
Journal of Multivariate Analysis 174 (2019) 104542

Contents lists available at ScienceDirect

Journal ofMultivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Dimension reduction estimation for central mean subspace
withmissingmultivariate response
Guo-Liang Fan a, Hong-Xia Xu b, Han-Ying Liang c,∗

a School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, PR China
b Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, PR China
c School of Mathematical Sciences, Tongji University, Shanghai 200092, PR China

a r t i c l e i n f o

Article history:
Received 23 March 2019
Received in revised form 21 August 2019
Accepted 21 August 2019
Available online 29 August 2019

AMS 2010 subject classifications:
primary 62H12
secondary 62F12

Keywords:
Central mean subspace
High dimensionality
Missing data
Multivariate response
Sufficient dimension reduction

a b s t r a c t

Multivariate response data often arise in practice and they are frequently subject to
missingness. Under this circumstance, the standard sufficient dimension reduction (SDR)
methods cannot be used directly. To reduce the dimension and estimate the central
mean subspace, a profile least squares estimation method is proposed based on an
inverse probability weighted technique. The profile least squares method does not
need any distributional assumptions on the covariates and hence differs from existing
SDR methods. The resulting estimator of the central mean subspace is proved to be
asymptotically normal and root n consistent under some mild conditions. The structural
dimension is determined by a BIC-type criterion and the consistency of its estimator is
established. Comprehensive simulations and a real data analysis show that the proposed
method works promisingly.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

With rapid advance of technology, observations for a large number of variables can be easily collected. High-
dimensional regression analysis is one of the most popular tools that help us to gain insight into relationships between
two sets of high dimensional variables. Suppose that y = (Y1, . . . , Yq)⊤ ∈ Rq is multivariate response and x =

(X1, . . . , Xp)⊤ ∈ Rp is a covariate vector. The general object of interest is to focus on the conditional mean function E(y|x).
However, nonparametric estimation of E(y|x) involves a high-dimensional predictor x, which suffers from the ‘‘curse of
dimensionality’’. Sufficient dimension reduction (SDR) has been proposed to reduce the dimension of x while preserving
its information in E(y|x). The aim is to search a matrix β ∈ Rp×d such that E(y|x) = E(y|β⊤x), where E(y|β⊤x) can
be estimated efficiently if d is small. Noting that β is not identifiable, Cook and Li [5] defined the central mean subspace
span(β) as the column space of β with the smallest column dimension such that E(y|x) = E(y|β⊤x). The column dimension
of span(β), denoted by d0, is called the structural dimension. When the data are fully observed and y is univariate (q = 1),
since the work of Li [12] who proposed the sliced inverse regression method, there have been many approaches developed
to estimate span(β). Specifically, Li [13] proposed the principal Hessian directions method to recover span(β) through
the eigenvectors. Discussions on the principal Hessian directions method were given by Cheng and Zhu [3], Cook [4]
and Cook and Li [5], etc. Assuming that E(y|β⊤x) is a sufficiently smooth function of β⊤x, Xia et al. [22] suggested a
minimum average variance estimation method to recover span(β). Ma and Zhu [15,17] proposed semiparametric methods
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to estimate span(β) when either E(y|β⊤x) or E(x|β⊤x) is assumed to be smooth. When the data are fully observed and
y is multivariate, Zhu and Zhong [28] proposed a profile least squares approach to perform estimation and inference on
the central mean subspace.

In practice, missing data are a prevailing problem in any data analyses. A variable is considered missing if the value
of the variable is not observed in an observation. In most analyses in the medical literature, the most common way of
dealing with missing response data is to just omit those participants who have any missing data among its variables. Such
an analysis is called a complete case (CC) analysis. The CC analysis is quite popular, because it is the default analysis for
most standard statistical softwares. However, in many situations, the CC analysis is not an appropriate way to proceed
and it may decrease the power of the analysis by decreasing the effective sample size. Data are said to be missing at
random (MAR) if, given the observed data, the failure to observe a value does not depend on the data that are unobserved.
For example, in cancer clinical trials, information on the size of a primary tumor is often missing, and the size of the
primary tumor may depend on the type of the primary tumor, which is often fully observed. If the probability of primary
tumor size being missing only depends on the type of primary tumor, then the missingness is considered to be MAR.
Many approaches have been developed on how to handle missing values in multivariate analysis. For example, Liao
et al. [14] investigated existing imputation approaches for phenomic data, proposed a novel ‘‘imputability’’ concept with
a quantitative imputability measure to characterize whether a missing value is imputable or not, and proposed a self-
training selection scheme to select the best imputation approach; Zhao and Long [25] investigated several approaches
of using regularized regression and Bayesian lasso regression to impute the missing values for high-dimensional data;
Wei et al. [21] developed a computationally efficient alternating expectation conditional maximization algorithm for
parameter estimation of the generalized hyperbolic factor analyzers model in the presence of the missing values as
well as heavy-tailed and/or asymmetric clusters. In regression analysis, when the response is univariate (q = 1), some
interesting problems have been investigated with the MAR setting. For example, Hu et al. [11] focused on the estimation
of the marginal mean response when the response is MAR and covariates are available; Yang and Wang [24] developed
a dimension-reduction based kernel imputation method for the sliced inverse regression; Deng and Wang [6] developed
dimension reduction estimating methods for probability density with response MAR when covariables are present. Other
related works can be found in Guo et al. [9], who proposed selection probability assisted recovery and complete case
assisted recovery methods, and Zhu et al. [27], who proposed a parametric imputation procedure based on the sliced
inverse regression.

In this article, we address the dimension reduction estimation for span(β) when the responses y are MAR and the
predictors x are present. Specifically, the random sample {(xi, yi, δi)} for i ∈ {1, . . . , n} of the incomplete data comes
from {x, y, δ}, where all the x are observed, δ = (δ1, . . . , δq)⊤, and δk = 1 if Yk is observed and δk = 0 otherwise for
k ∈ {1, . . . , q}. With incomplete observations, we consider the estimation of the central mean subspace span(β) under
MAR, which implies that δ and y are conditionally independent given x, or equivalently, for k ∈ {1, . . . , q},

P(δk = 1|x, Yk) = P(δk = 1|x) :
def
= πk(x),

where πk(·) is called a selection probability function. In general, to understand how the conditional mean functions of y
vary with x, we let E(y|x) = m(β⊤x), or equivalently, E(Yl|x) = ml(β⊤x), where m(β⊤x) = {m1(β⊤x), . . . ,mq(β⊤x)}⊤, β
is a p× d0 matrix with an unknown d0. All mk(·), β and d0 have to be estimated based on the observed data, and all mk(·)
share an identical β to ensure that the span(β) is identifiable (see [28]).

The rest of this article is organized as follows. In Section 2, we propose a profile least squares method to estimate the
central mean subspace based on the inverse probability weighted (IPW) approach, and establish asymptotic properties
for the resultant estimators. We present the performance of the proposed methods via a comprehensive simulation study
and a real data analysis in Section 3. The concluding remarks are given in Section 4. Some additional simulations and all
technical proofs are deferred to the Appendix.

2. Methodology

In this section, we seek a β with the minimal column dimension d0 such that E(y|x) = E(y|β⊤x). That is, in the sense
of the SDR, replace x with β⊤x, which is sufficient to describe how E(y|x) varies with x. Using the parameterization
design in Fan et al. [8], we let β = (Id0×d0 , β

⊤

−d0 )
⊤, where Id0×d0 is a d0 × d0 identity matrix and β−d0 is a (p − d0) × d0

matrix composed of the last (p − d0) rows of β. The space of all such β matrices forms a one-to-one mapping to the
dimension reduction space. Thus, the problem of estimating span(β) is equivalent to a problem of estimating β−d0 . This
parameterization implies that the first d0 covariates of x contribute to y. Otherwise one can always rotate the order of
the entries in x to guarantee that the first d0 components of x are useful.

Since the structural dimension d0 of span(β) is unknown in advance, we will demonstrate our proposed estimation
procedure with a working dimension d. A profile least squares method for estimating β, or equivalently, β−d is proposed in
the sequel. Let xd = (X1, . . . , Xd)⊤ and x−d = (Xd+1, . . . , Xp)⊤. Hence, β⊤x = xd +β⊤

−dx−d and m(β⊤x) = m(xd +β⊤

−dx−d).
In practice, the selection probability functions πk(·) are usually unknown and need to be estimated. The Nadaraya–

Watson estimation approach is often used to estimate πk(·). However, a fully nonparametric estimation is usually
unattractive because the estimation precision decreases rapidly as the dimension of x increases, i.e., fully nonparametric
estimation may suffer from the curse of dimensionality (see [10]). In this situation, a parametric approach might be
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more applicable to estimate πk(·), that is, we assume πk(x) = πk(x, γk). The logistic regression, based on {(xi, yi, δi)}
for i ∈ {1, . . . , n}, can yield consistent estimators of the regression coefficients in the model, provided that πk(xi, γk) are
correctly specified. Specifically, suppose that for k ∈ {1, . . . , q},

πk(xi, γk) =
1

1 + exp(−γ⊤

k xi)
, (2.1)

where γk = (γk1, . . . , γkp)⊤ are unknown parameter vectors. Hence, the estimators of the selection probability functions
are given by πk(x, γ̂k), where γ̂k are the maximum likelihood estimators (MLEs) of γk. We adopt the following least squares
criterion to estimate β−d based on the IPW method,

β̂−d := argmin
b∈R(p−d)×d

n∑
i=1

{
yi − m̂(x⊤

d,i + b⊤x−d,i)
}⊤

Ŵi

{
yi − m̂(x⊤

d,i + b⊤x−d,i)
}
, (2.2)

where Ŵi = diag
{
δi1/π1(xi, γ̂1), . . . , δiq/πq(xi, γ̂q)

}
,

m̂(x⊤

d,i + b⊤x−d,i) =
{
m̂1(x⊤

d,i + b⊤x−d,i), . . . , m̂q(x⊤

d,i + b⊤x−d,i)
}⊤

, (2.3)

m̂k(x⊤

d,i + b⊤x−d,i) =

∑n
j=1,j̸=i δjkKh(x⊤

d,j + b⊤x−d,j − x⊤

d,i − b⊤x−d,i)Yjk∑n
j=1,j̸=i δjkKh(x⊤

d,j + b⊤x−d,j − x⊤

d,i − b⊤x−d,i)
,

for k ∈ {1, . . . , q}, Kh(·) = K (·/h)/hd is a product of d univariate kernel functions and 0 < h := hn → 0 is the bandwidth.
In order to formulate the main results in this paper, the following regularity conditions are listed.

(C1) The density function f (β⊤x) of β⊤x is locally Lipschitz continuous and bounded away from zero and infinity. In
addition, m(β⊤x) and E(x|β⊤x) are locally Lipschitz continuous.

(C2) The univariate kernel function K (·) is symmetric, has a compact support and derivatives up to order s. In addition,∫
K (u)du = 1;

∫
ukK (u)du = 0, k ∈ {1, . . . , s − 1}; 0 ̸=

∫
usK (u)du < ∞.

The d-dimensional kernel is a product of d univariate kernels. We omit the notation of K here when it is sufficiently
clear from the context.

(C3) The bandwidth h = O(n−δ) for (4s)−1 < δ < (2d)−1.
(C4) All the moments E[{m(β⊤x)}⊤{m(β⊤x)}], E(x⊤x)τ , E(y⊤y) and E

[
{m(1)(β⊤x)}⊤{m(1)(β⊤x)}

]
exist for some τ > 1,

where m(1)(β⊤x) is the first derivative of m(β⊤x) with respect to β⊤x, and is continuous.
(C5) The selection probability functions πk(x) have a bounded continuous second derivatives almost surely and infx πk(x)

> 0 for k ∈ {1, . . . , q}.
(C6) The MLEs γ̂k of γk, k ∈ {1, . . . , q}, in model (2.1) are root-n consistent.

Remark 2.1. These conditions are generally regarded as mild. In particular, the smoothness condition (C1) imposes
on the mean and density functions and allows us to implement local smoothers such as kernel and local polynomial
regressions (see [7]). Condition (C2) states that an sth order kernel function is used. Condition (C3) is typical for deriving a
convergence rate when the nonparametric estimation is employed. We assume the moment conditions in (C4) to establish
the asymptotic normality. Similar conditions are also assumed in [15,16]. Condition (C5) is a necessary condition in missing
data analysis and is also assumed in [10,19], among others. Condition (C6), which can be satisfied easily under mild
conditions (see Section 10.6.2 of [2] and [20]), is employed to simplify the proof procedure.

The following Theorem 2.1 indicates that the estimator β̂−d of β−d is root-n consistent and asymptotically normal.
Define A(x) = diag

{
1/

√
π1(x), . . . , 1/

√
πq(x)

}
, x̃−d = x−d − E(x−d|β

⊤x),

Ω1 = E
[{

m(1)⊤ (β⊤x) ⊗ x̃−d
}{

m(1)(β⊤x) ⊗ x̃⊤

−d

}]
, Σ = cov(εε⊤), ε = y − m(β⊤x)

and Ω2 = E
[
{m(1)⊤ (β⊤x) ⊗ x̃−d}A(x)ΣA(x){m(1)(β⊤x) ⊗ x̃⊤

−d}
]
, where ⊗ denotes the Kronecker product. Further, for a

matrix D, vec(D) denotes the vector of the stacked columns of D, starting with the first one.

Theorem 2.1. Suppose that (C1)–(C6) hold. Then n1/2
{
vec(̂β−d) − vec(β−d)

} d
−→ N (0,Ω−1

1 Ω2Ω
−1
1 ).

The asymptotic distribution of β̂−d in Theorem 2.1 is based on the assumption that πk(xi) is logistic regression function.
Actually, similar result can be derived if πk(xi) is any purely parametric function. In order to make statistical inference on
β−d based on Theorem 2.1, a consistent estimator for the asymptotic covariance matrix is given in the following Theorem.
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Let β̂ = (Id×d, β̂
⊤

−d)
⊤, Σ̂ = n−1 ∑n

i=1

{
yi − m̂(̂β

⊤xi)
}
Ŵi

{
yi − m̂(̂β

⊤xi)
}⊤,

ˆ̃x−d,ik = x−d,i −

n∑
j=1,j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi)x−d,i

/ n∑
j=1,j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi),

Ω̂1 = n−1
n∑

i=1

BiŴiB⊤

i and Ω̂2 = n−1
n∑

i=1

BiŴiΣ̂ŴiB⊤

i , (2.4)

where Bi =
{
m̂(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . , m̂

(1)⊤
q (̂β

⊤xi) ⊗ˆ̃x−d,iq
}
is a (p − d)d × q matrix.

Theorem 2.2. Suppose that (C1)–(C6) hold. Then Ω̂1
p

−→ Ω1, Ω̂2
p

−→ Ω2, and hence Ω̂
−1
1 Ω̂2Ω̂

−1
1

p
−→ Ω

−1
1 Ω2Ω

−1
1 , where

Ω̂1 and Ω̂2 are given in (2.4).

Testing whether xi is important in predicting y amounts to testing whether all components of the ith row of β are
simultaneously zero. In a general context, we are interested in the following hypothesis testing problem:

H0 : Qβ−d = q0 versus H1 : Qβ−d ̸= q0,

where β−d is a (p− d)× d matrix composed of the last (p− d) rows of β = (Id×d, β
⊤

−d)
⊤, Q is a user-specified q0 × (p− d)

matrix and q0 is another user-specified q0 × d matrix. A Wald chi-square test statistic is defined as,

Tn = n
{
(Id×d ⊗ Q)vec(̂β−d) − vec(q0)

}⊤{
(Id×d ⊗ Q)Ω̂−1

1 Ω̂2Ω̂
−1
1 (Id×d ⊗ Q⊤)

}−1{
(Id×d ⊗ Q)vec(̂β−d) − vec(q0)

}
.

From Theorem 2.1, the following corollary can be established directly.

Corollary 2.1. Under (C1)–(C6) and H0, we have Tn
d

−→ χ2(q0d), where χ2(q0d) stands for the central chi-square distribution
with q0d degrees of freedom.

Another important component in the dimension reduction is to decide the structural dimension d of the span(β) based
on the incomplete data. For the sliced inverse regression method, Li [12] proposed a sequential chi-squared test procedure
and Bura and Cook [1] suggested a general weighted chis-squared sequential test to determine the dimension. But the
retained dimension in these methods relies heavily on the significance level. In this paper, based on the profile least
squares technique, we suggest a BIC-type criterion (see [23,26]) to estimate the structural dimension of the span(β).
The procedure is easy to implement and the consistency of the estimator can be established. Specifically, for a working
dimension d, we define

L(d) =

n∑
i=1

{
yi − m̂(̂β

⊤

d xi)
}⊤

Ŵi

{
yi − m̂(̂β

⊤

d xi)
}

+ pdλn

{ n∑
i=1

(yi − y)⊤(yi − y)
}1/2

,

where β̂d = (Id×d, β̂−d)⊤, y = n−1 ∑n
i=1 yi, the second term is the penalty term and λn is a penalty constant. The estimated

structural dimension is then given by

d̂ = argmin
1≤d≤p

L(d). (2.5)

Theorem 2.3. Suppose that (C1)–(C6) hold, and that n−1/2λn → 0 and λn/ln n → ∞. If the sth derivative of m(·) is bounded,
then Pr(̂d = d0) → 1.

Remark 2.2.

(a) It can be concluded from Theorem 2.3 that the BIC-type criterion can select the true structural dimensional of the
span(β) consistently. Although the penalty term λn is allowed to vary from ln n to n1/2, the BIC-type criterion may
overestimate d if λn is too small and underestimate it if λn is too large. How to choose an optimal penalty λn in
a data-driven manner is a challenging work. We have tried several values of λn = αnκ for different α and κ , and
found that (α, κ) = (1, 0.05) performs better overall than some other choices.

(b) We now outline the algorithm for estimating β. Firstly, we get the maximum likelihood estimators of γk and start
with a working dimension d and an initial value of β.

(1) Estimate m based on (2.3) for a given β.
(2) Estimate β based on (2.2) for given m.
(3) Repeat the above two steps until convergence. The derived estimator, denoted by β̂d = (Id×d, β̂

⊤

−d)
⊤, is

referred to as the profile least squares estimator for a working dimension d.
(4) Varying the working dimension d from 1 through p and repeat the above three steps. The estimated structure

dimension d̂ is given in (2.5).
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Table 1
The choices of γk , k ∈ {1, 2, 3} to attain different missing rates (MRs) for Models I and II given in (3.1)
and (3.2).
Model I MR γ

10% γ1 3.4 1.5 1.1 0.6 −1.0 0.5 1.0
γ2 1.5 2.4 −1.5 1.4 1.2 −0.6 1.1
γ3 −0.5 0.9 1.1 0.8 1.0 1.2 0.5

30% γ1 0.5 −1.0 1.2 1.0 −1.8 1.0 0.5
γ2 2.4 1.0 −3.2 2.1 1.0 −1.9 0.8
γ3 1.2 1.1 −1.1 1.0 −2.2 0.7 1.0

Model II MR γ

10% γ1 1.2 2.5 0.8 −0.6 1.0 0.6
γ2 0.5 1.5 1.6 −1.0 1.3 0.9
γ3 1.5 −0.9 1.3 0.9 3.6 0.9

30% γ1 1.5 1.0 −1.2 −1.6 1.3 0.7
γ2 1.3 2.1 1.2 −2.1 1.2 −1.5
γ3 2.2 1.5 −1.1 0.9 0.8 −2.2

(5) Set d = d̂ in the first two steps and repeat the first two steps until convergence. The final estimator is given
by β̂ = (Id×d, β̂−d).

3. Numerical study

3.1. Simulation experiments

In this section, we use several simulation examples to illustrate the finite sample performance of the proposed IPW
method for dealing with missing and multivariate response data. In the simulation below, the covariate x was drawn
from multivariate normal distribution N (1p×1,Σx), where Σx = (σk,l) with σk,l = cov(Xk, Xl) = 0.5|k−l| for 1 ≤ k, l ≤ p.
To illustrate the performance of the IPW method, we compare our proposal with three methods: the omniscient method
(Omni for short) which uses the true selection probability functions πk in (2.2), the CC method which deletes the missing
values naively and imputation approach (IMP for short) which imputes a plausible value for each missing datum and then
analyze the results as if they are complete. The following two simulated models were considered:

Model I:

⎧⎪⎨⎪⎩
Y1 =(β⊤

1 x)/{0.5 + (β⊤

2 x + 1.5)2} + ε1,

Y2 = sin(β⊤

1 x) + cos(β⊤

2 x) + ε2,

Y3 =2β⊤

1 x − β⊤

2 x + ε3,

(3.1)

Model II:

⎧⎪⎨⎪⎩
Y1 =(β⊤

1 x)/{0.5 + (β⊤

2 x + β⊤

3 x + 1.5)2} + ε1,

Y2 =(β⊤

1 x)
2
+ sin(β⊤

2 x) + β⊤

3 x + ε2,

Y3 =β⊤

1 x − 2β⊤

2 x + cos(β⊤

3 x) + ε3.

(3.2)

We set p = 7, q = 3, β1 = (1, 0, 0.8, −0.6, 0.4, −0.2, 0)⊤ and β2 = (0, 1, −0.8, 0.6, −0.4, 0.2, 0)⊤ in Model I, and set
p = 6, q = 3, β1 = (1, 0, 0, 0.8, −0.4, 0.2)⊤, β2 = (0, 1, 0, −0.2, 0.4, −0.8)⊤ and β3 = (0, 0, 1, 0.3, 0.5, 0.7)⊤ in Model
II. The model error ε = (ε1, ε2, ε3)⊤ was drawn from the normal distribution with mean zero and covariance matrix
cov(εk, εl) =

(
0.5|k−l|

)
for 1 ≤ k, l ≤ 3 in Models I and II. To compare the influence of different missing rates (MRs), the

missing mechanisms were chosen from the following logistic models πk(xi, γk) = 1/{1 + exp(−γ⊤

k xi)}, for k ∈ {1, 2, 3},
where the values of γk are given in Table 1. In the proposed IPW approach, the MLE for the parameters γk was used. The
sample sizes n were chosen to be 300 and 500, respectively. The simulation results were based on N = 1000 replicates.
We took the Gaussian kernel with the bandwidth h = (4/3n)1/(d+4)s, where s is the median of the robust estimators of
the standard deviation of β⊤x.

In Tables 2–5, we report the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation (‘‘std’’), the
average of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage
probability (‘‘cvp’’) at the nominal 95% confidence level for all free parameters in models I–II with different settings. In
order to show the comprehensive performance intuitively for different parameters, we give the mean square error (MSE) of
the estimators in Table 6, where the MSE is defined as MSE(̂β) = N−1 ∑p

i=1
∑d

j=1
∑N

k=1

{
β̂ij(k)−βij(k)

}2. For the imputation
method, we only give the bias, MSE and Monte Carlo standard deviation, since the theoretical distribution for the estimator
of β based on imputation method is unknown. In all, the bias of all the estimators are very small, and they get smaller
as the sample size increases. This finding implies that the four estimators are consistent. By comparing the MSE, the
omniscient method gives the best performance, while the CC method offers the worst performance. This phenomenon is
well-understood, since the omniscient method uses the true selection probability function and the complete case method
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Table 2
Simulation results for Model I with n = 300: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation (‘‘std’’), the average
of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’) at the nominal 95%
confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in Section 3.1. The
parameters β̂ij are defined in (2.2).

Method β̂13 β̂14 β̂15 β̂16 β̂17 β̂23 β̂24 β̂25 β̂26 β̂27

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Case 1: MR = 10%

Omni

bias 0.64 −0.30 0.32 −0.19 0.20 −0.51 0.71 −0.40 0.12 0.17
std 4.66 4.62 3.92 3.61 3.07 5.45 5.40 4.95 4.31 3.61
ŝtd 5.13 5.05 4.35 3.84 3.29 6.27 6.19 5.34 4.72 4.05
cvp 96.00 95.80 96.00 95.10 95.80 97.10 96.90 95.00 96.10 97.30

IPW

bias 0.63 −0.25 0.32 −0.15 0.15 −0.53 0.78 −0.49 0.08 0.09
std 4.78 4.72 3.94 3.66 3.15 5.59 5.56 5.02 4.42 3.71
ŝtd 5.23 5.12 4.42 3.89 3.33 6.45 6.35 5.49 4.85 4.16
cvp 95.90 96.10 97.10 95.40 95.80 97.60 96.80 95.50 96.50 97.10

CC

bias 0.92 −0.60 0.45 −0.20 −0.20 −0.21 0.68 −0.76 0.26 −0.07
std 5.66 5.49 4.87 4.23 3.66 7.31 7.24 6.71 5.92 5.04
ŝtd 5.58 5.43 4.78 4.18 3.59 7.39 7.24 6.41 5.63 4.86
cvp 94.20 94.50 94.20 95.20 94.60 95.30 95.40 93.70 93.10 92.90

Case 2: MR = 30%

Omni

bias 0.67 −0.38 0.30 −0.12 −0.02 −0.17 0.35 −0.32 0.09 0.01
std 4.91 4.66 4.03 3.56 3.23 5.13 4.98 4.36 3.93 3.35
ŝtd 5.62 5.52 4.80 4.19 3.59 5.75 5.65 4.90 4.31 3.70
cvp 95.20 96.80 97.30 96.90 96.30 95.70 96.10 96.30 95.80 96.20

IPW

bias 0.67 −0.31 0.22 −0.08 −0.02 −0.29 0.53 −0.47 0.19 −0.01
std 4.95 4.78 4.19 3.69 3.26 5.23 5.15 4.56 4.17 3.47
ŝtd 5.83 5.72 5.00 4.34 3.71 6.04 5.96 5.19 4.53 3.88
cvp 96.60 97.10 97.20 97.00 96.70 96.80 97.10 96.40 96.00 96.70

CC

bias 1.88 −1.13 0.68 0.01 −0.18 0.19 0.86 −1.09 0.45 −0.08
std 8.13 8.01 7.51 6.32 5.48 11.35 11.65 11.24 9.44 7.65
ŝtd 8.12 7.95 7.23 5.95 4.91 11.13 10.90 9.99 8.23 6.80
cvp 95.70 94.50 94.40 93.80 91.40 93.50 94.00 91.50 91.50 91.50

only uses the information of the observed data. Also, our proposed inverse probability weighted approach performs better
than the imputation method. When the missing rate becomes higher, the complete case method performs worse quickly
while the omniscient and IPW methods are not affected so much. The Monte Carlo standard deviations are very close
to the average of the estimated standard deviations which imply that the standard deviations were estimated precisely
and confirm the consistency results stated in Theorem 2.2. The empirical coverage probabilities of the 95% confidence
interval for three estimators are very close to the pre-specified nominal level, which suggest that our inferential results
are reliable.

To illustrate the performance of the proposed Wald test approach, we tested whether x7 is important in predicting y
in Model I. We choose Q = (0, . . . , 0, 1)1×5, q0 = 01×2 in our testing problem. The power performance was investigated
by simulation runs with different alternatives through varying the values of the last row of β = (β1, β2). Specifically, we
change the last row of β = (β1, β2) to (τ , τ ), where τ is from 0 to 0.16 and the step length is 0.02. Obviously, τ = 0
corresponds to the case that x7 is not important covariate. The power curves with different sample sizes and missing rates
are displayed in Fig. 1. The empirical sizes of Tn with three different estimation methods are very close to the theoretical
level 0.05. Under the alternative hypothesis τ ̸= 0, the power increases quickly as τ increases, that is, the tests are very
sensitive to the alternatives. Also, the power with n = 500 is higher than that with n = 300, and that with a small
MR is higher than that with a large MR. Besides, the power performance based on the omniscient and IPW methods is
significantly better than that based on the CC method.

We now further assess efficacy of the proposed BIC-type criterion in estimating the structural dimension of the span(β)
for incomplete data. The estimation results of the structural dimension based on Models I and II with (α, κ) = (1, 0.05)
are summarized in Table 7. The structural dimension of Model I is d = 2 and that of Model II is d = 3. From Table 7 we
can see that the BIC-type criterion gives very good performance for all three methods. When the MR is high, the complete
case method offers poorer performance than the omniscient and IPW approaches.

3.2. Application to hypertension study

We further illustrate our proposed method by applying to analyzing a primary hypertension data collected in the Inner
Mongolia Autonomous Region of P. R. China in 2002. The aim of this study was to understand environmental risk factors
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Table 3
Simulation results for Model I with n = 500: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation (‘‘std’’), the average
of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’) at the nominal 95%
confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in Section 3.1. The
parameters β̂ij are defined in (2.2).

Method β̂13 β̂14 β̂15 β̂16 β̂17 β̂23 β̂24 β̂25 β̂26 β̂27

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Case 1: MR = 10%

Omni

bias 0.35 −0.15 0.19 −0.05 0.27 −0.42 0.79 −0.19 0.07 0.29
std 3.75 3.67 3.09 2.74 2.45 4.25 4.23 3.80 3.26 2.76
ŝtd 3.98 3.91 3.36 2.97 2.55 4.86 4.79 4.13 3.66 3.14
cvp 95.40 96.40 96.00 95.90 95.60 97.30 96.70 95.40 96.80 96.50

IPW

bias 0.34 −0.13 0.18 −0.04 0.28 −0.48 0.86 −0.25 0.11 0.23
std 3.81 3.70 3.15 2.83 2.45 4.29 4.26 3.84 3.34 2.79
ŝtd 4.04 3.96 3.41 3.02 2.58 4.99 4.91 4.24 3.75 3.21
cvp 95.50 96.10 96.70 95.70 95.30 97.70 97.20 96.20 96.60 97.30

CC

bias 0.95 −0.51 0.22 −0.08 −0.16 0.00 0.44 −0.40 0.34 −0.51
std 4.39 4.25 3.72 3.42 2.97 5.87 5.69 5.05 4.75 4.07
ŝtd 4.52 4.39 3.85 3.37 2.88 6.08 5.93 5.25 4.59 3.95
cvp 95.90 95.10 94.70 95.50 94.10 95.70 95.80 95.90 94.30 93.60

Case 2: MR = 30%

Omni

bias 0.24 −0.14 0.07 −0.12 0.15 −0.17 0.30 −0.27 0.14 0.03
std 3.82 3.72 3.24 2.98 2.49 4.07 4.04 3.38 3.05 2.55
ŝtd 4.05 3.97 3.43 3.03 2.57 4.22 4.12 3.55 3.14 2.67
cvp 94.60 96.20 95.50 94.00 94.70 95.00 95.30 95.10 95.20 95.40

IPW

bias 0.22 −0.12 0.04 −0.08 0.15 −0.19 0.35 −0.34 0.21 0.03
std 3.94 3.82 3.31 3.02 2.58 4.18 4.20 3.57 3.18 2.67
ŝtd 4.17 4.09 3.55 3.12 2.65 4.41 4.31 3.73 3.29 2.79
cvp 94.70 95.90 96.00 94.70 95.30 95.60 94.70 95.10 95.80 96.20

CC

bias 1.40 −0.64 0.06 0.16 0.07 0.32 1.09 −1.33 0.78 −0.24
std 6.43 6.39 5.68 4.82 4.05 9.04 9.05 8.47 7.01 6.01
ŝtd 6.61 6.45 5.84 4.82 3.95 9.43 9.19 8.37 6.91 5.69
cvp 95.20 95.40 96.00 94.90 93.40 95.60 94.50 95.50 94.20 94.00

related to the primary hypertension. The hypertension data set contains 1051 subjects that aged 20 years or older and
had been living in the rural areas in the region at least for three generations. Both the systolic (Y1) and the diastolic
blood pressures (Y2) are recorded for each subject. Fifteen candidate environmental risk factors denoted as X1, . . . , X15
were collected: height, weight, age, waist, gender, glucose, triglyceride (tg for short), total cholesterol (tc for short), high
density lipoprotein cholesterol (hdlc for short), low density lipoprotein cholesterol (ldlc for short), Apolipoprotein A1 (apoa
for short), Apolipoprotein B (apob for short), blood urea nitrogen (bun for short), cellulase gene glone (cre for short) and
hip. Since the data have no missing data, in order to illustrate our proposed method, we used the following two selection
probability functions to remove some responses,

π1(x) = 1/[1 + exp{−0.2(X2 + X3) + 3.3(X7 + X8)}], π2(x) = 1/[1 + exp{0.4(X5 + X6) − 1.2(X10 + X12)}].

The MRs are about 0.2331 and 0.3720 for π1(x) and π2(x) respectively. The BIC-type criterion yielded d̂ = 2 for all
three methods. The profile least squares estimates, along with their standard deviations and the p-values are given in
Table 8 from which we can see that the omniscient method gives the smallest standard deviations and the complete
case approach offers the biggest standard deviations. The major risk factors predisposing to essential hypertension in
Mongolian population include age, obesity, gender, total cholesterol, triglyceride, Apolipoprotein A1, etc. The potential
causes for controlling essential hypertension could be weight control and healthy diet habits. Thus doing exercises and
keeping the balance of wide variety of chemicals in the diet are very important to control essential hypertension. Our
analysis provides scientific foundations for prevention and control of essential hypertension.

4. Concluding remarks

In practice, nowadays many output and input data are easily collected. For example, as demonstrated in the real data
analysis of hypertension studies, both the diastolic and the systolic blood pressures, as well as many environmental factors
are typically recorded simultaneously. In such studies, both the responses and predictors are multivariate and further
the response data may be missing at random. To reduce the dimension of the predictors, we estimate the central mean
subspace via the profile least squares method with the help of the inverse probability weighted approach. The proposed
estimation method is different from the existing SDR methods, since our proposed estimation method does not require any
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Table 4
Simulation results for Model II with n = 300: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation (‘‘std’’), the average
of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’) at the nominal 95%
confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in Section 3.1. The
parameters β̂ij are defined in (2.2).

Method β̂14 β̂15 β̂16 β̂24 β̂25 β̂26 β̂34 β̂35 β̂36

0.8 −0.4 0.2 −0.2 0.4 −0.8 0.3 0.5 0.7

Case 1: MR = 10%

Omni

bias −0.63 −0.85 −0.46 −1.38 −1.79 0.50 3.30 4.23 2.61
std 1.93 1.77 1.58 3.59 3.22 2.98 7.01 6.19 5.64
ŝtd 2.38 2.24 2.04 4.35 3.92 3.80 7.62 6.85 6.74
cvp 97.00 97.40 96.70 96.90 94.70 97.90 94.80 90.90 94.90

IPW

bias −0.63 −0.85 −0.45 −1.41 −1.83 0.51 3.27 4.23 2.55
std 1.91 1.79 1.59 3.60 3.31 3.01 7.07 6.32 5.68
ŝtd 2.38 2.24 2.03 4.33 3.88 3.77 7.60 6.81 6.68
cvp 97.20 96.90 96.80 96.70 94.20 98.10 94.10 90.90 95.10

CC

bias −0.88 −1.01 −0.58 −1.74 −2.27 0.81 5.36 5.23 3.81
std 1.99 1.90 1.70 3.97 3.78 3.43 7.98 7.72 6.96
ŝtd 2.05 1.97 1.75 4.11 3.92 3.49 8.61 8.30 7.44
cvp 94.50 92.70 94.80 93.50 92.00 95.20 93.10 92.60 94.40

Case 2: MR = 30%

Omni

bias −0.38 −0.65 −0.28 −0.49 −1.34 0.67 1.81 3.15 0.85
std 1.87 1.95 1.60 3.99 3.88 3.14 7.04 7.26 5.78
ŝtd 2.24 2.37 1.84 4.19 4.18 3.23 6.98 7.10 5.59
cvp 94.90 95.70 94.60 93.80 94.00 92.80 92.70 91.00 90.20

IPW

bias −0.35 −0.62 −0.27 −0.47 −1.35 0.66 1.78 2.97 0.88
std 1.92 1.92 1.59 4.10 3.87 3.08 7.59 7.38 5.75
ŝtd 2.22 2.35 1.83 4.17 4.18 3.21 6.89 7.05 5.53
cvp 95.10 96.20 94.40 95.10 94.30 92.50 91.90 91.90 89.90

CC

bias −0.46 −1.21 −0.35 −0.89 −2.73 1.31 2.88 7.22 2.23
std 2.51 2.34 2.36 5.50 4.96 5.12 9.99 9.62 10.23
ŝtd 2.48 2.30 2.31 5.39 4.92 5.05 10.65 9.77 10.06
cvp 95.10 91.60 95.00 94.10 92.70 93.10 95.80 90.80 93.70

distributional assumption on the covariates, and hence allows for categorical predictors and facilitates statistical inference
on the central mean subspace.
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Appendix A. Some additional simulations

In this Appendix, we present additional simulation results to show the performance of our proposals with large p and
q. Specifically, we considered the following model,

Model III:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 =(β⊤

1 x)/{0.5 + (β⊤

2 x + 1.5)2} + ε1,

Y2 = sin(β⊤

1 x) − 2β⊤

2 x + ε2,

Y3 =2β⊤

1 x − cos(β⊤

2 x) + ε3,

Y4 =(β⊤

1 x)
2
− β⊤

2 x + ε4,

Y5 =4β⊤

1 x + 2(β⊤

2 x)
2
+ ε5,

Y6 =(β⊤

2 x)/{0.5 + (β⊤

1 x + 1.5)2} + ε6,

(A.1)

where we set p = 12, q = 6, β1 = (1, 0, 0.8, −0.6, 0.4, −0.2, 0, −0.8, 0.6, −0.4, 0.2, 0)⊤ and β2 = (0, 1, −0.8, 0.6, −0.4,
0.2, 0, 0.8, −0.6, 0.4, −0.2, 0)⊤. The values of γk in (2.1) are given in Table 9 that resulted in approximately 10% and
30% MRs. The bias, std, ŝtd and the cvp at the nominal 95% confidence level for all free parameters are presented in
Tables 10–13 for different settings. The MSEs for four different estimators with different sample sizes and missing rates
are put in Table 14. It can be seen from Tables 10–14 that our proposed method still works well when the dimensions
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Table 5
Simulation results for Model II with n = 500: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation (‘‘std’’), the average
of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’) at the nominal 95%
confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in Section 3.1. The
parameters β̂ij are defined in (2.2).

Method β̂14 β̂15 β̂16 β̂24 β̂25 β̂26 β̂34 β̂35 β̂36

0.8 −0.4 0.2 −0.2 0.4 −0.8 0.3 0.5 0.7

Case 1: MR = 10%

Omni

bias −0.61 −0.75 −0.50 −1.48 −1.56 0.24 3.11 3.85 2.65
std 1.47 1.39 1.33 2.83 2.73 2.44 5.66 5.04 4.71
ŝtd 1.83 1.71 1.54 3.38 2.99 2.88 6.00 5.25 5.17
cvp 96.10 96.90 95.70 95.50 92.40 97.40 92.20 89.10 92.40

IPW

bias −0.61 −0.74 −0.49 −1.46 −1.55 0.26 3.13 3.80 2.60
std 1.47 1.39 1.34 2.84 2.71 2.44 5.64 5.00 4.75
ŝtd 1.82 1.70 1.54 3.37 2.98 2.87 5.98 5.25 5.14
cvp 96.50 96.40 95.30 95.70 92.70 96.90 92.20 90.10 92.60

CC

bias −0.86 −0.95 −0.61 −1.59 −2.07 0.63 5.27 5.04 3.84
std 1.59 1.55 1.42 3.15 3.13 2.84 6.61 6.57 5.70
ŝtd 1.68 1.61 1.43 3.39 3.24 2.87 7.28 7.05 6.24
cvp 93.40 92.80 92.80 94.30 91.40 95.20 92.40 91.50 93.00

Case 2: MR = 30%

Omni

bias −0.24 −0.45 −0.23 −0.53 −1.15 0.63 1.10 2.42 0.74
std 1.57 1.59 1.37 3.11 3.09 2.52 6.54 6.05 4.90
ŝtd 1.70 1.76 1.40 3.30 3.20 2.50 5.38 5.39 4.22
cvp 94.10 94.80 92.20 94.80 93.60 91.20 91.70 90.40 91.10

IPW

bias −0.24 −0.43 −0.24 −0.54 −1.12 0.62 1.07 2.30 0.79
std 1.64 1.62 1.38 3.11 3.05 2.57 6.91 6.30 5.06
ŝtd 1.70 1.76 1.39 3.28 3.18 2.47 5.37 5.39 4.20
cvp 94.70 94.30 93.10 95.40 94.30 91.30 91.80 90.10 91.40

CC

bias −0.37 −1.11 −0.37 −0.98 −2.54 0.98 2.70 6.47 2.43
std 2.04 1.79 2.05 4.43 3.94 4.21 8.64 7.90 8.49
ŝtd 2.08 1.90 1.91 4.56 4.14 4.24 9.23 8.37 8.68
cvp 95.60 92.90 92.00 95.00 93.90 94.80 96.10 92.10 93.80

Table 6
The MSE results for Models I and II with different sample sizes and missing rates (MRs). All simulation results reported below are multiplied by
100. The methods Omni, IPW, IMP and CC are described in Section 3.1.
Model n Case 1: MR = 10% Case 2: MR = 30%

Omni IPW IMP CC Omni IPW IMP CC

I 300 2.3709 2.3780 2.8719 3.2486 2.8011 2.8072 4.4831 8.0105
500 1.3703 1.3775 1.8531 1.9774 1.5430 1.6666 2.8897 4.9815

II 300 2.4900 2.5301 2.6046 3.5130 2.7569 2.7959 3.4639 5.7921
500 1.8489 1.8662 1.9600 2.4480 2.1583 2.2603 2.8026 4.1918

p and q increase, and the simulation results are similar to that in Section 3.1. For example, by the MSE, the omniscient
method gives the best performance, and the inverse probability weighted method performs better than its competitors:
the complete case and imputation methods. The omniscient and IPW methods are not affected so much by missing rates,
while the complete case method performs worse quickly when the missing rate gets higher. Also, the Monte Carlo standard
deviations are very close to the average of the estimated standard deviations and the empirical coverage probabilities of
the 95% confidence interval are very close to the pre-specified nominal level.

Further, we evaluated the efficacy of the proposed BIC-type criterion in determining the structural dimension of span(β)
in Model III for incomplete data. The structural dimension of the span(β) is d = 2 and the penalty term is chosen to be
(α, κ) = (1, 0.05). The percentages for each estimated dimension are charted in Table 15 from which we can see that the
BIC-type criterion has satisfactory performance.

In addition, to show the influence of the penalty term on the BIC-type criterion, we have tried several values of
λn = αnκ and give some typical results of (α, κ) for Models I–III with n = 500 and MR = 30%. The frequencies based on
three methods of the estimated structural dimension d̂ are summarized in Table 16. It can be concluded from Table 16 that
the choice of (α, κ) = (1, 0.05) gives the best performance. Further, when the penalty term gets larger, the proportion of
underestimate dimension gradually gets higher, while the percentage of overestimate dimension gets higher as the penalty
term decreases. For example, when (α, κ) = (1, 0.3) in Model III, the percentages of d̂ = 1 (which underestimated) for all
three methods are very high. The proportions of overestimated dimension for Model II with (α, κ) = (0.35, 0.05) based
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Fig. 1. The power curves of the Wald test for MR = 10% (left panel) and MR = 30% (right panel) with n = 300 (top) and n = 500 (bottom) based
on Omni (solid line), IPW (dashed line) and CC (dot dash line) methods. The methods Omni, IPW and CC are described in Section 3.1.

on the three methods are very high too. Besides, it is also interesting to note that the structural dimension estimation of
Model I is more sensitive to penalty term than the other two models. To sum up, we recommend to use (α, κ) = (1, 0.05)
in the penalty term in practice.

Appendix B. Proof of Theorem 2.1

Lemma B.1 ([18]). Let {ζ1, . . . , ζn} be independent and identically distributed random variables with Eζ1 = 0 and E|ζ1|
r

≤

C < ∞ for some r > 1. Suppose that {aij, 1 ≤ i, j ≤ n} is a series of real numbers such that max1≤j≤n
∑n

i=1 |aij| ≤ C < ∞.
Set dn = max1≤i,j≤n |aij|. Then max1≤j≤n

⏐⏐∑n
i=1 aijζi

⏐⏐ = O
{
(n1/rdn ∨ d1/2n ) ln n

}
, a.s.

Let π̂ik = π (xi, γ̂k), πik = π (xi, γk), Wi = diag
{
Wi1, . . . ,Wiq

}
= diag

{
δi1/π1(xi), . . . , δiq/πq(xi)

}
,

Γk = E
[
πk(xi){1 − πk(xi)}xix⊤

i

]
, Ê(εi |̂β

⊤xi) =
{̂
E1(εi1 |̂β

⊤xi), . . . , Êq(εiq |̂β
⊤xi)

}⊤
,

Ê(x−d,i |̂β
⊤xi) =

{̂
E1(x−d,i |̂β

⊤xi), . . . , Êq(x−d,i |̂β
⊤xi)

}
and ˆ̃x−d,i =

{
x−d,i − Ê1(x−d,i |̂β

⊤xi), . . . , x−d,i − Êq(x−d,i |̂β
⊤xi)

}
, where

Êk(x−d,i |̂β
⊤xi) =

∑
j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi)x−d,j
/∑

j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi),

Êk(εik |̂β
⊤xi) =

∑
j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi)εjk
/∑

j̸=i

δjkKh (̂β
⊤xj − β̂

⊤xi)
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Table 7
The frequencies (%) of the estimated structural dimension d̂ for Models I and II with different sample
sizes and missing rates (MRs). The methods Omni, IPW and CC are described in Section 3.1.
Molde n MR Method d̂ = 1 d̂ = 2 d̂ = 3 d̂ ≥ 4

Model I 300 10% Omni 3.30 96.70 0.00 0.00
IPW 4.20 95.80 0.00 0.00
CC 17.60 82.40 0.00 0.00

30% Omni 5.20 94.80 0.00 0.00
IPW 4.30 95.70 0.00 0.00
CC 44.30 55.70 0.00 0.00

500 10% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 0.00 100.00 0.00 0.00

30% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 8.60 91.40 0.00 0.00

Model II 300 10% Omni 0.00 0.00 100.00 0.00
IPW 0.00 0.00 100.00 0.00
CC 0.00 0.00 100.00 0.00

30% Omni 0.00 0.00 100.00 0.00
IPW 0.00 0.00 100.00 0.00
CC 0.00 0.00 100.00 0.00

500 10% Omni 0.00 0.00 100.00 0.00
IPW 0.00 0.00 100.00 0.00
CC 0.00 0.00 100.00 0.00

30% Omni 0.00 0.00 100.00 0.00
IPW 0.00 0.00 100.00 0.00
CC 0.00 0.00 100.00 0.00

Table 8
The estimated coefficients, the standard errors along with the p-values based on the Ommi, IPW and CC methods for the hypertension study data.
The methods Omni, IPW and CC are described in Section 3.1.

age waist gender glucose tg tc hdlc ldlc apoa apob bun cre hip

Omni

coef 0.4589 0.2033 0.4144 0.9194 1.5558 −2.5903 2.1748 2.4774 9.2123 0.3360 −0.5714 0.0903 0.4138
0.4587 0.2068 0.4172 0.8991 1.5837 −2.6258 2.2905 2.5476 9.1465 0.2816 −0.5759 0.0912 0.4117

std 0.0029 0.0059 0.0787 0.0313 0.0313 0.0561 0.2021 0.0483 0.1731 0.1639 0.0177 0.0040 0.0090
0.0021 0.0050 0.1157 0.0165 0.0202 0.0405 0.1392 0.0382 0.1473 0.2020 0.0226 0.0027 0.0083

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0403 0.0000 0.0000 0.0000
0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1633 0.0000 0.0000 0.0000

IPW

coef 0.4590 0.2032 0.4163 0.9174 1.5599 −2.5937 2.1899 2.4757 9.2003 0.3504 −0.5711 0.0901 0.4138
0.4587 0.2065 0.4165 0.9016 1.5823 −2.6249 2.2862 2.5421 9.1489 0.2938 −0.5762 0.0912 0.4116

std 0.0030 0.0061 0.0805 0.0319 0.0343 0.0576 0.2183 0.0503 0.1739 0.1673 0.0180 0.0040 0.0092
0.0021 0.0051 0.1185 0.0171 0.0204 0.0411 0.1392 0.0379 0.1506 0.2070 0.0231 0.0027 0.0084

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0362 0.0000 0.0000 0.0000
0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1557 0.0000 0.0000 0.0000

CC

coef 0.4646 0.1784 0.5480 1.2437 2.1166 −4.1440 6.9894 4.3364 7.6726 −0.0062 −0.8023 0.1624 0.4114
0.4957 0.2746 −1.9330 1.1240 2.6016 −2.0561 2.2061 0.5530 9.7228 −1.3318 −0.8624 0.1731 0.5029

std 0.0163 0.0369 0.5952 0.1695 0.3530 0.5061 0.9872 0.6101 1.1822 1.6311 0.1224 0.0206 0.0484
0.0170 0.0390 0.5985 0.1902 0.3275 0.4249 0.8719 0.5234 1.0091 1.3993 0.1179 0.0192 0.0555

p-value 0.0000 0.0000 0.3572 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9970 0.0000 0.0000 0.0000
0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0114 0.2907 0.0000 0.3412 0.0000 0.0000 0.0000

for k ∈ {1, . . . , q}. Note that m̂(̂β
⊤xi) = Ê(yi |̂β

⊤xi), which together with yi = m(β⊤xi) + εi, gives that yi − m̂(̂β
⊤xi) =

m(β⊤xi) + εi − Ê{m(β⊤xi) + εi |̂β
⊤xi}. It follows from Taylor expansion that m(β⊤xi) = m(̂β

⊤xi) + m(1) (̂β
⊤xi)(β−d −

β̂−d)⊤x−d,i + op(∥̂β−d − β−d∥). Hence

yi − m̂(̂β
⊤xi) = D

{
m(1) (̂β

⊤xi)(β−d − β̂−d)
⊤ˆ̃x−d,i

}
+ {εi − Ê(εi |̂β

⊤xi)} + op(∥̂β−d − β−d∥),
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Table 9
The choices of γk , k ∈ {1, . . . , 6} to attain different missing rates (MRs) for Model III that given in (A.1).
MR γ

10% γ1 2.1 −2.0 1.5 2.3 2.5 −2.2 −0.2 1.1 −1.3 1.6 2.1 0.2
γ2 1.4 2.2 2.4 1.7 −2.4 1.9 1.3 −1.1 1.6 −2.5 1.3 1.0
γ3 1.6 −1.0 1.6 1.6 −1.2 2.5 2.8 −1.5 −1.1 −1.2 1.8 1.9
γ4 1.5 1.1 2.7 −1.1 0.6 −1.9 1.8 0.3 −0.7 0.3 0.3 1.5
γ5 2.2 −1.1 0.3 0.6 2.7 2.2 0.4 0.9 −2.7 2.9 −2.1 1.8
γ6 2.1 −2.1 0.5 2.6 0.5 −2.4 0.9 1.4 −1.3 2.0 1.3 1.9

30% γ1 0.5 0.5 1.2 −1.6 0.2 −1.7 3.3 1.1 −2.1 −2.7 1.1 3.3
γ2 −2.2 −1.5 1.0 2.1 −1.6 1.5 −2.3 2.4 2.1 −0.2 1.4 0.3
γ3 2.1 1.7 −2.6 1.5 1.3 0.4 −1.2 1.3 −1.5 −3.1 2.5 0.5
γ4 1.9 −1.5 1.4 −1.3 −1.3 0.4 −1.6 1.4 −2.3 2.8 0.1 2.9
γ5 2.3 −2.9 1.6 0.7 2.2 0.3 1.1 −2.7 1.5 1.2 −2.0 −0.5
γ6 1.9 1.2 1.6 −2.6 1.4 2.0 −2.6 1.5 −1.9 0.7 −2.9 2.7

Table 10
Simulation results for Model III with n = 300 and MR = 10%: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation
(‘‘std’’), the average of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’)
at the nominal 95% confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in
Section 3.1. The parameters β̂ij are defined in (2.2).

Method β1 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂1,8 β̂1,9 β̂1,10 β̂1,11 β̂1,12

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Omni

bias −0.49 0.44 −0.14 0.22 −0.11 0.54 −0.38 0.39 −0.20 0.13
std 2.50 2.52 2.22 1.77 1.86 2.80 2.60 2.06 1.78 1.59
ŝtd 2.38 2.37 2.07 1.82 1.76 2.77 2.35 2.04 1.83 1.57
cvp 91.90 92.30 93.30 94.20 94.20 93.30 90.50 94.70 95.70 94.20

IPW

bias −0.44 0.42 −0.13 0.20 −0.09 0.47 −0.32 0.37 −0.21 0.14
std 2.47 2.49 2.22 1.78 1.85 2.78 2.64 2.05 1.79 1.60
ŝtd 2.36 2.35 2.05 1.80 1.75 2.74 2.32 2.02 1.82 1.55
cvp 92.80 93.30 93.30 92.80 94.20 94.20 90.40 95.20 96.60 94.70

IMP bias −0.56 0.52 −0.59 0.11 −0.05 0.55 −0.62 0.42 −0.04 −0.10
std 2.60 2.53 2.22 1.98 1.85 2.93 2.50 2.25 2.01 1.67

CC

bias −0.43 0.43 −0.08 0.24 −0.11 0.48 −0.39 0.28 −0.18 0.02
std 3.14 3.35 2.90 2.45 2.42 3.54 3.39 2.78 2.26 2.14
ŝtd 2.89 2.94 2.43 2.24 2.11 3.33 2.90 2.53 2.19 1.87
cvp 92.30 89.10 88.10 92.80 90.50 92.50 90.40 92.30 92.80 92.80

Method β2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7 β̂2,8 β̂2,9 β̂2,10 β̂2,11 β̂2,12

−0.8 0.6 −0.4 0.2 0 0.8 −0.6 0.4 −0.2 0

Omni

bias 0.46 −0.33 0.24 −0.11 0.00 −0.26 0.20 −0.14 0.05 0.03
std 1.83 1.74 1.47 1.41 1.32 1.95 1.72 1.42 1.33 1.04
ŝtd 1.80 1.77 1.55 1.36 1.32 2.06 1.75 1.52 1.37 1.16
cvp 91.90 95.20 94.20 93.30 91.40 94.20 93.30 96.10 92.80 95.20

IPW

bias 0.49 −0.39 0.27 −0.12 −0.01 −0.28 0.21 −0.15 0.05 0.02
std 1.84 1.74 1.48 1.42 1.31 2.01 1.76 1.46 1.36 1.08
ŝtd 1.78 1.75 1.53 1.35 1.30 2.04 1.73 1.50 1.36 1.15
cvp 90.90 94.20 94.70 94.20 91.90 92.30 92.80 94.50 92.30 95.20

IMP bias 0.58 −0.53 0.20 −0.21 −0.07 −0.71 0.68 −0.55 0.24 −0.10
std 1.78 1.65 1.41 1.37 1.28 1.88 1.72 1.56 1.40 1.23

CC

bias 0.62 −0.57 0.25 −0.19 −0.01 −0.43 0.36 −0.20 0.09 −0.07
std 2.13 2.13 1.77 1.67 1.61 2.35 2.06 1.78 1.60 1.38
ŝtd 2.00 2.03 1.67 1.53 1.45 2.28 1.99 1.73 1.50 1.28
cvp 92.80 92.80 92.30 92.80 92.30 93.30 92.30 93.40 93.00 94.20

where D(A) = (a11, a22, . . . , aqq)⊤ for any matrix A = (aij)q×q. Then Eq. (2.2) can be rewritten as

n∑
i=1

{
yi − m̂(̂β

⊤xi)
}⊤Ŵi

{
yi − m̂(̂β

⊤xi)
}

≈

n∑
i=1

[
D

{
m(1) (̂β

⊤xi)(β−d − β̂−d)
⊤ˆ̃x−d,i

}
+ {εi − Ê(εi |̂β

⊤xi)}
]⊤Ŵi

[
D

{
m(1) (̂β

⊤xi)(β−d − β̂−d)
⊤ˆ̃x−d,i

}
+ {εi − Ê(εi |̂β

⊤xi)}
]
,
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Table 11
Simulation results for Model III with n = 500 and MR = 10%: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation
(‘‘std’’), the average of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’)
at the nominal 95% confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in
Section 3.1. The parameters β̂ij are defined in (2.2).

Method β1 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂1,8 β̂1,9 β̂1,10 β̂1,11 β̂1,12

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Omni

bias −0.14 0.12 0.12 −0.01 −0.01 0.30 −0.35 0.23 −0.12 0.19
std 1.87 1.88 1.56 1.42 1.34 2.32 1.89 1.50 1.48 1.31
ŝtd 1.86 1.84 1.61 1.42 1.36 2.15 1.83 1.59 1.43 1.22
cvp 93.30 93.50 94.70 97.60 95.70 91.90 93.80 96.10 95.20 92.30

IPW

bias −0.14 0.12 0.13 −0.02 0.02 0.28 −0.36 0.24 −0.12 0.19
std 1.88 1.90 1.58 1.44 1.35 2.32 1.88 1.52 1.48 1.33
ŝtd 1.85 1.83 1.60 1.41 1.35 2.14 1.82 1.58 1.42 1.21
cvp 93.30 92.80 93.80 96.10 95.70 92.30 92.80 96.10 94.20 92.80

IMP bias −0.33 0.26 −0.22 −0.01 −0.24 0.37 −0.07 0.12 −0.13 −0.08
std 1.88 1.81 1.67 1.50 1.57 2.18 1.90 1.61 1.57 1.22

CC

bias −0.23 0.14 0.02 0.01 −0.10 0.38 −0.46 0.34 −0.07 0.21
std 2.46 2.37 1.96 1.76 1.74 2.79 2.26 1.98 1.89 1.67
ŝtd 2.29 2.32 1.94 1.78 1.65 2.64 2.32 2.03 1.74 1.49
cvp 93.30 93.30 94.70 97.10 93.50 95.70 94.20 96.10 91.90 90.90

Method β2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7 β̂2,8 β̂2,9 β̂2,10 β̂2,11 β̂2,12

−0.8 0.6 −0.4 0.2 0 0.8 −0.6 0.4 −0.2 0

Omni

bias 0.24 −0.21 0.14 −0.11 0.07 −0.31 0.27 −0.15 0.08 −0.07
std 1.29 1.21 1.07 1.01 0.94 1.40 1.30 1.17 1.09 0.86
ŝtd 1.39 1.37 1.19 1.05 1.01 1.59 1.36 1.17 1.06 0.91
cvp 97.00 95.70 97.10 95.70 95.70 97.10 95.20 94.20 90.90 96.10

IPW

bias 0.25 −0.22 0.13 −0.11 0.07 −0.32 0.29 −0.18 0.09 −0.08
std 1.31 1.22 1.08 1.01 0.93 1.40 1.31 1.18 1.08 0.86
ŝtd 1.39 1.37 1.19 1.05 1.00 1.59 1.35 1.17 1.05 0.90
cvp 96.10 95.70 96.60 95.70 96.10 96.60 93.80 92.30 91.90 95.20

IMP bias 0.41 −0.32 0.18 −0.25 0.09 −0.58 0.42 −0.26 0.18 −0.10
std 1.44 1.47 1.13 1.05 1.01 1.61 1.47 1.23 1.05 0.87

CC

bias 0.37 −0.26 0.19 −0.23 0.08 −0.44 0.41 −0.24 0.12 −0.09
std 1.44 1.47 1.24 1.18 1.18 1.66 1.54 1.35 1.29 1.06
ŝtd 1.54 1.56 1.30 1.19 1.12 1.77 1.55 1.35 1.17 1.00
cvp 97.10 96.50 96.10 94.20 93.80 97.60 95.70 95.20 93.30 94.20

which yields

vec(β−d) − vec(̂β−d) =

[ n∑
i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤

q (̂β
⊤xi) ⊗ˆ̃x−d,iq

}
Ŵi

×

{
m(1)

1 (̂β
⊤xi) ⊗ˆ̃x⊤

−d,i1, . . . ,m
(1)
q (̂β

⊤xi) ⊗ˆ̃x⊤

−d,iq

}]−1

·

[ n∑
i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1,

. . . ,m(1)⊤
q (̂β

⊤xi) ⊗ˆ̃x−d,iq

}
Ŵi

{
εi − Ê(εi |̂β

⊤xi)
}]

+ op(∥β−d − β̂−d∥). (B.1)

Let Ŵik be the (k, k)th element of Ŵi. Note that Ŵik can be decomposed as δik/π̂ik = δik/πik − (π̂ik − πik)δik/π2
ik +

(π̂ik − πik)2δik/(π̂ikπ
2
ik) for k ∈ {1, . . . , q}. Because πik = πk(xi, γk) comes from the logistic regression model and the

MLEs γ̂k are root-n consistent estimators of γk for k ∈ {1, . . . , q}, by Taylor expansion, we can obtain that π̂ik − πik =

πik(1 − πik)x⊤

i (̂γk − γk){1 + op(1)}, and further

Ŵik − Wik = δik(1 − πik)x⊤

i (̂γk − γk)/πik{1 + op(1)}, (B.2)

where Ŵik = δik/π̂ik and Wik = δik/πik for k ∈ {1, . . . , q}. Write
n∑

i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤

q (̂β
⊤xi) ⊗ˆ̃x−d,iq

}
Ŵi

{
εi − Ê(εi |̂β

⊤xi)
}

=

n∑
i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤

q (̂β
⊤xi) ⊗ˆ̃x−d,iq

}
Wi

{
εi − Ê(εi |̂β

⊤xi)
}
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Table 12
Simulation results for Model III with n = 300 and MR = 30%: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation
(‘‘std’’), the average of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’)
at the nominal 95% confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in
Section 3.1. The parameters β̂ij are defined in (2.2).

Method β1 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂1,8 β̂1,9 β̂1,10 β̂1,11 β̂1,12

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Omni

bias −0.14 −0.04 −0.07 −0.04 −0.12 0.58 −0.53 0.26 0.05 −0.10
std 2.45 2.25 1.98 1.84 1.74 3.04 2.42 2.07 1.76 1.48
ŝtd 2.63 2.54 2.23 2.04 1.92 2.96 2.55 2.20 1.99 1.69
cvp 93.50 95.20 94.70 95.20 96.10 92.30 93.80 90.90 95.70 95.20

IPW

bias −0.12 −0.09 −0.04 −0.08 −0.13 0.50 −0.45 0.27 0.08 −0.08
std 2.48 2.25 2.01 1.85 1.77 3.05 2.46 2.13 1.80 1.50
ŝtd 2.59 2.54 2.20 2.02 1.90 2.94 2.50 2.18 1.95 1.68
cvp 93.80 95.20 94.70 95.20 96.10 93.30 92.80 92.30 94.20 94.70

IMP bias −0.81 0.91 −1.24 0.39 0.00 1.06 −0.27 −0.17 0.37 −0.37
std 3.16 3.69 3.41 2.70 3.17 4.28 3.80 3.65 3.55 3.34

CC

bias −1.19 0.86 −0.94 1.03 −0.44 0.43 −0.45 0.57 −0.23 −0.64
std 8.38 8.65 8.18 6.53 8.22 9.05 8.63 8.23 7.65 6.82
ŝtd 6.27 6.52 5.51 5.11 5.71 7.12 6.51 6.41 5.62 5.24
cvp 86.10 84.70 80.90 84.20 84.20 87.60 83.80 87.10 85.20 83.30

Method β2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7 β̂2,8 β̂2,9 β̂2,10 β̂2,11 β̂2,12

−0.8 0.6 −0.4 0.2 0 0.8 −0.6 0.4 −0.2 0

Omni

bias 0.02 0.08 0.06 0.02 −0.08 −0.18 0.21 −0.05 −0.25 −0.01
std 2.02 1.85 1.63 1.46 1.35 2.19 1.96 1.84 1.55 1.21
ŝtd 2.15 2.09 1.84 1.69 1.61 2.36 2.07 1.82 1.60 1.42
cvp 93.30 93.80 94.00 92.30 92.80 92.80 93.80 89.50 92.40 94.20

IPW

bias 0.08 0.03 0.07 0.01 −0.06 −0.24 0.20 −0.08 −0.24 0.01
std 2.03 1.80 1.60 1.50 1.34 2.19 1.93 1.87 1.53 1.21
ŝtd 2.17 2.09 1.81 1.72 1.60 2.37 2.07 1.80 1.58 1.42
cvp 93.50 96.60 93.30 91.00 93.80 91.90 90.90 88.10 91.90 93.80

IMP bias 1.59 −1.84 0.45 −0.78 −0.57 −1.51 0.85 −0.92 0.75 0.54
std 3.60 3.96 2.87 2.95 2.98 3.63 3.43 3.52 3.37 2.59

CC

bias 0.84 −1.29 1.36 −0.76 −0.16 −0.86 0.38 −1.57 0.47 0.49
std 6.49 7.29 6.92 5.57 6.43 7.21 6.49 7.48 5.96 5.88
ŝtd 5.36 5.63 4.72 4.38 4.85 6.13 5.57 5.46 4.83 4.48
cvp 90.00 83.30 86.60 89.10 90.00 90.90 91.40 88.10 89.50 89.50

+

n∑
i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤

q (̂β
⊤xi) ⊗ˆ̃x−d,iq

}
(Ŵi − Wi)

{
εi − Ê(εi |̂β

⊤xi)
}

:=A1n + A2n. (B.3)

Applying the same approaches used in [28], one can derive that

n−1/2A1n = n−1/2
n∑

i=1

{
m(1)⊤

1 (̂β
⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤

q (̂β
⊤xi) ⊗ˆ̃x−d,iq

}
Wiεi + op(1)

d
−→ N (0,Ω2).

It is easy to see that

A2n =

n∑
i=1

[{
m(1)

1 (β⊤xi) + m(1)
1 (̂β

⊤xi) − m(1)
1 (β⊤xi)

}⊤

⊗

{
x−d,i − E(x−d,i|β

⊤xi)

+ E(x−d,i|β
⊤xi) − Ê1(x−d,i |̂β

⊤xi)
}
, . . . ,

{
m(1)

q (β⊤xi) + m(1)
q (̂β

⊤xi) − m(1)
q (β⊤xi)

}⊤

⊗

{
x−d,i − E(x−d,i|β

⊤xi) + E(x−d,i|β
⊤xi) − Êq(x−d,i |̂β

⊤xi)
}]

(Ŵi − Wi)

·

{
εi − Ê(εi|β

⊤xi) + Ê(εi|β
⊤xi) − Ê(εi |̂β

⊤xi)
}
.
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Table 13
Simulation results for Model III with n = 500 and MR = 30%: the average bias of the estimators (‘‘bias’’), the Monte Carlo standard deviation
(‘‘std’’), the average of the estimated standard deviation (‘‘ŝtd’’) based on the theoretical calculation, and the empirical coverage probability (‘‘cvp’’)
at the nominal 95% confidence level. All simulation results reported below are multiplied by 100. The methods Omni, IPW and CC are described in
Section 3.1. The parameters β̂ij are defined in (2.2).

Method β1 β̂1,3 β̂1,4 β̂1,5 β̂1,6 β̂1,7 β̂1,8 β̂1,9 β̂1,10 β̂1,11 β̂1,12

0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0

Omni

bias −0.21 0.35 −0.19 0.12 −0.23 0.66 −0.48 0.32 −0.13 0.04
std 1.87 1.78 1.45 1.28 1.33 2.27 1.92 1.50 1.29 1.05
ŝtd 1.99 1.95 1.65 1.50 1.42 2.23 1.90 1.60 1.47 1.26
cvp 93.80 95.70 98.10 96.10 95.20 91.90 93.30 94.00 96.60 97.60

IPW

bias −0.36 0.29 −0.08 0.13 −0.14 0.43 −0.31 0.26 −0.24 −0.06
std 2.01 2.04 1.66 1.43 1.36 2.13 1.84 1.44 1.31 1.21
ŝtd 1.96 1.92 1.63 1.50 1.42 2.21 1.89 1.60 1.46 1.24
cvp 92.80 90.40 95.20 95.70 95.20 94.20 94.00 95.70 96.10 95.70

IMP bias −0.49 0.30 −0.45 −0.14 −0.09 0.47 0.14 −0.40 0.24 −0.46
std 2.31 2.66 2.33 2.04 2.28 3.04 2.82 2.66 2.30 2.01

CC

bias −0.05 0.46 −0.21 0.24 −0.70 1.28 −0.65 0.60 −0.60 −0.05
std 6.24 6.90 5.67 5.10 5.69 6.97 6.22 6.48 5.84 5.21
ŝtd 5.15 5.32 4.46 4.11 4.44 5.88 5.43 5.12 4.51 4.03
cvp 90.40 86.60 88.50 89.50 86.10 90.00 90.40 86.10 87.10 86.10

Method β2 β̂2,3 β̂2,4 β̂2,5 β̂2,6 β̂2,7 β̂2,8 β̂2,9 β̂2,10 β̂2,11 β̂2,12

−0.8 0.6 −0.4 0.2 0 0.8 −0.6 0.4 −0.2 0

Omni

bias −0.08 0.09 0.16 −0.08 0.13 −0.19 0.15 −0.03 −0.02 0.00
std 1.55 1.47 1.23 1.12 1.06 1.78 1.44 1.38 1.15 0.97
ŝtd 1.67 1.66 1.36 1.22 1.16 1.88 1.61 1.41 1.24 1.08
cvp 93.40 92.80 93.30 91.90 91.90 93.30 92.30 91.00 91.90 95.20

IPW

bias 0.29 −0.18 0.09 −0.08 0.19 −0.50 0.33 −0.14 0.04 0.06
std 1.52 1.52 1.33 1.14 1.07 1.82 1.45 1.28 1.08 0.92
ŝtd 1.61 1.59 1.33 1.22 1.16 1.82 1.56 1.36 1.20 1.04
cvp 94.20 92.80 92.30 94.20 94.70 91.40 92.80 92.30 92.30 94.70

IMP bias 1.53 −1.69 0.35 −0.36 −0.32 −1.46 0.86 −0.77 0.86 0.35
std 2.57 2.81 1.91 1.74 1.98 2.57 2.22 2.18 2.08 1.83

CC

bias 0.62 −0.43 0.21 −0.37 0.11 −0.91 0.76 −0.79 0.74 0.18
std 4.54 4.95 3.93 3.75 3.95 4.93 4.59 4.55 4.31 3.57
ŝtd 4.05 4.21 3.47 3.23 3.51 4.58 4.24 4.03 3.58 3.24
cvp 93.30 92.80 94.70 90.90 91.40 92.30 92.80 92.80 89.50 90.00

Table 14
The MSE results for Model III with different sample sizes and missing rates (MRs). All simulation results reported below are multiplied by 100. The
methods Omni, IPW, IMP and CC are described in Section 3.1.
Model n Case 1: MR = 10% Case 2: MR = 30%

Omni IPW IMP CC Omni IPW IMP CC

III 300 0.7251 0.7304 0.7600 1.1785 0.7609 0.7702 2.3225 10.8675
500 0.4153 0.4190 0.4502 0.6309 0.4389 0.4594 1.0977 5.5542

Together with Lemma B.1, E(εi|xi) = 0 and (B.2), one can derive that
∑n

i=1

{
m(1)(β⊤xi)⊗x−d,i

}
(Ŵi−Wi)εi

 = Op(ln n) =

op(n1/2). By Taylor expansion, it follows that
n∑

i=1

{
m(1)⊤ (β⊤xi) ⊗ x−d,i

}
(Ŵi − Wi)

{̂
E(εi|β

⊤xi) − Ê(εi |̂β
⊤xi)

}
=

n∑
i=1

{
m(1)⊤ (β⊤xi) ⊗ x−d,i

}
(Ŵi − Wi )̂E(1)(εi|β

∗
⊤

xi)(̂β−d − β−d)
⊤x−d,i = op(n1/2).

Similarly, one can derive the other terms in A2n to be op(n1/2). Thus, by (B.3), we have

n−1/2{m(1)⊤
1 (̂β

⊤xi) ⊗ˆ̃x−d,i1, . . . ,m(1)⊤
q (̂β

⊤xi) ⊗ˆ̃x−d,iq
}
Ŵi

{
εi − Ê(εi |̂β

⊤xi)
} d

−→ N (0,Ω2).

Analogously, one can show easily that n−1 times the quantity in the first square brackets in (B.1) converges in probability
to Ω1. Then by the Slutsky Theorem, the result of Theorem 2.1 is obtained. □
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Table 15
The frequency (%) of the estimated structural dimension d̂ for Model III with different sample sizes and
missing rates (MRs). The methods Omni, IPW and CC are described in Section 3.1.
n MR Method d̂ = 1 d̂ = 2 d̂ = 3 d̂ ≥ 4

300 10% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 0.00 100.00 0.00 0.00

30% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 0.50 95.50 0.00 0.00

500 10% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 0.00 100.00 0.00 0.00

30% Omni 0.00 100.00 0.00 0.00
IPW 0.00 100.00 0.00 0.00
CC 0.00 100.00 0.00 0.00

Table 16
The frequency (%) of the estimated structural dimension d̂ for Models I–III with n = 500 and 30% missing rate for different (α, κ). The methods
Omni, IPW and CC are described in Section 3.1.
Model (α, κ) Omni IPW CC

d̂ = 1 d̂ = 2 d̂ = 3 d̂ ≥ 4 d̂ = 1 d̂ = 2 d̂ = 3 d̂ ≥ 4 d̂ = 1 d̂ = 2 d̂ = 3 d̂ ≥ 4

I (0.60, 0.05) 0.00 86.30 0.00 13.70 0.00 87.20 0.00 12.80 0.00 83.60 2.70 13.70
(1.00, 0.05) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 8.60 91.40 0.00 0.00
(1.00, 0.08) 2.40 97.60 0.00 0.00 1.40 98.60 0.00 0.00 47.60 52.40 0.00 0.00
(1.00, 0.12) 27.10 72.90 0.00 0.00 27.60 72.40 0.00 0.00 94.80 5.20 0.00 0.00

II (0.35, 0.05) 0.00 0.00 31.80 68.20 0.00 0.00 35.50 64.50 0.00 0.00 20.00 80.00
(0.40, 0.05) 0.00 0.00 74.50 25.50 0.00 0.00 75.40 24.60 0.00 0.00 63.70 36.30
(0.50, 0.05) 0.00 0.00 100.00 0.00 0.00 0.00 99.10 0.90 0.00 0.00 98.20 1.80
(1.00, 0.05) 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00
(1.00, 0.08) 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00
(1.00, 0.12) 0.00 0.50 99.50 0.00 0.00 0.90 99.10 0.00 0.00 0.50 99.50 0.00
(1.00, 0.15) 0.00 23.70 76.30 0.00 0.00 29.10 70.10 0.00 0.00 16.40 83.60 0.00

III (0.20, 0.05) 0.00 91.80 0.00 8.20 0.00 93.60 0.00 6.40 0.00 73.60 14.60 11.80
(0.50, 0.05) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00
(1.00, 0.05) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00
(1.00, 0.08) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00
(1.00, 0.12) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00
(1.00, 0.15) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00
(1.00, 0.20) 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 4.60 95.40 0.00 0.00
(1.00, 0.28) 12.70 87.30 0.00 0.00 15.40 84.60 0.00 0.00 34.50 65.50 0.00 0.00
(1.00, 0.30) 35.50 64.50 0.00 0.00 31.80 68.20 0.00 0.00 48.10 51.90 0.00 0.00

Appendix C. Proof of Theorem 2.2

Observe that Ω̂1 = n−1 ∑n
i=1(Bi1, . . . ,Biq)(Wi + Ŵi − Wi)(Bi1, . . . ,Biq)⊤, where Bik is the kth column of Bi which can

be rewritten as

Bik =
[
m(1)⊤

k (β⊤xi) + m̂(1),⊤
k (̂β

⊤xi) − m(1)⊤
k (β⊤xi)

]
⊗

[̃
x−d,i +

{
E(x−d,i|β

⊤xi)

− Êk(x−d,i|β
⊤xi)

}
+

(̂
Ek(x−d,i|β

⊤xi) − Êk(x−d,i |̂β
⊤xi)

)]
.

It can be concluded from the weak law of large numbers that n−1 ∑n
i=1

{
m(1)⊤ (β⊤xi) ⊗ x̃−d,i

}
Wi

{
m(1)(β⊤xi) ⊗ x̃⊤

−d,i

}
=

Ω1 + op(1). Following the proof of Lemma A.1 in [16], applying Taylor expansion to Ê(x−d,i|β
⊤xi) − Ê(x−d,i |̂β

⊤xi), and by

|m̂(1) (̂β
⊤xi) − m(1)(β⊤xi)| = op(1) and (B.2), we can obtain that the rest terms of Ω̂1 are all op(1). Similarly, one can prove

Ω̂2
p

→ Ω2. Thus, the proof of Theorem 2.2 is completed. □
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Appendix D. Proof of Theorem 2.3

Let L1(d) =
∑n

i=1

{
yi − m̂(̂β

⊤

d xi)
}⊤Ŵi

{
yi − m̂(̂β

⊤

d xi)
}
. By definition, we write

L1(d) − L1(d0) =

n∑
i=1

{
yi − m̂(̂β

⊤

d xi)
}⊤Ŵi

{
m̂(̂β

⊤

d0xi) − m̂(̂β
⊤

d xi)
}

+

n∑
i=1

{
m̂(̂β

⊤

d0xi) − m̂(̂β
⊤

d xi)
}⊤Ŵi

{
yi − m̂(̂β

⊤

d0xi)
}

:=Λ1 + Λ2.

Note that E(yi|β⊤

d xi) ̸= E(yi|β⊤

d0x) if d < d0 and E(yi|β⊤

d xi) = E(yi|β⊤

d0xi) otherwise. Then by nonparametric regression and
Condition (C2), it can be verified that

m(̂β
⊤

d0xi) − m̂(̂β
⊤

d0xi) = Op[hs
+ {ln n/(nhd)}1/2]. (D.1)

If d < d0, Λ1 =
∑n

i=1

{
m(β⊤

d0xi)−m(β⊤

d xi)
}⊤Wi

{
m(β⊤

d0xi)−m(β⊤

d xi)
}
+op(n). The first term of Λ1 is Op(n) and is positive.

For Λ2, by (D.1), we can derive

Λ2 =

n∑
i=1

{
m̂(̂β

⊤

d0xi) − m̂(̂β
⊤

d xi)
}⊤Ŵi

[{
m(̂β

⊤

d0xi) − m̂(̂β
⊤

d0xi)
}

+ εi
]

=

n∑
i=1

{
m̂(̂β

⊤

d0xi) − m̂(̂β
⊤

d xi)
}⊤Ŵiεi +

n∑
i=1

{
m̂(̂β

⊤

d0xi) − m̂(̂β
⊤

d xi)
}⊤Ŵi

{
m(̂β

⊤

d0xi) − m̂(̂β
⊤

d0xi)
}

=

n∑
i=1

{
m(β⊤

d0xi) − m(β⊤

d xi)
}⊤Wiεi + op(n) = op(n).

Hence from λn/
√
n → 0 and Condition (C4), if d < d0,

L(d) − L(d0) = {L1(d) − L1(d0)} + p(d − d0)λn

{ n∑
i=1

(yi − y)⊤(yi − y)
}1/2

> 0, in probability.

Analogously, by Conditions (C3)–(C4) and λn/ln n → ∞, when d > d0,

L(d) − L(d0) = Op{nh2s
+ h−d ln n} + p(d − d0)λn

{ n∑
i=1

(yi − y)⊤(yi − y)
}1/2

> 0, in probability.

Therefore, Pr(̂d = d0) → 1 and the proof is completed. □
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