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Abstract 

In this paper, based on the concepts of stochastic orders, we propose two new general classes of 

bivariate distributions. The usual stochastic order and likelihood ratio order are applied to construct 

the classes. The joint distributions in each class are derived. It will be seen that the obtained formulas 

for the joint distributions are very simple and easy to apply. Then, the relationships between the 

classes are discussed and characterized. We illustrate the practical usefulness of the proposed classes 

by showing that a number of new families of bivariate distributions can be generated from the classes. 

Furthermore, to illustrate practical relevance, we apply several developed models to analyze a real 

bivariate failure time data set.  
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1. Introduction 

Dependent random quantities can frequently be encountered in practice and they have been modelled 

by using bivariate distributions. In the literature, various specific parametric models for bivariate 

distributions have been suggested and studied. See, for instance, Gumbel (1960), Freund (1961), 

Marshall and Olkin (1967), Downton (1970), Hawkes (1972), Block and Basu (1974), Shaked (1984), 

Sarkar (1987) and Hayakawa (1994). A nice review on the modelling of multivariate survival models 

can be found in Hougaard (1987). An excellent encyclopaedic survey of various bivariate 

distributions can be found in Balakrishnan and Lai (2009). 

In practice, the lifetimes of organisms or items are most often stochastically dependent rather than 

being completely independent. For instance, in reliability application, the failure of one component 

in a two-component system may considerably shorten the residual lifetime of the remaining 

component by increasing the load or stress of the remaining one. Several practical examples of 

similar situations can be found in Section 2 of Lee and Cha (2014). Based on this observation, Lee 

and Cha (2014) have recently developed a new class of bivariate distributions. More specifically, it 

was assumed in Lee and Cha (2014) that the residual lifetime is shortened in the sense of failure rate 
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order. That is, the failure rate of the remaining component increases after the failure of the other one. 

In this paper, two new general classes of bivariate distributions will be constructed based on the 

assumption that the residual lifetime of the remaining component is shortened in the sense of two 

other types of stochastic orders: usual stochastic order and likelihood ratio order. Thus, this paper 

provides a general insight and an integrated framework for modelling new classes of bivariate 

distributions based on the concepts of stochastic orders. It will be seen that the obtained formulas for 

the joint distributions are very simple and easy to apply (see the joint pdfs in Theorem 1, Theorem 2, 

and especially those in Corollary 1 of Section 2). Numerous parametric families of bivariate 

distributions can be generated by just choosing different baseline distributions. In order to illustrate 

this property, we provide several examples. We will utilize reliability/lifetime modelling tools. 

However, the applications of the developed models are not necessarily limited to lifetime analysis, 

but they can generally be applied to the modelling of dependent random quantities in different areas.  

The structure of this paper is as follows. In Section 2, we briefly review the general class of 

bivariate distributions suggested in Lee and Cha (2014). Then, two new general classes of bivariate 

distributions will be constructed. In Section 3, the characterization of the relationships among those 

three classes will be made. This characterization would help practical modelling of bivariate 

distributions and allow more convenient interpretation of the modelling parameters. In Section 4, 

several specific families of bivariate distributions will be generated for illustrations. In Section 5, the 

families of bivariate distributions obtained in Section 4 are applied to a real bivariate failure time 

data set to show the practical relevance of the developed classes. Finally, in Section 6, the results in 

this paper are briefly summarized.  

2. New General Classes of Bivariate Distributions 
As given in an example in Section 1, random quantities are commonly positively dependent. Thus, 

throughout this paper, we will mainly discuss the classes of distributions for modelling positive 

dependency, unless otherwise specified. However, our discussions can be extended to those for 

modelling negative dependency without difficulty, which will be formally discussed in subsection 

2.4.  

2.1 A Class Based on the Failure Rate Order 

In this subsection, the general class of bivariate distributions suggested in Lee and Cha (2014) will 

be briefly reviewed. In Lee and Cha (2014), the following practical situation was considered for 

modelling dependency of two random quantities. The system is composed of two components 

(component 1 and component 2) and the original lifetimes of components 1 and 2, when they start to 

operate, are described by the corresponding failure rates )(1 t  and )(2 t , pdf’s )(1 tf  and )(2 tf , 

and survival functions )(1 tS  and )(2 tS , respectively. These original lifetimes of components 1 and 

2 are denoted by 
*

1X  and 
*

2X , respectively, assuming that 
*

1X  and 
*

2X  are stochastically 

independent. It was assumed that the failure of one component shortens the residual lifetime of the 

remaining component due to the increased stress. In this case, after the change point, },min{
*

2

*

1 XX , 

the residual lifetime distribution of the remaining component changes. We denote the corresponding 

eventual dependent lifetimes of components 1 and 2 by 1X  and 2X , respectively. In the following 

discussions, the notations ),( 21 xxS , ),( 21 xxf  will be used to denote the joint survival function and 

the joint pdf of 1X  and 2X , respectively. Define indicator variables )(1 t  and )(2 t  as 

follows: 1)(1  t  ( 1)(2  t ) if component 1 (component 2) is functioning at time t , whereas 

0)(1  t  ( 0)(2  t ) if component 1 (component 2) is at failed state at time t . For notational 

convenience, let 2
~
i  when 1i ; whereas 1

~
i  when 2i . For component i , 2,1i , it was  

assumed that, depending on the states of component i
~

, the failure rates ir  satisfy: 
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),()0,1)(|( ~ ttsstr iii   2,1i ,                                       (1) 

and 

)(),(),0)(;0,1)(|( ~~ tututsususstr iiiii   , ut  , 2,1i ,        (2)    

where 1),( wsi , for all 0, ws , 2,1i . Detailed practical interpretations for (1) and (2) are 

given in Lee and Cha (2014). Then, based on the assumptions (1)-(2), the joint survival function was 

obtained by 

)()()()(),()(),( 22212122121

2

1

xSxSduuSuSuxuxxS

x

x

   , for 210 xx  ,       (3) 

)()()()(),()(),( 12112111221

1

2

xSxSduuSuSuxuxxS

x

x

   , for 120 xx  ,       (4) 

where 




  

ux

iiii

i

dwwuwuux
0

)(),(exp),(  , 2,1i . The corresponding joint pdf was also 

obtained in Lee and Cha (2014), which has similar functional form provided in Cox (1972). 

In order to construct new classes of bivariate distributions in this paper, we need to reinterpret the 

meaning of the stochastic modeling in (1)-(2) in terms of a stochastic order. For our discussions, we 

need the following formal definition of the failure rate order (hazard rate order) between two random 

variables (see Shaked and Shanthikumar (2007), Cha and Mi (2007), Finkelstein and Cha (2013)).  

Definition 1. Let 1Z  and 2Z  be two nonnegative, continuous random variables with respective 

failure rate functions )(1 tr  and )(2 tr , such that )()( 21 trtr  , 0t . Then 1Z  is said to be smaller 

than 2Z  in the failure rate order, denoted by 21 ZZ fr . 

Let iX
~

, 2,1i , denote the lifetimes of component 1 and component 2 when the two lifetimes 

are completely independent, i.e., when 1),( wsi , 2,1i . It is then clear that the failure rate of 

the random variable 

)
~

,,0)(,0,1)(|
~

( ~~ uXussussX iiii   

is just given by )(ti , ut  , 2,1i . On the other hand, from (1) and (2), that of the random 

variable  

 

is given by )(),( tutu ii   , ut  , 2,1i . Therefore, 

)()(),( ttutu iii   , for all ut  , 0u , 2,1i , 

which implies the following relationship:  

),,0)(,0,1)(|( ~~ uXussussX iiii   

)
~

,,0)(,0,1)(|
~

( ~~ uXussussX iiiifr  , for all 0u , 2,1i .  (5) 

In the following two sections, we develop two new general classes of bivariate distributions by 

employing different types of stochastic orders between the two random variables in (5). 

2.2 A Class Based on the Usual Stochastic Order 

),,0)(,0,1)(|( ~~ uXussussX iiii 
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The assumptions regarding two lifetimes 1X  and 2X  when both the two components 1 and 2 are 

in the operating state are the same as before (e.g., (1)). For our discussion, it is necessary to define 

the following usual stochastic order (see also Shaked and Shanthikumar (2007)): 

Definition 2. Let 1Z  and 2Z  be two nonnegative, continuous random variables with respective 

cdfs )(1 tG  and )(2 tG  (survival functions )(1 tG  and )(2 tG ), such that )()( 21 tGtG   (or 

equivalently, )()( 21 tGtG  ), 0t . Then 1Z  is said to be smaller than 2Z  in the usual stochastic 

order, denoted by 21 ZZ st . 

In accordance with the above motivation, we now assume relationship (5) with fr  replaced by st . 

Note that the survival function of the random variable on the right-hand side of (5) is  

)(/)()
~

,,0)(,0,1)(|
~

( ~~ uStSuXussusstXP iiiiii  . 

Therefore, relationship (5) with fr  replaced by st  is equivalent to  

   )(/)),((),,0)(,0,1)(|( ~~ uSutuuSuXussusstXP iiiiiii   ,    (6) 

where ),( wsi  is an increasing function of w  satisfying wwsi ),( , with 0)0,( si , for all 

0, ws , 2,1i .   

In the following theorem, we obtain the joint distribution of 1X  and 2X  under the assumed 

condition (6). 

Theorem 1. Suppose that ),( wsi  is differentiable with respect to s  and w , respectively, 

2,1i . Under the assumed condition in (6), the joint survival function ),( 21 xxS  is given by 

)()()),(()(),( 2221222121

2

1

xSxSduuxuuSufxxS

x

x

   ,  for
210 xx  ,            (7) 

)()()),(()(),( 1211111221

1

2

xSxSduuxuuSufxxS

x

x

   ,  for 
120 xx  ;            (8) 

and the corresponding joint pdf is given by 

)),(()(
),(

),( 12121211

2

1212
21 xxxxfxf

x

xxx
xxf 




 


 , for 210 xx  , 

)),(()(
),(

),( 21212122

1

2121
21 xxxxfxf

x

xxx
xxf 




 


 , for 120 xx  . 

Proof. Let 210 xx  . The conditional joint survival function given that component 1 has failed first 

at u , for 1xu   or ux 2 , is given by 










,,1

,,0
),|,(

2

1*

1

*

2

*

12211
ux

xu
uXXXxXxXP  

whereas, for 21 xux  , from the assumptions stated above,  

),|(),|,(
*

1

*

2

*

122

*

1

*

2

*

12211 uXXXxXPuXXXxXxXP   

             212222 ),(/)),(( xuxuSuxuuS   . 
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Then, by applying similar procedures as those described in the proof of Theorem 1 in Lee and Cha 

(2014), we now have  

)()()()()),((),( 22211122221

2

1

xSxSduuSuuxuuSxxS

x

x

   , for
210 xx  . 

The case for 120 xx   can be proved symmetrically. The joint pdf ),( 21 xxf  can be obtained by 

differentiation. 

■ 

It is notable that the obtained formulas for the joint pdf in Theorem 1 are very simple and easy to 

apply (see also specific parametric distributions in Section 4). By letting 01 x  or 02 x  in 

),( 21 xxS , the marginal distributions can be easily obtained.  

Especially when the parameter function is specified as wpws ii ),( , 1ip , 2,1i , which 

does not depend on s , the class has the following much simpler and more useful parametric form.  

Corollary 1. Suppose that wpws ii ),( , 2,1i . Then the joint pdf is given by 

))(()(),( 1221211221 xxpxfxfpxxf  , for 210 xx  , 

))(()(),( 2112122121 xxpxfxfpxxf  , for 120 xx  . 

■ 

From Corollary 1, it can be seen that numerous parametric families of bivariate distributions can be 

generated by just choosing different baseline distributions )( 11 xf  and )( 22 xf .  

Remark 1. 
From the failure mechanism of the model, the joint pdf in Corollary 1 can also be interpreted as that 

of ),( 21 XX , where 

),(
1

1)( 212

11

1
2111 YYIY

pp

Y
YYIYX 

















  

),()(
1

1 212211

22

2
2 YYIYYYIY

pp

Y
X 

















  

and ),( 21 YY  are independent with densities 21, ff , respectively. 

 

2.3 A Class Based on the Likelihood Ratio Order 

In this subsection, another, more restrictive, class will be constructed based on the likelihood ratio 

order of lifetimes. The definition of likelihood ratio order is as follows (see also Shaked and 

Shanthikumar (2007)): 

Definition 3. Let 1Z  and 2Z  be two nonnegative, continuous random variables with respective 

pdfs )(1 tg  and )(2 tg , such that 
)(

)(

2

1

tg

tg
 is decreasing in  0t . Then 1Z  is said to be smaller 

than 2Z  in the likelihood ratio order, denoted by 21 ZZ lr . 

In this regard, we are now employing relationship (5) with fr  replaced by lr . The assumptions 

regarding two lifetimes 1X  and 2X  when both the two components 1 and 2 are in the operating 
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state are the same as before (e.g., (1)). Then, under the independence of 1X  and 2X , the 

conditional pdf of )
~

,,0)(,0,1)(|
~

():
~

(
~

~~ uXussussXuiX iiiii   is given by 

)(

)(
)(

):
~

(
~

uS

tf
tf

i

i

uiX i

 , ut  , 2,1i . 

On the other hand, we will assume that the conditional pdf of 

),,0)(,0,1)(|():
~

( ~~ uXussussXuiX iiiii   is given by  

)(

)(),(
)(

):
~

( uS

tfutu
tf

i

ii

uiX i





, ut  , 2,1i ,                  (9) 

where ),( wsi  is a decreasing function of w  for all 0s , 2,1i . Then this assumption implies 

that the ratio )(/)(
):

~
(

~
):

~
(

tftf
uiXuiX ii

 decreases in ut  , which implies relationship (5) with fr  

replaced by lr . Note that the function ),( wsi  in (9) should be carefully taken so that the 

conditional pdf in (9) should be a legitimate probability density function. That is, it should be 

satisfied that 

)()(),()(),(
0

uSdttuftudttfutu iii

u

ii  


 . 

In order to find an appropriate ),( wsi , one can start with a simple decreasing function of w . This 

technical issue will be discussed in detail in Section 4.  

In the following theorem, we obtain the joint distribution of 1X  and 2X  under the assumed 

condition (9). 

Theorem 2. Under the assumed condition in (9), the joint survival function ),( 21 xxS  is given by 

)()()()(),(),( 222112221

2

1 2

xSxSduufdwwufwuxxS

x

x ux

  




 ,  for 210 xx  ,            (10) 

)()()()(),(),( 121121121

1

2 1

xSxSduufdwwufwuxxS

x

x ux

  




 , for 120 xx  ;            (11) 

and the corresponding joint pdf is given by 

 )(),()(),( 2212121121 xfxxxxfxxf   , for 210 xx  , 

)(),()(),( 1121212221 xfxxxxfxxf   , for 120 xx  . 

Proof. For 210 xx  , it is now clear that 



















 




,,1

,),(/)(),(

,,0

),|,(

2

21222

1

*

1

*

2

*

12211

2

ux

xuxuSdwwufwu

xu

uXXXxXxXP
ux


 

which enables us to obtain the desired results by applying similar procedure as those described in the 

proof of Theorem 1. 

■ 
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2.4 Classes for Modeling Negative Dependency 

As mentioned before, our previous discussions can be readily extended for modelling the classes of 

bivariate distributions having negative dependency. We discuss this issue in this subsection. Observe 

that, in the previous discussions, the key idea for modelling positive dependency is that the failure of 

one component should shorten the residual lifetime of the remaining component. This idea was 

mathematically modelled by the fact that ),,0)(,0,1)(|( ~~ uXussussX iiii   should 

be smaller than )
~

,,0)(,0,1)(|
~

( ~~ uXussussX iiii   in a stochastic order sense. Clearly, 

by reversing this relationship, we can generate negative dependency. In this case, the conditions on 

the parameter functions should be changed as follows: 

- 1),(0  wsi , for all 0, ws  (‘fr’ class); 

- ),( wsi  is increasing in w , satisfying wwsi  ),(0  , 0)0,( si , for all 0, ws  (‘st’ 

class);   

- ),( wsi  is an increasing function of w  for all 0s  (‘lr’ class), 

2,1i , respectively.  

In this case, the distributional formulas, such as ),( 21 xxS , in each class are the same as before. 

For notational convenience, we will denote by FRC , STC  and LRC  the corresponding classes for 

negative dependency, respectively, whereas, by FRC , STC  and LRC , the classes for positive 

dependency defined in subsections 2.1-2.3, respectively. In Section 4, we will deal with a model with 

negative dependency to illustrate the generating methodology. 

3. Relationships Between the Classes 
 In Section 2, we have suggested three classes of bivariate distributions for modeling positive 

dependency. In this section we will characterize the relationships among these classes. Similar 

arguments can also be applied to the classes for negative dependency. 

  As defined in subsection 2.4, FRC , STC  and LRC  represent the classes of bivariate distributions 

defined in subsections 2.1-2.3, respectively. Note that, for two random variables 1Z  and 2Z  (see 

Shaked and Shanthikumar (2007)), 

212121 ZZZZZZ stfrlr  . 

Therefore, obviously, STFRLR CCC  . More detailed relationships between the members in the 

classes are given in the following theorem. 

Theorem 3. The following relationship holds. 

(i)Let LRCxxS ),( 21  be given by (10) and (11). Then ),( 21 xxS  belongs to FRC  and it can be 

expressed by (3) and (4), respectively, with the corresponding parameter functions 

dssufsu

dssuftu

tu

t

ii

t

ii

i














)(),(

)(),(

),(





 , for 2,1i .                 (12) 

(ii)Let FRCxxS ),( 21  be given by (3) and (4). Then ),( 21 xxS  belongs to STC  and it can be 

expressed by (7) and (8), respectively, with the corresponding parameter functions 
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uudssusutu i

t

iiii 












 


)()(),(),(

0

1
 , for 2,1i ,        (13) 

where dssu

u

ii 
0

)()(   and )(
1

ui


  is the corresponding inverse function.  

Proof. (i)From (9), under the model based on the likelihood ratio order, the pdf of the residual 

lifetime of component 1 given that component 2 has failed first at time u  is  

)(

)(),(

1

11

uS

tuftu 
, 0t . 

Then, the corresponding failure rate function can be obtained as 

 )(

)(),(

)(),(

)(/)(),(

)(/)(),(
1

11

11

111

111 tu

dwwufwu

dssuftu

uSdwwufwu

uStuftu

t

t

t




















































,  0t .     (14) 

On the other hand, under the model based on the failure rate order, the failure rate of the residual 

lifetime of component 1 given that component 2 has failed first at time u  is, from (2),  

)(),( 11 tutu  , 0t .                         (15) 

Now comparing (14) with (15), the survival function with parameter function ),(1 tu  belonging to 

LRC  corresponds to the survival function with parameter function (12) with 1i  belonging to FRC . 

For component 2, the results can be obtained symmetrically.  

(ii)From (2), under the model based on the failure rate order, the survival function of the residual 

lifetime of component 1 given that component 2 has failed first at time u  is  














  dssusu

t

0

11 )(),(exp  , 0t . 

In order to find the appropriate parameter function ),(1 tu  which corresponds to the survival 

function belonging to the class STC , set 




























 



dssdssusu

utu

u

t ),(

1

0

11

1

)(exp)(),(exp



 , 

which gives us the following equality: 

)),(()()(),( 111

0

11 utuudssusu

t

  . 

Solving the above equation with respect to the function ),(1 tu , we obtain (13) with 1i . By 

symmetry, the relationship for component 2 can be directly obtained. 

■ 

Remark 2. 

(i)It can be easily verified that the parameter functions ),( tui  in (12) and ),( tui  in (13) satisfy 
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the necessary conditions. That is, 1),( tui , for all 0, tu , and ),( tui  is an increasing 

function of t  satisfying ttui ),( , with 0)0,( ui , 2,1i . 

(ii)As STFRLR CCC  , class STC  is the largest class. Therefore, mathematically, it is sufficient to 

consider only class STC . However, other classes need to be considered separately due to: (1) 

sometimes, STC  might be too large to find a proper modeling; (2) FRC  and LRC  can allow a 

simpler and convenient formula; (3) for some simple specific families of distributions constructed 

from class LRC  or FRC , it is not feasible to construct them directly from class STC .  

(iii)Suppose that 0,)(  tt ii  , 2,1i . It was shown in Lee and Cha (2014) that, for class FRC , 

if the parameter functions ),( tui , 2,1i , do not depend on the argument u , then ),( 21 XX  

possesses the bivariate lack of memory property (BLMP). Similarly, it can also be shown that, for 

each class STC  and LRC , if the parameter functions, ),( tui , 2,1i , and ),( tui , 2,1i , 

respectively, do not depend on the argument u , then ),( 21 XX  possesses the BLMP. 

(iv)If the distributions of the original lifetimes of components 1 and 2 (
*

1X  and 
*

2X ) are identical 

and the parameter functions ),( tui , ),( tui , ),( tui , 2,1i , respectively, do not depend on the 

argument u , then the bivariate distributions in FRC , STC , and LRC  can be regarded as the joint 

distributions of pairs of sequential order statistics. For the definition of the sequential order statistics, 

the interested reader could refer to Kamps (1995). 

 

4. Specific Families of Distributions  

We will now see that some specific well-known families of bivariate distributions belong to the 

classes defined in Section 2 and will illustrate how to generate new families of bivariate 

distributions. It should be stressed again that the following models are just the most typical 

illustrations for the application of the general methodology for constructing bivariate distributions. 

Numerous families of distributions can further be generated based on the parametric model 

suggested in Theorem 1, Corollary 1 and Theorem 2. In this sense, this paper provides a new general 

insight and new perspective on the modelling of the bivariate distributions. 

First, it will be shown that the classes contain well-known bivariate families of distributions as 

special cases. 

Model 1 Let 11 )(  t , 22 )(  t . We will consider a family of bivariate distributions belonging to 

STC  and now we define the parameter functions tptu ii ),( , 1ip , for all 0, tu , 2,1i . 

From Corollary 1,  

 1222122222121 )(exp),( xpxppxxf   , 210 xx  , 

 2112111111221 )(exp),( xpxppxxf   , 120 xx  . 

Reparametrizing  1 ,  2 , '11  p  and '22  p , this family of distributions becomes 

the bivariate survival model proposed by Freund (1961). It was also shown in Lee and Cha (2014) 

that the above bivariate model can also be obtained from FRC  by setting ii tu  ),( , 2,1i , and, 

through a suitable reparameterization, it becomes the survival model studied by Block and Basu 

(1974).  

  Now, it will be shown that this model can also be obtained from a family of bivariate distributions 

belonging to LRC . Let 11 )(  t , 22 )(  t  again. As mentioned in subsection 2.3, we need to 
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carefully define the parameter functions ),( tui , 2,1i , so that the conditional pdfs in (9) should 

be legitimate pdfs. For this, we start with simple baseline functions )(0 ti , 2,1i , which are 

decreasing in t . Let }exp{)(0 tbt ii  , 2,1i . First, in order to find ),(1 tu  based on )(01 t , 

construct a function similar to the conditional pdf (9): 

}exp{

}exp{)}(exp{

)(

)()(

1

111

1

101

u

tutb

uS

tfut











,                 (16) 

which is not a proper pdf yet. Integrating (16) for ut  , we have 

11

1
111 )}(exp{)}(exp{

b
dtututb

u








 . 

Therefore, by setting }exp{)/)((),( 11111 tbbtu   , we can now obtain a legitimate conditional pdf 

of ),,0)(,0,1)(|( 1221 uXussussX   in (9). Symmetrically, we can now specify 

),(2 tu  based on }exp{)( 202 tbt  : }exp{)/)((),( 22222 tbbtu   . Then, from Theorem 2, we 

have  

})()(exp{)(),( 22212122121 xbxbbxxf   , 210 xx  , 

})()(exp{)(),( 11121211221 xbxbbxxf   , 120 xx  . 

It can be easily seen that, by a suitable reparameterization, we can arrive at the above Model 1. It is 

also clear from Theorem 3 that ),( tui , 2,1i , which correspond to this LRC  model are given by 

1111 /)(),(  btu   and 
2222 /)(),(  btu  . 

■ 

Model 2 Let 
1

)(


 ii bb

iii tbt  , 0t , where 0, ii b , 2,1i . We will now consider a family of 

bivariate distributions belonging to STC  and define the parameter functions tptu ii ),( , 1ip , 

2,1i . Then, from Corollary 1, we have 

 212121 )])(([][exp))((),( 1122211

1

1122

1

12121221

bbbbbb
xxxpxxxxpxbbpxxf 


 ,  

210 xx  , 

 121221 )])(([][exp))((),( 2211122

1

2211

1

22121121

bbbbbb
xxxpxxxxpxbbpxxf 


 ,   

                                                                            120 xx  . 

■ 

 

In Model 1, the obtained model belongs to LRC , and, accordingly, it also belongs to FRC  and STC . 

Now, in the following example, we will see a model which belongs to FRC  (thus also to STC ) but 

not to LRC  and one which belongs to STC  but not to FRC  (thus neither to LRC ).   

 

Example 1. (i) In Model 2, let us take more restrictive baseline marginals : 
1

)(


 ii bb

iii tbt  , 0t , 

where 0i , 1ib , 2,1i  (i.e., marginals with increasing failure rates). Clearly, the failure rate 



11 

 

of the random variable 

)
~

,,0)(,0,1)(|
~

( ~~ uXussussX iiii                  (17) 

is just given by )(ti , ut  , 2,1i . On the other hand, that of the random variable  

),,0)(,0,1)(|( ~~ uXussussX iiii                  (18) 

is given by ))(( utpup iii  , ut  , 2,1i . It is then clear that, if 1ib , then 

)())(( tutpup iiii   , for all 0,  uut . Thus, condition (5) is satisfied and this model belongs 

to FRC .  

On the other hand, let us now define the ratio of the conditional pdfs of the random variables in 

(17) and (18): 








































ut

ii

utp

iiii

i

dwwut

dwwuutpup

t

i

0

)(

0

)(exp)(

)(exp))((

)(





, ut  , 2,1i . 

Specifically, by setting 1i , 3ib , 2ip  and 5.0u , it can be shown that )(ti  increases 

for 62201.05.0  t  and then decreases for 62201.0t . This implies that relationship (5) with 

fr  replaced by lr  is not satisfied and, accordingly, this model does not belong to LRC . 

(ii) In Model 2, let ),( tui  be just replaced by 2),( tptu ii  , 1ip , 2,1i . In this case, the 

failure rate of the random variable in (18) is given by 
12))(()(2


 ii b

i

b

iii utpubutp  , ut  , 

2,1i . Define the differences of the residual lifetime failure rates: 

121
))(()(2)(


 iiii b

i

b

iii

bb

iii utpubutptbt  , ut  , 2,1i . 

Then, by setting 1i , 5.0ib , 2ip  and 5.0u , it can be shown that 0)(  ti , for 

72771.05.0  t  and 0)(  ti , for 72771.0t . This implies that this model belongs to STC  but 

not to FRC . 

 

In Freund (1961), the residual lifetime distributions are limited only to the same type of 

distributions as the original one. However, in our modeling approach, there is no such restriction as 

illustrated in the following model. 

Model 3 Let 11 )(  t , 22 )(  t . We will construct a family of bivariate distributions belonging to 

STC  and, set )1(),(  ttptu ii , 1ip , 2,1i . Then, from Theorem 1, we have  

 1211212221222121 )()1)((exp)122(),( xxxxxpxxpxxf   , 210 xx  , 

 2212121112112121 )()1)((exp)122(),( xxxxxpxxpxxf   , 120 xx  . 

Observe that the original lifetimes are exponential distributions but, for instance, the residual lifetime 

of component 1 is now given by 
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),,0)(,0,1)(|( 1221 uXussussxXP   













 

 ),(

0

1

1

)(exp

uxu

dwwu



  

 )1)((exp 11  uxuxp , xu 0 , 

which is non-exponential distribution. In this case, for the residual lifetime distribution, the linear 

failure rate is used (see Bain (1974) and Lawless (2003) for application of this type of failure rate in 

reliability and biological contexts). 

■ 

By similar arguments as those described in Example 1, it can be easily shown that Model 3 also 

belongs to FRC  but not to LRC .     

 

The following model is constructed based on the approach described in subsection 2.3 and it belongs 

to the class LRC . 

Model 4 Let 11 )(  t , 22 )(  t . We start with simple baseline decreasing functions 

)exp()1()(0 ttbt ii  , 0ib , 2,1i . Following similar procedure as those described in Model 1, 

),( tui , 2,1i , can be specified as 

)exp()1(
)2(

)1(
),(

2

tttu
ii

i
i 









 , 2,1i , 

which is independent of ib , 2,1i . Then, from Theorem 2, we have  

 221112

2

2

21
21 )1()1(exp)1(

)2(

)1(
),( xxxxxxf 




 




, 210 xx  , 

 112221

1

2

12
21 )1()1(exp)1(

)2(

)1(
),( xxxxxxf 




 




, 120 xx  . 

Note that, from Theorem 3, it can be seen that Model 4 can also be generated from the class FRC  by 

setting  

]1)1)(1[(

)1()1(
),(

2






t

t
tu

ii

i
i




 , 2,1i . 

■ 

 

Until now, the families of bivariate distributions have been constructed based on simple original 

baseline distributions such as exponential and Weibull. Other families of bivariate distributions could 

also be constructed from more general original baseline distributions such as Gompertz and the two-

parameter Pareto (Lomax) distributions, etc.  

In the previous models, we have been interested in the construction of positively dependent 

bivariate distributions. Now we discuss the construction of the bivariate distributions with negative 

dependency. 

Model 5 Let 11 )(  t , 22 )(  t . In order to construct a family of bivariate distributions with 

negative dependency belonging to LRC , we now start with simple increasing baseline functions 
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1)(0  tbt ii , 2,1i . Following similar procedure as those described in Models 1 and 4, ),( tui , 

2,1i , can be specified as )1))(/((),(  tbbtu iiiii  , 2,1i . Then, from Theorem 2, we have  

 2211122

22

2
2121 exp]1)([

)(
),( xxxxb

b
xxf 




 


 , 210 xx  , 

 2211211

11

1
2121 exp]1)([

)(
),( xxxxb

b
xxf 




 


 , 120 xx  . 

Let us now investigate the effect of parameters ib , 2,1i , on the degree of dependency. For 1b , 

obviously, 01 b  corresponds to the independent case. As the effect of 1b  on the residual lifetime 

could be more conveniently interpreted via the corresponding failure rate function rather than via the 

corresponding conditional pdf, it would now be better to analyze the effect of 1b  on the parameter 

function ),(1 tu  which corresponds to ),(1 tu . From Theorem 3, the parameter function ),(1 tu  

which corresponds to ),(1 tu  is obtained by 

1

)()1(

)()1(

),(

11

11

1 














dssufsb

dssuftb

tu

t

t , for all 0, tu . 

Suppose that 1211 bb   and define );,( 111 btu  and );,( 121 btu  as the function ),(1 tu  in which 

1b  is replaced by 11b  and 12b , respectively. Observe that 

dssufsbdssufsb

dwdssufwufsbtbsbtb

btubtu

tt

tt






















)()1()()1(

)()()]1)(1()1)(1[(

);,();,(

112111

1111121211

121111  . 

Note that  

)1(

)(
1

)1(

)1(

11

1112

11

12










tb

tbb

tb

tb
 

is increasing function of t  and thus 

 

)1(

)1(

)1(

)1(

11

12

11

12










sb

sb

tb

tb
, for all ts  , 

which implies that 0)]1)(1()1)(1[( 11121211  sbtbsbtb , for all ts  , and finally we have 

);,();,(1 121111 btubtu   , for all 0, tu . Therefore, the degree of the negative dependency would 

become stronger as the parameter 1b  increases. Symmetrical interpretation applies to the parameter 

2b . 

■ 

Example 2. In the above Model 5, we specify the parameters as follows: 11  , 12  , 0 bbi
. 

The values of ),( 21 XXCov  corresponding to each value of b  are shown in Table 1. 

b  0 1 2 3 4 5 
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),( 21 XXCov  0 -0.3125 -0.4445 -0.5156 -0.5600 -0.5903 

Table 1. The values of ),( 21 XXCov  

 

5. Illustration 
Before analyzing a real bivariate data set, we will briefly discuss how to narrow the possible choices 

of the baseline distributions and provide a guideline for this. In the proposed classes, the change 

point, after which the residual lifetime distribution of the remaining component changes, is 

},min{},min{ 21

*

2

*

1 XXXX   and the corresponding failure rate of },min{ 21 XX  is given by 

)()( 21 tt   . Note that, given a bivariate data set, },min{ 21 XX  can be observed from each 

observation of ),( 21 XX . Thus, we may obtain the observable failure rate (or empirical failure rate) 

of },min{ 21 XX  as follows: 

])(/[)]()([ ttnttntn  ,                         (19) 

where )(tn  is the number of data points of },min{ 21 XX  observed after t  (see, e.g., Rausand and 

Høyland (2004)). Then, by interpreting the shape of the empirical failure rate, we can narrow the 

possible choices of the baseline distributions. Thus, the value of this approach would be especially to 

rule out implausible baseline distributions. In the following, this methodology is illustrated in 

analyzing a bivariate data set. 

We analyze the bivariate failure time data set given in Reliability Edge (2002). The data set was 

obtained from a life test on 18 identical parallel systems. Each parallel system is constituted by two 

motors, Motor A and Motor B. The life times 1X  (Motor A) and 2X  (Motor B) were measured in 

days. The parallel system is in a redundant configuration, that is, the system properly operates if at 

least one of the two motors functions. In redundant systems with two components (like hydraulic 

systems), the full load of the system is frequently shared by the two components in the system. In 

this situation, when the system starts to operate, each component takes a portion of the total load. 

When one of the components fails, the remaining component must take on the full load, which 

shortens its remaining lifetime. Thus, the bivariate distributions developed in this paper would be 

suitable for this data set. Figure 1 plots the failure times ( ix1 , ix2 ) of the i -th system 18,...,1i . 

There clearly seems to be a strong positive correlation between 1X  and 2X , because the 

correlation coefficient is 669.0 . Obviously, among the models developed in Section 4, Mode 5 

is not suitable for this data set and we thus choose the best model among Models 1-4. 
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Figure 1. Scatter Plot 

 

First of all, taking into account the guideline suggested above, we obtained the empirical failure rate 

of },min{ 21 XX  in (19) by setting the length of interval 40t , starting from 65 (see Table 2).  

t  0-65 65-105 105-145 145-185 185-225 225-265 

Failure Rate 0 0.0042 0.0050 0.0042 0.0150 0.0250 

Table 2. Empirical Failure Rate 

Overall, the empirical failure rate of },min{ 21 XX  represents a fairly increasing pattern. However, 

for Model 1 (the model by Freund (1961) and Block and Basu (1974)) and Models 3-4, 

},min{ 21 XX  has a constant failure rate 21   . Thus, we presume that the performances of 

estimations for these models would be rather poor. On the other hand, for Model 2, },min{ 21 XX  

has an increasing failure rate when 1ib  and the performance of the estimation is expected to be 

much better. In order to verify it, the bivariate data set was fitted to Models 1-4 and the results are 

given in Table 3. For all the models, MLE’s were used for the parameter estimation and they were 

obtained numerically. 

 

MODEL Estimated parameters 
Log-

likelihood 
AIC BIC 

MODEL 1 

(Freund (1961),  

Block and Basu 

(1974)) 

0.0031ˆ
1  , 0.0025ˆ

2   
7.0353ˆ

1 p , 7.5719ˆ
2 p  

-211.9717 431.9434 435.5049 
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MODEL 2 

0.0041ˆ
1  , 0.0037 ˆ

2   

3.3332 ˆ
1 b , 2.5146ˆ

2 b  

0200.2ˆ
1 p , 1100.2ˆ

2 p  

-198.1599 408.3198 413.662 

MODEL 3 
0.0031ˆ

1  , 0.0025ˆ
2    

0.1265ˆ
1 p , 0.1007ˆ

2 p  
-208.5076 425.0152 428.5767 

MODEL 4 0.0028ˆ
1  , 0.0021ˆ

2   
-966.7475 1937.495 1939.276 

Table 3. Estimation Results 

Based on the result described in Table 3, all the measures Log-likelihood, AIC and BIC support the 

assertion that Models 2 and 3 outperform the conventional model of Freund (1961) and Block and 

Basu (1974). Especially, as we presumed, Model 2 is the best among the considered models in fitting 

the above bivariate data.  

We now perform the goodness of fit test for Model 2. For this, we separated the support 

}0,0|),{( 2121  xxxx  into 9 rectangles:  

},|),{( 121121   jjii wxwvxvxx , 3,2,1, ji ,  

011  wv , 13522  wv , 24533  wv , 34544  wv , 

and ‘the remaining region’ (total 10 non-overlapping regions), so that each region can include 

balanced number of observations. Then we performed the chi-squared goodness-of-fit test with the 

degree of freedom 3, which is obtained by 10 (number of regions) - 6 (number of estimated 

parameters)-1. The test statistic was obtained by )3,(83.2 22   , 01.0,05.0,10.0 , where 

)3,(2   is the critical value of the chi-squared test with the degree of freedom 3 under the 

significance level  . Therefore, this test result would support the view that the data are from the 

parametric model of Model 2. 

6. Concluding Remarks
 In this paper, new general classes of bivariate distributions have been proposed and several specific 

families of distributions have been generated for illustrations. It has been seen that the obtained 

formulas for the joint distribution are very simple and easy to apply. The relationships among the 

three classes have been characterized and this characterization has shown to be very useful in 

constructing specific family of distributions and interpreting the degree of dependency based on the 

model parameters. Furthermore, bivariate lack of memory property has been briefly discussed and 

the subclasses in which all the bivariate distributions possess the bivariate lack of memory property 

have been characterized. Based on the proposed classes, numerous bivariate distributions can further 

be generated and new issues on the estimation and testing of the model parameters should be 

discussed in the future studies.  

As STFRLR CCC  , class STC  is the largest one among the three classes. Therefore, 

mathematically, it is sufficient to consider only class STC . However, there were several illustrations 

where some families of distributions cannot be easily constructed from a larger class, which justifies 

the consideration of each class separately. In order to show the practical relevance of the developed 

classes and to provide a guideline for narrowing the choices of the baseline distributions, the families 
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of bivariate distributions obtained in Section 4 have been applied to a real bivariate failure time data 

set. It has been observed that the shape of the failure rate of },min{ 21 XX  can help narrow the 

choices of baseline distributions. 

It would be interesting to show that the dependence in STC  increases when the functions 

2,1),,( iwsi  increase. For example, let ),( 21 XX  and ),( 21 YY  be two elements of the class STC  

with same marginal distributions, that is, 11 YX d  and 22 YX d  and parameter functions 

2,1),,( iwsi , and 2,1),,(~ iwsi , respectively. It will be useful to show that 

),(),(),(~),( 2121 YYXXwsws Cii    

where C  denotes the concordance order (see, e.g., Joe (1997)). Furthermore, another interesting 

issue to explore would be to see whether there exists an extreme random pair STCZZ ),( *

2

*

1  with 

suitably characterized parameter functions ),(* wsi , 2,1i , such that, for all STCXX ),( 21 , 

),(),( *

2

*

121 ZZXX C . However, by a counter example, it can be shown that the condition 

),(~),( wsws ii    does not imply ),(),( 2121 YYXX C  and, accordingly, there does not exist such 

an extreme random pair ),( *

2

*

1 ZZ . Thus, in the future studies, such monotonicity in dependency 

could be studied with respect to some other bivariate order which is weaker than the concordance 

order. This interesting issue was originally proposed by one of the reviewers of this paper. 
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