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a b s t r a c t

A replicated ultrastructural measurement error regression model is considered where
both predictor and response variables are observed with error. Availability of some prior
information regarding regression coefficients in the form of stochastic linear restrictions is
assumed. Using this prior information, three classes of consistent estimators of regression
coefficients are proposed. A two-stage procedure is discussed to obtain feasible version
of these Stochastically Restricted estimators. The asymptotic properties of the proposed
estimators are studied.Nodistributional assumption is imposedon any randomcomponent
of the model. Monte Carlo simulations study is performed to assess the effect of sample
size, replicates and non-normality on the estimators. The methods are illustrated using
real economic data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In real life, there are situations where the data cannot be obtained precisely or observations on some surrogate variables
are taken instead of true variable of interest. Thus the data is contaminated by measurement error (ME). For example,
variables like air pollutant levels and rainfall etc., cannot be measured accurately. Also in the medical science, the data
on biomarkers is taken as surrogate for observing the desired activity. This ME invalidates the results derived through the
statistical techniquesmeant for error-free data. So in order to draw valid conclusions, we require different techniqueswhich
take into account the ME. In the past, many researchers have shown interest in situations where ME plays a significant
role.

In regression analysis, when predictors are measured with error, the model is called a measurement error regression
model. Depending upon the nature of the distribution of true predictors, the ME regression model has two forms.
For non-stochastic predictors, the ME regression model is said to be in functional form. In case of independent and
identically distributed predictors, the ME regression model takes the structural form [5]. The model is called ultrastructural
measurement error (UME) model when the true predictors are independent but not necessarily identically distributed. This
was proposed by Dolby [7] as a unified approach to both functional and structural models.

Presence of ME in the data often leads to inconsistent and biased estimators. The literature presents several approaches
for finding consistent estimators. One such approach suggests the use of some additional information which is obtained
independently from the sample information for example availability of reliability matrix of predictors, variance–covariance
matrix of ME and instrumental variables etc. [5,9,10,13]. But such external information is subject to some uncertainties
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or sometimes it is even unavailable [15]. Another approach is to study replicated measurement error (RME) model where
replicated observations are taken on variables. For example, Chan andMak [3] and Isogawa [12] studied the structural form
of the RMEmodel under the condition of normally distributedmeasurement errors. Yam [32] studied the functional form of
this model. Ullah et al. [30] studied the relationship between trade balance and exchange rate using the ultrastructural form
of the RME model with panel data. For more details, one can refer to Wang et al. [31], Schafer and Purdy [21], Shalabh [22],
Shalabh et al. [24] and references cited therein.

In many practical situations, in addition to sample information, some prior information regarding regression coefficients
is also available which often may be expressed in the form of stochastic linear restrictions. Stochastic restrictions arise from
prior statistical information, usually in the form of previous point or interval estimates of parameters, and take the form
of an additional linear model (Ref. Toutenburg [29] and Rao et al. [18]). For example, unbiased pre-estimate of regression
coefficient (say β̂) obtained from earlier studies with smaller sample size or from studies with comparable designs can be
expressed as β̂ = β + ϕ, where ϕ is random in nature. Also the prior information that a certain component βi of vector β
may lie in interval (a, b) can be expressed as (a + b) /2 = βi + ϕ, where ϕ may be uniformly distributed over the interval
((a − b) /2, (b − a) /2). The methodology of using stochastic prior information provides a framework for attaining new
knowledge regarding the phenomenon under study in the light of what is known. The use of stochastic prior information
leads to more efficient estimators in terms of variability (Ref. Rao et al. [18]).

Durbin [8] was the first one to use both sample and prior information simultaneously in parameter estimation.
Thereafter, Theil and Goldberger [28] and Theil [27] introduced the mixed regression estimator which incorporates
stochastic linear restrictions and is more efficient than OLSE. In the without ME case, Shalabh and Toutenburg [25] explored
the role of stochastic linear restrictions when there are missing observations. Haupt and Oberhofer [11] discussed the
stochastic response restrictions. Jianwen and Yang [14] discussed mixed estimation for a singular linear model. Revan [19]
discussed the use of stochastic restrictions with multicollinearity. In the ME regression model, Shalabh et al. [23] provided
the consistent estimators that make use of such prior information. Shalabh [22] studied the replicated ultrastructural
measurement error (RUME) regression model without incorporating any prior information. For this model, the problem
of finding consistent estimators which also use prior stochastic information has not been studied so far. Thus in the present
work, we provide the stochastically restricted (SR) consistent estimators for the RUME model by using sample and prior
information simultaneously. A two-stage procedure for obtaining feasible version of SR estimators is also discussed. These
estimators are found to be more efficient than those suggested by Shalabh [22] in terms of variability.

We consider a RUME multiple regression model under the assumption of stochastic linear restrictions on regression
coefficients. The problemof finding estimators that are consistent aswell asmake use of stochastic linear restrictions is dealt
with. Most of the literature assumes the normality of ME, but this assumption often gets violated in practice. Sometimes,
the distributional form of ME is also unknown. In the present work, no other assumption except the finiteness of the first
four moments of ME is made. The methodology is illustrated using an empirical economic study.

In this paper, Section 2 specifies the RUME multiple regression model and lists various assumptions. In Section 3, we
propose the consistent estimators satisfying the stochastic linear restrictions. Section 4 discusses the asymptotic properties
of the proposed estimators. Section 5 contains the results from a Monte Carlo simulations study performed to explore the
finite sample properties of estimators and the effect of departure from normality. Section 6 deals with the empirical study.
Appendix states few definitions, lemmas and provides the derivations of some results.

2. Model specification

Consider the following multiple regression model with p predictor variables

ηi = α +

p
k=1

βkξik, (2.1)

where ηi and ξik are ith observations on the dependent and kth predictor respectively for i = 1, . . . , n. βk’s are unknown
regression coefficients. We also assume that ηi and ξik are unobservable and can be observed through some other variables
yi and xik with additional measurement error. Further consider that r replicates of yi and xik are available for each ηi and ξik.
Thus for j = 1, . . . , r , we write

yi:j = ηi + ui:j; (2.2)

xik:j = ξik + vik:j, (2.3)

where yi:j and xik:j are the jth replicated observations on yi and xik with additional measurement errors ui:j and vik:j
respectively. Themodel (2.1) does notmention the equation error.Without loss of generality, the possible equation error can
be assumed to be submerged with ui:j. Thus the model representation remains valid irrespective of the presence of equation
error.

To incorporate the ultrastructural property in the model, we consider that ξik is a random variable that can be written as

ξik = mik + wik, (2.4)

where mik and wik are non-stochastic and stochastic components respectively.
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Using Eqs. (2.1)–(2.4), the model can be written in the matrix form as

Ynr×1 = αenr + Xnr×pβp×1 +

Unr×1 − Vnr×pβp×1


; (2.5)

ξn×p = Mn×p + Wn×p; (2.6)

X = (M ⊗ er) + (W ⊗ er) + V , (2.7)

where ‘⊗’ indicates the Kronecker product of matrices, er is a (r × 1) unit column vector and

X = [X1:1 · · · Xn:r ]′ ; Xi:j
′
=

xi1:j · · · xip:j


;

V = [V1:1 · · · Vn:r ]′ ; Vi:j
′
=

vi1:j · · · vip:j


;

ξ = [ξ1 · · · ξn]′ ; ξi
′
=

ξi1 · · · ξip


;

M = [M1 · · ·Mn]′ ; Mi
′
=

mi1 · · ·mip


;

W = [W1 · · ·Wn]′ ; Wi
′
=

wi1 · · · wip


;

Y = [y1:1 · · · yn:r ]′ , U = [u1:1 · · · un:r ]′ and β =

β1 · · · βp

′
.

The subscript i : j indicates the row corresponding to the jth replicated observation on the ith subject in the study.
Eqs. (2.5)–(2.7) complete the specifications of the RUMEmultiple regressionmodel. When all rows ofM are identical, the

rows ofX will be independently and identically distributed (iid)with somemultivariate distribution. This gives the structural
form of the measurement error model. WhenW is a null matrix, X is fixed but measured with error. This condition specifies
a functional measurement error model. In case, both W and V are null matrices, we get the specifications of a classical
regression model. Thus, the ultrastructural model combines the three popular regression models in one setup [7].

For a randomvariable S, using the notationsγ1S andγ2S for the Pearson’s coefficient of skewness and kurtosis respectively,
the following assumptions are made

1. ui:j are iid random variables with mean 0, variance σ 2
u , third moment γ1uσ

3
u and fourth moment (γ2u + 3)σ 4

u ;
2. vik:j are iid random variables with mean 0, variance σ 2

v , third moment γ1vσ
3
v and fourth moment (γ2v + 3)σ 4

v ;
3. wik are iid random variables with mean 0, variance σ 2

w , third moment γ1wσ 3
w and fourth moment (γ2w + 3)σ 4

w;
4. elements of V , W and U are mutually independent;
5. limn→∞

1
nM

′CM = ΣM (finite) where C = In −
1
n ene

′
n;

6. limn→∞
1
nM

′C = σM (finite).

Assumptions 5 and 6 are useful for deriving the asymptotic properties of estimators.
The prior information regarding the regression coefficients is assumed to be available in the form of stochastic linear

restrictions given as

θq×1 = Rq×pβp×1 + ϕq×1, (2.8)

where R and θ are known such that rank (R) = q ≤ p, and ϕ is a vector of random disturbances with mean zero and known
variance–covariance matrix Σϕ . It is assumed that the random vector ϕ is independent of U, V and W . This is an essential
assumption which ensures the external character of the stochastic prior information. The vector θ may be interpreted as a
random variable with expectation E (θ) = Rβ , and hence the stochastic restrictions do not hold exactly but in mean.

3. Estimation of parameters

For the RUMEmultiple regression model with r replicates, the least squares method provides an estimator of regression
coefficient vector β as

bA =

X ′AX

−1 X ′AY . (3.1)

Using the averages of r replicates, the LSE of β is given as

bD =

X ′DX

−1 X ′DY , (3.2)

where A = Inr −
1
nr enre

′
nr and D =

1
r


In ⊗ ere′

r


−

1
nr enre

′
nr [20,22].

Using (2.5)–(2.7), Assumptions 1–6 and Lemma A.5, it can be easily verified that

plim
n→∞

bA = (ΣM + ΣW + ΣV )−1 (ΣM + ΣW ) β and (3.3)

plim
n→∞

bD =


ΣM + ΣW +

1
r
ΣV

−1

(ΣM + ΣW ) β, (3.4)
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where ΣW = σ 2
wIp and ΣV = σ 2

v Ip. Eqs. (3.3) and (3.4) indicate that bA and bD are inconsistent estimators of β when derived
for measurement error ridden data.

Under the assumption of normality of random components in the RUME multiple regression model, Shalabh [22]
provided three consistent estimators of β as

b01 = (r − 1)

X ′ (rD − A) X

−1 X ′AY , (3.5)

b02 = (r − 1)

X ′ (rD − A) X

−1 X ′DY and (3.6)

b03 =

X ′ (rD − A) X

−1 X ′ (rD − A) Y . (3.7)

The estimators b01 and b02 are obtained by correcting for inconsistency in bA and bD. This is done using a consistent
estimator of ΣV , given as

ΣV =
1

n (r − 1)
X ′ (A − D) X . (3.8)

The estimator b03 is obtained by using the linear combination of bA and bD. Using Assumptions 1–6 and Lemma A.5, it can
be easily verified that

plim
n→∞

b0s = β; s = 1, 2, 3. (3.9)

Remark 3.1. The minimization of the following functions

QA = (Y − Xβ)′ A (Y − Xβ) and
QD = (Y − Xβ)′ D (Y − Xβ) ,

with respect to β yields the estimators which are the same as bA and bD respectively. �

3.1. Incorporating stochastic prior information in estimation

The estimators (3.1), (3.2) and (3.5)–(3.7) utilized only sample information. The prior information in the formof stochastic
linear restrictions can be incorporated using the methodology of mixed estimation. We first assume that σ 2

u is known or at
least some pre-estimate of σ 2

u is available. When η and ξ are observable, then following the mixed regression estimation
approach, the sample and prior information (2.8), can be utilized simultaneously in the estimation by minimizing

Q = (η − ξβ)′ (η − ξβ) + σ 2
u (θ − Rβ)′ Σ−1

ϕ (θ − Rβ) . (3.1.1)

The first term captures the information regarding regression coefficients vector in the current sample and the second
term contains prior information regarding β . Q cannot be minimized as both η and ξ are unknown. From Remark 3.1,
we see that QA and QD are based on the sample information regarding regression coefficients vector. Hence, we replace
(η − ξβ)′ (η − ξβ) in Q by QA and QD to get following two forms

QAR = QA + σ 2
u (θ − Rβ)′ Σ−1

ϕ (θ − Rβ) (3.1.2)

and

QDR = QD + σ 2
u (θ − Rβ)′ Σ−1

ϕ (θ − Rβ) . (3.1.3)

Minimization of QAR and QDR with respect to β provide the following estimators

bAR =

X ′AX + σ 2

u R
′Σ−1

ϕ R
−1 

X ′AY + σ 2
u R

′Σ−1
ϕ θ


(3.1.4)

and

bDR =

X ′DX + σ 2

u R
′Σ−1

ϕ R
−1 

X ′DY + σ 2
u R

′Σ−1
ϕ θ


. (3.1.5)

Using (2.5)–(2.7) and LemmaA.5, it is observed that these estimators are not consistent since plim bAR ≠ β and plim bDR ≠ β .
In the following subsections, we provide consistent SR estimators of regression coefficients which also incorporate prior
information.

3.1.1. Consistent estimation
When there is no measurement error in the data i.e. σ 2

v = 0, it can be verified from (3.3) that bA is consistent. The
presence of measurement error in the data results in the inconsistency of this estimator. The estimator b01 was obtained
by Shalabh [22] by adjusting for the inconsistency in bA. In the following discussion, we show that the same consistent
estimator can also be obtained using the corrected score methodology (refer Buzas and Stefanski [2]). In this methodology,
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we first make appropriate corrections to the original score function so that the effect of measurement error is eliminated.
This corrected score function is then minimized to get the consistent estimator.

Since the inconsistency in bA is caused by the presence of measurement error of explanatory variables, we first correct
QA for σ 2

v . It is observed, using (2.6) and (2.7) that

E (QA|Y , ξ) = E

(Y − Xβ)′ A (Y − Xβ) | Y , ξ


= (Y − [ξ ⊗ er ]β)′ A (Y − [ξ ⊗ er ]β) + tr (A) β ′ΣVβ (using Assumptions 1–4)

= (Y − [ξ ⊗ er ]β)′ A (Y − [ξ ⊗ er ]β) + (nr − 1) β ′ΣVβ. (3.1.1.1)

Only the second term on the right hand side of (3.1.1.1) containsΣV = σ 2
v Ip. Thus adjustingQA for the factor (nr − 1) β ′ΣVβ

and replacing the unknown ΣV by its consistent estimator provided in (3.8), we get the following corrected function for
sufficiently large sample size

QA;cor = QA −


r

r − 1


β ′X ′ (A − D) Xβ. (3.1.1.2)

It is observed that minimizing QA;cor results in an estimator which is the same as b01. This observation motivated us to use
the corrected function QA;cor in Q as a replacement for (η − ξβ)′ (η − ξβ). Thus we get

QAR;cor = QA −


r

r − 1


β ′X ′ (A − D) Xβ + σ 2

u (θ − Rβ)′ Σ−1
ϕ (θ − Rβ) . (3.1.1.3)

Minimization of QAR;cor gives the following estimator

b11 =


1

r − 1


X ′ (rD − A) X + σ 2

u R
′Σ−1

ϕ R
−1 

X ′AY + σ 2
u R

′Σ−1
ϕ θ


. (3.1.1.4)

Using (2.5)–(2.7) and Lemma A.5, the above estimator can easily shown to be consistent, i.e. plim b11 = β . From (3.1.1.4),
it is observed that after adding the stochastic linear restrictions, we only need to add σ 2

u R
′Σ−1

ϕ R and σ 2
u R

′Σ−1
ϕ θ to the

unrestricted consistent estimator b01. These two terms may be interpreted as the adjustments brought in by the stochastic
linear restrictions.

Writing SF = X ′FX for some matrix F and applying Lemma A.1 to the first factor on the right hand side of (3.1.1.4), we
get 

S(rD−A)

r − 1
+ σ 2

u R
′Σ−1

ϕ R
−1

=
S−1
(rD−A)

(r − 1)−1 −
S−1
(rD−A)

(r − 1)−2 R
′


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

RS−1
(rD−A). (3.1.1.5)

Inserting the above relation in (3.1.1.4), we get another form of the estimator b11 as

b11 = b01 + (r − 1) S−1
(rD−A)R

′


σ−2
u Σϕ + (r − 1) RS−1

(rD−A)R
′

−1
(θ − Rb01) . (3.1.1.6)

In contrast to (3.1.1.4), the modified form of the estimator b11 given by (3.1.1.6) no longer requires the matrix Σϕ to be
non-singular. Thus the modified form allows the simultaneous use of exact and stochastic prior information. For Σϕ a null
matrix, (3.1.1.6) provides the estimator using only the exact linear restrictions. When Σϕ is a full rank matrix, the estimator
uses only stochastic information. In case Σϕ is singular, we get the estimator which uses both exact and stochastic prior
information.

Proceeding on similar lines, it is observed that the consistent estimator b02 can also be obtained by minimizing the
following corrected function

QD;cor = QD −


1

r − 1


β ′X ′ (A − D) Xβ. (3.1.1.7)

This corrected function could be used in the process of finding another estimator which utilizes stochastic prior information.
Replacement of (η − ξβ)′ (η − ξβ) in Q by (3.1.1.7) provides the following function

QDR;cor = QD −


1

r − 1


β ′X ′ (A − D) Xβ + σ 2

u (θ − Rβ)′ Σ−1
ϕ (θ − Rβ) . (3.1.1.8)

First minimizing (3.1.1.8) with respect to β and then applying Lemma A.1 to the resultant form of the estimator, we get the
following modified estimator

b12 = b02 + (r − 1) S−1
(rD−A)R

′


σ−2
u Σϕ + (r − 1) RS−1

(rD−A)R
′

−1
(θ − Rb02) . (3.1.1.9)

Using (3.9) and Lemma A.5, it is easily observed that this estimator is consistent.
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Another restricted estimator can be obtained by using the consistent estimator b03. The estimator b03 was obtained by
using the linear combination of bA and bD. We observe that the same estimator is obtained if we minimize the following
function

QA,D = (Y − Xβ)′ (rD − A) (Y − Xβ) . (3.1.1.10)

This provides the necessary motivation to use (3.1.1.10) in (3.1.1) for obtaining another estimator utilizing the stochastic
prior information. Minimizing (3.1.1) after replacing (η − ξβ)′ (η − ξβ) by QA,D and then applying Lemma A.1, gives the
following estimator

b13 = b03 + S−1
(rD−A)R

′


σ−2
u Σϕ + RS−1

(rD−A)R
′

−1
(θ − Rb03) . (3.1.1.11)

Using (3.9) and Lemma A.5, this estimator can be easily shown to be consistent.
Despite being inconsistent, bAR and bDR incorporate the stochastic linear restrictions. These estimators are used to provide

a few more stochastically restricted estimators. Using Lemma A.1, the modified forms of bAR and bDR are obtained as

bAR = bA + S−1
A R′


σ−2
u Σϕ + RS−1

A R′
−1

(θ − RbA) , (3.1.1.12)

and

bDR = bD + S−1
D R′


σ−2
u Σϕ + RS−1

D R′
−1

(θ − RbD) . (3.1.1.13)

The inconsistency of bAR and bDR is caused by the inconsistency of bA and bD. For eliminating the inconsistency, we replace
bA and bD by their consistent counterparts b0s for s = 1, 2, 3 and obtain the following estimators

b2s = b0s + S−1
A R′


σ−2
u Σϕ + RS−1

A R′
−1

(θ − Rb0s) , (3.1.1.14)

and

b3s = b0s + S−1
D R′


σ−2
u Σϕ + RS−1

D R′
−1

(θ − Rb0s) . (3.1.1.15)

(3.9) and Lemma A.5 lead to the conclusion that plim b2s = β and plim b3s = β .

Remark 3.1.1. For s = 1, 2, 3, we consider the weighted function

QW = (b0s − β)′ W (b0s − β) + σ 2
u (θ − Rβ)′ Σ−1

ϕ (θ − Rβ) , (3.1.1.16)

where W is the weight matrix. For W = (r − 1)−1 X ′ (rD − A) X , the estimator obtained on minimizing QW is the same as
b11 and b12. WhenW = X ′ (rD − A) X , we get the estimator b13. Similarly, on taking weight matrices as X ′AX and X ′DX , the
respective estimators are the same as b2s and b3s. �

The above observations suggest that the proposed stochastically restricted estimators can be obtained from weighted
function QW by using some appropriate weight matrices. This motivated us to propose one more consistent estimator of β .
On minimizing the unweighted function

(b0s − β)′ (b0s − β) + σ 2
u (θ − Rβ)′ Σ−1

ϕ (θ − Rβ) , (3.1.1.17)

we get the estimator

b4s = b0s + R′

σ−2
u Σϕ + RR′

−1
(θ − Rb0s) . (3.1.1.18)

This estimator can be easily shown to be consistent by using (3.9) and Lemma A.5.
Hence using b0s; s = 1, 2, 3, we provide three classes of four estimators each


bfs; f = 1, 2, 3, 4


, which are consistent as

well as utilize prior information in the form of stochastic linear restrictions. These estimators are termed as Stochastically
Restricted (SR) Estimators.

3.2. Two-Stage Feasible Stochastically Restricted (TSFSR) estimators

The estimators proposed in the previous subsection are based on the assumption that σ 2
u is known. But generally, this

may not be true and hence we propose to replace σ 2
u by

σ̂ 2
u =

1
n (r − 1)


Y − X β̂

′

(A − D)

Y − X β̂


− β̂ ′X ′ (A − D) X β̂


, (3.2.1)

where β̂ is some good estimator of β . Using Lemma A.5, it can be easily shown that σ̂ 2
u is consistent provided β̂ is consistent.

The algorithm for obtaining the Two-Stage Feasible Stochastically Restricted (TSFSR) Estimators is as follows
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Stage 1: Obtain the unrestricted estimator β̂ and compute σ̂ 2
u ;

Stage 2: Use σ̂ 2
u in the place of σ 2

u in the expressions of bfs; f = 1, 2, 3, 4 to obtain TSFSR estimators.

We denote these TSFSR estimators as b̂fs; f = 1, 2, 3, 4.
A natural choice for β̂ is among the consistent estimators b01, b02 and b03. Under the condition of Normally distributed

measurement errors, b02 dominates both b01 and b03 according to mean square error criterion (refer Shalabh [22]). Thus
one can use b02 in (3.2.1) as a good estimator of β . It is to be noted that, in the present work, we have not imposed any
distributional assumption on measurement errors. Hence in case of non-normality, the suitability of b01, b02 and b03 will be
explored in the next section.

There is another important point which needs to be discussed here. For σ̂ 2
u to be a reasonable estimator of σ 2

u , it must be
non-negative. Unfortunately, for certain values of Y and X , σ̂ 2

u may be negative since it is the difference of two non-negative
terms. One may take σ̂ 2

u = 0 in such a situation but use of this estimate in stage 2 of the algorithm does not provide a
better estimator of β than the unrestricted estimators given by (3.5)–(3.7). Thus, for negative σ̂ 2

u , it is better to use some
pre-estimate (obtained from earlier studies) of σ 2

u in SR estimators for utilizing stochastic information.

Remark 3.2.2. The above problem does not arise if the covariance matrix of random component ϕ in (2.8) is parameterized
as σ 2

u K for known matrix K , because in this case, the expression of SR estimators does not involve σ 2
u (refer Rao et al. [18]).

But this parameterization may not be valid for all situations. �

4. Large sample properties of estimators

The derivation of the exact distribution of proposed estimators is difficult. Even if derived, the complexity of expressions
may not serve any analytical purpose. Thus, in this section, we explore the large sample properties of the SR and TSFSR
estimators. The asymptotic properties of consistent unrestricted estimators b01, b02 and b03 shall also be explored.

We first define some expressions to be used in deriving the asymptotic distribution of estimators. Using C = In −
1
n ene

′
n,

we write

Σξ =
1
n
M ′CM + σ 2

W Ip,

ΣXA = Σξ + σ 2
v Ip,

ΣXD = Σξ +
1
r
σ 2

v Ip and

Z = [C (M + W ) ⊗ er ] = A [(M + W ) ⊗ er ] = D [(M + W ) ⊗ er ] .

Using Assumption 5, it can be easily seen that

lim
n→∞

Σξ = ΣM + σ 2
W Ip = Σ (say),

lim
n→∞

ΣXA = Σ + σ 2
v Ip = ΣA and

lim
n→∞

ΣXD = Σ +
1
r
σ 2

v Ip = ΣD.

Thus on using (2.5)–(2.7) and definitions of Σξ , ΣXA, ΣXD and Z , we can write

1
nr

X ′AY = Σξβ +
1

n1/2
h, (4.1)

1
nr

X ′DY = Σξβ +
1

n1/2


h + h∗


, (4.2)

1
nr

X ′AX = ΣXA +
1

n1/2
H1, (4.3)

1
nr

X ′DX = ΣXD +
1

n1/2
H2, (4.4)

where

h∗
=

1
n1/2r


V ′ (D − A)U


, (4.5)

h =
1

n1/2


Qβ −

1
r


Z ′Vβ − Z ′U − V ′AU


, (4.6)
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H1 =
1

n1/2


Q +

1
r


V ′AV − nrσ 2

v Ip


, (4.7)

H2 =
1

n1/2


Q +

1
r


V ′DV − nσ 2

v Ip


, (4.8)

for Q =

M ′CW + W ′CM


+

W ′CW − nσ 2

wIp

+

1
r


Z ′V + V ′Z


.

From Assumptions 1–6 and Lemma A.4, we observe that h∗, h, H1 and H2 are of order OP (1).
Using the above results, we now state the following theorem which gives the relationship between the asymptotic

distributions of SR and TSFSR estimators.

Theorem 1. If σ̂ 2
u is consistent, the following result holds

n
1
2


b̂fs − β


= n

1
2

bfs − β


+ Op


n−1 , (4.9)

for f = 1, 2, 3, 4 and s = 1, 2, 3. That is, the SR and TSFSR estimators have same asymptotic distribution. �

The proof of the above theorem is given in Appendix. The result of Theorem 1 has an intuitive appeal. Since σ̂ 2
u is consistent,

hence for large sample size b̂fs and bfs are identical. Hence, we only need to evaluate the asymptotic properties of SR
estimators. Eqs. (A.18) and (A.21) from Appendix give

n
1
2

bfs − β


= Σ−1

ξ


h −

1
r − 1

Hβ + dsh∗


+ OP


n−

1
2


, (4.10)

where H = rH2 − H1. The values d1 = 0, d2 = 1 and d3 =
r

r−1 characterize three classes of estimators.
We define the function

G(F1, F2) =

enre′

p(F1 ∗ Ip)

∗

(F2 ∗ Inr)enre′

p


, (4.11)

where ‘∗’ indicates the Hadamard product of matrices [17] and F1 and F2 matrices of order p × p and nr × nr respectively.
The above mentioned results lead to the following theorem which gives the asymptotic distribution of unrestricted as well
as restricted estimators.

Theorem 2. n
1
2

bfs − β


; f = 0, 1, 2, 3, 4; s = 1, 2, 3 asymptotically follow a Multivariate Normal distribution, that is

n
1
2

bfs − β

 d
→Np


0p×1, Σ−1ΩsΣ

−1 (4.12)

where 0p×1 is the mean vector with all elements zero and

Ω1 = Θ +
1
r
σ 2
u σ 2

v Ip; (4.13)

Ω2 = Θ +
1
r2

σ 2
u σ 2

v Ip; (4.14)

Ω3 = Θ +
1

r (r − 1)
σ 2
u σ 2

v Ip; (4.15)

Θ =
1
r


σ 2
u + σ 2

v β ′β
 

ΣM + σ 2
W Ip

+

1
r (r − 1)

σ 4
v


ββ ′

+ tr

β ′β


Ip

;

Σ−1
= lim

n→∞
Σ−1

ξ . �

The proof of the above theorem is included in Appendix.
Since mean of the asymptotic distribution of n

1
2

bfs − β


; f = 0, 1, 2, 3, 4; s = 1, 2, 3 is zero, hence all the estimators

are asymptotically unbiased. (4.13)–(4.15) indicate that the asymptotic variance–covariance matrix of estimators is not
affected by deviation from normality. This suggests that non-normality of the elements of U, V and W does not affect the
asymptotic properties of the estimators.

From (4.12), it can be easily observed that for s = 1, 2, 3, the asymptotic distribution of n
1
2

bfs − β


; f = 1, 2, 3, 4 is

the same as that of n
1
2 (b0s − β). Hence in each class, the SR estimators have the same asymptotic distribution as that of the

unrestricted estimator of that class. This indicates that the effect of using additional information in the form of stochastic
linear restrictions vanishes with an increase in the sample size as sufficiently large information regarding the parameter of
interest is available from the sample alone.

From Theorem 2, it is observed that the differences (Ω1 − Ω2), (Ω3 − Ω2) and (Ω1 − Ω3) are positive definite. This
implies that the estimator bf 2 dominates bf 1 and bf 3 even in the case of non-normality. Also bf 3 dominate bf 1 for each
f = 0, 1, 2, 3, 4.

The small sample properties of the estimators are studied in the next section.
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5. Simulations

In this section, the small sample properties of the estimators are assessed using Monte-Carlo simulations. Coding is
done in MATLAB. To get an idea about the effect of non-normality on the properties of estimators, we study the following
distributions for the measurement error and random components in the model

I. Normal distribution (symmetric and non-kurtic);
II. t-distribution (symmetric but kurtic);
III. Gamma distribution (non symmetric and kurtic).

The effect of kurtosis is studied by comparing the results for Normal and t distributions. Comparison of t and Gamma
distributions gives an idea about the effect of skewness. Simulations are performed for various sample sizes and replicates.
The different combinations of


σ 2
u , σ 2

w, σ 2
v


used are (0.5, 0.5, 0.5), (0.5, 0.5, 1.0), (0.5, 1.0, 0.5), (0.5, 1.0, 1.0), (1.0, 0.5, 0.5),

(1.0, 0.5, 1.0), (1.0, 1.0, 0.5) and (1.0, 1.0, 1.0). The random numbers are generated from N (0, 1), t6 and G (2, 1) distributions.
These numbers have been suitably scaled to have mean zero and variance specified by different values of


σ 2
u , σ 2

w, σ 2
v


. The

vector β is fixed a priori as β =

2.4 1.3 1.9

′. The stochastic restriction imposed is of the form given by (2.8), with

R =


0.3 0.5 0.8

−0.45 0.57 0.33


. The random term ϕ is assumed to follow a multivariate normal distribution with mean


0
0


and

variance–covariance matrix Σϕ =


0.5 0.1
0.1 0.3


. The vector θ is computed at each iteration using (2.8).

It is well known that consistent estimators inmeasurement errormodelsmay not have finite expectations [4]. Thus in the
simulation study, we use empirical medians instead of empirical expectations. The median square error matrix (MedSEM)
and median bias (MedBias) vector are defined as

MedSEM

bfs


= median


bfs − β

×

bfs − β

′
, and

MedBias

bfs


=

median


bfs

− β


.

Simulations are performed for SR aswell as TSFSR estimators. 20,000 iterations are used for each parametric combination
and MedSEM and MedBias computed empirically for the unrestricted and SR estimators. For TSFSR estimators, only those
iterations are used where σ̂ 2

u > 0. We denote the trace of MedSEM by TrMedSEM and the norm of MedBias vector by
MedAB (median absolute bias). TrMedSEM and MedAB are used for comparison purpose because any change in these
reflects the increase/decrease in variances and biases of the estimators. The simulation results can be seen on the web
page http://statistics.puchd.ac.in/includes/noticeboard/20120307101646-Tables.pdf in the form of Tables.

From the simulation results given in Tables, it is observed that

• The use of stochastic information provides more efficient estimators since, the MedAB and TrMedSEM for both SR and
TSFSR estimators are less as compared to those for unrestricted estimators. The only exception is b4s; s = 1, 2, 3. Although
it provides the largest reduction in bias as compared to other restricted estimators, it does not provide reduction in
variability except for small samples and large σ 2

v .
• MedAB and TrMedSEM tend towards zero as the sample size increases. This validates the theoretical findings that

estimators are asymptotically unbiased and consistent.
• For both SR and TSFSR estimators, b1s gives the largest reduction in variability and b4s gives largest reduction in bias

followed by b1s.
• MedAB and TrMedSEM for TSFSR estimators are lower than those for SR estimators. This suggests that for σ̂ 2

u > 0, the
TSFSR estimators should be preferred to SR estimators.

• The SR estimators bf 2; f = 1, 2, 3, 4 dominate the other two classes of estimators in terms of reduction in variability. No
clear dominance is observed in terms of reducing the bias.

• For TSFSR estimators, b̂f 1; f = 1, 2, 3, 4 dominate other classes in terms of both variability and bias.
• No clear conclusions can be drawn about the effect of non-normality on the properties of estimators since the differences

in MedAB and TrMedSEM of the estimators for Normal, t and Gamma distributions are not very large. This suggests
that to some extent, the estimators are robust to the assumption of normality of measurement error and other random
components in the model.

• Bias and variance increase as σ 2
v increases and decrease with increasing σ 2

w .

We also tried to explore the extent to which the stochastic restrictions are satisfied by proposed estimators. Since the
estimators under study may not have finite expectations, thus we use the MedBias vector to explore whether stochastic
restrictions are satisfied at least in the central part of the distribution of estimators. The norm of vector (R × MedBias) is
plotted in Fig. 1. It is clear that TSFSR estimators satisfy stochastic restrictions more closely as compared to SR estimators.
This further strengthens the preference of TSFSR estimators over SR estimators.

http://statistics.puchd.ac.in/includes/noticeboard/20120307101646-Tables.pdf
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(a) SR estimators. (b) TSFSR estimators.

Fig. 1. Norm of R × MedBias vs sample size when

σ 2
u , σ 2

w, σ 2
v


= (0.5, 0.5, 1.0) and r = 2.

6. Empirical study

The trade of a country with other countries is an essential activity for the economic development. The wealth of the
country increases when export revenue is high. On the other hand, higher import expenditure puts extra pressure on the
resources and thus affects the growth of that country. This Trade balance (TB, the difference of export and import) may
be related with other economic variables, viz. exchange rate and gross domestic product (GDP). Increase in the exchange
rate reduces the cost of the goods produced by the country. This causes an increase in export whereas imported goods
get costlier. Similarly, higher GDP increases the volume of export. At the same time, the purchasing power of the people
increases. This increases the demand and in turn increases the import expenditure. In the past, many researchers tried to
relate the TB to these economic variables. Breda et al. [1] and Shirvani and Wilbratte [26] explored the effect of exchange
rate on TB using time series. The relationship of GDP and exchange rate with TB was explored by Chiu et al. [6] using panel
data. Ullah et al. [30] used the replicated ultrastructural measurement error model for exploring the effect of exchange rate
on TB from a cross-sectional point of view.

For the purpose of illustrating the estimators proposed in Section 3, we explore the effect of exchange rate averaged
over whole year (x1) and GDP (x2) on TB (y) from a cross-sectional point of view under the RUME model setup defined in
Section 3. The data used is for 40 countries and the observations for two different periods (years 1992 and 2002) are taken
as replicated observations. The data is obtained from the Penn-World Table and the International Monetary Fund Database.
The variables x1, x2 and y are expected to be contaminated with measurement error and thus satisfy Eqs. (2.2) and (2.3).
The effect of different time periods on the cross-sectional relation is captured by taking replications over time. Thus, for
i = 1, . . . , 40 and j = 1, 2, the linear relationship takes the following form

yi:j = β1xi1:j + β2xi2:j + ui:j.

Ullah et al. [30] provided the consistent estimate of regression coefficient of exchange rate on TB (estimate = 9.4, SE = 4.5)
using the data for the years 1977 and 1987. Our model setup is similar to their setup except that one additional variable x2
is included and more recent data is used (years 1992 and 2002). Thus, we use the results reported by them, in the form
of stochastic linear restriction (2.8) by taking R =


1 0


, θ = 9.4 and var (ϕ) = 4.5 × 4.5 = 20.25. Unknown σ 2

u is
estimated using (3.2.1) by taking β̂ = b02 and it is found that σ̂ 2

u = 7.5725. The results are reported for TSFSR estimators in
Table 1. The bootstrap method is used to estimate the standard error of estimates.

Table 1 provides the values of the estimates and corresponding SE in parentheses. The estimators of class 1 have the least
SE as compared to the other two classes and estimator b11 dominates in this class in terms of variability. The findings are
consistentwith the simulation results for TSFSR estimators. It can be easily observed that, by using the stochastic information
in estimation, SE is reduced. Although this reduction is not very large, but this could be due to the fact that var (ϕ) is very
large and hence the stochastic information used here is highly variable. It is also observed that the effect of this additional
information is negligible on the estimates of other variables.
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Table 1
Estimate of regression coefficients and SE.

b01 b02 b03

Exchange rate 1.8877 (0.7906) 2.3727 (0.8547) 2.8577 (1.1986)
GDP −0.0097 (0.0100) −0.0129 (0.0115) −0.0161 (0.0135)

b11 b12 b13
Exchange rate 1.8858 (0.7769) 2.3709 (0.8446) 2.8561 (1.1769)
GDP −0.0097 (0.0100) −0.0129 (0.0117) −0.0161 (0.0135)

b21 b22 b23
Exchange rate 1.8878 (0.7916) 2.3728 (0.8528) 2.8578 (1.1858)
GDP −0.0097 (0.0100) −0.0129 (0.0115) −0.0161 (0.0135)

b31 b32 b33
Exchange rate 1.8879 (0.7924) 2.3729 (0.8518) 2.8579 (1.1748)
GDP −0.0097 (0.0100) −0.0129 (0.0115) −0.0161 (0.0135)

b41 b42 b43
Exchange rate 3.9323 (1.2033) 4.2853 (1.1767) 4.6383 (1.1613)
GDP −0.0097 (0.0100) −0.0129 (0.0115) −0.0161 (0.0135)

7. Conclusions

A replicated ultrastructural measurement error (RUME) multiple regression model is considered where replicated
observations are available on both study and predictor variables. Some prior information regarding regression coefficients
is assumed to be available in the form of stochastic linear restrictions. Three classes of consistent stochastically restricted
(SR) estimators are proposed. When σ 2

u is unknown, the SR estimators cannot be used. To overcome this problem, a two-
stage procedure of obtaining restricted estimators, known as TSFSR estimators, is described. No distributional assumption
is imposed on any random component in the model. The asymptotic properties of unrestricted and restricted consistent
estimators are reported. It is observed that asymptotically, the estimators follow a Multivariate Normal distribution and
are unbiased. Monte Carlo simulations are performed to explore the small sample properties of estimators. It is observed
that inclusion of prior information improves the estimators in terms of both bias and variability. The effect of stochastic
information vanishes with increasing sample size. In small samples, the TSFSR estimators dominate SR estimators in terms
of both bias and variability. To some extent, the proposed estimators are robust to the assumption of normality. The utility
of the proposed estimators is illustrated using a real economic data set on trade balance, exchange rate and GDP.
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Appendix

Lemma A.1. If A : p × p, B : p × n, C : n × n, and D : n × p, then

(A + BCD)−1
= A−1

− A−1B

C−1

+ DA−1B
−1

DA−1. �

The above lemma is taken from Rao et al. [18]

Lemma A.2. Let C =

cij

be a (m × m) matrix and let ∥C∥1 = max1≤i≤m

m
j=1

cij and ∥C∥2 = max1≤j≤m
m

i=1

cij be
the maximum column sum and maximum row sum matrix norms respectively. If ∥C∥1 < 1 and/or ∥C∥2 < 1, then (Im − C) is
invertible and

(Im − C)−1
=


∞

i=0 C
i, where Co

= Im. �

For the proof, one can refer to Rao and Rao [17].

Lemma A.3. Let Vn =
n

j=1 UjnXj where X1, . . . , Xn are (p × 1) independent and identically distributed random vectors with
E

Xj


= 0, and U1n, . . . ,Unn are (q × p) non-stochastic matrices. Suppose that limn→∞ cov (Vn) = Λ; where
Λij

 < ∞, for
each i, j and Λ is positive definite. If there exists a function ω(n) such that limn→∞ ω(n) = ∞, and the elements of ω(n)Ujn are

bounded, then Vn
d

→Nq(0, Λ) as n → ∞. �

The above result, known as the Central Limit Theorem, is due to Malinvaud [16].
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Lemma A.4. (i) n−
1
2

W ′C ⊗ e′

r


U = n−

1
2

W ′C ⊗ e′

r


V = Op (1);

(ii) n−
1
2

M ′C ⊗ e′

r


U = n−

1
2

M ′C ⊗ e′

r


V = n−

1
2 M ′CW = Op (1);

(iii) n−
1
2 V ′AU = n−

1
2 V ′DU = Op (1);

(iv) n−
1
2

W ′CW − nσ 2

W Ip


= n−
1
2

V ′AV − nrσ 2

V Ip


= n−
1
2

V ′DV − nσ 2

V Ip


= Op (1);
(v) n−

1
2

U ′AU − nrσ 2

u


= n−

1
2

U ′DU − nσ 2

u


= Op (1).

The proof can be obtained using the definitions of order in probability and Assumptions 1–6. �

Lemma A.5. As n → ∞, we have
(i) plim n−1


W ′C ⊗ e′

r


U = plim n−1


W ′C ⊗ e′

r


V = 0;

(ii) plim n−1

M ′C ⊗ e′

r


U = plim n−1


M ′C ⊗ e′

r


V = plim n−1M ′CW = 0;

(iii) plim n−1V ′AU = plim n−1V ′DU = 0;
(iv) plim n−1W ′CW = σ 2

W Ip; plim n−1V ′AV = rσ 2
V Ip; plim n−1V ′DV = σ 2

V Ip;
(v) plim n−1U ′AU = rσ 2

u ; plim n−1U ′DU = σ 2
u ;

(vi) plim n−1X ′AX = ΣM + σ 2
W Ip + σ 2

V Ip; plim n−1X ′AY =

ΣM + σ 2

W Ip

β;

(vii) plim n−1X ′DX = ΣM + σ 2
W Ip +

1
r σ

2
V Ip; plim n−1X ′DY =


ΣM + σ 2

W Ip

β .

The proof follows using Lemma A.4 and Assumptions 1–6. �

Now we derive few results which will be useful for proving the theorems. Using (4.3) and Lemma A.2, we observe that
1
nr

X ′AX
−1

=


ΣXA +

1
n1/2

H1

−1

=


Ip +

1
n1/2

Σ−1
XA H1

−1

Σ−1
XA

=


Ip −

1
n1/2

Σ−1
XA H1


Σ−1

XA + OP

n−1 . (A.1)

Eq. (4.4) and Lemma A.2 lead to the expression
1
nr

X ′DX
−1

=


Ip −

1
n1/2

Σ−1
XD H2


Σ−1

XD + OP

n−1 . (A.2)

Similarly, Eqs. (4.3) and (4.4) and Lemma A.2 give
1
nr

X ′ (rD − A) X
−1

=


(r − 1) Σξ +

1
n1/2

H
−1

=
1

(r − 1)


Ip −

1
n1/2 (r − 1)

Σ−1
ξ H


Σ−1

ξ + OP

n−1 , (A.3)

where H = rH2 − H1.
Now, consider

1
nr


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

=


I +

σ 2
u Σ−1

ϕ

nr

RnrS−1
(rD−A)R

′

(r − 1)−1


σ 2
u Σ−1

ϕ

nr



=


I +

σ 2
u Σ−1

ϕ

nr
R


Ip −

Σ−1
ξ H

n1/2 (r − 1)


Σ−1

ξ + OP

n−1 R′


σ 2
u Σ−1

ϕ

nr


= OP


n−1 . (A.4)

Thus, using (A.3) and (A.4), we have

S−1
(rD−A)R

′


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

= OP

n−1 . (A.5)

Proceeding on similar lines, using (A.1)–(A.4) and Lemma 2, we observe that

S−1
(rD−A)R

′


σ−2
u Σϕ + RS−1

(rD−A)R
′

−1
= OP


n−1 , (A.6)

S−1
A R′


σ−2
u Σϕ + RS−1

A R′
−1

= OP

n−1 , (A.7)
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and

S−1
D R′


σ−2
u Σϕ + RS−1

D R′
−1

= OP

n−1 . (A.8)

Now, we have enough details to provide the proof of Theorem 1.
Proof of Theorem 1. Using (A.3),

1
nr

X ′ (rD − A) X
−1

=
1

(r − 1)
Σ−1

ξ + OP


n−

1
2


;

=
1

(r − 1)


1
n
M ′CM + σ 2

W Ip

−1

+ OP


n−

1
2


. (A.9)

Using (A.9) and (4.2) along with (3.6), we get

b02 =


1
n
M ′CM + σ 2

W Ip

−1

+ OP


n−

1
2

1
n
M ′CM + σ 2

W Ip


β + OP


n−

1
2


= β + OP


n−

1
2


. (A.10)

Using (A.10) in the expression of σ̂ 2
u given by (3.2.1) and then applying Lemma A.4, it is observed that

σ̂ 2
u = σ 2

u + OP


n−

1
2


. (A.11)

It can be easily verified that the above result is true even when b01 or b03 is used instead of b02. After inserting (A.11) in b̂11,
we write

b̂11 = b01 +
S−1
(rD−A)R

′

(r − 1)−1


σ−2
u Σϕ + OP


n−

1
2


+

RS−1
(rD−A)R

′

(r − 1)−1

−1

(θ − Rb01)

= b01 +
S−1
(rD−A)R

′

(r − 1)−1

Ip +


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

OP


n−

1
2

−1 
σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

× (θ − Rb01) . (A.12)

Using (A.4), we get

b̂11 = b01 +
S−1
(rD−A)R

′

(r − 1)−1


Ip + OP (1)OP


n−

1
2

−1


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

(θ − Rb01) . (A.13)

Applying Lemma A.2 to (A.13), it is observed that

b̂11 = b01 +
S−1
(rD−A)R

′

(r − 1)−1


Ip + OP


n−

1
2


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

(θ − Rb01) . (A.14)

Using (A.5) and (A.10) in (A.14), we get

b̂11 = b01 +

 S−1
(rD−A)R

′

(r − 1)−1


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

+ OP


n−

3
2

 (θ − Rb01)

= b01 +

 S−1
(rD−A)R

′
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σ−2
u Σϕ +
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′

(r − 1)−1

−1

+ OP


n−

3
2

θ − R

β + OP


n−

1
2



= b01 +
S−1
(rD−A)R

′

(r − 1)−1


σ−2
u Σϕ +

RS−1
(rD−A)R

′

(r − 1)−1

−1

(θ − Rb01) + OP


n−

3
2


. (A.15)

Thus we get the desired result

n
1
2


b̂11 − β


= n

1
2 (b11 − β) + OP


n−1 . (A.16)

For other values of f and s, the result can be proved similarly. �
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In the following discussion, we obtain the expression for SR estimators in the form of order in probability. Using (3.5)–(3.7),
(4.1), (4.2) and (A.3), we can write

b0s =


Ip −

1
n1/2 (r − 1)

Σ−1
ξ H


Σ−1

ξ + OP

n−1Σξβ +

1
n1/2

h +
ds
n1/2

h∗


, (A.17)

where for s = 1, 2, 3, we have d1 = 0, d2 = 1 and d3 =
r

r−1 .
Solving (A.17), we get

n
1
2 (b0s − β) = Σ−1

ξ


h −

1
r − 1

Hβ + dsh∗


+ OP


n−

1
2


. (A.18)

(A.10) gives

(θ − Rb01) =

θ − R


β + OP


n−1

= (θ − Rβ) + OP

n−1 . (A.19)

Using (A.5), (A.18) and (A.19) in (3.1.1.6), we get

b11 − β = b01 − β + OP

n−1 ,

that is

n
1
2 (b11 − β) = n

1
2 (b01 − β) + OP


n−

1
2


. (A.20)

Proceeding on similar lines, for s = 1, 2, 3 and f = 1, 2, 3, 4, we observe that

n
1
2

bfs − β


= n

1
2 (b0s − β) + OP


n−

1
2


. (A.21)

Let MC ′

i and W C ′

i be the ith rows of CM and CW respectively. V A′

i:j , V
D′

i:j , V
′

i:j and Ui:j are the (i : j)th row of AV , DV , V and
(i : j)th element ofU respectively, where (i : j) indicates the row corresponding to jth replicate of ith subject for i = 1, . . . , n
and j = 1, . . . , r . Using these notations, we write V A

i =

V A
i:1, . . . , V

A
i:r


, VD

i =

VD
i:1, . . . , V

D
i:r


, Vi = [Vi:1, . . . , Vi:r ] and

Ui = [Ui:1, . . . ,Ui:r ]. These notations are helpful in the proof of Theorem 2 which is given below.

Proof of Theorem 2. From (A.18) and (A.21), it is obvious that for f = 0, 1, . . . , 4, the asymptotic distribution of
n

1
2

bfs − β


is the same as that of


h −

1
r−1Hβ + dsh∗


. We can write
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1

r − 1
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
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CiDi

where for i = 1, . . . , n
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are matrices of constants and iid random vectors, respectively. Assumptions 1–6 imply that limn→∞ E (Di) = 0 and n1/2Ci
is bounded for fixed r . Thus using Lemma A.3, for s = 1, 2, 3

h −
1

r − 1
Hβ + dsh∗


d

→Np

0p×1, Ωs


, (A.22)

where

Ωs = lim
n→∞

E


h −
1

r − 1
Hβ + dsh∗

 
h −

1
r − 1

Hβ + dsh∗

′
.

Using Assumptions 1–6 and on evaluating the expectations, we get the expressions for Ωs; s = 1, 2, 3 as given in
Eqs. (4.13)–(4.15).
Thus from (A.18), (A.21) and (A.22), we have for f = 0, 1, 2, 3, 4

n
1
2

bfs − β

 d
→Np


0p×1, Σ−1ΩsΣ

−1 ,
where Σ−1

= limn→∞ Σ−1
ξ . �

References

[1] J.C. Breda, A.M. Kutan, S. Zhou, The exchange rate and the balance of trade: the Turkish experience, J. Dev. Stud. 33 (5) (1997) 675–692.
[2] J.S. Buzas, L.A. Stefanski, A note on corrected score estimation, Statist. Probab. Lett. 28 (1996) 1–8.
[3] K.L. Chan, T.K. Mak, Maximum likelihood estimation of a linear structural relationship with replication, J. R. Stat. Soc. B 41 (1979) 263–268.
[4] C.L. Cheng, A. Kukush, Non-existence of the first moment of the adjusted least squares estimator in multivariate errors in variables model, Metrika 64

(2006) 41–46.
[5] C.L. Cheng, J.W. Van Ness, Statistical Regression with Measurement Errors, Arnold Publishers, 1999.
[6] Y.B. Chiu, C.C. Lee, C.H. Sun, The US trade balance and real exchange rate: an application of the heterogeneous panel cointegration method, Economic

Modelling 27 (2010) 705–716.
[7] G.R. Dolby, The ultrastructural relation: a synthesis of the functional and structural relations, Biometrika 63 (1976) 39–50.
[8] J. Durbin, A note on regression when there is extraneous information about one of the coefficients, J. Amer. Statist. Assoc. 48 (1953) 799–808.
[9] W.A. Fuller, Measurement Error Models, John Wiley, 1987.

[10] L.J. Gleser, Estimators of slopes in linear errors-in-variables regressionmodels when the predictors have known reliabilitymatrix, Statist. Probab. Lett.
17 (1993) 113–121.

[11] H. Haupt, W. Oberhofer, Stochastic response restrictions, J. Multi. Anal. 95 (2005) 66–75.
[12] Y. Isogawa, Estimating a multivariate linear structural relationship with replication, J. R. Statist. Soc. B 47 (1985) 211–215.
[13] K. Jain, S. Singh, S. Sharma, Restricted estimation in multivariate measurement error regression model, J. Multivariate Anal. 102 (2011) 264–280.
[14] X. Jianwen, H. Yang, Estimation in singular linear models with stochastic linear restrictions, Comm. Statist. Theory Methods 36 (2007) 1945–1951.
[15] S. Kleeper, E.E. Leamer, Consistent set of estimates for regressions with errors in all variables, Econometrica 52 (1984) 163–183.
[16] E. Malinvaud, Statistical Methods of Econometrics, North-Holland Publishing Co., Amsterdam, 1966.
[17] C.R. Rao, M.B. Rao, Matrix Algebra and its Applications to Statistics and Econometrics, World Scientific, 1998.
[18] C.R. Rao, H. Toutenburg, Shalabh, C. Heumann, Linear Models and Generalizations: Least Squares and Alternatives, third ed., Springer, 2008.
[19] M. Revan, A stochastic restricted ridge regression estimator, J. Multi. Anal. 100 (2009) 1706–1716.
[20] D.H. Richardson, D. Wu, Least squares and grouping method estimators in the errors in variables model, J. Amer. Statist. Assoc. 65 (330) (1970)

724–748.
[21] D.W. Schafer, K.G. Purdy, Likelihood analysis for errors in variables regression with replicate measurements, Biometrika 83 (1996) 813–824.
[22] Shalabh, Consistent estimation of coefficients in measurement error models with replicated observations, J. Multivariate Anal. 86 (2003) 227–241.
[23] Shalabh, G. Garg, N. Misra, 2008, Consistent estimation of regression coefficients in ultrastructural measurement error model using stochastic prior

information, Stat Papers. http://dx.doi.org/10.1007/s00362-008-0162-z.
[24] Shalabh, C.M. Paudel, N. Kumar, Consistent estimation of regression parameters under replicated ultrastructural model with non normal errors, J. Stat.

Comput. Simul. 79 (3) (2009) 251–274.
[25] Shalabh, H. Toutenburg, Estimation of linear regression models with missing data: the role of stochastic linear constraints, Comm. Statist. Theory

Methods 34 (2005) 375–387.
[26] H. Shirvani, B. Wilbratte, The relationship between the real exchange rate and the trade balance: an empirical reassessment, Int. Econ. J. 11 (1) (1997)

39–50.
[27] H. Theil, On the use of incomplete prior information in regression analysis, J. Amer. Statist. Assoc. 58 (1963) 401–414.
[28] H. Theil, A.S. Goldberger, On pure and mixed statistical estimation in economics, Int. Econ. Rev. 2 (1961) 65–78.
[29] H. Toutenburg, Prior Information in Linear Models, John Wiley and Sons Ltd, 1982.
[30] A. Ullah, Shalabh, D. Mukherjee, Consistent estimation of regression coefficients in replicated data with non-normal measurement errors, Ann. Econ.

Finance 2 (2001) 249–264.
[31] N. Wang, R.J. Carroll, K.Y. Liang, Quasilikelihood estimation in measurement error models with correlated replicates, Biometrics 52 (1996) 401–411.
[32] B.J. Yam, Asymptotic properties of the OLS and GRLS estimators for the replicated functional relationship model, Comm. Statist.—Theory Methods 14

(1985) 1981–1996.

http://dx.doi.org/10.1007/s00362-008-0162-z

	Using stochastic prior information in consistent estimation of regression coefficients in replicated measurement error model
	Introduction
	Model specification
	Estimation of parameters
	Incorporating stochastic prior information in estimation
	Consistent estimation

	Two-Stage Feasible Stochastically Restricted (TSFSR) estimators

	Large sample properties of estimators
	Simulations
	Empirical study
	Conclusions
	Acknowledgments
	Appendix
	References


