vector space L'(%,)x L'(#..), and define a
seminorm p: 2 — R by

1) (2yy _
X X = E[sup__, XD+ 2X]].
Let 2, be the subspace of & given by
o= {(WD, w2y wh Wwle x>},
and define a linear functional &: %, — C by
EW Wy =EW')
Then we claim that
IEW D, W <p(W, W) forall (WQ), W3)e.
To see this, take W) W2 e # = and define ®: [0, o] — [0, ov) by
@, =sup{|w, +w,z| 1w, e {W " w,e (WP} zek,}
Then @€ % by [18, Thm. 3.17], and in particular Ed,< EP,. Hence
eV WD) = EWS = |EW < E W)
SED S EP . =p(W ), WD),

as claimed. The Hahn-Banach theorem now allows us to extend to a linear
functional &: & — C such that

(G, X <p(x, X)) forall (X, ¥)eZ. ()

We next seek to determine the form of this extended &. Consider the
linear functional X — &(X, 0): L'(#,.) — C. From (x) we have

16X, 0)| <p(X,0)=X|;, forall XeL'(%),

683:48;2-12
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so there exists Y e L*(Z£,) with || Y| _ <1 such that
E(X,0)=E[XY"] forall XelL'(#,).

Moreover, E[ YV =¥&(1,0)=E[1]=1, so in fact Y'V=1 a.s. Similarly,
there exists Y'?’e L*(#,,) such that

80, X)=E[XY™®]  forall XeL'(%,),
though in this case we can only say that | Y| <|lsup..x, |z|ll .. Hence

EXW XY= E[XV) 4 X2y forall (X", x*heq.

Now define Ze .# by
Z=EY?|#] (te[0, 0]

We shall show that this satisfies the conclusions of the theorem. By
assumption .# = .#¢, so Ze .#°. Moreover, given We ¥ ™,

E(W,.Z,1=E[W..Y?]=¢0, W.)=E[0]=0,

so Ze(H ™)t =H#* = A, (see the end of the proof of Theorem 4.2). Thus
Ze '™, and Zy=0=U as. It remains to prove that Z_ € K, as. As K
is convex-valued, it is enough to show that for each pair o, e Q +iQ

la+BZ.) 1g, I <1,
where

Q,p={weQ: sup |a+fz|<1}.

ze Ky (w)

For this to hold, it is sufficient that

|E[(x+BZ) 1g, X< IXI,  forall XeL'(%,),

and this we now verify. Fix «, € Q +iQ, and take Xe L'(#,). Then

|EL(x+ Z,) 10,,X]1 = &l o, X Blg, X))
<plalg, X, Blg X)
= E[sup |(x+ fz) 1o, ,X1]

e Ky

<EX],

as desired. This completes the proof. |
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