
Journal of Multivariate Analysis 172 (2019) 122–146

Contents lists available at ScienceDirect

Journal ofMultivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Model assessment for time series dynamics using copula
spectral densities: A graphical tool
Stefan Birr a, Tobias Kley b, Stanislav Volgushev c,∗

a Ruhr Universität Bochum, Fakultät für Mathematik, Lehrstuhl für Stochastik, 44780 Bochum, Germany
b University of Bristol, School of Mathematics (Faculty of Science), University Walk, Bristol BS8 1TW, United Kingdom
c Department of Statistical Sciences, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3

a r t i c l e i n f o

Article history:
Received 4 April 2018
Available online 18 March 2019

AMS subject classifications:
62M10
62M15
62F40

Keywords:
Bootstrap
Copula
Frequency domain
Spectral density
Time series

a b s t r a c t

Finding parametric models that accurately describe the dependence structure of ob-
served data is a central task in the analysis of time series. Classical frequency domain
methods provide a popular set of tools for fitting and diagnostics of time series
models, but their applicability is seriously impacted by the limitations of covariances
as a measure of dependence. Motivated by recent developments of frequency domain
methods that are based on copulas instead of covariances, we propose a novel graphical
tool to assess the quality of time series models for describing dependencies that go
beyond linearity. We provide a theoretical justification of our approach and show in
simulations that it can successfully distinguish between subtle differences in time series
dynamics, including non-linear dynamics which result from GARCH and EGARCH models.
We also demonstrate the utility of the proposed tools through an application to modeling
returns of the S&P 500 stock market index.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric methods provide valuable tools for dependence modeling. If a parametric candidate model is available,
we can compare the corresponding estimate with a nonparametric one to evaluate how well the chosen model describes
the data. If no candidate model is available, nonparametric techniques can be used to get a first impression of the
underlying dependence and information about potentially suitable parametric models.

In time series analysis, methods that are based on spectral densities and periodograms have a long and successful
history. Priestley [28] suggests the use of spectral densities as a graphical tool for model validation by comparing the
spectral shape of a dataset with standard ones from well-known parametric models. Tools based on spectral distributions
were considered, among others, by Bartlett [2,3], who proposed using the normalized cumulative periodogram to assess
whether a process is uncorrelated and to detect hidden periodicities. Rigorous tests for the hypothesis H0 : f = f0 for a
fixed f0 were derived by Anderson [1], while the more general testing problem H0 : f ∈ Fθ , where Fθ is a parametric
class of spectral densities, was treated by Paparoditis [27]. Fan and Zhang [14] consider generalized likelihood ratio tests
for the same hypothesis. There is also a rich literature on nonparametric comparison of the multivariate spectra of two
time series; recent references include [9,11,12,21,26], but this list is far from complete.

All of the references cited above deal with classical spectral analysis which is based on the autocovariance function
and therefore restricted to the aspects of time series dynamics that can be captured by second-order moments. The
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Fig. 1. Autocorrelation functions of daily log-returns and squared daily log-returns of the S&P 500 between 2000 and 2005.

autocovariance function does provide a complete description of the dependence of Gaussian processes, but it can
completely miss dependencies in a non-Gaussian setting. One such example arises in financial applications when first-
order differences of stock market data are analyzed. For illustration, Fig. 1 shows the autocorrelations of the log-returns Xt
and the squared log-returns X2

t calculated from the S&P 500 between 2005 and 2010. While the observations Xt appear to
be uncorrelated, we can clearly see positive correlation in the squared observations X2

t . This shows that Xt in fact exhibits
strong dependence, which cannot be described through the autocovariance function and therefore completely escapes
classical spectral analysis.

This limitation has recently attracted much attention, and new frequency domain tools that can capture non-linear
dynamics have been proposed. Pioneering contributions in that direction were made by Hong [17,18] who introduced
generalized spectra that are based on joint distributions and joint characteristic functions, respectively. Generalized
spectra were later utilized by Hong and Lee [19,20] and Escanciano [13] to test for the validity of various forms of
parametric time series models.

More recently, related approaches were taken by Li [24,25], who coined the names of Laplace spectrum and Laplace
periodogram. Those ideas were further developed by Hagemann [16] and extended to cross-spectrum and spectral kernel
concepts by Dette et al. [10] and Kley et al. [23], who introduced the notion of copula spectral densities, Baruník and
Kley [4], who introduced quantile coherency to measure dependence between economic variables, and Birr et al. [6] who
consider copula spectra for strictly locally stationary time series.

In the present paper, we utilize copula spectral densities to develop a graphical tool to determine suitable parametric
models for time series. We would like to emphasize that our main goal is not to construct yet another test for the
hypothesis that a time series is generated by a certain parametric model. Rather, we provide a graphical tool that can
indicate whether a chosen model accurately reflects the dependence present in the observed data. By providing useful
information about which aspects of the dependence are not captured in case the model is inappropriate, our procedure
goes beyond goodness-of-fit tests that merely aim to reject a class of candidate models.

The rest of the paper is organized as follows. Section 2.1 contains a summary of basic properties of copula spectral
densities and provides guidelines for their interpretation. In Section 2.2 we provide details on the proposed algorithm.
Section 3 gives a theoretical justification for the graphical approach and Section 4 contains a simulation study and a real
data example. All proofs are deferred to the Appendix. The Online Supplement contains additional plots and material
pertaining to the data analysis.

2. Description of the method

2.1. Copula spectral densities: Definition and interpretation

We begin by briefly recalling the definition of copula spectral densities. Consider a strictly stationary process (Xt )t∈Z,
denote by F its marginal distribution function which we assume to be continuous, by Fh the bivariate distribution function
of (Xt+h, Xt ), and by Ch the corresponding copula. The copula spectral density for the process Xt is then given by

fτ(ω) =
1
2π

∑
k∈Z

cov
[
1{F (Xk) ≤ τ1}, 1{F (X0) ≤ τ2}

]
e−ikω

=
1
2π

∑
k∈Z

{Ck(τ1, τ2) − τ1τ2}e−ikω,

where τ = (τ1, τ2) ∈ (0, 1)2, 1(A) denotes the indicator function of A. We further assume that the terms in the series are
absolutely summable. Estimation of copula spectral densities is discussed in the next paragraph, and we begin by providing
more insight into their interpretation. Some of the properties mentioned below have been described in [10,16,23], while
others are new.



124 S. Birr, T. Kley and S. Volgushev / Journal of Multivariate Analysis 172 (2019) 122–146

We begin by noting that, being based on copulas, the copula spectral density is invariant under strictly increasing
marginal transformations of the time series and thus truly provides information about the temporal dependence structure
of the process under consideration. This also implies that the copula spectra of a pair-wise independent time series take
the particularly simple form f(τ ,η)(ω) = (τ ∧ η − τη)/2π , which is independent of the marginal distribution.

Next we note that ω ↦→ fτ(ω) is 2π-periodic for arbitrary τ ∈ [0, 1]2 and that fτ satisfies

f(τ1,τ2)(ω) = f(τ1,τ2)(−ω) = f(τ2,τ1)(ω),

where a denotes the complex conjugate of a. Those properties imply that the values of {fτ(ω) : τ ∈ [0, 1]2, ω ∈ [0, π]}

contain the complete information about the copula spectral density. Even given those restrictions, fτ(ω) is still a complex-
valued function of three arguments with each argument taking values in an interval, and thus difficult to visualize. One
option to get a quick impression of the most important features of the copula spectral density of a given process is to
consider all values of τ ∈ {0.1, 0.5, 0.9}2 and plot the functions fτ(ω) against ω ∈ [0, π]. This requires nine plots which
are organized as follows:

f(0.1,0.1)(ω) ℑf(0.5,0.1)(ω) ℑf(0.9,0.1)(ω)

ℜf(0.1,0.5)(ω) f(0.5,0.5)(ω) ℑf(0.9,0.5)(ω)

ℜf(0.1,0.9)(ω) ℜf(0.5,0.9)(ω) f(0.9,0.9)(ω).

In Fig. 2, examples of plots of copula spectral densities corresponding to different parametric models are shown. Those
plots will be used to illustrate various properties of copula spectral densities given below.

We begin by observing that f(τ ,τ )(ω) is real-valued for any τ ∈ [0, 1] and ω ∈ R. It corresponds to the ‘‘classical" L2
spectral density of the clipped process 1{F (Xt ) ≤ τ }, t ∈ Z and hence contains information about the dynamics of the
level-crossing behavior of the process {Xt : t ∈ Z}. A closer look at Fig. 2 reveals several interesting features. First, for
linear Gaussian processes (i. e., AR(1) and MA(1) with i.i.d normal innovations) in (a) and (b), the shape of f(τ ,τ )(ω) is
similar for all values of τ and also similar to the corresponding shape of their L2-spectral density. In contrast, the two
non-linear models in (c) and (d) have copula spectral densities with shape varying across quantile levels. Both models
show no dependence at τ = 0.5, which corresponds to an absence of ‘‘central dependence’’. Yet, both processes show
a strong dependence (as indicated by sharp peaks for small values of ω) for more extreme quantiles corresponding to
τ ∈ {0.1, 0.9}. Note also that the EGARCH model shows an asymmetric dependence with a higher peak at τ = 0.1
compared to τ = 0.9 indicating a stronger serial dependence in the lower tail. In contrast, the dependence in the GARCH
model is completely symmetric.

For τ ̸= η, f(τ ,η)(ω) can be complex-valued. To interpret the real part of f(τ ,η)(ω), note that after a simple computation
we obtain, for τ < η,

ℜf(τ ,η)(ω) = −ℜ

∑
k∈Z

e−ikω
{Pr(Xk ≤ qτ , X0 ≥ qη) − τ (1 − η)}

= τ (1 − η) −

∑
k≥1

cos(kω){Pr(Xk ≤ qτ , X0 ≥ qη) − τ (1 − η)}

−

∑
k≥1

cos(kω){Pr(Xk ≥ qη, X0 ≤ qτ ) − τ (1 − η)}.

Hence, the function ω ↦→ f(τ ,η)(ω) contains information about Xt switching between being below qτ to above qη
and vice versa. In particular, for τ small and η large it can be interpreted as describing the dynamics of the process
switching between two extreme states. Here, the negative peak of ℜf(0.1,0.9) at small values of ω in (c) indicates that the
corresponding GARCH process is likely to switch from a high to a low value (or vice versa), which is exactly what happens
in periods of high volatility. Similarly, the positive peak in the same function for (a) and (b) corresponds to processes that
are unlikely to switch from high to low states immediately, which corresponds to AR(1) or MA(1) dynamics with positive
coefficients. It is also interesting to observe that for the two linear processes in (a) and (b), the shapes of ℜf(τ ,η) are similar
to f(τ ,τ ) for all combinations of τ , η.

The imaginary part of f(τ ,η)(ω) for τ < η takes the form

ℑf(τ ,η)(ω) = −

∑
k≥1

sin(ωk){Pr(Xk ≤ qτ , X0 ≥ qη) − Pr(Xk ≥ qη, X0 ≤ qτ )}.

Note that ℑf(τ ,η) = 0 if and only if Pr(Xk ≤ qτ , X0 ≥ qη) = Pr(Xk ≥ qη, X0 ≤ qτ ) for all k ∈ Z, which shows that ℑf(τ ,η)
contains information about asymmetry in going from above qτ to below qη and vice versa. Non-zero imaginary parts thus
indicate time-irreversibility of the dynamics in the observed time series. In particular, if ℑf(τ ,η) = 0 for all τ , η, then this
indicates that the process under consideration is pairwise time-reversible, i.e., Ck(τ , η) = C−k(τ , η) for all k, τ , η. The
Gaussian linear processes in (a) and (b) of Fig. 2 are time reversible, which is confirmed by the flat imaginary parts of
their copula spectra. It is also noteworthy that the imaginary parts of the processes in (c) and (d) show very different
behavior, with clear time-irreversibility for the EGARCH process in (d) and no immediately visible evidence of the same
for the GARCH process in (c).
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Fig. 2. Copula spectral densities for τ ∈ {0.1, 0.5, 0.9}2 of an (a) AR(1), (b) MA(1), (c) GARCH(1, 1) and (d) EGARCH(1, 1) process; all processes have
Gaussian innovations.

2.2. Graphical tools for model validation

We begin by briefly reviewing estimation of copula spectral densities as discussed in [23]; see also [16] where the case
τ1 = τ2 is considered and [10] for alternative estimators based on ranks and quantile regression. Given the observations
X0, . . . , Xn−1, we calculate their empirical distribution function F̂n(x) =

∑n−1
t=0 1(Xt ≤ x)/n and the copula periodogram

Iτ,n(ω) =
1

2πn
dτ1,n(ω)dτ2,n(−ω),

where τ = (τ1, τ2) and

dτ ,n(ω) =

n−1∑
t=0

1{F̂n(Xt ) ≤ τ }e−iωt .

To obtain a consistent estimator we smooth the copula periodograms over frequencies

f̂τ(ω) =
1

2πn

n∑
s=1

Wn(ω − 2πs/n)Iτ,n(2πs/n), (1)

where Wn denotes a sequence of weighting functions which are specified in assumption (W). Kley et al. [23] proved the
asymptotic normality of this estimator and computation is possible via the R package quantspec; see [22].

Now, given the observations X1, . . . , Xn we want to decide whether they could have been produced by a parametric
model Pθ0 , where {Pθ : θ ∈ Θ} is a collection of candidate models and θ0 ∈ Θ is an unknown parameter. Here, the
specification of parametric models explicitly includes the specification of an innovation density. Indeed, as demonstrated
in [10] copula spectral densities of linear processes depend on the underlying innovations. To this end we propose to
apply parametric bootstrap ideas in the form of Algorithms 1 and 2 given below.
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Algorithm 1. To obtain a graphical representation of the copula spectral density estimated from data along with ‘‘typical
regions’’ from a parametric model using the parametric bootstrap, proceed as follows.

Data: Observations X1, . . . , Xn
Input: A class {Pθ : θ ∈ Θ} of parametric models, an estimator θ̂ , a collection of frequencies ω1, . . . , ωK ∈ [0, π], and

a quantile level τ = (τ1, τ2)
Output: Plot comparing copula spectral density estimated from data with ‘typical regions’ created by a parametric

bootstrap
begin

Estimate θ̂ from X1, . . . , Xn
for r in 1:R do /* parametric bootstrap */

X θ̂ ,r1 , . . . , X θ̂ ,rn = simulate from the model P θ̂

f̂ θ̂ ,rτ (ωk) = estimated copula spectral density from X θ̂ ,r1 , . . . , X θ̂ ,rn
end

/* Calculate lower and upper bounds, separately for real and imaginary parts: */

ℓℜ

τ,R(ωk) = α/2 − quantile{ℜf̂ θ̂ ,1τ (ωk), . . . ,ℜf̂ θ̂ ,Rτ (ωk)},

ℓℑ

τ,R(ωk) = α/2 − quantile{ℑf̂ θ̂ ,1τ (ωk), . . . ,ℑf̂ θ̂ ,Rτ (ωk)}

uℜ

τ,R(ωk) = (1 − α/2) − quantile{ℜf̂ θ̂ ,1τ (ωk), . . . ,ℜf̂ θ̂ ,Rτ (ωk)}

uℑ

τ,R(ωk) = (1 − α/2) − quantile{ℑf̂ θ̂ ,1τ (ωk), . . . ,ℑf̂ θ̂ ,Rτ (ωk)}

/* Estimate the Copula Spectral Density for the data: */
f̂τ(ω) = estimate the copula spectral density from X1, . . . , Xn
/* Plot the result */
plot {f̂τ(ωk)}k=1,...,K

plot intervals computed from {ℓτ,R(ωk), uτ,R(ωk)}k=1,...,K (separately for real and imaginary parts)
end

Algorithm 1 provides a graphical summary of the copula spectral density estimated from data (blue lines) for a few
distinct combinations of quantile levels (in the present paper, (τ1, τ2) ∈ {0.1, 0.5, 0.9}2) as a function of ω together
with typical regions (gray areas) that would contain this estimator with probability 1 − α if the corresponding class of
parametric candidate models were specified correctly. For a formal statement, see Proposition 1 . One potential concern
with Algorithm 1 is that the graphics can become overwhelming if many different quantile levels need to be considered
simultaneously. Algorithm 2 provides a useful supplement to Algorithm 1 which allows us to consider many quantile levels
at the same time. This necessitates a different graphical representation. The results from Algorithm 2 can be displayed in
two different ways. The first provides a summary over all quantile levels (τ1, τ2) ∈ M (in the present paper, we choose
M = {0.05, . . . , 0.95}2) indicating whether the candidate model class produces spectral densities which are compatible
with the data for a given frequency but uniformly over quantile levels. If a deviation is detected for a given frequency, a
second plot for that particular frequency can be used to determine at which quantile levels the mismatch between the
data and the parametric candidate model appears.

Fig. 3 illustrates Algorithm 1 in a simple example. Here the data is a single path simulated from a GARCH(1, 1) model
with Gaussian innovations, and we considered two classes of parametric models, namely Gaussian AR(3) and GARCH(1, 1)
with Gaussian innovations. The true model is in the latter class, but the parameter was not specified. The blue line shows
the estimated copula spectral density f̂τ and the gray area corresponds to the typical regions for α = 0.05; see Algorithm 1
for details. The plot is organized as discussed in Section 2.1 with ℜf̂τ on/below and ℑf̂τ above the diagonal, respectively.
We clearly see that an AR(3) model is unable to describe the dynamics of a GARCH model, as it fails to capture the
dependency in the extreme quantiles τ = (0.1, 0.1), (0.9, 0.9), (0.1, 0.9), especially at low frequencies. Considering the
true model class in the right panel, we see that the typical regions now almost completely contain the estimated spectrum.
Note that typical regions are computed pointwise in τ, ω, so the estimator can occasionally be just outside of the boundary
of typical regions.

The output of Algorithm 2 for the same data and the same models is illustrated in Figs. 4 and 5. First, consider the
summary plots in Fig. 4 with frequencies on the x-axis and pmin,R(ω) defined in Algorithm 2 on the y-axis; the y-axis is
on the log-scale for better visibility of very low values. By Proposition 1, proved below, the values on the y-axis can be
interpreted as p-values (uniform in τ and pointwise in ω) of a test for the null hypothesis that the data were generated
from a model in the given parametric class against a non-parametric alternative. The left panel of Fig. 4 shows the plot
corresponding to a Gaussian AR(3) model class. Here, the candidate model class obviously does not match the data; this
is particularly visible at the lowest frequencies where several p-values in a row are below 0.001. In contrast, the right
panel which uses the true model class does not show evidence of model misspecification.
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Algorithm 2. To obtain a graphical representation of ‘critical τs’ from a parametric model (with parameter estimated
from the data) together with the estimator based on observations, proceed as follows.

Data: Observations X1, . . . , Xn
Input: A class {Pθ : θ ∈ Θ} of parametric models, an estimator θ̂ , a frequency ω ∈ [0, π], a number K of how many

equally spaced quantile levels should be used and a quantile level β
Output: Heat-plot of signed p-values indicating whether estimated copula spectral density is within ‘typical regions’

created by a parametric bootstrap
begin

Estimate θ̂ from X1, . . . , Xn
for r in 1:R do /* parametric bootstrap */

X θ̂ ,r1 , . . . , X θ̂ ,rn = simulate from the model P θ̂

f̂ θ̂ ,rτ (ω) = estimated copula spectral density from X θ̂ ,r1 , . . . , X θ̂ ,rn , ∀τ ∈ M = {1/(K + 1), . . . , K/(K + 1)}2
end
/* Calculate scaling factors, separately for real & imaginary parts: */
Let ℓℜ

τ,R(ω), u
ℜ

τ,R(ω) denote β/2 and 1 − β/2 quantile of ℜf̂ θ̂ ,1τ (ω), . . . ,ℜf̂ θ̂ ,Rτ (ω), respectively (same for ℑ)
Define

cℜ

τ,R(ω) = {uℜ

τ,R(ω) + ℓℜ

τ,R(ω)}/2, cℑ

τ,R(ω) = {uℑ

τ,R(ω) + ℓℑ

τ,R(ω)}/2

and

∆ℜ

τ,R(ω) = {uℜ

τ,R(ω) − ℓℜ

τ,R(ω)}/2, ∆ℑ

τ,R(ω) = {uℑ

τ,R(ω) − ℓℑ

τ,R(ω)}/2 + 10−61{uℑ

τ,R(ω) = ℓℑ

τ,R(ω)}

The scaled and centred bootstrap replicate is

Aℜ

r (ω) = max
τ=(τ1,τ2)∈M

|ℜf̂ θ̂ ,Rτ (ω) − cℜ

τ,R(ω)|/∆
ℜ

τ,R(ω), Aℑ

r (ω) = max
τ=(τ1,τ2)∈M

|ℑf̂ θ̂ ,Rτ (ω) − cℑ

τ,R(ω)|/∆
ℑ

τ,R(ω).

/* Estimate the Copula Spectral Density for the data: */
f̂τ(ω) = estimate the copula spectral density from X1, . . . , Xn. Define

Eℜ

τ (ω) = |ℜf̂τ(ω) − cℜ

τ,R(ω)|/∆
ℜ

τ,R(ω), Eℑ

τ (ω) = |ℑf̂τ(ω) − cℑ

τ,R(ω)|/∆
ℑ

τ,R(ω)
/* Calculate p-values, separately for real and imaginary parts: */
Define F̂R as the empirical cdf of max{Aℜ

1 (ω), A
ℑ

1 (ω)}, . . . ,max{Aℜ

R (ω), A
ℑ

R (ω)} and compute

pℜ

τ,R(ω) = 1 − F̂R{Eℜ

τ (ω)−}, pℑ

τ,R(ω) = 1 − F̂R{Eℑ

τ (ω)−}, pmin,R(ω) = min
τ∈M

min{pℜ

τ,R(ω), p
ℑ

τ,R(ω)}.

/* Plot the result */
plot 1: ω ↦→ pmin,R(ω); x-axis from 1/R to 1, on the log-scale; pmin,R(ω) = 0 is indicated by a red circle on the

x-axis.
plot 2: K × K panels for each ω. The position within each panel corresponds to τ ∈ M , the symbols used correspond
to the magnitude of pℜ

τ,R(ω), p
ℑ

τ,R(ω) (1, 2 and 3 triangles correspond to p·

τ,R(ω) < 0.05, 0.01 and 0.001, respectively),
and sign of ℜf̂τ(ω)−cℜ

τ,R(ω),ℑf̂τ(ω)−cℑ

τ,R(ω) (red triangles facing up indicate a positive and blue triangles facing down
indicate a negative value). Information corresponding to pℜ

(τi,τj),R
(ω) for i ≥ j is in row i column j and information on

pℑ

(τi,τj),R
(ω) for i < j in row i column j.

end

The plots in Fig. 5 provide more detailed information about the quantile levels at which a mismatch between the
data-based spectrum and a spectrum from the candidate parametric model is detected for the frequencies ω = 0 and
ω = 4π/64. Here, the blue triangles facing down indicate that the data-based spectrum is smaller compared to the
candidate model spectrum (with 1, 2 and 3 triangles indicating significance at the 5%, 1% and 0.1% level, respectively) while
the red triangles facing up indicate a data-based spectrum which is larger compared to the candidate model spectrum.
The corresponding plots reveal that most of the disagreement between the data and the model dynamics happens in
the real parts of spectra corresponding to quantile levels (τ1, τ2) where both τ1 and τ2 are either unexpectedly small or
unexpectedly large. This confirms the first impression obtained from the plots in Fig. 3 and provides a more detailed view
of the quantiles where the data and the model spectra disagree.

3. Formal justification of the graphical tools

In this section, we present a formal justification for the graphical approaches introduced in Section 2.2. Denote by
Θ ⊂ Rd a candidate parameter space. For any θ ∈ Θ , let (X θt )t∈Z be a strictly stationary process distributed according to
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Fig. 3. Example in which our graphical tool (Algorithm 1) is applied to data generated from a Gaussian GARCH(1, 1) model with n = 1024
observations. We fit a Gaussian AR(3) model (left) and a Gaussian GARCH(1, 1) model (right). Blue lines are the estimated copula spectral densities,
gray areas correspond to typical regions from Algorithm 1 with α = 0.05. The plot is organized as discussed in Section 2.1; ℜf̂τ on/below and ℑf̂τ
above the diagonal, respectively.

Fig. 4. Summary plot produced by the application of Algorithm 2 to data generated from a GARCH(1, 1) with Gaussian innovations with n = 1024
observations. We fit a Gaussian AR(3) model (left) and a GARCH(1, 1) model with Gaussian innovations (right). Frequencies are on the x-axis and
pmin,R(ω) defined in Algorithm 2 on the y-axis; the y-axis is on the log-scale for better visibility of very low values. Red circles correspond to
pmin,R(ω) < 0.001.

Pθ . Furthermore, let F θ be the cumulative marginal distribution function of X θt , let F
θ
h be the bivariate distribution function

of (X θt+h, X
θ
t ), and let Cθh be the copula of (X θt+h, X

θ
t ). We denote the copula spectral density of the process (X θt )t∈Z by

f θτ (ω) =
1
2π

∑
k∈Z

{Cθk (τ1, τ2) − τ1τ2}e−ikω.

The corresponding estimator f̂ θ , which is computed from X θ1 , . . . , X
θ
n , is denoted by f̂ θτ . We make the following technical

assumptions.

(LC) The copulas Cθh are Lipschitz continuous with respect to the parameter θ in a neighborhood of θ0 uniformly in
T ⊆ [0, 1]2, i.e., there exist constants ε > 0, L < ∞ such that whenever ∥θ − θ0∥ ≤ ε,

sup
h∈Z

sup
τ∈T

|Cθh (τ) − Cθ0h (τ)| ≤ L ∥θ − θ0∥.

(C) For any p ∈ N there exist constants ρp ∈ (0, 1) and Kp < ∞ such that, for arbitrary intervals A1, . . . , Ap ⊂ R and
arbitrary t1, . . . , tp ∈ Z,

sup
∥θ−θ0∥≤ε

|cum{1(X θt1 ∈ A1), . . . , 1(X θtp ∈ Ap)}| ≤ Kpρ
maxi,j |ti−tj|
p .
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Fig. 5. Detailed plots for two frequencies produced by Algorithm 2 on data generated from a GARCH(1, 1) model with Gaussian innovations with
n = 1024 observations with fitted Gaussian AR(3) model (compare left panel of Fig. 4). Blue triangles facing down indicate that the data-based
spectrum is smaller compared to the candidate model spectrum (with 1, 2 and 3 triangles indicating significance at the 5%, 1% and 0.1% level,
respectively) while red triangles facing up indicate a data-based spectrum which is larger compared to the candidate model spectrum . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(W) The weight function W is real-valued and even with support [−π, π]; moreover, it has bounded variation and
satisfies

∫
W (u)du = 1. We denote by bn a sequence of scaling parameters such that bn → 0 and nbn → ∞,

and assume that Wn in Eq. (1) takes the form

Wn(u) =

∑
j∈Z

b−1
n W {b−1

n (u + 2π j)}.

Remark 1. Assumption (C) is fulfilled under certain mixing assumptions; see Propositions 3.1 and 3.2 in [23]. Assumption
(W) places restrictions on the smoothing function which are standard in time series analysis; see, e.g., p. 147 in [7].
Assumption (LC) ensures that if θn is close to θ0, the corresponding copula spectral densities are also close. Below we
show that this assumption is satisfied for ARMA(p, q) processes with normal innovations.

Example 1. Let {X θt : t ∈ Z} be a strictly stationary ARMA(p, q) process where θ = (a1, . . . , ap, b1, . . . , bq) denotes the
AR and MA coefficients, i.e., X θt solves

X θt −

p∑
j=1

ajX θt−j = ϵt +

q∑
i=1

biϵt−i,

where and ϵt are centred i.i.d N (0, 1) random variables. Using the backshift operator B, we can write this as Pθ (B)X θt =

Qθ (B)ϵt , where Pθ and Q θ are polynomials given, for all z ∈ C, by

Pθ (z) = 1 − a1z − · · · − apzp, Q θ (z) = 1 + b1z + · · · + bqzq.

To guarantee the existence of a unique strictly stationary and causal solution, see [8], we assume that Θ is a set such
that for all θ ∈ Θ the polynomials Pθ and Q θ have no common roots and Pθ only has roots outside of the unit circle
{z ∈ C : |z| ≤ 1}. Under these conditions, (LC) holds for any open T ⊂ [0, 1]2 and any θ0 in the interior of Θ . This
statement will be proved in the Appendix.

The main result in this section is Proposition 1. It implies that if the parametric model is specified correctly, the
intervals [ℓℜ

τ,R(ω), u
ℜ

τ,R(ω)] and [ℓℑ

τ,R(ω), u
ℑ

τ,R(ω)] will contain the real and imaginary parts of the estimator f̂τ(ω) with given
probability α asymptotically. This provides a formal justification for the graphical approach introduced in Algorithm 1.
The second part of Proposition 1 shows that the output of Algorithm 2 can indeed be interpreted as p-values for the null
hypothesis that the class of candidate models contains the true model.

Proposition 1. Assume that the data X1, . . . , Xn are generated from the model Pθ0 and let θ̂n be a
√
n-consistent estimator of

θ0. Suppose that Assumptions (LC), (C), (W ) hold and assume that R = Rn → ∞ as n → ∞. Further assume that there exist
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constants k ∈ N and κ > 0 with

bn = o(n−1/(2k+1)), bnn1−κ
→ ∞.

Then, for ℓτ,Rn (ω), uτ,Rn (ω) defined in Algorithm 1 we have, for any τ ∈ T , ω ∈ R with var{ℜH0(τ, ω)} ̸= 0,

lim
n→∞

Pr{ℓℜ

τ,Rn (ω) ≤ ℜf̂τ(ω) ≤ uℜ

τ,Rn (ω)} = 1 − α. (2)

The same holds for the imaginary parts. If additionally minτ∈M var{ℜH0(τ, ω)} > 0 and minτ∈M var{ℑH0(τ, ω)} > 0 then, for
pℜ

τ,R(ω), p
ℑ

τ,R(ω) defined in Algorithm 2, we have, for any ω ∈ R,

lim
n→∞

Pr
[
min
τ∈M

min{pℜ

τ,R(ω), p
ℑ

τ,R(ω)} < α

]
= α. (3)

The key technical ingredient for proving Proposition 1 is given by the following theorem. It provides a generalization of
Theorem 3.6 in [23] to a particular kind of triangular array asymptotics. This result is of independent interest, and hence
we choose to state it separately.

Theorem 1. Suppose that Assumptions (LC), (C), (W ) hold, and assume that there exist constants k ∈ N and κ > 0 with

bn = o{n−1/(2k+1)
}, bnn1−κ

→ ∞.

If θn = θ0 + O(n−1/2) then, for T from Assumption (LC), as n → ∞,√
nbn {f̂ θnτ (ω) − f θ0τ (ω) − B(k)

n (τ, ω)}τ∈T ⇝ H0(·;ω)

in ℓ∞(T ), where ⇝ denotes weak convergence in ℓ∞(T ) and

B(k)
n (τ, ω) =

⎧⎪⎨⎪⎩
k∑

j=2

bjn

∫ π

−π

ujW (u)du(f θ0τ )(j)(ω)/j! if ω ̸= 0 (mod 2π ),

nτ1τ2/(2π ) if ω = 0 (mod 2π ),

and H0(·;ω) is a complex-valued, centered Gaussian process characterized by

cov
[
H0{(u1, v1);ω},H0{(u2, v2);ω}

]
= 2π

∫ π

−π

W 2(u)du

×

[
f θ0(u1,u2)

(ω)f θ0(v1,v2)
(−ω) + f θ0(u1,v2)

(ω)f θ0(v1,u2)
(−ω)1{ω = 0 (mod π )}

]
.

4. Simulation study and data example

In this section, we present a simulation study and an application to the returns of the S&P 500 stock index between
2000 and 2005 and 1966 and 1970.

4.1. Real data example: S&P 500 returns

In this section we demonstrate how the proposed graphical tools can be utilized to find an appropriate parametric
model for a given time series and further provide an example where none of the standard models seem to work. To this
end we consider the daily log-returns of the S&P 500 between 03.01.2000 and 30.12.2005 (corresponding to n = 1508
observations) as well as between 03.01.1966 and 31.12.1970 (corresponding to n = 1233 observations). Throughout this
section we use the Epanechnikov kernel for Wn, a moderate bandwidth bn = 0.1 and set α = 0.05 in Algorithm 1.

We first consider the daily log-returns of the S&P 500 between 03.01.2000 and 30.12.2005. Assuming for the moment
that we have little knowledge about financial time series, we first attempt to fit a Gaussian AR(3) model. Algorithm
1 with this model class produces Fig. 6(a). This clearly shows that a Gaussian AR(3) manages to capture the ‘‘median
dependence’’ but cannot account for the strong dependencies observed at τ = (0.1, 0.1), (0.9, 0.9) and (0.9, 0.1). This is
further confirmed in the output produced by Algorithm 2; see Fig. 7(a). The most basic model which has the potential to
model such dependencies is an ARCH(1) model with Gaussian innovations, which is our next candidate. Plot (b) in Fig. 6
indeed shows that an ARCH(1) model with Gaussian innovations produces the peaks around frequency ω = 0, but those
peaks are not high enough to match the data; this is again confirmed by the summary plot from Algorithm 2 provided in
Fig. 7(b).

Our next try is a GARCH(1, 1) model with Gaussian innovations which was specifically designed to model the types
of dependence observed in financial data. Fig. 6(c) shows that this model is well suited to reproduce the peaks for
τ = (0.1, 0.1), (0.9, 0.9) and (0.9, 0.1). However, the imaginary parts of the spectra still do not match the data, as can be
seen from the part of Fig. 6(c) corresponding to τ = (0.1, 0.9); the mismatch between the model and the data dynamics
is confirmed in the summary plot from Fig. 7(c). A closer look at the corresponding detailed plot in the top row of Fig. 8
sheds light on the specific combinations of quantile levels for which a significant mismatch occurs.
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Fig. 6. Estimated copula spectral densities based on the daily log-returns of the S&P 500 between 2000 and 2005. Displayed are the plots produced
by Algorithm 1 for the following model classes (a) AR(3), (b) ARCH(1), (c) GARCH(1, 1) and (d) EGARCH(1, 1); all models with Gaussian innovations.
Blue lines are estimated copula spectral densities, gray areas correspond to typical regions from Algorithm 1 with α = 0.05. The plot is organized
as discussed in Section 2.1; ℜf̂τ on/below and ℑf̂τ above the diagonal, respectively.

Based on the discussion in Section 2.1 about asymmetric dependence a reasonable model to try is an EGARCH(1, 1)
model with Gaussian innovations. The output of Algorithm 1 in Fig. 6(d) indeed indicates that among all models considered
so far, this one has the best performance, although we still detect slight deviations for some of the imaginary parts. The
impression that this model still does not provide a perfect fit is further strengthened by the summary plot in Fig. 7(d)
where we see a fairly high proportion of p-values below 5% which is much higher than we would expect even after
adjusting for multiple testing across frequencies.

In the final part of this section, we consider the daily log-returns of the S&P 500 between 1966 and 1970. The output
of Algorithm 1 for the same four model classes as considered above is depicted in Fig. 9(a)–(d). Interestingly, we find that
none of the four model classes provide an adequate description of the dynamics observed in the data since the data contain
both linear type dynamics at the median level, but also strong GARCH-like tail dependencies and EGARCH-like imaginary
parts that appear to be too steep to be captured by an EGARCH(1, 1) model with Gaussian innovations, indicating a strongly
asymmetric behavior of the process going forward and backward in time.

The inability of all considered models to capture the dynamics in the data is further confirmed by summary plots from
Algorithm 2 as depicted in Fig. 10. Additional detailed plots from Algorithm 2 corresponding to specific frequencies are
provided in Figure 4 in the Online Supplement. The middle column corresponding to ω = 4π/64 confirms that none of
the considered models, including the EGARCH model, are able to produce a sufficiently sharp peak in the imaginary part
which is observed in the spectrum of the data. The ARCH, GARCH and EGARCH models with Gaussian innovations further
struggle to produce the right amount of dependence at central quantile values while the AR(3) process does not have the
right kind of dependence in low quantiles. At this point it is natural to wonder whether specifying a different innovation
distribution would change any of the finding described above. A natural candidate class of innovations is given by skewed
t distributions, and we also considered GARCH(1, 1) and EGARCH(1, 1) processes with such innovation distributions. The
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Fig. 7. Summary plots produced by Algorithm 2 based on the daily log-returns of the S&P 500 between 2000 and 2005. Plots from top left to
bottom right correspond to the following candidate model classes (all with Gaussian innovations) (a) AR(3), (b) ARCH(1), (c) GARCH(1, 1) and (d)
EGARCH(1, 1). Frequencies are on the x-axis and pmin,R(ω) defined in Algorithm 2 on the y-axis; for better visibility of very low values the y-axis is
on the log-scale. Red circles correspond to pmin,R(ω) < 0.001.

results did not change much; a more detailed account of our findings is given in Section 1 in the Online Supplement. To
what extent other types of innovations could lead to a better model fit is an interesting question that we leave to future
research.

4.2. Simulation study

In this section we illustrate the finite-sample properties of Algorithms 1 and 2 with simulated data. First, we show
that in settings where the data are generated from a model that is contained in the candidate parametric class, the
simulated typical regions from Algorithm 1 contain the estimated spectral densities with probability 1−α across a range
of models, sample sizes and bandwidth parameters; note that this is counted point-wise in τ , ω. To this end, we consider
the following three data generating processes:

(a0) Xt = 0.1Xt−1 + 0.8Zt−1 + Zt , Zt ∼ N (0, 1)
(b0) Xt = 0.2Xt−1 − 0.4Xt−2 + 0.2Xt−3 + Zt , Zt ∼ N (0, 1)

(c0) Xt = σtZt , where σ 2
t = 0.01 + 0.4X2

t−1 + 0.5σ 2
t−1, Zt ∼ N (0, 1)

In each case we simulate a time series of length n ∈ {256, 512, 1024} and consider the fixed bandwidth parameters
bn ∈ {0.01, 0.02, 0.05, 0.1, 0.4}. For each possible combination, we simulate 1000 repetitions of our algorithm with
α = 0.05 and the following candidate classes of parametric models:

(Pa) Xt = θ1Xt−1 + θ2Zt−1 + Zt , Zt ∼ N (0, 1)
(Pb) Xt = θ1Xt−1 + θ2Xt−2 + θ3Xt−3 + Zt , Zt ∼ N (0, 1)

(Pc) Xt = σtZt , where σ 2
t = θ0 + θ1X2

t−1 + θ2σ
2
t−1, Zt ∼ N (0, 1)

Here, θj denote unknown parameters of the models.
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Fig. 8. Detailed plots produced by Algorithm 2 at two particular frequencies based on the daily log-returns of the S&P 500 between 2000 and
2005 with GARCH(1, 1) (Gaussian innovations) as candidate model class. Blue triangles facing down indicate that the data-based spectrum is smaller
compared to the candidate model spectrum (with 1, 2 and 3 triangles indicating significance at the 5%, 1% and 0.1% level, respectively) while red
triangles facing up indicate a data-based spectrum which is larger compared to the candidate model spectrum . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

We use the R packages QPBoot [5] which contains useful functions for parametric bootstrap procedures for quantile
spectra, quantspec [22] to compute the estimators for the copula spectral densities, and rugarch [15] to estimate and
simulate the GARCH-type models. For each frequency ω, we count the number of times the estimated spectral density f̂τ(ω)
does not lie in the interval (ℓτ ,R(ω), uτ ,R(ω)) (separately for real and imaginary parts). The resulting counts normalized
by 1000 are shown in the top row of Figs. 11 (n = 256), 12 (n = 256) and 13 (n = 1024), respectively. Additional plots
for other sample sizes are provided in Section 3 in the Online Supplement. We can see that the simulated typical regions
contain the estimator f̂τ with prescribed probability across a wide range of scenarios.

Next, we show that the aggregated p-values obtained from Algorithm 2 are calibrated properly. To this end, we consider
the same models and bandwidth parameters as described above and use 1000 simulation replications to approximate the
probabilities

Pr
[
min
τ∈M

min{pℜ

τ,R(ω), p
ℑ

τ,R(ω)} ≤ α

]
, (4)

where we use M = {0.05, . . . , 0.95}2 and R = 1000. The results corresponding to models (a0)–(c0) with candidate model
classes (Pa)–(Pc) are depicted in the top three rows of Fig. A.14 with frequencies on the x-axis and simulated values for the
probabilities in (4), with α = 0.05, on the y-axis. The plots suggest that the p-values perform as specified in all settings
considered.

Next, consider the case when the observations are created by the following models with Zt ∼ i.i.d. N (0, 1):

(a1) Xt = 0.2Xt−1 − 0.4Xt−2 + 0.2Xt−3 + Zt
(b1) Xt = σtZt , where σ 2

t = 0.01 + 0.4X2
t−1 + 0.5σ 2

t−1

(c1) Xt = σtZt , where ln(σ 2
t ) = 0.1 + 0.21(|Xt−1| − E|Xt−1|) − 0.2Xt−1 + 0.8 ln(σ 2

t−1),

while the candidate parametric model classes are still (Pa), (Pb), (Pc) and thus are misspecified. The results for Algorithm
1 are depicted in the bottom panels of Figs. 11 (n = 256), 12 (n = 256), and 13 (n = 1024), respectively. Additional plots
for other sample sizes are provided in Section 3 in the Online Supplement. The plots corresponding to Algorithm 2 are in
rows 4–6 of Fig. A.14.

The results in Fig. 11 and row 4 of Fig. A.14 show that copula spectral densities are informative for distinguishing
different types of linear dynamics. Note that in this setting, any of the classical tests that are tailored to linear models
would also be applicable and have excellent power properties. Fig. 11 indicates that in this setting, copula spectral
densities corresponding to τ = (0.5, 0.5), (0.1, 0.5), (0.5, 0.9) are most informative. This is not surprising since linear
dynamics act similarly in all real parts of copula spectral densities and copula spectral densities corresponding to the
quantile values mentioned above are easier to estimate. Note that for more extreme quantiles only a smaller proportion
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Fig. 9. Estimated copula spectral densities based on the daily log-returns of the S&P 500 between 1966 and 1970. Figure displays the plots produced
by Algorithm 1 for the following model classes (a) AR(3), (b) ARCH(1), (c) GARCH(1, 1) and (d) EGARCH(1, 1); all models with Gaussian innovations.
Blue lines are estimated copula spectral densities, gray areas correspond to typical regions from Algorithm 1 with α = 0.05. The plot is organized
as discussed in Section 2.1; ℜf̂τ on/below and ℑf̂τ above the diagonal, respectively.

of the data carry relevant information. Since linear Gaussian processes are time-reversible, the imaginary parts of copula
spectra carry no relevant information in this case. Finally, we remark that for this particular data generation process
intermediate bandwidth values lead to the most informative results in Fig. 11. Row 4 of Fig. A.14 additionally shows
that aggregating over different frequencies does not lead to a loss in power (despite the uniformity over τ) and in fact
improves power for the largest bandwidth bn = 0.4.

Fig. 12 and row 5 of Fig. A.14 show what happens if data are generated by a GARCH model but we attempt to fit
their dependence structure by an AR(3) process. In this case the AR(3) model tries to capture the serial correlation
of the data, which is zero, so the AR(3) model essentially results in i.i.d data without any serial dependence. This
does capture the median dynamics corresponding to τ = (0.5, 0.5), but completely fails to account for dependence
in the more extreme quantiles. This is clearly visible for the real parts of the copula spectral densities corresponding
to τ = (0.1, 0.1), (0.1, 0.9), (0.9, 0.9), with τ = (0.1, 0.9) leading to the clearest distinction. It is also interesting to
observe how different bandwidth values pick up different aspects of the deviation between data and model dynamics.
While smaller bandwidth values mainly pick up the sharp peak near zero frequencies, larger bandwidth values also find
differences for intermediate frequency values.

The most complicated case that we investigate in our study is to differentiate between a GARCH and an EGARCH
process. Results for this are shown in the right panel of Fig. 13 and in the bottom row of Fig. A.14. Both processes have a
very similar serial dependence structure as they are uncorrelated but dependent in the extreme quantiles. The difference
is that the EGARCH process is asymmetric in the sense, that the dependence is higher in the lower quantiles due to the
negative leverage parameter of −0.2. This difference is subtle and only present in the dependence at large quantiles and
hence difficult to pick up and large sample sizes are needed to reliably pick up this distinction. It also turns out that
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Fig. 10. Summary plots produced by Algorithm 2 based on the daily log-returns of the S&P 500 between 1966 and 1970 with AR(3), ARCH(1),
GARCH(1, 1) and EGARCH(1, 1) as candidate model class, all models with Gaussian innovations. Frequencies are on the x-axis and pmin,R(ω) (see
Algorithm 2) on the y-axis; for better visibility of very low values the y-axis is in log-scale. Red circles correspond to pmin,R(ω) < 0.001.

the imaginary part corresponding to τ = (0.1, 0.9) carries the most information here, with larger bandwidth parameters
leading to higher probabilities of detecting relevant differences. The results in the bottom row of Fig. A.14 additionally
show that by aggregating over different quantile levels we are likely to detect deviations between GARCH and EGARCH
processes across a wider range of frequencies. This is due to the fact that for different quantile levels the deviations
between the two models are most pronounced at different frequencies.
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Appendix. Proofs

Proof of Example 1. Note that under the assumptions made X θt has the representation

X θt =

∞∑
k=0

ψθ
k ϵt−k

where the coefficients are defined, for |z| ≤ 1, by
∞∑
k=0

ψθ
k z

k
= Q θ (z)/Pθ (z).

By properties of the multivariate normal distribution it suffices to show that, for some L,

sup
u∈R2

|F θh (u) − F θ0h (u)| ≤ ∥θ − θ0∥.
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Fig. 11. Coverage of the estimator f̂ by the critical regions obtained by Algorithm 1. Model class used for the critical regions: Pa (ARMA(1,1)). Data
generated according to (a0) (ARMA(1,1), top row) or (a1) (AR(3), bottom row). We use n = 256 observations. Different bandwidth choices are shown
using different colors and line types. The solid line (black), the lines with short (red), medium (green), alternating-length (blue) and long (cyan)
dashes correspond to bn = 0.01, 0.02, 0.05, 0.1, 0.4, respectively . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 12. Coverage of the estimator f̂ by the critical regions obtained by Algorithm 1. Model class used for the critical regions: Pb (AR(3)). Data
generated according to (b0) (AR(3), top row) and (b1) (GARCH(1, 1), bottom row). We use n = 256 observations. Different bandwidth choices are
shown using different colors and line types. The solid line (black), the lines with short (red), medium (green), alternating-length (blue) and long
(cyan) dashes correspond to bn = 0.01, 0.02, 0.05, 0.1, 0.4, respectively . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 13. Coverage of the estimator f̂ by the critical regions obtained by Algorithm 1. Model class used for the critical regions: Pc (GARCH(1, 1)).
Data generated according to (c0) (GARCH(1, 1), top row) and (c1) (EGARCH(1, 1), bottom row). We use n = 1024 observations. Different bandwidth
choices are shown using different colors and line types. The solid line (black), the lines with short (red), medium (green), alternating-length (blue)
and long (cyan) dashes correspond to bn = 0.01, 0.02, 0.05, 0.1, 0.4, respectively . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Applying the triangle inequality, we find

sup
u∈R2

|F θh (u) − F θ0h (u)| ≤ 2 sup
x∈R

E|1(X θ0 ≤ x) − 1(X θ00 ≤ x)|

and hence it suffices to show that

sup
x∈R

E|1(X θ0 ≤ x) − 1(X θ00 ≤ x)| ≤ L ∥θ − θ0∥.

Denote by At the σ -field generated by {ϵs : s < t}, and by Fϵ the distribution function of ϵ. This yields

sup
x∈R

E|1(X θ0 ≤ x) − 1(X θ00 ≤ x)| = sup
x∈R

E
[
E{|1(X θt ≤ x) − 1(X θ0t ≤ x)| | At}

]
= sup

x∈R
E

⎡⎣E

⎧⎨⎩
⏐⏐⏐⏐⏐⏐1

⎛⎝ϵt ≤ x −

∞∑
j=1

ψθ
j ϵt−j

⎞⎠ − 1

⎛⎝ϵt ≤ x −

∞∑
j=1

ψ
θ0
j ϵt−j

⎞⎠⏐⏐⏐⏐⏐⏐
⏐⏐⏐At

⎫⎬⎭
⎤⎦

= sup
x∈R

E
⏐⏐⏐Fϵ(x −

∞∑
j=1

ψθ
j ϵt−j

)
− Fϵ

(
x −

∞∑
j=1

ψ
θ0
j ϵt−j

)⏐⏐⏐ ≤ C1E
⏐⏐⏐ ∞∑

j=1

ψθ
j ϵt−j −

∞∑
j=1

ψ
θ0
j ϵt−j

⏐⏐⏐
≤ C2

∞∑
j=1

|ψθ
j − ψ

θ0
j |.

Finally, we bound the last term above. To shorten notation we write pθ (z) = Qθ (z)/Pθ (z). As Pθ0 (z) has no roots on the
unit circle, there exist η, δ > 0 such that, for all ∥θ − θ0∥ ≤ η,

∀z∈C:|z|<1+2δ Pθn (z) ̸= 0.

Otherwise we could derive a contradiction by using the fact that on C the locations of roots of a polynomial are a
continuous function of the coefficients. Therefore, pθ is a holomorphic function on {z ∈ C : |z| ≤ 1 + 2δ} and, by
Cauchy’s differentiation formula, we can expand pθ (z) =

∑
∞

j=0 ψ
θ
j z

j and pθ0 (z) =
∑

∞

j=0 ψ
θ0
j z j with

ψθ
j =

1
2π i

∮
|ζ |=1+δ

pθ (ζ )
ζ j+1 dζ

for all j ∈ N0. This implies

|ψθ
j − ψ

θ0
j | =

1
2π

⏐⏐⏐ ∮
|ζ |=1+δ

pθ (ζ ) − pθ0 (ζ )
ζ j+1 dζ

⏐⏐⏐.
And with pθ (z) = Qθ (z)/Pθ (z) we have that

sup
|z|=1+δ

|{pθ (z) − pθ0 (z)}/z
j+1

| ≤ ∥θ − θ0∥/(1 + δ)j+1,

which leads to
∞∑
j=1

|ψθ
j − ψθ

j | ≤ C3∥θ − θ0∥

∞∑
j=1

1
(1 + δ)j

= L∥θ − θ0∥. □

Proof of Proposition 1. We begin by stating a useful lemma.

Lemma A. Consider a sequence rn = o(1) and collection of distribution functions Fn,ξ indexed by ξ ∈ Ξ , n ∈ N such that for
any deterministic sequence ξn in Ξ with ξn = ξ0 + O(rn), we have Fn,ξn ⇝ F for some distribution function F . Then, for any
sequence of random variables ξ̂n in Ξ with ξ̂n = ξ0 + Op(rn) we have: if Y1, . . . , Ymn are iid Fn,ξ̂n conditional on ξ̂n, mn → ∞

and qn denotes the αth sample quantile of Y1, . . . , Ymn then qn = F−1(α) + op(1) for any continuity point α of F−1.

Proof of Lemma A. Let F̂n denote the empirical cdf of Y1, . . . , Ymn . For any fixed t ∈ R, we have by the conditional
Chebycheff inequality

Pr
{
|F̂n(t) − Fn,ξ̂n (t)| ≥ ε|ξ̂n

}
≤ (4mnε

2)−1 a.s.

Taking the expectation with respect to ξ̂n shows that F̂n(t) − Fn,ξ̂n (t) = op(1) since by assumption mn → ∞. Next note
that, for arbitrary C > 0,

Pr
{
|F (t) − Fn,ξ̂n (t)| ≥ ε

}
≤ 1

{
sup

|ξ−ξ0|≤Crn
|F (t) − Fn,ξ (t)| ≥ ε

}
+ Pr(|ξ̂n − ξ0| ≥ Crn).
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We will first show that the first term on the right-hand side converges to zero (for n → ∞) for arbitrary 0 < C < ∞.
Suppose this were not true. Then there exist δ > 0, a subsequence (nk)k∈N, and ξnk ∈ Ξ with |ξnk − ξ0| ≤ Crnk and
|F (t) − Fnk,ξnk (t)| ≥ δ for all k ∈ N. However, by construction ξnk = ξ0 + O(rn) (for k → ∞) which contradicts the
assumption. Thus for all C > 0

lim sup
n→∞

Pr
{
|F (t) − Fn,ξ̂n (t)| ≥ ε

}
≤ lim sup

n→∞

Pr(|ξ̂n − ξ0| ≥ Crn).

The right-hand side can be made arbitrarily small by choosing C large since ξ̂n = ξ0 + Op(rn). Thus we have proved
F̂n(t) = F (t) + op(1) for all t ∈ R.

To complete the proof, observe that F̂n is a sequence of distribution functions and F is a distribution function. Thus
a standard argument implies that supt∈R |F̂n(t) − F (t)| = op(1). This implies F̂−1

n (α) = F−1(α) + op(1) for all α that are
continuity points of F−1; the latter statement follows by the characterization of convergence in probability in terms of
a.s. convergence along subsequences and Lemma 21.2 in [29]. □

With the preparations above we are ready to prove Proposition 1.
We begin with the proof of Eq. (2). Recall the setting and notation introduced at the beginning of Section 3. Let q(α, θ0)

denote the α-quantile of the distribution of ℜH0(τ;ω) (where H0 denotes the weak limit in Theorem 1). Define

gn = ℜ{f θ0τ (ω) + B(k)
n (τ, ω)}

for B(k)
n from Theorem 1 and let

Zn =

√
nbn{ℜf̂τ(ω) − gn}.

By Theorem 1 applied to the sequence θn ≡ θ0, Zn ⇝ ℜH0(τ;ω) with the limit being a centered normal random variable
with non-zero variance.

Now consider the setting of Lemma A with mn = Rn, rn = n−1/2, ξ̂n = θ̂ , F the cdf of ℜH0(τ;ω), Fn,θ the cdf of
√
nbn{ℜf̂ θτ (ω) − gn} and Yi =

√
nbn{ℜf̂ θ̂ ,iτ (ω) − gn} for all i ∈ {1, . . . , Rn}. Note that θ̂n = θ0 + Op(n−1/2) by assumption

and Fn,θn ⇝ F for any sequence θn = θ0 + O(n−1/2) by Theorem 1. Hence, all conditions of Lemma A are satisfied and we
obtain√

nbn{ℓℜ

τ,Rn (ω) − gn} = q(α/2, θ0) + op(1).

Similarly,√
nbn{uℜ

τ,Rn (ω) − gn} = q(1 − α/2, θ0) + op(1).

By Slutsky’s Lemma

Zn −

√
nbn{uℜ

τ,Rn (ω) − gn} ⇝ ℜH0(τ;ω) − q(1 − α/2, θ0),

and since the distribution of the limit is continuous

Pr{ℜf̂τ(ω) ≤ uℜ

τ,Rn (ω)} = Pr[Zn ≤

√
nbn{uℜ

τ,Rn (ω) − gn}] → 1 − α/2.

Similarly,

Pr{ℜf̂τ(ω) < ℓℜ

τ,Rn (ω)} = Pr[Zn <
√
nbn{ℓℜ

τ,Rn (ω) − gn}] → α/2.

This completes the proof of Eq. (2).
Next let us prove Eq. (3). Begin by observing that

x ↦→ 1 − F̂R(x−) =
1
R

R∑
r=1

1[x ≤ max{Aℜ

r (ω), A
ℑ

r (ω)}]

is non-increasing, so

min
τ∈M

min{pℜ

τ,R(ω), p
ℑ

τ,R(ω)} =
1
R

R∑
r=1

1
[
max
τ∈M

max{Eℜ

τ (ω), Eℑ

τ (ω)} ≤ max{Aℜ

r (ω), A
ℑ

r (ω)}
]
.

Let

Zr,n(τ, ω) =

√
nbn

{
f̂ θ̂ ,rτ (ω) − f θ0τ (ω) − B(k)

n (τ, ω)
}

where B(k)
n is defined in Theorem 1. Define

ℓ̃ℜ

τ,R(ω) = β/2 − quantile{ℜZr,n(τ, ω), . . . ,ℜZr,n(τ, ω)},

ũℜ

τ,R(ω) = (1 − β/2) − quantile{ℜZr,n(τ, ω), . . . ,ℜZr,n(τ, ω)}
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Fig. A.14. Proportion of cases, per frequency, where p-values obtained from Algorithm 2 are below α = 0.05, for at least one quantile level. First,
second and third rows show Pa versus (a0) (ARMA(1,1)), Pb versus (b0) (AR(3)), and Pc versus (c0) (GARCH(1, 1)), respectively. Fourth, fifth and sixth
rows show Pa versus (a1) (ARMA(1,1) and AR(3)), Pb versus (b1) (AR(3) and GARCH(1, 1)), and Pc versus (c1) (GARCH(1, 1) versus EGARCH(1, 1)),
respectively. We use n = 256, 512 and 1024 observations in the first, second and third columns, respectively. Different bandwidth choices are shown
using different colors and line types. The solid line (black), the lines with short (red), medium (green), alternating-length (blue) and long (cyan)
dashes correspond to bn = 0.01, 0.02, 0.05, 0.1, 0.4, respectively . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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and similarly for imaginary parts. Let ∆̃ℜ

τ,R, c̃
ℜ

τ,R, Ã
ℜ
r (ω) denote the corresponding versions of ∆ℜ

τ,R, c
ℜ

τ,R, A
ℜ
r (ω) with

ũℜ

τ,R, ℓ̃
ℜ

τ,R,ℜZr,n(τ, ω) instead of uℜ

τ,R, ℓ
ℜ

τ,R, f̂
θ̂ ,r
τ (ω) and note that by equivariance of quantiles under the given transfor-

mations, we have

ũℜ

τ,R =

√
nbn {uℜ

τ,R − ℜf θ0τ (ω) − ℜB(k)
n (τ, ω)}, ℓ̃ℜ

τ,R =

√
nbn {ℓℜ

τ,R − ℜf θ0τ (ω) − ℜB(k)
n (τ, ω)}

which implies Ãℜ
r (ω) ≡ Aℜ

r (ω) after some simple algebra. From Lemma A we obtain by similar arguments as above (noting
that M is finite) that ℓ̃ℜ

τ,R(ω) converges to the β/2-quantile of the distribution of ℜH0(τ, ω) and ũℜ

τ,R(ω) converges to the
1−β/2-quantile of the distribution of ℜH0(τ, ω) (both convergences are in probability). Since ℜH0(τ, ω) follows a normal
distribution with non-zero variance this implies

max
τ∈M

|∆̃ℜ

τ,R(ω) −∆ℜ

τ (ω)| = op(1), max
τ∈M

|̃cℜ

τ,R(ω)| = op(1)

where ∆ℜ
τ (ω) = σℜ

τ (ω){1/2−Φ−1(β/2)} and σℜ
τ (ω) denotes the standard deviation of ℜH0(τ, ω). Similar results hold for

the imaginary parts. By a combination of Slutsky’s Lemma and the Continuous Mapping Theorem, we now obtain from
Theorem 1 that

max{̃Aℜ

1 (ω), Ã
ℑ

1 (ω)} ⇝
1

1/2 −Φ−1(β/2)
max
τ∈M

max
{

ℜH0(τ;ω)
σℜ

τ (ω)
,
ℑH0(τ;ω)
σℑ

τ (ω)

}
. (A.1)

By similar arguments it follows that

max
τ∈M

max{Eℜ

τ (ω), Eℑ

τ (ω)} ⇝ max
τ∈M

max
{

ℜH0(τ;ω)
σℜ

τ (ω)
,
ℑH0(τ;ω)
σℑ

τ (ω)

}
∼ F . (A.2)

Denoting by FR the cdf of the random variable max{̃Aℜ

1 (ω), Ã
ℑ

1 (ω)}, the uniform Glivenko–Cantelli Theorem (see The-
orem 2.8.1 in [30]) implies that supx∈R |F̂R(x) − FR(x)| = op(1). Together with (A.1) and continuity of the cdf, say F ,
of the random variable maxτ∈M max{ℜH0(τ;ω)/σℜ

τ (ω),ℑH0(τ;ω)/σℑ
τ (ω)} (note that the latter is a maximum over a

finite number of (dependent) standard normal random variables, hence has a continuous distribution), it follows that
supx∈R |FR(x) − F (x)| = o(1), and hence

1
R

R∑
r=1

1
[
max
τ∈M

max{Eℜ

τ (ω), Eℑ

τ (ω)} ≤ max{Aℜ

r (ω), A
ℑ

r (ω)}
]

= 1 − F
[
max
τ∈M

max{Eℜ

τ (ω), Eℜ

τ (ω)}
]

+ op(1).

Now, by (A.2) and by continuity of F combined with the Continuous Mapping Theorem and Slutsky’s Lemma, we finally
obtain

min
τ∈M

min
{
pℜ

τ,R(ω), p
ℑ

τ,R(ω)
}

=
1
R

R∑
r=1

1
[
max
τ∈M

max{Eℜ

τ (ω), Eℑ

τ (ω)} ≤ max{Aℜ

r (ω), A
ℑ

r (ω)}
]
⇝ 1 − U[0, 1].

This completes the proof of (3). □

Proof of Theorem 1. We will make use of the following notation: Uθt = F θ (X θt )

dU,θτ ,n (ω) =

n−1∑
t=0

1(Uθt ≤ τ )e−iωt , IU,θ(τ1,τ2),n
(ω) =

1
2πn

dU,θτ1,n(ω)d
U,θ
τ2,n(−ω),

and

f̂ U,θτ,n (ω) =
1

2πn

n−1∑
s=1

Wn(ω − 2πs/n)IU,θτ,n (2πs/n).

Theorem 1 follows from the following four statements.

(i) For any fixed ω ∈ R and an arbitrary sequence θn in Θ with θn = θ0 + o(1) we have, as n → ∞, in ℓ∞(T ),√
nbn {f̂ U,θnτ,n (ω) − Ef̂ U,θnτ,n (ω)}τ∈T ⇝ H0(·;ω).

(ii) As n → ∞, we obtain the following result for the expectation:

sup
τ∈[0,1]2
ω∈R

|Ef̂ U,θ0τ,n (ω) − f θ0τ (ω) − B(k)
n (τ, ω)| = O{(nbn)−1

} + o(bkn),

(iii) For any fixed ω

sup
τ∈[0,1]2

|f̂ θnτ (ω) − f̂ U,θnτ,n (ω)| = op{(nbn)−1/2
+ bkn},
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(iv) For any sequence θn in Θ with θn = θ0 + O(n−1/2) we have, as n → ∞,√
nbn sup

τ∈T ,ω∈R

⏐⏐⏐Ef̂ U,θnτ,n (ω) − Ef̂ U,θ0τ,n (ω)
⏐⏐⏐ = o(1).

Note that (ii) is proved in Theorem 3.6(ii) in [23] so that it remains to prove (i), (iii), (iv).

Convergence as a process and the proof of (i). In what follows, let

∆n(ω) =

n−1∑
t=0

eiωt , Fn = {2π j/n : j ∈ {1, . . . , n − 1}}.

For intervals A ⊂ [0, 1] and values ω ∈ R define

dU,θnA,n (ω) =

n−1∑
t=0

1(Uθnt ∈ A)e−itω.

Let

Hn(τ, ω) =

√
nbn{f̂ U,θnτ,n (ω) − Ef̂ U,θnτ,n (ω)}

and denote by F̂U,θn
n the empirical cdf of Uθn1 , . . . ,U

θn
n .

We begin by stating several generalizations of the results in [23]. The proofs of those results are very similar to the
corresponding proofs in [23] and are omitted for the sake of brevity.

The following statement can be proved similarly to Lemma A.4 in [23]: for arbitrary intervals A1, . . . , Ap ⊂ [0, 1]
define ε = min1≤j≤p λ(Aj). Then there exist constants C and d that depend only on p and K2, . . . , Kp and ρ2, . . . , ρp from
assumption (C) such that, for all ω1, . . . , ωp ∈ R,

|cum{dU,θnA1,n
(ω1), . . . , d

U,θn
Ap,n (ωp)}| ≤ C{|∆n(ω1 + · · · + ωp)| + 1}ε{|ln(ε)| + 1}d. (A.3)

Utilizing this statement and following the proof of Lemma 1.6 in the Online Supplement of [23], we find that, for any
k ∈ N, there exists a constant dk such that, as δn → 0,

sup
x,y∈[0,1]
|x−y|≤δn

√
n|F̂U,θn

n (x) − F̂U,θn
n (y) − x + y| = Op{(n2δn + n)1/2k(δn|ln δn|dk + n−1)1/2}. (A.4)

This equation combined with the arguments in the proof of Lemma A.6 in [23] shows that, for any k ∈ N,

sup
ω∈Fn

sup
τ∈[0,1]

|dU,θnτ ,n (ω)| = Op(n1/2+1/k). (A.5)

Now Eqs. (A.3), (A.4) and (A.5) can be used to replace Lemma A.2, Lemma 1.6 (Online Supplement), and Lemma A.6
from [23] in the proof of Lemma A.7 in [23] to show the following: if δn = O

{
(nbn)−1/γ

}
for some γ ∈ (0, 1), then

sup
ω∈R

sup
u,v∈[0,1]2, ∥u−v∥≤δn

|Hn(u, ω) − Hn(v, ω)| = op(1). (A.6)

We are now ready for the proof of (i). In view of Theorems 1.5.4 and 1.5.7 in [30], it suffices to show

(i1) Convergence of the finite-dimensional distributions

{Hn(τ j, ωj)}j=1,...,k ⇝ {H0(τ j, ωj)}j=1,...,k

for any (τ j, ωj) ∈ T × R with j ∈ {1, . . . , k} and k ∈ N.
(i2) Stochastic equicontinuity: For any x > 0 and any ω ∈ R,

lim
δ↓0

lim sup
n→∞

Pr
{

sup
u,v∈[0,1]2,∥u−v∥<δ

|Hn(u, ω) − Hn(v, ω)| > x
}

= 0.

Proof of (i2). Apply Lemma A.2 from [23] with L = 3 to obtain

sup
ω∈R

sup
∥u−v∥1≤ϵ

E|Hn(u, ω) − Hn(v, ω)|6 ≤ K
2∑

j=0

g(ϵ)3−j/(nbn)j.

Here, condition (A.2) from Lemma A.2 in [23] is satisfied with g(x) = x{|ln x|+1}d by (A.3). With Ψ (x) = x6 the Orlicz norm
∥X∥Ψ coincides with the L6 norm ∥X∥6 = (E|X |

6)1/6 so that we have, for any κ ∈ (0, 1) and sufficiently small ∥a − b∥1,

∥Hn(u, ω) − Hn(v, ω)∥Ψ ≤ C{∥u − v∥κ1/(nbn)
2
+ ∥u − v∥2κ

1 /(nbn)
1
+ ∥u − v∥3κ

1 }.
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To complete the proof of (i2), follow the arguments in the proof of Theorem 3.6, step (i2), in [23]. Replace Lemma A.7
therein by (A.6) to obtain for all x, µ > 0 and γ ∈ (2/3, 1),

lim
δ↓0

lim sup
n→∞

Pr
{

sup
u,v∈[0,1]2

sup
∥u−v∥1<δ

|Hn(u, ω) − Hn(v, ω)| > x
}

≤

{8C
x

∫ µ

0
z−2/(3γ )dz

}6
.

Then (i2) follows since the integral tends to zero for µ → 0.

Proof of (i1). We have to show, that for any τ1, . . . , τk ∈ T , k ∈ N where τ i = (τi1, τi2) and ω1, . . . , ωk ̸= 0 mod 2π
all cumulants of {Hn(τ j, ωj)}j=1,...,k converge to the corresponding cumulants of {H0(τ j, ωj)}j=1,...,k, which by Lemma P4.5
in [7] gives the desired result. By construction,

E{Hn(τ, ω)} = 0

and

cov{Hn(τ1, ω1),Hn(τ2, ω2)} = nbncov{f̂ U,θnτ1,n (ω1), f̂ U,θnτ2,n (ω2)}.

Under assumption (C) the random processes {1(Uθnt ≤ τ11), . . . , 1(Uθnt ≤ τk2)}t∈Z satisfy a uniform version of
Assumption 2.6.2(2) in [7] while the weight functions Wn satisfy Assumption 5.6.1 in [7]. A close look at the proof of
Theorem 7.4.3 and Corollary 7.4.3 in [7] shows that all proofs go through without change and lead to the representation

nbncov{f̂ U,θnτ1,n (ω1), f̂ U,θnτ2,n (ω2)} = 2π
∫ π

−π

W 2(u)du
{
f θn(τ11,τ21)

(ω1)f
θn
(τ12,τ22)

(−ω1)1(ω1 = ω2)

+f θn(τ11,τ22)
(ω1)f

θn
(τ12,τ21)

(−ω1)1(ω1 = 2π − ω2)
}

+ O(bn) + O{(nbn)−1
}.

Next we note that

sup
τ∈T ,ω∈R

|f θnτ (ω) − f θ0τ (ω)| ≤

∑
h∈Z

sup
τ∈T

|Cθnh (τ) − Cθ0h (τ)| = o(1)

by dominated convergence. Hence

nbncov{f̂ U,θnτ1,n (ω1), f̂ U,θnτ2,n (ω2)} → 2π
∫ π

−π

W 2(u)du
{
f θ0(τ11,τ21)

(ω1)f
θ0
(τ12,τ22)

(−ω1)1(ω1 = ω2)

+f θ0(τ11,τ22)
(ω1)f

θ0
(τ12,τ21)

(−ω1)1(ω1 = 2π − ω2)
}
.

To complete the proof, it remains to show that the cumulants of order K ≥ 3 vanish as n → ∞. With τ i = (τi1, τi2)
for all i ∈ {1, . . . , K }, we have

cum{Hn(τ1, ω1), . . . ,Hn(τK , ωK )} = (nbn)K/2cum{f̂ U,θnτ1,n (ω1), . . . , f̂ U,θnτK ,n (ωK )}

= (2π )2Kn−3K/2(bn)K/2
n−1∑
s1=1

· · ·

n−1∑
sK=1

Wn(ω1 − 2πs1/n) · · ·Wn(ωk − 2πsK/n)

×cum
{
dU,θnτ11,n(2πs1/n)d

U,θn
τ12,n(−2πs1/n), . . . , dU,θnτK1,n(2πsK/n)d

U,θn
τK2,n(−2πsK/n)

}
.

To see that these cumulants tend to zero we will need arguments similar to those used in Step 2 of the proof of
Lemma A.2 in [23]. Applying the product Theorem 2.3.2 in [7] to the last cumulant leads to

cum
{
dU,θnτ11,n(2πs1/n)d

U,θn
τ12,n(−2πs1/n), . . . , dU,θnτK1,n(2πsK/n)d

U,θn
τK2,n(−2πsK/n)

}
=

∑
(ν1,...,νN )

N∏
k=1

cum
[
dU,θnτij,n {(−1)j+1si2π/n}; (i, j) ∈ νk

]
, (A.7)

where the sum runs over all indecomposable partitions (ν1, . . . , νN ) (see [7], p. 20) of

(1, 1) (1, 2)
...

...

(K , 1) (K , 2).

Note that an indecomposable partition consists of at most N ≤ K + 1 sets. Now by (A.3) the absolute values of those
cumulants are bounded by

(A.7) ≤ C
∑

(ν1,...,νN )

N∏
k=1

[
∆n

{2π
n

∑
(i,j)∈νk

(−1)j+1si
}

+ 1
]

= C
∑

(ν1,...,νN )

∑
I⊂{1,...,N}

∏
k∈I

∆n

{2π
n

∑
(i,j)∈νk

(−1)j+1si
}



S. Birr, T. Kley and S. Volgushev / Journal of Multivariate Analysis 172 (2019) 122–146 145

where C is some constant that depends on K and the constants Kp and ρp with p ∈ {1, . . . , 2K } from assumption (C) only.
Furthermore, since

∆n(2πω/n) =

{
n if ω ∈ nZ,
0 if ω /∈ nZ,

we have that for each combination of ν = {ν1, . . . , νN} and I ⊂ {1, . . . ,N}∏
k∈I

∆n

{2π
n

∑
(i,j)∈νk

(−1)j+1si
}

= 0

unless

∀νk∈ν:k∈I

∑
(i,j)∈νk

(−1)j+1si ∈ nZ.

In the latter case,∏
k∈I

∆n

{2π
n

∑
(i,j)∈νk

(−1)j+1si
}

= n|I|.

Now we can restrict the sum over the indices (s1, . . . , sK ) to the set

S(ν, I) =

{
(s1, . . . , sK ) ∈ {1, . . . , n − 1}K : ∀νk∈ν:k∈I

∑
(i,j)∈νk

(−1)j+1si ∈ nZ
}
.

To complete the proof, follow the arguments starting at the bottom of p. 16 of the Online Supplement in the proof
of Lemma A.2 in [23] (note that the supplement states this as ‘‘proof of Lemma 7.2’’). First, note that S(ν, I) is empty for
|I| = K + 1 and

n−1∑
s1,...,sK=1

K∏
m=1

⏐⏐Wn(ωm − 2πsm/n)
⏐⏐∏

k∈I

∆n

{2π
n

∑
(i,j)∈νk

(−1)j+1si
}

=

∑
(s1,...,sK )∈S(ν,I)

K∏
m=1

⏐⏐Wn(ωm − 2πsm/n)
⏐⏐n|I|

= O{(b−1
n )|I|−⌊|I|/N⌋nK−(|I|−⌊|I|/N⌋)n|I|

},

where the last equality follows from the arguments around Eq. (1.26) in the Online Supplement of [23]. Finally, the number
N of indecomposable partitions does not depend on n, so that cum{Hn(τ1, ω1), . . . ,Hn(τK , ωK )} is of order

n−3K/2(bn)K/2 max
N≤K

max
|I|≤N

(b−1
n )|I|−⌊|I|/N⌋nK−(|I|−⌊|I|/N⌋)n|I|

= O{(nbn)1−K/2
},

which tends to zero for K ≥ 3. □

Proof of (iii). Following the proof of Lemma A.3 and the arguments in the end of the proof of Lemma A.4 in [23] and
using (C) it is straightforward to prove that ω ↦→ f θτ (ω) is infinitely often continuously differentiable (for any τ ∈ (0, 1)2

and θ ∈ Uε(θ0)) and that there exist constants C, d that are independent of τ1, τ2, θ with

sup
ω∈R,θ∈Uε (θ0)

⏐⏐⏐ dj

dωj f
θ
τ1
(ω) −

dj

dωj f
θ
τ2
(ω)

⏐⏐⏐ ≤ C∥τ1 − τ2∥1{1 + ln ∥τ1 − τ2∥1}
d. (A.8)

Moreover, the proof of Lemma A.5 [23] can be modified to obtain (recall the definition of F̂U,θn
n at the beginning of the

proof of (i)):

sup
τ∈[0,1]

|(F̂U,θn
n )−1(τ ) − τ | = Op(n−1/2). (A.9)

As in [23] (A.4), it follows that, for any k ∈ N, we have

sup
ω∈R

sup
τ∈[0,1]

|dτ ,n(ω) − dU
(F̂U,θnn )−1(τ ),n

| ≤ n sup
τ∈[0,1]

|F̂U,θn
n (τ ) − F̂U,θn

n (τ−)| ≤ Op(n1/(2k)),

where F̂U,θn
n (τj−) = limξ↑0 F̂

U,θn
n (τ − ξ ) and the last inequality follows from (A.4). The remaining part of the proof is

analogous to the arguments given in Section A.3 of [23] and details are omitted for the sake of brevity. □
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Proof of (iv). Begin by observing that for some constant CW that depends on W only, we have, for any τ ∈ [0, 1]2,

|Ef̂ U,θnτ,n (ω) − Ef̂ U,θ0τ,n (ω)| ≤
1

2πn

n−1∑
s=1

|Wn(ω − 2πs/n)| × |E{IU,θnτ,n (2πs/n)} − E{IU,θ0τ,n (2πs/n)}|

≤ CW max
ω∈Fn

|E{IU,θnτ,n (ω)} − E{IU,θ0τ,n (ω)}| = CW max
ω∈Fn

⏐⏐⏐ 1
2πn

n−1∑
t1,t2=0

e−i(t1−t2)ω{Cθnt2−t1 (τ) − Cθ0t2−t1 (τ)}
⏐⏐⏐

≤
CW

2πn

∑
|t1|≤n

∑
k∈Z

|Cθnk (τ) − Cθ0k (τ)| ≤ CW

∑
k∈Z

|Cθnk (τ) − Cθ0k (τ)|.

Now under (C) we have |Cθnk (τ) − Cθ0k (τ)| ≤ 2K2ρ
|k|
2 . Hence, for any fixed N ∈ N we have by (LC)

sup
τ∈T

∑
k∈Z

|Cθnk (τ) − Cθ0k (τ)| ≤

∑
|k|≤N

sup
τ∈T

|Cθnk (τ) − Cθ0k (τ)| + 4K2

∑
k>N

ρ
|k|
2 ≤ (2N + 1)∥θn − θ0∥ +

4K2ρ
N+2
2

1 − ρ2
.

Now by assumption ∥θn − θ0∥ = O(n−1/2), so picking N = C ln(n) for a constant C > 0 such that 4K2ρ
C ln(n)
2 = o(n−1), we

obtain

sup
τ∈T

|Ef̂ U,θnτ,n (ω) − Ef̂ U,θ0τ,n (ω)| = O(ln n)∥θn − θ0∥ = o(
√
nbn)

since by assumption nbn = o(n1−1/(2k+1)) for some k ∈ N. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.03.003.
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