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a b s t r a c t

The paper shows that the fourth cumulant of a finite mixture distribution might be
decomposed into the mean of the components’ fourth cumulants and the fourth cumulant
of the components’ means, when the mixture’s components have the same second
and third cumulants. Statistical applications include robustness properties of likelihood-
based testing procedures and kurtosis-based projection methods. Practical relevance of
theoretical results in the paper are illustrated with two well-known data sets.
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1. Introduction

Let x = (X1, . . . , Xd)
T be a d-dimensional random vector with mean µ = (µ1, . . . , µd)

T , covariance matrix Σ =

σij


and finite fourth-order moments: E
XiXjXhXk

 < +∞, for i, j, h, k = 1, . . . , d. The fourth cumulant K4 =

κijhk


of x is

the d-dimensional, symmetric tensor of order 4whose elements are the fourth-order derivatives of the cumulant generating
function of x: κijhk = log E


exp


ιtT x


/∂ti∂tj∂th∂tk, where ι =

√
−1 and tT = (t1, . . . , td). An equivalent representation

of κijhk is

E

(Xi − µi)


Xj − µj


(Xh − µh) (Xk − µk)


− σijσhk − σihσjk − σikσjh.

The elements κijhk might be arranged into the d2 × d2 block matrix κ4 (x) =

Mpq


, where Mpq = log E


exp


ιtT x


/

∂tp∂tq∂t∂tT for p, q = 1, . . . , d. The matrix κ4 (x) is the unfolded version of K4 (see, for example [41]) and can be
represented as

E

y ⊗ yT ⊗ y ⊗ yT


−

Id2 + Kd,d


(Σ ⊗ Σ) − vec (Σ) vecT (Σ) ,

where y = x − µ, ⊗ denotes the Kronecker product, vec (Σ) is the vectorization of Σ and Kd,d is the d2 × d2 commutation
matrix [25]. With a slight abuse of notation, we shall refer to the matrix κ4 (x) as to the fourth cumulant of x. Loperfido [23]
examines some spectral properties of κ4 (x).

In the general case, the number of distinct elements in κ4 (x) increases very quickly with the dimension of x. If x is
d- dimensional, κ4 (x) might contain up to d (d + 1) (d + 2) (d + 3) /24 distinct elements (see, for example, [16]). This
suggests that statistical applications of the fourth order cumulant might greatly benefit from its parsimonious modelling,
especially when they deal with multivariate kurtosis, as measured by functions of the fourth standardized cumulant. As a
first example, Mardia [27], Malkovich and Afifi [26], Henze [13] investigate different measures of multivariate kurtosis for
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testing the hypothesis of multivariate normality. As a second example, kurtosis is used in Independent Component Analysis
to recover the independent components themselves, when they are assumed to be leptokurtic (see, for example, [15]). As
a third example, likelihood-based procedures for testing hypotheses on covariance matrices might be very sensitive to the
kurtosis of the sampled distribution, when the latter is erroneously assumed to be multivariate normal [14,28,43,45].

Finite mixtures of multivariate distributions have often been used to achieve parsimonious modelling. Let F1, . . . , Fg be
d-dimensional cumulative distribution functions, and let π1, . . . , πg be nonnegative real numbers which add up to one. The
weighted average F = π1F1 + · · ·πgFg is said to be a finite mixture distribution (or model), whose i-th component and i-th
weight are Fi andπi, respectively. Letµi andΩi be themean and the variance of the i-thmixture’s component Fi, respectively,
for i = 1, . . . , g . It is well-known that the mixture’s mean µ, i.e. its first cumulant, is the mean of the components’ means.
It is also well-known that the mixture’s covariance Σ , i.e. its second cumulant, is the mean of the components’ covariances
plus the covariance of the components’ means. The above representations of the mean and the variance are appealing in
that they are easily expressed both in words and in matrix notation. Higher-order cumulants of finite mixture distributions
might be obtained via the law of total cumulance [5]. Unfortunately, it leads to results which are neither easily interpretable
nor admit simple representations in the matrix form, thus limiting their use in statistical modelling.

In recent years, finite mixtures of elliptical distributions with proportional scatter matrices have been used to explore
the statistical properties of kurtosis-basedmultivariate procedures. Projectionswhich eithermaximize orminimize kurtosis
have been used both in cluster analysis and in outlier detection [36–39]. In tensor terminology, theymight be regarded as the
best rank-one approximations to the fourth standardized cumulant. Tyler et al. [44] and Peña et al. [40] used a kurtosismatrix
independently introduced by Cardoso [7] and Mori et al. [34] to uncover several features of multivariate data. The same
matrix might be regarded as the sum of the d diagonal blocks of the fourth cumulant, which are d × d symmetric matrices
[19]. Both approaches have good statistical properties when sampling from a finite mixture of elliptical distributions with
proportional scatter matrices. At present time, however, no one investigated their robustness to violation of the underlying
assumptions, not even in the special case of a mixture of two multivariate normal distributions with the same variance.

This paper addresses the above mentioned problems within the framework of finite mixtures whose components have
identical second and third cumulants. They include several classes of well-known finite mixture models, most notably finite
mixtures of normal distributions with equal covariance matrices. McLachlan and Peel [32] report many applications of such
models and remark that often the component-covariances are restricted to being the same ([32], page 83). Their widespread
use is partly due to the little inferential problems they pose, compared to other finite normal mixtures [33]. An additional
advantage, from this paper’s perspective, is their very parsimonious modelling of the fourth cumulant. However, the class
of finite mixtures with equal second and third cumulants is much wider, since it also includes location mixtures. Skewness-
based projection pursuit might be helpful in detecting clusters, when the sampled distribution is a location mixture of
two multivariate, symmetric distributions [24]. Principal points of location mixtures of spherically symmetric distributions
have nice theoretical properties [20,30,31]. Section 3 in this paper discusses location mixtures of multivariate skew-normal
distributions.

We shall show that, when mixture’s components have identical second and third cumulants, the fourth cumulant of
the mixture equals the mean of the components’ fourth cumulants, plus the fourth cumulant of the components’ means.
Statistical applications deal with robustness of multivariate statistical procedures. First we shall assess the robustness of
MANOVA statistics when the data are drawn from a normal mixture with two homoscedastic components. Then we shall
use mixtures with two skew-normal components to assess the robustness of the kurtosis-based procedures proposed by
Peña and Prieto [36–39], Tyler et al. [44] and Peña et al. [40]. Other theorems in the paper, regarding fourth multivariate
cumulants and moments, are instrumental in proving the above results as well as being interesting in their own right.

The rest of the paper is organized as follows. Section 2 contains the main results. Section 3 discusses some statistical
applications. Section 4 illustrates their practical relevance with two well-known data sets. All proofs are deferred to the
Appendix.

2. Main results

The following theorem represents the fourth moment µ4 (x − c) of the difference x − c , where x is a d-dimensional
random vector and c is a real vector of the same dimension, as a function of the first four moments of x: µ = µ1 = E (x),
µ2 = E


xxT

, µ3 = E


x ⊗ xT ⊗ x


and µ4 = E


x ⊗ xT ⊗ x ⊗ xT


.

Theorem 1. Let µ1, µ2, µ3 , µ4 be the first, second, third and fourth moment of the d-dimensional random vector x. Then the
fourth moment of x − c, where c is a d-dimensional real vector, is

µ4 − µT
3 ⊗ c − µ3 ⊗ cT − cT ⊗ µ3 − c ⊗ µT

3 + µ2 ⊗ ccT + vec (µ2) ⊗ cT ⊗ cT

+ Kd,d

ccT ⊗ µ2


+ Kd,d


µ2 ⊗ ccT


+ c ⊗ c ⊗ vecT (µ2) + ccT ⊗ µ2

− µ1cT ⊗ ccT − cµT
1 ⊗ ccT − ccT ⊗ µ1cT − ccT ⊗ cµT

1 + ccT ⊗ ccT .

As a direct consequence, the fourth central moment of a random vector might be represented via the first noncentral
moments of the vector itself. More precisely, let µ1, µ2, µ3 , µ4 be the first, second, third and fourth moment of the d-
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dimensional random vector x. Then the fourth central moment of x is

µ4 − µT
3 ⊗ µ1 − µ3 ⊗ µT

1 − µT
1 ⊗ µ3 − µ1 ⊗ µT

3 + µ2 ⊗ µ1µ
T
1

+ vec (µ2) ⊗ µT
1 ⊗ µT

1 + Kd,d

µ1µ

T
1 ⊗ µ2


+ Kd,d


µ2 ⊗ µ1µ

T
1


+ µ1 ⊗ µ1 ⊗ vecT (µ2) + µ1µ

T
1 ⊗ µ2 − 3µ1µ

T
1 ⊗ µ1µ

T
1 .

Cumulants of the linear transformation y = Ax admit simple representations in terms of matrix operations. For example,
the first cumulant E(y) = AE(x) is evaluated via matrix multiplication only. The second cumulant V (y) = AV (x)AT is
evaluated using both the matrix multiplication and transposition. The fourth cumulant κ4 (y) is evaluated using the matrix
multiplication, transposition and the tensor product, as shown in Theorem 2.

Theorem 2. Let κ4 (x) be the fourth cumulant of a d-dimensional random vector x and let A be an h × d real matrix. Then the
fourth cumulant of Ax is κ4 (Ax) = (A ⊗ A) κ4 (x)


AT

⊗ AT

.

It is well-known that the second cumulant of a finite mixture might be decomposed into the mean of the components’
covariances and the covariance of the components’ means. The following theorem shows that a similar result holds for the
fourth cumulant of a mixture, when the mixture’s components have the same second and third cumulants.

Theorem 3. Let the random vector x be the mixture of the distribution functions F1, . . . , Fg , with weights π1, . . . , πg . Also, let µi,
Ω , Γ , and κ4,i be the first, second, third and fourth cumulants of Fi. Finally, let Ξ and m be a randommatrix and a random vector
satisfying Pr


Ξ = κ4,i


= Pr (m = µi) = πi, for i = 1, . . . , g. Then the fourth cumulant of x is the sum of the expected value

of Ξ and the fourth cumulant of m: κ4 (x) = E (Ξ) + κ4 (m).

As mentioned in the Introduction, statistical applications of the fourth cumulant would greatly benefit from its
parsimonious modelling. The problem might be addressed by imposing tensor rank restrictions, as it is often done in
multilinear algebra (see, for example, the review paper by Kolda and Bader [18]). The fourth cumulant κ4 (x) of a d-
dimensional random vector has (symmetric) tensor rank r if r is the smallest integer for which the following decomposition
holds:

κ4 (x) =

r
i=1

civi ⊗ vT
i ⊗ vi ⊗ vT

i ,

where v1, . . . , vr are nonnull d-dimensional real vectors and c1, . . . , cr and are nonzero real values: vi ∈ Rd
0, ci ∈ R0,

i = 1, . . . , r [8]. As remarked by Kilmer and Martin [17]: ‘‘There is no known closed-form solution to determine the rank
r of a tensor a priori. Rank determination of a tensor is a widely-studied problem’’. The following theorem shows that the
problem has a very simple solution for the fourth cumulant of the mixture of two multivariate normal distributions with
the same variance.

Theorem 4. Let the distribution of the random vector x be the mixture, with weights π1 and π2, of Nd (µ1, Ω) and Nd (µ2, Ω).
Then its fourth cumulant is

π1π2

π2
1 − 4π1π2 + π2

2


(µ1 − µ2) ⊗ (µ1 − µ2)

T
⊗ (µ1 − µ2) ⊗ (µ1 − µ2)

T .

3. Statistical applications

This section examines two statistical applications of previous section’s results. We shall first use some well-known
kurtosis measures for assessing the effect of nonnormality on some likelihood-based testing procedures. Let y1, . . . , yn be a
random sample from Nd (µ, Σ). Also, let A and y be the SSP matrix and the mean vector, respectively:

A = (n − 1) S =

n
i=1

(yi − y) (yi − y)T , y =

n
i=1

yi.

A relevant inferential problem is testing the null hypothesis H0,1 : Σ = Σ0, where Σ0 is a known d × d positive definite
symmetricmatrix, versus the local alternativeH1,1 : Σ = Σ0+


1/

√
n

B, where B is a d×dpositive semi-definite symmetric

matrix. The corresponding likelihood-ratio statistic is

L1 =


e

n − 1

d(n−1)/2 Σ−1
0 A

(n−1)/2
exp


−

1
2
tr

Σ−1

0 A


.

Another relevant inferential problem is testing the null hypothesis H0,2 : Σ = σ 2Id versus the local alternative H1,2 : Σ =

σ 2

Id +


1/

√
n

B

, where σ 2 is a positive constant. The corresponding likelihood-ratio statistic is

L2 =


|S|

[tr (S) /d]d

(n−1)/2

.
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When the sampled distribution is normal, the null and nonnull asymptotic distributions of Ti = −2 log Li (i = 1, 2) are
central and noncentral chi-squared, respectively. Yanagihara et al. [45] investigated the asymptotic distributions of T1 and
T2 under the more general assumption that the sampled distribution had finite fourth-order moments. Up to an error of
order o(1), they represented the means and the variances of T1 and T2 as simple functions of the quantities

κ
(1)
4 =

d
i,j

κiijj, κ
(1)
4,4 =

d
i,j,h,k

κ2
ijhk, κ

(2)
4,4 =

d
i,j,h,k

κiihkκjjhk.

As shown in the following theorem, these quantities are closely related to each other and have a simple analytical form,
when the sampled distribution is a mixture of two normals with identical covariance matrices.

Theorem 5. Let the distribution of the random vector x be the mixture, with weights π1 and π2, of Nd (µ1, Ω) and Nd (µ2, Ω),
where Ω is a symmetric and positive definite d × d matrix. Then

κ
(1)
4

2
= κ

(1)
4,4 = κ

(2)
4,4 =

(π1π2)
2 (1 − 6π1π2)

2
1 + π1π2δTΩ−1δ

4 .

As mentioned in the Introduction, kurtosis-based procedures have shown to possess good statistical properties when
sampling from finite mixtures of normal distributions with equal variances. However, normal mixture models are not
appropriate when nonnormality of the sampled distribution depends on the mixing process as well as on the components’
skewness. When this happens, data might be adequately modelled by finite mixtures of skew-normal distributions [21,12,
22,4]. We shall investigate the robustness of the aforementioned kurtosis-based procedures under this more general setting
using a location mixture of two skew-normal distributions.

The distribution of a random vector x is multivariate skew-normal with location parameter ξ , scale parameter Ω and
shape parameter α, that is x ∼ SNd (ξ , Ω, α), if its pdf is 2φd (x − ξ ; Ω) Φ


αT (x − ξ)


, where Φ (·) is the cdf of a

standardized normal variable and φd (x − ξ ; Ω) is the pdf of a d-dimensional normal distribution withmean ξ and variance
Ω [3]. The fourth cumulant of x is a rank-one tensor: κ4 (x) = hη ⊗ ηT

⊗ η ⊗ ηT , where η = Ωα/
√
1 + αTΩα and

h =

4/π2


(2π − 6) [2]. Adcock et al. [1] review the main properties of the multivariate skew-normal distribution.

We can now use Theorem 3 and an argument very similar to the proof of Theorem 4 to obtain the fourth cumulant of the
mixture, with weights π1 and π2, of SNd (ξ1, Ω, α) and SNd (ξ2, Ω, α), that is hη ⊗ ηT

⊗ η ⊗ ηT
+ kλ ⊗ λT

⊗ λ ⊗ λT , where
k = π1π2


π2
1 − 4π1π2 + π2

2


and λ = ξ1 − ξ2. In the general case, the tensor rank of the fourth cumulant is two. However,

when η = λ and h = k (which happens when π1 approximately equals either 0.5762 or 0.4238) the fourth cumulant
is a null matrix, meaning that the two sources of nonnormality have opposite effects on the fourth cumulant. As a direct
consequence, kurtosis-based procedures are unable to ascertain neither the presence nor the nature of nonnormality.

It was Pearson [35] who first posed the problem of distinguishing between inherently skewed distributions and finite
mixtures. Since then, it has been addressed both in the statistical literature (see, for example, [32]) and in the medical one
(see, for example, [42]). The problemalso arises in themultivariate case: third-order cumulants of skew-normal distributions
[10] and homoscedastic normal mixtures with two components [24] share the same tensor rank-one structure. We have
shown that similar results hold for multivariate kurtosis, as measured by the fourth cumulant.

4. Numerical examples

This section illustrates some statistical implications of the theoretical results in the paper with well-known data sets. By
Theorem 4, the fourth-order cumulants κijhk of a mixture of two normal components with the same variances have the form
γ λiλjλhλk (i, j, h, k = 1, . . . , d) for some real value γ and some vector λ = (λ1, . . . , λd)

T . As seen in the previous section,
the same holds for a multivariate skew-normal distribution. By standard consistency arguments, a d2 × d2 fourth sample
cumulant K might be well approximated by a matrix of the form cv ⊗ vT

⊗ v ⊗ vT (c ∈ R, v ∈ Rd), when the sampled
distribution belongs to one of the above families, and the sample size is large enough.

First, we shall find the constant c and the vector v whichminimize the euclidean norm of the difference K −cv⊗vT
⊗v⊗

vT . In tensor terminology, this means looking for the best symmetric rank-one approximation to the tensor K [8], which can
be found via the Symmetric Higher Order PowerMethod [9]. Finally, we shall assess the accuracy of the approximation with
the ratio q =

K − cv ⊗ vT
⊗ v ⊗ vT

 / ∥K∥, where ∥A∥ denotes the euclidean norm of the real matrix A, that is the square
root of the sum of the squared elements of A (see, for example, [10]): the lower the value of q, the better the approximation.
Intuitively, we can say that the rank-one approximations explain the (1 − q) · 100 percent of the structure of K .

We shall first examine the rank-one approximation to the fourth cumulant of the Blue Crabs data set. It consists
of 5 morphological measurements (frontal lobe size, rear width, carapace length, carapace width, and body depth), in
millimetres, of 50 male crabs and 50 female crabs belonging to the blue species of Leptograpsus variegatus collected
at Fremantle, Western Australia [6]. The gender-related clustering structure is apparent both from subject-matter
considerations and from graphical analysis, and it has been modelled by a mixture of twomultivariate normal distributions
with the same covariance matrix (see, for example, [32], pp. 90–92). For this data set, we have c = −10.058, v =
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(0.2603, 0.1934, 0.6043, 0.6732, 0.2764)T and q = 0.0038. The rank-one approximation is very accurate (it explains more
than the 99% of the fourth cumulant’s structure), consistently with Theorem 4 and the modelling assumptions.

We shall now examine the rank-one approximation to the fourth cumulant of a subset of the Australian Athletes data
set. It consists of 3 body composition measurements (body mass index, body fat index and lean body mass index) of 23 elite
female netball players, collected by the Australian Institute of Sport (AIS). Clearly, they are not a random sample from the
population of adult Australian women: their measurements were collected just because they were elite athletes competing
at an international level. Azzalini and Dalla Valle [3], among others, modelled the nonrandomness of the AIS data by skew-
normal distributions. For this data set, we have c = −54.6217·10−4, v = (0.0983, 0.9885, 0.1151)T and q = 0.0158. Again,
the rank-one approximation is very accurate (it explainsmore than the 98% of the fourth cumulant’s structure), consistently
with the properties of the multivariate skew-normal distribution.

These numerical examples lead to the following remarks. In the first place, theoretical results in this paper might be able
tomodel some fourth cumulant’s structures in a parsimonious way. In the second place, the same fourth cumulant structure
might be due to either heterogeneity or nonrandomness.
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Appendix

Proof of Theorem 1. By definition, the fourth moment of x − c is

µ4 (x − c) = E

(x − c) ⊗ (x − c)T ⊗ (x − c) ⊗ (x − c)T


.

First consider the Kronecker products (x − c) ⊗ (x − c)T ⊗ (x − c) ⊗ (x − c)T :
x ⊗ xT − x ⊗ cT − c ⊗ xT + c ⊗ cT


⊗

x ⊗ xT − x ⊗ cT − c ⊗ xT + c ⊗ cT


.

Parentheses elimination leads to

x ⊗ xT ⊗ x ⊗ xT − x ⊗ xT ⊗ c ⊗ xT − x ⊗ xT ⊗ x ⊗ cT + x ⊗ xT ⊗ c ⊗ cT

− x ⊗ cT ⊗ x ⊗ xT + x ⊗ cT ⊗ x ⊗ cT + x ⊗ cT ⊗ c ⊗ xT − x ⊗ cT ⊗ c ⊗ cT

− c ⊗ xT ⊗ x ⊗ xT + c ⊗ xT ⊗ x ⊗ cT + c ⊗ xT ⊗ c ⊗ xT − c ⊗ xT ⊗ c ⊗ cT

+ c ⊗ cT ⊗ x ⊗ xT − c ⊗ cT ⊗ x ⊗ cT − c ⊗ cT ⊗ c ⊗ xT + c ⊗ cT ⊗ c ⊗ cT .

Since a ⊗ bT = bT ⊗ a for any two vectors a and b, the above matrix equals

x ⊗ xT ⊗ x ⊗ xT − xT ⊗ x ⊗ xT ⊗ c − x ⊗ xT ⊗ x ⊗ cT + x ⊗ xT ⊗ c ⊗ cT

− cT ⊗ x ⊗ xT ⊗ x + x ⊗ x ⊗ cT ⊗ cT + x ⊗ c ⊗ cT ⊗ xT − x ⊗ cT ⊗ c ⊗ cT

− c ⊗ xT ⊗ x ⊗ xT + c ⊗ x ⊗ xT ⊗ cT + c ⊗ c ⊗ xT ⊗ xT − xT ⊗ c ⊗ c ⊗ cT

+ c ⊗ cT ⊗ x ⊗ xT − cT ⊗ c ⊗ cT ⊗ x − c ⊗ cT ⊗ c ⊗ xT + c ⊗ cT ⊗ c ⊗ cT .

We shall now consider a more convenient representation of the matrix x ⊗ c ⊗ cT ⊗ xT . The identities, x ⊗ c ⊗ cT ⊗ xT =

(x ⊗ c) ⊗

cT ⊗ xT


= vec


cxT

(c ⊗ x)T , follow from standard properties of the Kronecker product and the vectorization

operator. The commutation matrix Kd,d is a d2 × d2 symmetric and orthogonal matrix [25], so that x ⊗ c ⊗ cT ⊗ xT =

Kd,d

Kd,dvec


cxT

(c ⊗ x)T


. The pq×pq commutationmatrix Kp,q satisfies the matrix equation vec


MT


= Kp,qvec (M) for
any p × q matrix M [25]. Hence we have x ⊗ c ⊗ cT ⊗ xT = Kd,dvec


xcT

(c ⊗ x)T = Kd,d


(c ⊗ x) ⊗


cT ⊗ xT


. We shall

use again the fact that a⊗ bT = bT ⊗ a for any two vectors a and b and the associative property of the Kronecker product to
obtain x⊗c⊗cT ⊗xT = Kd,d


c ⊗ cT ⊗ x ⊗ xT


. In a similar way, we can prove that c⊗x⊗xT ⊗cT = Kd,d


x ⊗ xT ⊗ c ⊗ cT


.

The expectation of (x − c) ⊗ (x − c)T ⊗ (x − c) ⊗ (x − c)T is conveniently expressed in terms of the first four moments
of x after recalling that µ1 = E (x), µ2 = E


xxT


= E

x ⊗ xT


= E


xT ⊗ x


, µ3 = E


x ⊗ xT ⊗ x


, vec (µ2) = E (x ⊗ x),

µ4 = E

x ⊗ xT ⊗ x ⊗ xT


, µT

3 = E

xT ⊗ x ⊗ xT


:

µ4 (x − c) = µ4 − µT
3 ⊗ c − µ3 ⊗ cT + µ2 ⊗ c ⊗ cT − cT ⊗ µ3

+ vec (µ2) ⊗ cT ⊗ cT + Kd,d

ccT ⊗ µ2


− µ1 ⊗ cT ⊗ c ⊗ cT

− c ⊗ µT
3 + Kd,d


µ2 ⊗ ccT


+ c ⊗ c ⊗ vecT (µ2) − µT

1 ⊗ c ⊗ c ⊗ cT

+ ccT ⊗ µ2 − ccT ⊗ µ1cT − ccT ⊗ cµT
1 + ccT ⊗ ccT .

Theorem 1 follows after rearranging the summands in the above matrix.
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Proof of Theorem 2. The fourth cumulant of a d-dimensional random vector x with variance Σ is κ4 (x) = µ4 (x) −
Id2 + Kd,d


(Σ ⊗ Σ) − vec (Σ) vecT (Σ), where µ4 (x) is the fourth central moment of x. As a direct consequence, the

fourth cumulant κ4 (Ax) of Ax is

µ4 (Ax) −

Id2 + Kh,h

 
AΣAT 

⊗

AΣAT 

− vec

AΣAT  vecT AΣAT  ,

since var (Ax) = AΣAT . Franceschini and Loperfido [11] showed that µ4 (Ax) = (A ⊗ A) µ4 (x)

AT

⊗ AT

. The identity

vec (M1M2M3) =

MT

3 ⊗ M1

vec (M2) holds for matrices M1 ∈ Rp

× Rq, M2 ∈ Rq
× Rr , M3 ∈ Rr

× Rs [25] and leads
to vec


AΣAT


= (A ⊗ A) vec (Σ). The identity


AΣAT


⊗

AΣAT


= (A ⊗ A) (Σ ⊗ Σ)


AT

⊗ AT

follows from repeated

application of a fundamental property of the Kronecker product [29]: if matricesM1,M2,M3 andM4 are of appropriate size,
then (M1 ⊗ M2) (M3 ⊗ M4) = M1M3 ⊗ M2M4. The commutation matrix Kd,d is at the same time symmetric and orthogonal
[25], so that Kd,dKd,d = Id2 and

Kh,h (A ⊗ A) =

Kh,h (A ⊗ A) Kd,d


Kd,d = (A ⊗ A) Kd,d.

The right-hand side of the above equation follows from another fundamental property of the Kronecker product [25]:
M1 ⊗ M2 = Kp,r (M2 ⊗ M1) Ks,q, whenM1 ∈ Rp

× Rq and M2 ∈ Rr
× Rs.

The above identities lead to the following representation of the fourth cumulant of Ax:

κ4 (Ax) = (A ⊗ A) µ4 (x)

AT

⊗ AT 
− (A ⊗ A) (Σ ⊗ Σ)


AT

⊗ AT 
− (A ⊗ A) Kd,d (Σ ⊗ Σ)


AT

⊗ AT 
− (A ⊗ A) vec (Σ) vecT (Σ)


AT

⊗ AT 
= (A ⊗ A)


µ4 (x) −


Id2 + Kd,d


(Σ ⊗ Σ) − vec (Σ) vecT (Σ)

 
AT

⊗ AT  .
Hence κ4 (Ax) = (A ⊗ A) κ4 (x)


AT

⊗ AT

and this completes the proof.

Proof of Theorem 3. By assumption, the components’ variances are equal, implying that all components have the same
dimension, which we shall denote by d. In the proof, we shall make repeated use of the identity

κ4 (y) = µ4 (y) − vec [var (y)] vecT [var (y)] −

Id2 + Kd,d


[var (y) ⊗ var (y)] ,

where κ4 (y), µ4 (y) and var (y) are the fourth cumulant, the fourth central moment and the variance of the random vector
y.

Let µi,j (µi,j) the j-th (central) moment of the i-th mixture component, with cdf Fi and weight πi, for j = 1, 2, 3, 4 and
i = 1, . . . , g . Ordinary properties of moments and cumulants imply that µi,1 = µi, µi,1 = 0d, µi,2 = Ω , µi,3 = Γ and
κi,4 = µi,4 − vec (Ω) vecT (Ω) −


Id2 + Kd,d


(Ω ⊗ Ω) . Hence the expected value of Ξ is

E (Ξ) =

g
i=1

πiκi,4 =


g

i=1

πiµi,4


− vec (Ω) vecT (Ω) −


Id2 + Kd,d


(Ω ⊗ Ω) .

The mean, the variance, the fourth central moment and the fourth cumulant ofm are

E (m) =

g
i=1

πiµi = µ, Ψ =

g
i=1

πiδiδ
T
i , µ4 (m) =

g
i=1

πiδiδ
T
i ⊗ δiδ

T
i ,

κ4 (m) =

g
i=1

πiδiδ
T
i ⊗ δiδ

T
i − vec (Ψ ) vecT (Ψ ) −


Id2 + Kd,d


(Ψ ⊗ Ψ ) ,

where δi = µi − µ. The mean, the variance the fourth central moment and the fourth cumulant of x are

E (x) = E (m) = µ, Σ = Ω + Ψ , µ4 (m) =

g
i=1

πiµi,4 (x − µ) ,

κ4 (x) = µ4 (x) − vec (Σ) vecT (Σ) −

Id2 + Kd,d


(Σ ⊗ Σ) .

The fourth moment about µ of a random vector with cdf Fi is µi,4 (x − µ) = µi,4

x − µi,1


+ δi


. A straightforward

application of Theorem 1 leads to the following expression for µi,4 (x − µ):

µi,4 − µT
i,3 ⊗ δi − µi,3 ⊗ δT

i − δT
i ⊗ µi,3 − δi ⊗ µT

i,3 + µi,2 ⊗ δiδ
T
i

+ vec

µi,2


(δi ⊗ δi)

T
+ Kd,d


δiδ

T
i ⊗ µi,2


+ Kd,d


µi,2 ⊗ δiδ

T
i


+ δi ⊗ δi ⊗ vecT


µi,2


+ δiδ

T
i ⊗ µi,2 − µi,1δ

T
i ⊗ δiδ

T
i

− δiµ
T
i,1 ⊗ δiδ

T
i − δiδ

T
i ⊗ µi,1δ

T
i − δiδ

T
i ⊗ δiµ

T
i,1 + δiδ

T
i ⊗ δiδ

T
i .
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Some simplifications might be achieved by recalling that µi,1 = µi, µi,1 = 0d, µi,2 = Ω and µi,3 = Γ . Then µi,4 (x − µ)
becomes

µi,4 − Γ T
⊗ δi − Γ ⊗ δT

i − δT
i ⊗ Γ − δi ⊗ Γ T

+ Ω ⊗ δiδ
T
i + vec (Ω) ⊗ δT

i ⊗ δT
i

+ Kd,d

δiδ

T
i ⊗ Ω


+ Kd,d


Ω ⊗ δiδ

T
i


+ δi ⊗ δi ⊗ vecT (Ω) + δiδ

T
i ⊗ Ω + δiδ

T
i ⊗ δiδ

T
i .

The average of µ1,4 (x − µ) , . . . , µg,4 (x − µ), with weights π1, . . . , πg is
g

i=1

πiµi,4 (x − µ) =

g
i=1

πiµi,4 − Γ T
⊗

g
i=1

πiδi − Γ ⊗

g
i=1

πiδ
T
i −

g
i=1

πiδ
T
i ⊗ Γ

−

g
i=1

πiδi ⊗ Γ T
+ Ω ⊗

g
i=1

πiδiδ
T
i + vec (Ω) ⊗

g
i=1

πiδ
T
i ⊗ δT

i + Kd,d


g

i=1

πiδiδ
T
i ⊗ Ω



+ Kd,d


Ω ⊗

g
i=1

πiδiδ
T
i


+

g
i=1

πiδi ⊗ δi ⊗ vecT (Ω) +

g
i=1

πiδiδ
T
i ⊗ Ω +

g
i=1

πiδiδ
T
i ⊗ δiδ

T
i .

It might be expressed in terms of µ4 (x), Ψ and µ4 (m) as follows:

µ4 (x) =

g
i=1

πiµi,4 + µ4 (m) +

Id2 + Kd,d


(Ω ⊗ Ψ )

+

Id2 + Kd,d


(Ψ ⊗ Ω) + vec (Ω) vecT (Ψ ) + vec (Ψ ) vecT (Ω) ,

by using the fact that π1δ1 + · · · + πiδi = 0d. The identity Σ = Ω + Ψ implies that µ4 (x) − κ4 (x) equals

[vec (Ω) + vec (Ψ )] [vec (Ω) + vec (Ψ )]T +

Id2 + Kd,d


(Ω ⊗ Ω + Ω ⊗ Ψ + Ψ ⊗ Ω + Ψ ⊗ Ψ )

= vec (Ω) vecT (Ω) +

Id2 + Kd,d


(Ω ⊗ Ω) + vec (Ψ ) vecT (Ψ ) +


Id2 + Kd,d


(Ψ ⊗ Ψ )

+

Id2 + Kd,d


(Ω ⊗ Ψ ) +


Id2 + Kd,d


(Ψ ⊗ Ω) + vec (Ω) vecT (Ψ ) + vec (Ψ ) vecT (Ω) .

In terms of E (Ξ), κ4 (m) and µ4 (m) the difference µ4 (x) − κ4 (x) is
g

i=1

πiµi,4 − E (Ξ) + µ4 (m) − κ4 (m) +

Id2 + Kd,d


(Ω ⊗ Ψ )

+

Id2 + Kd,d


(Ψ ⊗ Ω) + vec (Ω) vecT (Ψ ) + vec (Ψ ) vecT (Ω) .

By substituting the value of µ4 (x) in the above equation we obtain
g

i=1

πiµi,4 +

Id2 + Kd,d


(Ω ⊗ Ψ ) + vec (Ψ ) vecT (Ω)

+

Id2 + Kd,d


(Ψ ⊗ Ω) + vec (Ω) vecT (Ψ ) + µ4 (m) − κ4 (x)

=

g
i=1

πiµi,4 − E (Ξ) − κ4 (m) + µ4 (m) +

Id2 + Kd,d


(Ω ⊗ Ψ )

+

Id2 + Kd,d


(Ψ ⊗ Ω) + vec (Ω) vecT (Ψ ) + vec (Ψ ) vecT (Ω) .

Simple algebra leads to the identity κ4 (x) = E (Ξ) + κ4 (m), thus completing the proof.
Proof of Theorem 4. We shall first recall some fundamental properties of the Kronecker product (see, for example, [29],
page 460): (P1) the Kronecker product is associative: (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) = A ⊗ B ⊗ C; (P2) if a and b are two
vectors, then abT , a ⊗ bT and bT ⊗ a denote the same matrix. Let µ = π1µ1 + π2µ2 and Σ = Ω + π1π2δδ

T denote the
mean and the variance of x. Also, let δ = µ1 −µ2 and q = π1π2 (1 − 6π1π2). The second and third cumulants of Nd (µ1, Ω)
equal those of Nd (µ2, Ω), hence satisfying the assumptions of Theorem 3. Also, the fourth cumulants of Nd (µ1, Ω) and
Nd (µ2, Ω) are null matrices. It follows that the fourth cumulant of x equals the fourth cumulant of the random vector m,
whose distribution places probability mass π1 on µ1 and probability mass π2 = 1 − π1 on µ2. The fourth central moment
ofm is

µ4 (m) = E

(m − µ) ⊗ (m − µ)T ⊗ (m − µ) ⊗ (m − µ)T


= (µ1 − µ) ⊗ (µ1 − µ)T ⊗ (µ1 − µ) ⊗ (µ1 − µ)T π1

+ (µ2 − µ) ⊗ (µ2 − µ)T ⊗ (µ2 − µ) ⊗ (µ2 − µ)T π2

= π4
2π1 (µ1 − µ2) ⊗ (µ1 − µ2)

T
⊗ (µ1 − µ2) ⊗ (µ1 − µ2)

T

+ π4
1π2 (µ1 − µ2) ⊗ (µ1 − µ2)

T
⊗ (µ1 − µ2) ⊗ (µ1 − µ2)

T .
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A simpler representation of µ4 (m) might be obtained by recalling that π1 + π2 = 1 and δ = µ1 − µ2: µ4 (m) =

π1π2

π2
1 − π1π2 + π2

2


δ ⊗ δT

⊗ δ ⊗ δT . The variance ofm is π1π2δδ
T , so that its fourth cumulant is

κ4 (m) = π1π2

π2
1 − π1π2 + π2

2


δ ⊗ δT

⊗ δ ⊗ δT
− (π1π2)

2 Id2 + Kd,d

δδT

⊗ δδT

− (π1π2)
2 vec


δδT  vecT δδT  .

Consider now the identities δ ⊗ δT
⊗ δ ⊗ δT

= δ ⊗ δ ⊗ δT
⊗ δT , vec


δδT


= δ ⊗ δ, δδT

⊗ δδT
= δ ⊗ δT

⊗ δ ⊗ δT

and Kd,d

δδT

⊗ δδT


= δ ⊗ δT
⊗ δ ⊗ δT , which are direct implications of standard properties of the Kronecker product,

the vectorization operator and the commutation matrix. They lead to the following simplified expression for the fourth
cumulant ofm:

κ4 (m) =

π1π2


π2
1 − π1π2 + π2

2


− 3 (π1π2)

2 δ ⊗ δT
⊗ δ ⊗ δT 

= π1π2

π2
1 − 4π1π2 + π2

2

 
δ ⊗ δT

⊗ δ ⊗ δT 
= qδδT

⊗ δδT .

Proof of Theorem 5. We shall use again the notation in the previous proof. ThematrixΩ is positive definite by assumption
and the variance of x is Σ = Ω + π1π2δδ

T , by ordinary properties of mixture models. As a direct consequence, Σ is a full-
rank matrix and the standardized random vector z = Σ−1/2 (x − µ) is well-defined. By Theorem 2 the fourth cumulant of
z is κ4 (z) =


Σ−1/2

⊗ Σ−1/2

κ4 (x)


Σ−1/2

⊗ Σ−1/2

. The quantity κ

(1)
4 is the sum of the diagonal elements of κ4 (z), that

is the trace of κ4 (z) itself (see, for example, [11]), that is

κ
(1)
4 = tr [κ4 (z)] = tr


Σ−1/2

⊗ Σ−1/2 κ4 (x)

Σ−1/2

⊗ Σ−1/2 .
When matrices A and B are of appropriate size tr(AB) equals tr(BA). This fact, together with the above representation of
κ4 (x), leads to

κ
(1)
4 = q · tr


δδT

⊗ δδT  Σ−1/2
⊗ Σ−1/2 Σ−1/2

⊗ Σ−1/2 .
If matrices A, B, C and D are of appropriate size, then (A ⊗ B) (C ⊗ D) equals AC ⊗ BD. Also, recall that Σ−1/2Σ−1/2

= Σ−1

by definition and write κ
(1)
4 = q · tr


δδTΣ−1


⊗

δδTΣ−1


. When both A and B are square matrices tr (A ⊗ B) equals

tr (A) · tr (B). Hence κ
(1)
4 = q · tr


δδTΣ−1

2
= q ·


δTΣ−1δ

2
. The quantity κ

(1)
4,4 is the sum of all the squared elements of

κ4 (z), that is the trace of the product of κ4 (z) and its transpose. Since κ4 (z) is a symmetric matrix, κ (1)
4,4 equals the trace of

Σ−1/2
⊗ Σ−1/2 κ4 (x)


Σ−1/2

⊗ Σ−1/2 Σ−1/2
⊗ Σ−1/2 κ4 (x)


Σ−1/2

⊗ Σ−1/2 .
An argument similar to the one used to evaluate κ

(1)
4 leads us to the following equations:

κ
(1)
4,4 = tr


κ4 (x)


Σ−1

⊗ Σ−1 κ4 (x)

Σ−1

⊗ Σ−1
= c · tr


Σ−1δδT

⊗ Σ−1δδT  Σ−1δδT
⊗ Σ−1δδT 

= c · tr


Σ−1δδTΣ−1δδT 
⊗

Σ−1δδTΣ−1δδT 

= c · tr


Σ−1δδTΣ−1δδT 2
= c ·


δTΣ−1δ

4
.

The inverse of Σ might be easily evaluated by the Sherman–Morrison formula (see, for example, Mardia et al., page 459):

Σ−1
=

Σ = Ω + π1π2δδ

T −1
= Ω−1

−
Ω−1δδTΩ−1

(π1π2)
−1

+ δTΩ−1δ
.

Hence, after a little algebra, we obtain

δTΣ−1δ = δT

Ω−1

−
Ω−1δδTΩ−1

(π1π2)
−1

+ δTΩ−1δ


δ =


1 + π1π2δ

TΩ−1δ
−1

.

The fourth standardized cumulantmight be represented as κ4 (z) = q ·λ⊗λT
⊗λ⊗λT , where λ = (λ1, . . . , λd)

T
= Σ−1/2δ,

which is equivalent to κijhk = qλiλjλhλk, for i, j, h, k = 1, . . . , d. The identities

κiihkκjjhk =

qλ2

i λhλk
 

qλ2
j λhλk


=

qλiλjλhλk

2
= κ2

ijhk

imply that κ
(1)
4,4 equals κ

(2)
4,4 and this completes the proof.
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