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1. Introduction

In the analysis of multiway tables, model-fitting, interpretation and visualisation of interactions are important phases.
Much of the standard exposition is based on linear models, generalised linear models [16], or generalised additive mod-
els [11]. In all such models, the estimation of additive parameters, which may include additive interaction terms, is well
understood, but they are not conducive to visualisation. As early as [5], multiplicative/additive parametrisations were
considered but because of computational limitations it was not until the computer revolution that they became popular,
especially in genotype-environment studies. The estimates of biadditive model multiplicative parameters are routinely visu-
alised in maps of two sets of points; one arising from the row-parameters and the other from the column-parameters. These
biplot maps greatly help the interpretation of interactions between two factors. Usually, such maps are two-dimensional;
though higher dimensional biadditive fits are easy to compute they are less easy to interpret by visual inspection. For a brief
discussion of the term biadditive and its extension to triadditive as used below, see [4].

Here we discuss one possibility for mapping three-factor multiplicative interactions. As with visualisations of two-way
arrays, our methods are rooted in Euclidean geometry, orthogonal projections and calibrated axes. Reference to these topics
and their mathematical derivations can be found in, e.g.,[15,7]. Consider a decomposition of a three-way array X = {x;} (i =
1,....Lj=1,...,;k=1,...,K):

R
Xijk = Z Uiy Vjr Wiy (1)
r=1

which has the form of a Singular Value Decomposition of a matrix generalised to three-way arrays, although crucially with-
out its nice orthogonal least squares properties.
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Fig. 1. Rank one visualisation in three dimensions. The value x; is the volume of the tetrahedron with vertices O, P;, P;, P.

We adopt the terminology introduced by [14] of referring to a decomposition (1) as having rank R when it cannot be
written in fewer terms. A growing literature on three-way rank has been summarised by [18], though it has little overlap
with this paper. The basic algorithm for fitting (1) was independently due to [2,10], who termed it Candecomp and PARAFAC,
respectively, although the basic idea goes back 43 years earlier [12]. Examples of the varieties of ways that three-way ar-
rays may arise in applications can be found in [13,17]. Here, the neutral term “array” is used as an omnibus term to cover
cross-classified tables, sets of data-matrices, configuration matrices and other three-way constructs. A three-way array X
may represent raw data, or it may have been derived as an approximation to raw data, or it may be a term in some, possibly
extensive, model. Thus, although one could analyse any rank-2 three-way array as raw data, often some preprocessing is
required, as in our example below. All we seek here is a good visualisation of X, however it may have been derived.

We define U with columns {u;}, V with columns {v;}, and W with columns {w}, each with R columns. For reasons made
clear below, we assume without loss of generality that I < J < K. Although matrices written U and V are often associated
with expositions of the SVD, expressed in orthogonal forms, we emphasise here that no such restrictions apply in the
following.

The paper is structured as follows. Section 2 gives (i) details of what is required for computations and (ii) the geometric
and algebraic underpinning. Section 3 gives an example of our method and we finish with a discussion in Section 4.

2. Visualisation

It is clear from the previous section that visualisation is important in the interpretation of two-way arrays. Below, we
explore to what extent three-way arrays may be visualised in two dimensions.

2.1. Basic method

In the rank one case (R = 1), the points foru;; (i =1,...,D; v = 1,...,]); wis (k = 1,..., K) may be placed on
separate orthogonal coordinate axes, which we shall label u, v and w. Then, X;x = u;1vj1 Wy is simply proportional to the
volume of the tetrahedron with the three points P; = (u;1, 0, 0), P; = (0, vj1, 0), Px = (0, 0, wyq) and the origin as vertices
cf. [7], as shown in Fig. 1.

When R = 2, we may inspect the two-dimensional sets of coordinates U, V and W but this ignores intrinsic three-way
information. Then, one way of proceeding is to write

Xijk = UpnVj1w1 + UpVpwy (2)
where (wq, w,) takes on the values (wy, wyy) as k varies in the range (1, ..., K) while i and j remain fixed. The line
represented by (2) may be envisaged in the two-dimensional plane of the K coordinates comprising the rows of W. We term

(uprvjwy + (Upvp)w, =0
the zero line. The (Euclidean) distance of any point (wg, wyy) from the zero line is

Kij (Ui Vj1 Wi + U VjpWi2)
which is proportional to the required triadditive form with R = 2. The factor «; ensures that the coefficients of (w;, w,) are
normalised in the form of direction-cosines, as is required, and is given by /(U_z = (uj vjl)z + (uip vjz)z. When different values
k' are used, the lines (2) remain parallel, i and j remaining fixed. The distance from the zero line increases with x;. When
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Fig. 2. The zero line through the origin with parallel lines at one unit of x; apart (i, j fixed). A line orthogonal to the zero line gives the calibration for i, j.
A point (wyq, wz) projects onto the calibration axis to give the correct value of x;.

Py is on the zero line itself, the distance is zero. On either side of the zero line, depending on the sign of x;;, the distance
increases positively on one side and negatively on the other side. All IJ settings P;, P; of the first two factors will give a set of
linear axes through the origin O, in the plane of the points W, as is visualised in Fig. 2. Thus, calibration points may be taken
on an axis through the origin that is orthogonal to the zero line and so has equation:

(upvp)w — (Unvj)wz = 0. (3)

The intersection of (2) and (3) gives a point C with coordinates x,-jk/c; (ui1vj1, uppvjp) which may be calibrated with the
value x;;, for as many points on (2) as are found convenient. Thus, values of x;;, are assessed in the usual way by orthogonal
projection from instances of P (wyy, wyy) onto the calibrated axis generated by i and j, as is shown in Fig. 3. Such calibrated
axes are essentially the same as the familiar x — y axes used in many fields of application and may be used in the same way,
except that the axes generated by different settings of i and j are oblique.

Rather than the plane W, the above procedure may be based on the planes determined by U or V but they would give
the same predictions. Because I < J < K, the use of W has the advantage that it generates only I] axes which is fewer
than IK or JK required by the other two options. Nevertheless, even I] may generate many axes and ways of selecting the
more salient may be sought, perhaps through circular projection (see Fig. 3 and Section 3), or by interactive inspection, or as
guided by external knowledge. Recall that circular projection is a simple way described by [9] for simultaneously showing
the orthogonal projections from a point P onto n axes, as the intersections of the circle on diameter PO with the axes—it
depends on the property that diameters subtend right angles on the circumference. Its advantage is that one circle gives the
same information as K orthogonal projections as is shown in Fig. 3.

2.2. Geometrical foundations

Although the arrays U, V and W may be individually analysed and visualised, they are linked only through the algebraic
formula (1). The graphical method described in Section 2.1 allows the evaluation of (1) given the values of U, V, and W but
gives no visual understanding in terms of geometric concepts in the way, that using concepts such as distance, area and
inner-products, have been found so valuable for two-way arrays. In the following we make some suggestions for addressing
this problem.

Further light may be thrown on the process given in Section 2.1 by noting that, when R = 2, a visualisation may be
derived from the following simple result:

0 uy up
Xijk = Uj1Vj1Wk1 + UpVpp Wiy = det | vp 0 Vi1 | . (4)
Wy wre 0

Conforming to the structure of (4) we now redefine:
U= (0, u;, up), V=(v, 0, vy), W= (w;, w, 0) (5)
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Fig. 3. Calibrated axes give all I (11, 12, 21, 22) settings of x;i. A circular arc highlights the active region for the setting of k shown; other settings of k
share the same calibration axes but give different circles. The dotted lines show the ability of the diameter OPy to give simultaneous orthogonal projections;
these would not be shown in practice.

Fig. 4. Rank two visualisation in three dimensions. The value x;j, is the volume of the tetrahedron with vertices O and P;, P;, and P, where each vertex is
chosen from one of the u- v- and w-planes.

where the two-dimensional structure of each matrix is preserved but now set in three dimensions. We name these coordi-
nates u, v, w even though the U-plane has u; = 0 and in general u; and us3 are non-zero; similarly for the other axes. Thus,
for example, the points (wq, w,, 0) of W lie entirely in the uv-plane.

The determinant in (4) is three times the volume of the tetrahedron defined by the origin and the three-dimensional
coordinates given by the rows of the matrix, showing that rank 2 three-way arrays may be represented by volumes of single
tetrahedra. We may set in three dimensions the points (P, P;, Py) whose coordinates are obtained conformally from the
rows of the matrix in (4) arising from all i, j, and k settings, as shown in Fig. 4.

Thus, rank-two three-way arrays have a Euclidean representation in three dimensions but constrained to lie on three
orthogonal planes. Such figures are hard to interpret. Note that the rank-one visualisation of Fig. 1 is a special case of the
rank-two visualisation where the configurations in the plane faces collapse into the axes.
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Fig. 5. The geometry shows how the plane OP;P; intersects with the u, v plane to give the zero line and its orthogonal calibrated axis that gives values of
X;ik by orthogonal projection.

The above is similar to, but less accessible than, what has been found useful for biadditive models. Even with two-way
arrays it is rare for published displays to be shown in more than two-dimensions, so it seems likely that, if available, rank
two approximations to three-way arrays should suffice for many purposes, especially if they can be accurately visualised
in two Euclidean dimensions as we shall describe. Note that unlike two-way arrays where rank and dimensionality are
closely linked, for three-way arrays the link is looser. To represent rank-two three-way arrays, in the above, we have found
it necessary to use three Euclidean dimensions.

Despite the simplification given by the constrained orthogonal-plane structure, a tetrahedronal visualisation such as that
of Fig. 4, is not conducive to easy interpretation. Progress can be made as follows. Firstly, we concentrate on the separate
planesu = 0,v = 0, w = 0 and, in particularly, on w = 0 and note that the plane OP;P;: (uj1vj1)w1 + (Upvp)w, = w
intersects w = 0 in the line:

(unvjDwr + (Upvp)w, =0
which is the zero line defined in Section 2.1. The geometry is shown in Fig. 5.

The position is precisely the same as that discussed in Section 2.1 and visualisation in two dimensions follows in precisely
the same way and, as before, we continue to focus on the plane w = 0 because it uses fewer linear axes. Without any approx-
imation, the two-dimensional visualisation in the plane w = 0 gives a precise description of any rank two three-way array.

The three-dimensional Euclidean representation of this section gives geometrical understanding that underpins the
procedure given in Section 2.1. In particular, because volume is invariant to orthogonal transformations, one may deduce
from the Euclidean representation that the parameters of rank 2 three-way arrays are determined at most only up to
arbitrary orthogonal rotations (excluding reflections) in three dimensions. This degree of arbitrariness is similar to that
found with inner-products where areas and inner-products, rather than volume, are the appropriate invariants. However,
orthogonal transformation is not the only invariant for rank 2 triadditive models; for example, provided « 8y = 1, we could
also scale axes by «, B and y without affecting volume (see e.g. the example in Section 3). Moreover, the matrix (4) may be
post-multiplied by any rank-three matrix A, where detA = 1, without affecting content and this extends to the matrices
U, V, and W defined in (5). Hence all estimates of x;j are invariant to such transformations. With this degree of arbitrariness,
special attention has to be given to any attempt to interpret the individual estimated values of the parameters u, v, w. It is
better to focus on the invariants, such as volume and the actual fitted values ;. This is what our visualisation does.

3. Example

Now, we shall apply our theory to a concise set of three-way data given in [3, Example 8.1]. A 3 x 4 x 5 table arises
from a study of the effects of three factors on the measurements of the wearing performance of vulcanised rubber. The three
factors considered are:

e Factor A. The method of pre-treatment of the rubber (I = 3)
e Factor B. The quality of the raw rubber (J = 4)
e Factor C. The quality of filler (K = 5 levels)

The main effects of the factors are huge, so we confine our interest to the interactions between factors; that is after
removing the main effects from the original table. Table 1 gives the data (i) in its original form and (ii) after main effects have
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Table 1
Rubber wear classified by three factors from [3] in (i) original form (top) and (ii) after removing main effects (bottom).

Level of factor C  Level of factor A

1 2 3

Level of factor B Level of factor B Level of factor B

1 2 3 4 1 2 3 4 1 2 3 4
1 404 478 530 381 429 528 316 376 390 423 482 550
2 392 239 186 410 418 251 207 416 431 249 194 452
3 348 327 290 383 381 372 315 376 460 482 350 496
4 296 165 158 301 291 232 279 306 333 242 220 330
5 186 129 105 213 198 157 163 200 225 197 190 255
1 —41.15 1.92 —20.35 —36.95 —0.90 16.17 5.90 —11.70 12.25 76.32 —18.95 17.45
2 67.02 —19.92 —30.18 70.22 59.27 —41.67 —42.93 42.47 3342 —89252 —94.78 39.62
3 —38.23 6.83 1257 —18.03 —38.98 18.08 3.82 —58.78 1.17 89.23 —0.03 22.37
4 2868 —36.25 —0.52 18.88 —10.07 —3.00 86.73 —9.87 —6.92 —31.85 —11.12 —24.72
5 —3.40 5.67 24.40 8.80 —25.15 —0.08 4865 —37.95 —37.00 1.07 36.80 —21.80

33

23

= ‘\‘ ’

Ps
31

34

32

Fig. 6. Two-dimensional diagram of the 3 x 4 x 5 data of [3] with main effects eliminated. The labels of the first two factors are given in the margins, at
the positive end of each axis. The levels of the third factor are depicted as the set of points Py, . .., Ps. A single calibration point of value 10 units of wear
is shown on each axis as a small black dot. Projection circles with OPy as diameter are provided. The active arcs of the projection circles are highlighted.

been removed. Subsequently, a rank R = 2 Candecomp decomposition is performed, which covers 75% of the variance in the
table. The matrices U, V, and W given by Candecomp were redefined as U, SV, y W, which can be done without affecting
the visualisation, as long as « 8y = 1. The rescaling is arranged such that the mean absolute values of U, V, and W coincide,
so giving a balanced representation. For each combination of i and j, I = 12 linear axes were constructed and points P, were
plotted (Fig. 6). The axes may be calibrated (see Section 2.1) but, to reduce clutter, in Fig. 6 we show just one calibration
marker on each axis. Values of x; are assessed in the usual way by orthogonal projection from instances of the points P, onto
the calibrated axes generated by i and j and interpolating between the calibration markers. Because these projections are
orthogonal, the circle C, with OP, as diameter passes through all these projections. This is termed circular projection by [9]
and is useful for example in exhibiting a circular arc that exhibits sequentially all the values for rows (i = 1,...,I) and
columns (j = 1, ...,J) associated with Py. Circular projections are shown in Fig. 6 and may be used to assist in interpretation.

Thus, as an example of how to use Fig. 6, consider x,1, for whichi = 2,j = 1 and k = 2. This is given by the projection
of P, onto the 21 axis, which is made easy by using the projection circle with diameter OP, and its intersection with the 21
axis. To give the numerical value, one also has to take into account the calibration marker (positive in this case but negative
when the marker is on the other side of the origin to the projection). The size of the chord OPy is relative to its calibration
point. An extreme instance of this is given by x33; where the calibration point for axis 33 almost coincides with the origin
showing that x33; has a numerical value far from zero (—892 in Table 1).
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The circles with OP; and OP; as diameters are similar in size and location so will have similar interactions with the factors.
The circle for P, is bigger and separate from the first two circles and so has a different set of interactions. The circles on P,
and Ps are smaller and so their factors have less interaction with the other factors. By construction the axes all pass through
the origin but axes that are close to being tangential at the origin will tend to have the smaller interactions. This remark is
not absolute because each axis is separately calibrated but in this example, at least, the differences in calibration are small,
Thus, interaction sizes can be safely compared. The worst cases are for factor-pairs 12 and 22 which are somewhat larger but
not dramatically so. Thus, the circle for P, is tangential to most of the other factors and has large interactions, both positive
and negative, as well as zero, not shared with the other factors. Similarly there are other factors that have large but different
signs from those of P,.

This analysis is not exhaustive but suffices to show that the visualisation has considerable structure and is able to convey
a vast amount of information.

In summary, the visualisation shows (i) how the axis for levels (I, J) gives the magnitude of the interaction of rubber
wear for each of the levels of factor C, and (ii) the same thing can be done for comparing the levels (I;, ;) and (Iy, Jy) on
two axes, taking into account any differences there may be in the calibration of both axes and (iii) the intersections of the
projection circles with the axes are useful for drawing attention to the large or small interactions and their signs and (iv)
the intersection circles indicate how the sizes of interactions vary regularly with the different combinations of levels (I, J)
around the circumferences.

4. Discussion

For clarity, in Section 3 we chose data with few factor levels. However, the theory could equally well be applied to
more voluminous datasets (see, e.g., [1]), although too large values of I, ] and/or K will tend to yield graphical overload.
Nevertheless, a relatively quick look at Fig. 6 already provides vast information on the interactions in the data, the factor
levels that are most similar, etc. Even a small dataset such as this delivers an ANOVA table that is too large to quickly grasp
its gist. We believe that our method can strongly help data understanding.

Rather than (1), the so-called Tucker3 model has sometimes been used to represent three-way arrays (see e.g. [19]).
Although no doubt Tucker3 has its uses, we feel that it is less fundamental than (1) and, moreover, it includes a three-way
“core” matrix which is itself a potential candidate for three-way visualisation.

We have made some progress in deriving precise two-dimensional plots for rank-two three-way arrays. This visualisation
gives points in two-dimensions displayed on three orthogonal planes, one for each factor. Each of the three faces could be
shown separately but we have shown how the three-dimensional configurations of the u and v-planes may be characterised
in the w-plane, without loss of information, to give a two-dimensional biplot-type of representation of all the elements of
X. When [ is large this display may become overloaded and some of the methods we have briefly discussed, may be used
to exclude inessential information. It should be realised that in Fig. 6 we have been tempted to show everything that could
potentially be of use. In an interactive computer environment one would zoom in on areas of interest, select axes and points
of marginal interest for deletion, and refine the intervals of calibration.

Rank-two three-way arrays are plagued by the disparity between rank (here R = 2) and dimensionality and this dis-
parity has been at the heart of the above discussion. Higher rank solutions are worth examining. For example, it would be
convenient if a direct visualisation of a rank-three three-way array could be developed. To this end we extend the method
described in Section 2.1 for rank-two three-way arrays to rank-three three-way arrays. With R = 3 Eq. (2) becomes

Xijk = Uj1Vj1W1 + UpVjp W3 + UizVj3ws

which, by fixing i and j gives a plane with normal direction-cosines (uj;vj1, UpVj2, U3Vj3). AS X varies, the planes remain
parallel so, as before, their common normal may be used for calibrating ;. However, now the calibrated axes are in three
dimensions and would be difficult to develop for practical use.

More directly, higher rank solutions to three-way arrays can be shown by exhibiting several planar cross-sections of the
higher dimensional space. For example, when R = 4 we may write (U1 V1w + UpVjpWi2) + (UisVjzWis + UiaVjaWia), the
sum of two rank-two terms each representable by a single tetrahedron. Similarly, we can get a rank three visualisation by
combining a rank-two visualisation with a rank-one visualisation, which as we have seen is three-dimensional (Fig. 1). How-
ever, adding two or more volumes, is unacceptable but perhaps little more so than is adding extra dimensions to a principal
components analysis.

We surmise that rank-two representations of three-way arrays are at the limits of useful graphical representation; higher
rank visualisations are theoretically possible but are impracticable. Fortunately, as with two-way arrays, it is the rank-two
displays that are the most useful.

If high rank graphical representation is doomed to failure, there remains the possibility that our approach may have
some bearing on the search for canonical forms suitable for three-way arrays. The three orthogonal planes of the two-rank
form, together with its rank-one specialisation, is geometrically attractive. It shows that X may always be decomposed into
three-dimensional components each with special planar structure and each of which may be represented in two dimen-
sions. This recalls the fundamental structure of how two-way arrays may be decomposed into the sum of rank-one matrices
(either by spectral or singular value form). Of course, our three-way decomposition lacks the underpinning provided by op-
timal least-squares properties of matrix canonical forms but it is possibly worth considering that the three-planes two-rank
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structure may be fundamental to the algebra of three-way arrays. Furthermore, we note the link between volume and area
(see e.g. the area interpretations of inner-products discussed by [8]) and conjecture that higher order multi-additivity might
be associated with higher order content.

Postscript

Areferee has questioned the role of geometrical visualisations in the analysis of data. Of course, numerical methods of the
analysis of multiway arrays are of great value, and presentation of such analyses in numerical form is a basic tool of statisti-
cians. Indeed, an initial numerical analysis underpins what the visualisations visualise. Nevertheless, we think that graphical
visualisations are valuable in at least three ways: (i) they give the opportunity of identifying properties of the data that are
more easily seen in visual form, rather than by scanning columns of figures; and (ii) visualisations are a good way of present-
ing results in reports and other publications to be read by the general public and researchers in diverse fields of applications,
where visualisations can supplement numerical material; and (iii) on a theoretical level, geometry throws light on properties
of the model being fitted. In our view, it is not a question of whether to use numerical or visual methods: both are useful.

Note that a user of the results of this paper only has to know how to use a calibrated axis. To understand the underlying
theory is also undemanding. One has to know the formula for a plane in three dimensions, its intersection with another plane
(whichis aline), the distance of a point from a line and how to calculate volume (in three dimensions) see, for instance, [7,15].

Software usage
All computations have been performed in R (www.cran-project.org), using self-written code (Available from
www.casperalbers.nl). For the Candecomp-decompositions the package ThreeWay [6] has been used.
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