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a b s t r a c t

The multivariate generalized linear model is considered. Each univariate response
follows a generalized linear model. In this situation, the linear predictors and the
link functions are not necessarily the same. The quasi-Fisher information matrix is
obtained by using the method of generalized estimating equations. Then locally optimal
designs for multivariate generalized linear models are investigated under the D- and
A-optimality criteria. It turns out that under certain assumptions the optimality problem
can be reduced to the marginal models. More precisely, a locally optimal saturated
design for the univariate generalized linear models remains optimal for the multivariate
structure in the set of all saturated designs. Moreover, the general equivalence theorem
provides a necessary and sufficient condition under which the saturated design is locally
D-optimal in the set of all designs. The results are applied for multivariate models
with gamma-distributed responses. Furthermore, we consider a multivariate model with
univariate gamma models having seemingly unrelated linear predictors. Under this
constraint, locally D- and A-optimal designs are found as product of all D- and A-optimal
designs, respectively for the marginal counterparts.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Optimal designs of experiments allow to observe the response at certain settings of the control variables in order to
achieve most precise estimates of the parameters in the statistical model. In many experiments, it is quite natural to
observe more than one response at each setting of the control variables. This situation can be described by multivariate
statistical models. Although deriving optimal designs for these models is more complicated than in univariate models,
there are considerable efforts to find solutions of optimal designs for multivariate linear models (see Fedorov [6], Krafft and
Schaefer [16], Chang [2], Kurotschka and Schwabe [17], Schwabe [25], Imhof [14], Huang et al. [12], Liu et al. [20], Yue et al.
[32]). Recently, Rodríguez-Díaz and Sánchez-León [23] introduced analogous results to those in Kurotschka and Schwabe
[17] for multiresponse models assuming double covariance structure (intra-correlation and inter-correlation). On the other
hand, under multivariate nonlinear models the solutions of optimal designs depend on a prior knowledge of the model
parameters. In this context, the research contributions in optimal design are limited (Heise and Myers [11], Zocchi and
Atkinson [34], Fedorov and Leonov [8], Liu and Colditz [19]). However, numerical solutions were proposed in Wong et al.
[29] to find optimal designs for multivariate linear and nonlinear models by using semi-definite programming (SDP).

In this paper, we consider the multivariate generalized linear model (MGLM). Here, each marginal model is addressed
within the GLM framework. In practice, such a situation appears for example in a thermal spraying process where the in-
flight properties (responses) follow gamma distributions and thus GLMs can be fitted. In this example of thermal spraying,
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ptimal designs were derived by Dette et al. [5] based on maximizing the weighted sum of D-efficiencies under the
arginal GLMs. Throughout, we will focus on local optimality approach (Chernoff [3]) to derive optimal designs for the
GLM by using the method of generalized estimating equations (GEEs) which was developed by Liang and Zeger [18]. The
ethod of GEEs has been frequently employed to obtain optimal designs particularly, by making use of local optimality
pproach (Liu and Colditz [19]) and the Bayesian optimality approach (Woods and Van de Ven [30] and van de Ven and
oods [28]). Recently, Jankar et al. [15] employed GEEs to identify locally D-optimal crossover designs for GLMs in the
resence of multiple treatments.
The purpose of this paper is to study local optimality of designs for multivariate generalized linear models under the

- and A-criteria. In Section 2, we introduce the model assumptions and optimality of designs. In Section 3, analytic
olutions of optimal designs for MGLMs with emphasis on the impact of the marginal models are developed. The results
re applied for gamma-distributed outcomes in Section 4. In Section 5, we concentrate on MGLMs with marginal univariate
amma models having seemingly unrelated linear predictors. Then optimal designs of product type are derived. Further
pplications and conclusions are provided in Section 6.

. Preliminaries

Let Y (x1), . . . ,Y (xn) be independent m-dimensional response variables for n experimental units taken at the experi-
ental conditions x1, . . . , xn which belong to the experimental region X ⊆ Rν, ν ≥ 1. Here, xi = (x1i, . . . , xνi)T is the ith
alue of the vector x of ν explanatory variables x1, . . . , xν . Accordingly, Y (xi) =

(
Y1(xi), . . . , Ym(xi)

)T denotes the vector of
esponses for unit i at the point xi. That is, an m-dimensional real valued vector is observed instead of a single real valued
andom variable at each point xi, i ∈ {1, . . . , n}. Otherwise speaking, there are n observations Yj(x1), . . . , Yj(xn) taken for
ach component j ∈ {1, . . . ,m}.
We assume that a single response Yij := Yj(xi) belongs to a one-parameter exponential family distributions in the

anonical form

p(yij; θij) = exp
(
yijθij − bj(θij) + cj(yij)

)
,

here bj(·) and cj(·) are known functions while θij is a canonical parameter. Here, θij := θj(xi,βj) depends on xi and the
ector of model parameters βj ∈ Rpj , where βj =

(
βj1, . . . , βjpj

)T. The expected mean is given by E(Yij) = µj(xi,βj) = b′

j(θij)
ith the variance function Vj

(
µj(xi,βj)

)
= b′′

j (θij) (see McCullagh and Nelder [21], Section 2.2.2).
Define f j : X → Rpj . The components of f j are given by the functions fj1, . . . , fjpj which are assumed to be linearly

independent. In each component j the expected mean µj(xi,βj) is assumed to be related to a linear predictor

ηj(xi,βj) = f T
j (xi)βj =

pj∑
l=1

fjl(xi)βjl

ia a one-to-one and differentiable link function gj, i.e.,

ηj(xi,βj) = gj(µj(xi,βj)).

For each j the intensity function can be defined as

uj(xi,βj) =

(
Vj
(
g−1
j

(
f T
j (xi)βj

)))−1(
g ′

j

(
g−1
j

(
f T
j (xi)βj

)))−2
, (1)

which is positive and depends on the value of the linear predictor f T
j (xi)βj.

The total number of MGLM parameters is denoted by p, i.e., p =
∑m

j=1 pj. The link functions gj, j ∈ {1, . . . ,m}, are
not necessarily similar and the single responses Yj(xi), j ∈ {1, . . . ,m}, may belong to distinct one-parameter probability
distributions. Let f(xi) = diag

(
f 1(xi), . . . , f m(xi)

)
denote the p × m block diagonal multivariate regression function and

β = (βT
1, . . . ,β

T
m)

T be the stacked parameter vector of dimension p × 1. Note that the components f 1, . . . , f m of f are
linearly independent functions. Denote by µ(xi,β) = (µ1(xi,β1), . . . , µm(xi,βm))T the vector of the expected means of

nit i. Let g
(
µ(xi,β)

)
=

(
g1(µ1(xi,β1)), . . . , gm(µm(xi,βm))

)T
and fT(xi)β =

(
f T
1(xi)β1, . . . , f

T
m(xi)βm

)T
be the vectors of

he link functions and the linear predictors, respectively, of unit i. Then the MGLM is defined by

η(xi,β) = g
(
µ(xi,β)

)
where η(xi,β) = fT(xi)β. (2)

he simplest situation can be taken under identity links, i.e., g
(
µ
)

= µ for which the intensities uj(xi,βj), j ∈ {1, . . . ,m},
re constantly equal to 1 for all i ∈ {1, . . . , n}. Therefore, the design problems can be addressed under the multivariate
inear model. However, Liang and Zeger [18] mentioned that there is a lack of a rich class of distributions for the
ultivariate non-normal outcomes. Therefore, they proposed the method of GEEs to estimate the model parameters.

t is noted that GEEs are considered as an extension of the score function for the GLM.
To employ the GEEs method we assume that the observations Y (xi), i ∈ {1, . . . , n}, are uncorrelated across the n units

hile the components are correlated within each unit. Define R to be the m×m true correlation matrix of the components



O. Idais / Journal of Multivariate Analysis 180 (2020) 104663 3

W
q
z

F

c

of each Y (xi) (see Crowder [4]). Here, R =
(
ρjh
)h=1,...,m
j=1,...,m , ρjj = 1 (1 ≤ j ≤ m), −1 < ρjh < 1 (1 ≤ j < h ≤ m) which are

assumed to be independent of xi and β. Throughout, R is assumed to be positive definite and its inverse is denoted by

R−1
=

(
ρ(jh)

)h=1,...,m

j=1,...,m
.

Remark 1. For a square matrix B if there exists a square matrix C such that CCT
= B, then we call C a square root of the

matrix B. If B is a diagonal matrix given by B = diag(b1, . . . , bm) then we can define its square root as C = diag(b
1
2
1 , . . . , b

1
2
m)

and we denote B
1
2 = C .

Define A(xi,β) = diag
(
Vj
(
g−1
j

(
f T
j (xi)βj

)))m
j=1

and∆(xi,β) = diag
(
1/g ′

j

(
g−1
j

(
f T
j (xi)βj

)))m
j=1

for all i. Liang and Zeger [18]

showed that the observation Y (xi) has the covariance structure Cov(Y (xi)) = Σ (xi,β) where

Σ (xi,β) = A
1
2 (xi,β)R A

1
2 (xi,β).

e define the p-vector of quasi-score functions by U
(
β
)

=
∑n

i=1 f(xi)∆(xi,β)Σ−1(xi,β)
(
Y (xi)−µ(xi,β)

)
. The maximum

uasi-likelihood estimates β̂ is the solution of the generalized estimating equations U (β) = 0p, where 0p is a p-vector of
eros, see Crowder [4]. The quasi-Fisher information matrix for the MGLM at the point xi is given by

M(xi,β) = f(xi)∆(xi,β)Σ−1 (xi,β)∆(xi,β)fT(xi).

or each component j, given a parameter vector βj, we define the function f j,βj
(xi) = u

1
2
j (xi,βj)f j(xi), j ∈ {1, . . . ,m} which

onstitute the p × m matrix fβ(xi) = diag
(
f 1,β1

(xi), . . . , f m,βm
(xi)
)
. According to (1), it is straightforward to obtain

∆(xi,β)Σ−1(xi,β)∆(xi,β) = diag
(
u

1
2
j (xi,βj)

)m
j=1

R−1 diag
(
u

1
2
j (xi,βj)

)m
j=1
, (3)

and thus we have U
(
β
)

=
∑n

i=1 fβ(xi)R
−1(Y (xi) − µ(xi,β)

)
. For the whole experiment we introduce the quasi-Fisher

information matrix M(x1, . . . , xn,β) =
∑n

i=1 M(xi,β) =
∑n

i=1 fβ(xi)R
−1fTβ(xi) which can be described in the block

representation

M(x1, . . . , xn,β) =

(
ρ(jh)

n∑
i=1

f j,βj
(xi)f T

h,βh
(xi)

)h=1,...,m

j=1,...,m

. (4)

Multi-dimensional observations are rearranged in matrix form in different ways. For the design point of view, we are
to emphasize the relation of MGLM to its univariate GLM as for the linear case in Zellner [33], Krafft and Schaefer [16]
and Kurotschka and Schwabe [17]. The observational vector of the whole experiment is obtained by vectorization of the
design matrix, i.e., by stacking all m column vectors on top of each other starting with the vector of the n observations
of the first component. To see that, let Y j =

(
Yj(x1), . . . , Yj(xn)

)T be the observations of the jth component of the whole
experiment x1, . . . , xn. The stacked vector of responses for all the n units at the whole experiment is thus denoted by
Y =

(
Y T

1, . . . ,Y
T
m

)T. Accordingly, the design matrix F for the multivariate model is written in component wise. So let
F j = [f j(x1), . . . , f j(xn)]T be the n × pj design matrix for the jth marginal model, then we obtain F = diag

(
F 1, . . . , Fm

)
which represents the stacked mn× p design matrix for the MGLM. As a result, the stacked vector of the linear predictors
is given by

H = [ηT
1, . . . , η

T
m]

T
= Fβ, ηj =

(
ηj(x1,βj), . . . , ηj(xn,βj)

)T
, j ∈ {1, . . . ,m}.

For each component j, define the following n × n diagonal matrices

Dj = diag
(
Vj
(
g−1
j

(
f T
j (xi)βj

)))n
i=1
, E j = diag

((
1/g ′

j

(
g−1
j

(
f T
j (xi)βj

)))2)n

i=1
.

It can be seen that D−1
j E j = diag

(
uj(xi,βj)

)n
i=1

for all j ∈ {1, . . . ,m}. We then denote the mn × mn diagonal matrices

D = diag
(
Dj

)m
j=1

and E = diag
(
E j

)m
j=1

. By the Kronecker product ‘‘⊗’’ the mn × mn variance–covariance matrix of Y is
obtained by

Cov(Y ) = D
1
2 (R ⊗ In)D

1
2 =

⎛⎜⎜⎜⎜⎜⎝
ρ11D1 ρ12D

1
2
1 D

1
2
2 . . . ρ1mD

1
2
1 D

1
2
m

ρ21D
1
2
2 D

1
2
1 ρ22D2 . . . ρ2mD

1
2
2 D

1
2
m

...
...

. . .
...

1
2

1
2

1
2

1
2

⎞⎟⎟⎟⎟⎟⎠ ,

ρm1DmD1 ρm2DmD2 . . . ρmmDm



4 O. Idais / Journal of Multivariate Analysis 180 (2020) 104663

w

t
l
a
r

w

d
v
v
u

T

here In is an n × n identity matrix. The overall mn × mn weight matrix W is defined as

W = E
1
2
(
Cov(Y )

)−1E
1
2 = E

1
2 D−

1
2 (R ⊗ In)−1D−

1
2 E

1
2 .

Hence, the quasi-Fisher information matrix from (4) can be represented in the form

M(x1, . . . , xn,β) = F TWF . (5)

Lemma 1. Consider the MGLM (2) on the whole experimental conditions x1, . . . , xn. Let a parameter point β = (βT
1, . . . ,β

T
m)

T

be given. For all j ∈ {1, . . . ,m} let F j = [f j(x1), . . . , f j(xn)]T and define F j,βj = D
−

1
2

j E
1
2
j F j = [f j,βj

(x1), . . . , f j,βj
(xn)]T. Denote

Fβ = D−
1
2 E

1
2 F = diag

(
F 1,β1 , . . . , Fm,βm

)
. Then the quasi-Fisher information matrix from (5) has the form

M(x1, . . . , xn,β) = F T
β

(
R−1

⊗ In
)
Fβ.

Proof. In view of (5), straightforward steps imply that

M(x1, . . . , xn,β) = F TWF = F TE
1
2
(
Cov(Y )

)−1E
1
2 F = F TE

1
2 D−

1
2 (R ⊗ In)−1D−

1
2 E

1
2 F = F T

β

(
R−1

⊗ In
)
Fβ. □

In this paper we are interested to find a finite set of experimental conditions at which the observations achieve
he best estimates of the model parameters in the sense of the minimum variance–covariance matrix of the quasi-
ikelihood estimates β̂, or equivalently the maximum quasi-Fisher information matrix. Here, we will deal with the
pproximate (continuous) design theory, i.e., a design ξ is a probability measure with finite support on the experimental
egion X ,

ξ =

(
x1 x2 . . . xr
ω1 ω2 . . . ωr

)
, (6)

here r ∈ N, x1, x2, . . . , xr ∈ X are mutually distinct support points and ω1, ω2, . . . , ωr > 0 with
∑r

i=1 ωi = 1. The set
supp(ξ ) = {x1, x2, . . . , xr} is called the support of ξ and ω1, . . . , ωr are called the weights of ξ , see Silvey [26], p. 15. We
denote by Ξ the set of all designs ξ on X . The quasi-Fisher information matrix of ξ is given by

M(ξ,β) =

∫
X
M(x,β) ξ (dx) =

r∑
i=1

ωiM(xi,β). (7)

Throughout we focus on locally optimal designs with respect to the D- and A-criteria. Denote by det(A) and tr(A)
the determinant and the trace of a p × p matrix A, respectively. D-optimal designs are constructed to minimize the
determinant of the variance–covariance matrix of β̂ or equivalently to maximize the determinant of the quasi-Fisher
information matrix. The D-criterion is defined by the convex function ΦD(M(ξ,β)) = − log det

(
M(ξ,β)

)
. A-optimal

esigns are constructed to minimize the trace of the variance–covariance matrix of β̂, i.e., to minimize the average
ariance of the estimates. The A-criterion is defined by the function ΦA

(
M(ξ,β)

)
= tr

(
M−1(ξ,β)

)
. The multivariate

ersion of the equivalence theorem (see Fedorov et al. [7]) for checking the D- and A-optimality of a given design can be
sed.

heorem 1. Let β be a given parameter point and let ξ ∗ be a design with nonsingular quasi-Fisher information matrixM(ξ ∗,β).

(i) A design ξ ∗ is locally D-optimal (at β) for the MGLM if and only if

tr
(
R−1fTβ(x)M

−1(ξ ∗,β)fβ(x)
)

≤ p ∀x ∈ X . (8)

(ii) A design ξ ∗ is locally A-optimal (at β) for the MGLM if and only if

tr
(
R−1fTβ(x)M

−2(ξ ∗,β)fβ(x)
)

≤ tr
(
M−1(ξ ∗,β)

)
∀x ∈ X . (9)

At the support points of ξ ∗ both inequalities (8) and (9) are equations.

3. Optimal designs for MGLMs

The locally optimal design for a MGLM is derived at a given parameter point β under known correlation matrix R. In
each jth component under a design ξ ∈ Ξ with support {x1, . . . , xr} we obtain the corresponding r × pj design matrix
F j = [f j(x1), . . . , f j(xr )]T. In view of Lemma 1, let n = r and denote by Ω = diag(ω1, . . . , ωr ) the diagonal matrix of the
design weights. Then by Lemma 1 the quasi-Fisher information matrix (7) of a design ξ rewrites

M(ξ,β) = F T
(
R−1

⊗ Ω
)
F . (10)
β β
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T

Furthermore, when M(ξ,β) is positive definite the inverse M−1(ξ,β) =

(
F T

β

(
R−1

⊗ Ω
)
Fβ

)−1
factorizes if Fβ is square,

and thus we obtain

M−1(ξ,β) = F−1
β

(
R ⊗ Ω−1)(F T

β

)−1
.

A block representation of M(ξ,β) can be given in the form

M(ξ,β) =

(
ρ(jh)M jh(ξ,βj,βh)

)h=1,...,m

j=1,...,m
, (11)

where M j(ξ,βj) = M jj(ξ,βj) = F T
j,βj

ΩF j,βj =
∑r

i=1 ωif j,βj

(
xi
)
f T
j,βj

(
xi
)
is the pj × pj information matrix for the jth

marginal model (1 ≤ j ≤ m), whereas the pj × ph submatrices M jh(ξ,βj,βh) = F T
j,βj

ΩF h,βh =
∑r

i=1 ωif j,βj

(
xi
)
f T
h,βh

(
xi
)

(1 ≤ j ̸= h ≤ m) which are not necessarily square.
In the following lemma we present a block structure of M−1(ξ,β) under specific restrictions. This is useful to derive

optimal designs, in particular, under the A-criterion.

Lemma 2. Consider a design ξ defined on X with quasi-Fisher information matrix M(ξ,β) given by (11). Let a parameter point
β = (βT

1, . . . ,β
T
m)

T be given. Assume that all submatricesM jh(ξ,βj,βh), j, h ∈ {1, . . . ,m} are square, i.e., p1 = · · · = pm = p0,
and nonsingular. If

∑m
k=1 ρhkρ

(jk)M jk(ξ,βj,βk)M
−1
hk (ξ,βh,βk) = 0 for all (1 ≤ j ̸= h ≤ m) then M(ξ,β) is nonsingular and a

block representation of its inverse is given by

M−1(ξ,β) =

(
ρhjM−1

hj (ξ,βh,βj)
)h=1,...,m

j=1,...,m
. (12)

Proof. The assumption
∑m

k=1 ρhkρ
(jk)M jk(ξ,βj,βk)M

−1
hk (ξ,βh,βk) = 0 for all (1 ≤ j ̸= h ≤ m) describes explicitly the

multiplication of the off-diagonal submatrices of M(ξ,β) and M−1(ξ,β). Thus under this assumption M(ξ,β)M−1(ξ,β)
is an identity matrix. □

3.1. Reduction to the marginal GLMs

The previous situation can be simplified under saturated designs, i.e., when the number of the support points of a
design ξ is equal to the number of the parameters of the marginal model (r = p0). Let Ξp0 = {ξ : supp(ξ ) ⊆ X , r = p0}
denote the set of all saturated designs under each jth univariate GLM (1 ≤ j ≤ m). Clearly, for any design ξ ∈ Ξp0
the design matrix F (or Fβ) of the MGLM is square. In particular, for ξ ∈ Ξp0 the design matrices Fβj , j ∈ {1, . . . ,m}

are square. Hence, the submatrices M j(ξ,βj), j ∈ {1, . . . ,m} and M jh(ξ,β) (1 ≤ j ̸= h ≤ m) factorize and thus, the
assumptions

∑m
k=1 ρhkρ

(jk)M jk(ξ,βj,βk)M
−1
hk (ξ,βh,βk) = 0 for all (1 ≤ j ̸= h ≤ m) in Lemma 2 will be implicitly satisfied

as it is clarified by the next corollary.

Corollary 1. Consider the notations presented in Lemma 2. Then for any ξ ∈ Ξp0 the assumption given in Lemma 2 is satisfied,
i.e.,

∑m
k=1 ρhkρ

(jk)M jk(ξ,βj,βk)M
−1
hk (ξ,βh,βk) = 0 for all (1 ≤ j ̸= h ≤ m).

Proof. Note that for all ξ ∈ Ξp0 we can write M j(ξ,βj) = F T
j,βj

ΩF j,βj , j ∈ {1, . . . ,m} and M jh(ξ,β) = F T
j,βj

ΩF h,βh

(1 ≤ j ̸= h ≤ m). Then M jk(ξ,βj,βk)M
−1
hk (ξ,βh,βk) = F T

j,βj
(F T

h,βh
)−1 for all k ∈ {1, . . . ,m}. Since

∑m
k=1 ρhkρ

(jk)
= 0 we

conclude
∑m

k=1 ρhkρ
(jk)M jk(ξ,βj,βk)M

−1
hk (ξ,βh,βk) = F T

j,βj
(F T

h,βh
)−1∑m

k=1 ρhkρ
(jk)

= 0 for all (1 ≤ j ̸= h ≤ m). □

Remark 2. The locally D-optimal saturated design assigns equal weights ωi = 1/p0 ∀i to its support points (see Silvey
[26], Lemma 5.3.1).

Lemma 3. The locally D-optimal saturated design ξ ∗ in Ξp0 at a given parameter point β for a MGLM (2) is independent of
the correlation matrix R.

Proof. Let ξ ∈ Ξp0 . The determinant of the quasi-Fisher information matrix M(ξ,β) from (10) is given by

detM(ξ,β) = det F T
β

(
R−1

⊗ Ω
)
Fβ = det

(
F T

βFβ

)
det
(
R−1

⊗ Ω
)

= det
(
F T

βFβ

)(
detΩ

)m(detR−1)r .
It follows that detM(ξ,β) is proportional to det

(
F T

βFβ

)(
detΩ

)m. Thus the optimization w.r.t. to the D-criterion in Ξp0 is
independent of R. □

Theorem 2. Consider the MGLM (2)with a positive definite correlation matrix R. For a given parameter point β = (βT
1, . . . ,β

T
m)

let the design ξ ∗
∈ Ξp0 be locally D-optimal (at βj ) for each jth marginal model (1 ≤ j ≤ m). Then ξ ∗ is locally D-optimal

(at β) for the MGLM (2) within the set Ξp0 .
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roof. Under the design ξ ∗ we get Ω = (1/p0)Ip0 where Ip0 is a p0 × p0 identity matrix. From the proof of Lemma 3 we
have

detM(ξ ∗,β) = det
(
F T

βFβ

)(
detΩ

)m(detR−1)r
= p−rm

0 (det F )2
(
det E

1
2 D−

1
2

)2(
detR−1)r

= p−rm
0 (det F )2

( m∏
j=1

r∏
i=1

uj(xi,βj)
)(

detR−1)r ,
where det F =

∏m
j=1 det F j. Moreover, the determinant of the information matrix for the jth marginal models is

detM j(ξ ∗,βj) = p−r
0 (det F j)2

∏r
i=1 uj(xi,βj), j ∈ {1, . . . ,m}. Thus

∏r
i=1 uj(xi,βj) = pr0

(
det F j

)−2 detM j(ξ ∗,βj). It follows
that

detM(ξ ∗,β) = p−rm
0

( m∏
j=1

det F j

)2( m∏
j=1

pr0
(
det F j

)−2 detM j(ξ ∗,βj)
)(

detR−1)r
= p−rm

0 prm0
( m∏

j=1

det F j

)2 ( m∏
j=1

det F j

)−2 m∏
j=1

detM j(ξ ∗,βj)
(
detR−1)r

=
(
detR−1)r m∏

j=1

detM j(ξ ∗,βj).

ince ξ ∗ is locally D-optimal for the jth marginal model it maximizes detM j(ξ,βj) on Ξp0 . Thus
∏m

j=1 detM j(ξ ∗,βj) ≥
m
j=1 detM j(ξ,βj) for all ξ ∈ Ξp0 . As a result, ξ ∗ maximizes detM(ξ,β) on Ξp0 . Hence, ξ

∗ is locally D-optimal (at β) for
MGLM within the set Ξp0 . □

Next we will deal with local A-optimality. The following lemma is immediate.

emma 4. The locally A-optimal saturated design ξ ∗ in Ξp0 at a given parameter point β for a MGLM (2) is independent of
orrelation matrix R.

roof. Let ξ ∈ Ξp0 . According to Lemma 2 and Corollary 1, the inverse of the quasi-Fisher information matrix of ξ is
iven by the block representation (12). Thus tr(M−1(ξ,β)) =

∑m
j=1 tr(M

−1
j (ξ,βj)). It is clear that tr(M−1(ξ,β)) does not

epend on R. □

heorem 3. Consider the MGLM (2)with a positive definite correlation matrix R. For a given parameter point β = (βT
1, . . . ,β

T
m)

et the design ξ ∗
∈ Ξp0 be locally A-optimal (at βj ) for each jth marginal model (1 ≤ j ≤ m). Then ξ ∗ is locally A-optimal

at β) for the MGLM (2) within the set Ξp0 .

roof. For the design ξ ∗
∈ Ξp0 we have tr(M−1(ξ ∗,β)) =

∑m
j=1 tr(M

−1
j (ξ ∗,βj)). As ξ ∗ is locally A-optimal for the jth

arginal model then tr(M−1
j (ξ ∗,βj)) ≤ tr(M−1

j (ξ,βj)) for all ξ ∈ Ξp0 . Thus
∑m

j=1 tr(M
−1
j (ξ ∗,βj)) ≤

∑m
j=1 tr(M

−1
j (ξ,βj))

or all ξ ∈ Ξp0 . As a result, ξ ∗ minimizes tr(M−1(ξ,β)) on Ξp0 . Hence, ξ
∗ is locally A-optimal (at β) for a MGLM within

he set Ξp0 . □

emark 3. It is well known that the optimal weights of a locally A-optimal saturated design under a univariate
eneralized linear model depend on the model parameters through the intensity functions (see Gaffke et al. [9], Lemma
.1). Therefore, the locally A-optimal saturated design for marginal univariate models is A-optimal for the MGLM if
ll intensities in all components have the same form and the A-optimality is derived at equal parameter points. This
uarantees that the A-optimal saturated design is the same for all marginal models.

In the following theorem we consider a multivariate GLM with identical components. Locally optimal designs are
erived within the set Ξ of all possible designs on the experimental region.

heorem 4. Consider the MGLM (2) such that f 1(x) = · · · = f m(x) = f 0(x) for all x ∈ X . Let a positive definite correlation
atrix R be given. Let the parameter point β be given such that β1 = · · · = βm = β0, i.e., β = 1 ⊗ β0. Assume that
1(x,β1) = · · · = um(x,βm) = u0(x,β0) for all x ∈ X . Thus F 1,β1 = · · · = Fm,βm = F 0,β0 . Let the design ξ ∗ be locally D- or
-optimal (at β0) for each jth marginal model (1 ≤ j ≤ m). Then the design ξ ∗ is locally D- or A-optimal (at β = 1 ⊗ β0) for
he MGLM (2), respectively.

roof. Denote M0(ξ,β0) = F T
0,β0

ΩF 0,β0 . Under the assumptions proposed in the theorem it can be seen that
jh(ξ,βj,βh) = M0(ξ,β0) for all j, h ∈ {1, . . . ,m}. As a result, the quasi-Fisher information matrix (11) and its

nverse factorize as M(ξ,β0) = R−1
⊗ M0(ξ,β0) and M−1(ξ,β0) = R ⊗ M−1

0 (ξ,β0), respectively. Therefore, we obtain
etM(ξ,β0) =

(
detR−1)p0(detM0(ξ,β0)

)m, tr(M−1(ξ,β0)) = tr(R)tr(M−1
0 (ξ,β0)). Hence, the optimization with respect

o the D- and A-criteria is independent of R and reduces to the corresponding univariate optimization problem. □
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3.2. D-optimality under exchangeable correlation matrix

In what follows we restrict the correlation matrix R to the exchangeable structure

R =
(
1 − ρ

)
Im + ρ11T with R−1

=
(
1 − ρ

)−1
(
Im −

ρ

1 + (m − 1)ρ
11T

)
, (13)

where −1 < ρ < 1, Im is an m × m identity matrix and 1 is an m-dimensional vector of ones. As a result, expressions
(3), (7) and (12), respectively become

∆(xi,β)Σ−1(xi,β)∆(xi,β) = (1 − ρ)−1
(
diag

(
uj(xi,βj)

)m
j=1 −

ρ

1 + (m − 1)ρ

(
u

1
2
j (xi,βj)u

1
2
h (xi,βh)

)h=1,...,m

j=1,...,m

)
,

M(ξ,β) =
1

(1 − ρ)(1 + (m − 1)ρ)

(
(1 + (m − 1)ρ)diag(M j(ξ,βj))

m
j=1 − ρ(M jh)mj,h=1

)
,

M−1(ξ,β) = (1 − ρ)diag
(
M−1

j (ξ,βj)
)m
j=1

+ ρ

(
M−1

jh (ξ,βj,βh)
)m
j,h=1

.

In the following theorem we provide a sufficient and necessary condition for a saturated design ξ ∗
∈ Ξp0 to be locally

-optimal for the MGLM in the set Ξ of all possible designs by employing condition (8) of the general equivalence
heorem. The proof of the theorem can be found in Appendix.

heorem 5. Consider the MGLM (2) on the experimental region X . Let a positive definite correlation matrix R from (13) be
given. Let ξ ∗

∈ Ξp0 . For a given parameter point β = (βT
1, . . . ,β

T
m)

T define

dj(x, ξ ∗,βj) = f T
βj
(x)M−1

j (ξ ∗,βj)f βj
(x), j ∈ {1, . . . ,m}, for all x ∈ X ,

djh(x, ξ ∗,βj,βh) = f T
βj
(x)M−1

jh (ξ ∗,βj,βh)f βh
(x), 1 ≤ j < h ≤ m, for all x ∈ X .

hen the design ξ ∗ with non-singular quasi-Fisher information matrix M(ξ ∗,β) is locally D-optimal (at β) for the MGLM if and
nly if

1
(1 − ρ)(1 + (m − 1)ρ)

(
(1 + (m − 2)ρ)

m∑
j=1

dj(x, ξ ∗,βj) − 2 ρ2
m∑

j<h=1

djh(x, ξ ∗,βj,βh)
)

≤ mp0 for all x ∈ X . (14)

emark 4. According to the general equivalence theorem for a univariate generalized linear model (see Silvey [26], p.
0, p. 48 and p. 54), the design ξ ∗ is locally D-optimal for the jth marginal model if and only if dj(x, ξ ∗,βj) ≤ p0 for all
∈ X . The function dj(x, ξ ∗,βj) is commonly called the sensitivity function.

emark 5. Condition (14) for a saturated design ξ ∗
∈ Ξp0 is useful to approve the local D-optimality of ξ ∗ in Ξ . It can

e seen that this condition depends on the correlation ρ and is equivalent to

a(x) ρ2
+ b(x) ρ + c(x) ≤ 0 for all x ∈ X , (15)

here the coefficients a(x) =

(
m(m−1)mp0 −2

∑m
j<h=1 djh(x, ξ

∗,βj,βh)
)
, b(x) = (m−2)

(∑m
j=1 dj(x, ξ

∗,βj)−mp0
)
, and

(x) =
∑m

j=1 dj(x, ξ
∗,βj) − mp0. The l.h.s. of (15) is a polynomial in ρ of degree 2. The set of solutions of the system of

nequalities characterized by (15) is given by

∩x∈X\supp(ξ∗)

[(
−b(x) ±

√
b2(x) − 4a(x)c(x)

)
/2a(x)

]
∩ (−1, 1). (16)

Accordingly, the sensitivity functions for the locally D-optimal saturated design ξ ∗ under all marginal GLMs can be used
to determine the range of ρ at which the design ξ ∗ can be locally D-optimal in Ξ . Hence, the value of ρ is chosen from
the set (16).

Lemma 5. In view of Theorem 5 assume that f 1(x) = · · · = f m(x) = f 0(x) for all x ∈ X . Then for the given parameter
vectors βj, j ∈ {1, . . . ,m} we have

djh(x, ξ ∗,βj,βh) ≤ max{dj(x, ξ ∗,βj), dh(x, ξ
∗,βh)} for all x ∈ X and for all (1 ≤ j < h ≤ m).

If max{dj(x, ξ ∗,βj), dh(x, ξ ∗,βh)} ≤ p0 for all x ∈ X then djh(x, ξ ∗,β) ≤ p0 for all x ∈ X and for all (1 ≤ j < h ≤ m).

The proof of the above lemma can be found in Appendix.

. Applications to gamma-distributed outcomes

We consider a MGLM which consists of first order univariate generalized linear models defined on the standardized
nit cube X = [0, 1]ν, ν ≥ 1 as an experimental region. Here, for each j we have pj = ν + 1 = p0 with linear predictor

η (x,β ) = f T(x)β , f (x) = (1, x , . . . , x )T, β = (β , β , . . . , β )T, j ∈ {1, . . . ,m}.
j j j j j 1 ν j j0 j1 jν
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Table 1
Design points of locally D- and A-optimal saturated designs on X = [0, 1]ν , ν ≥ 1, for
the MGLM with marginal gamma models at restricted parameter values.

Design points

Run x1 x2 x3 · · · xν
1 0 0 0 · · · 0
2 1 0 0 · · · 0
3 0 1 0 · · · 0
4 0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ν + 1 0 0 0 · · · 1

Assume that each marginal observation Yj follows a gamma distribution. In this situation, Yj is typically non-negative and
continuous with a variance that is proportional to the square of the expected mean. The canonical link is the inverse, i.e.,

ηj(x,βj) = αj/µj(x,βj) = f T
j (x)βj for all x ∈ X and for all j,

where αj > 0 is the shape parameter of the gamma distribution. The intensity function is given by

uj(x,βj) = αj
(
f T
j (x)βj

)−2 for all x ∈ X and for all j.

According to Burridge and Sebastiani [1] the saturated design ξ ∗

1/p0
that assigns equal weights ωk = 1/p0 for all

k ∈ {1, . . . , p0} to the design points presented in Table 1 is locally D-optimal for the jth univariate gamma model at
βj = (βj0, βj1, . . . , βjν)T such that β2

j0 ≤ βjkβjk′ for all (1 ≤ k < k′
≤ ν) and for all j ∈ {1, . . . ,m}. By Theorem 4 design

ξ ∗

1/p0
is locally D-optimal for the MGLM at β = (βT

1, . . . ,β
T
m)

T inΞp0 under the same parameter constraints, i.e., β2
j0 ≤ βjkβjk′

or all (1 ≤ k < k′
≤ ν) and for all j ∈ {1, . . . ,m}.

Let the correlation matrix be given with the exchangeable structure (13), i.e., R =
(
1−ρ

)
Im+ρ11T, where ρ belongs the

range determined by (16). Since ξ ∗

1/p0
is D-optimal for the marginal models we have dj(x, ξ ∗

1/p0
,βj) ≤ p0 for all x ∈ [0, 1]ν

and for all j (see Remark 4). From Lemma 5 each djh(x, ξ ∗

1/p0
,βj,βh) ≤ p0 for all x ∈ [0, 1]ν and for all j < h with equality

t each support point of ξ ∗

1/p0
. As a result, for correlations ρ from (16) condition (14) of Theorem 5 holds and hence ξ ∗

1/p0
is locally D-optimal for the MGLM in Ξ .

For illustration, when m = 2 and ν = 2 with the set of vertices {(0, 0)T, (1, 0)T, (0, 1)T, (1, 1)T} as an experimental
egion, the equally weighted design ξ ∗

1/3 = ξ ∗

1/p0
with support points (0, 0)T, (1, 0)T, (0, 1)T is locally D-optimal at

= (βT
1,β

T
2)

T
= (β10, β11, β12, β20, β21, β22)T with β2

j0 ≤ βj1βj2, j = 1, 2 for correlation ρ ∈ [± ρ(β1,β2)] where

ρ(β1,β2) =

√
6 − (d1((1, 1)T, ξ ∗

1/3,β1) + d2((1, 1)T, ξ ∗

1/3,β2))

6 − 2d12((1, 1)T, ξ ∗

1/3,β1,β2)
. (17)

he function ρ(β1,β2) given by (17) determines the range of correlation ρ at which the design ξ ∗

1/3 is D-optimal. Note
hat ρ(β1,β2) depends on the values of the sensitivity functions at the vertex (1, 1)T given the parameter vectors β1 and
2. Fig. 1 displays the curve of ρ(β1,β2) for β1 = (1, 1, β)T, β2 = (1, 3, β)T, 1 ≤ β ≤ 10. It can be seen that the values
f ρ(β1,β2) increase as β increases. The minimum value is given by 0.77 at β = 1 and thus ρ ∈ [−0.77, 0.77]. The
aximum of ρ(β1,β2) is given by 0.96 at β = 10 and thus ρ ∈ [−0.96, 0.96].
For A-optimality let the parameter vector β be given such that βj = β0 = (β0, β1, . . . , βν)T for all j ∈ {1, . . . ,m} (see

Remark 3). Gaffke et al. [9] showed that the saturated design ξ ∗

β0
with support points given by Table 1 and weights

ω∗

1 =

√
p0

√
p0 + ν +

∑ν

k=1 γk
, ω∗

k =
1 + γk−1

√
p0 + ν +

∑ν

k=1 γk
, k ∈ {2, . . . , p0}, γk =

βk

β0
, k ∈ {1, . . . , ν}

is locally A-optimal for the jth univariate gamma model at β0 under the condition

γkγk′ −
1

√
p0

(γk + γk′ ) ≥
(
1 +

2
√
p0

)
for all (1 ≤ k < k′

≤ ν). (18)

y Theorem 3 the design ξ ∗

β0
is locally A-optimal in Ξp0 for the MGLM at β = 1 ⊗ β0 if condition (18) holds.

In particular, let ν = 2 so p0 = 3. Let the jth the parameter vector βj = β0 = (β0, β, β)T be given for all j ∈ {1, . . . ,m}.
onsequently, condition (18) is equivalent to γ 2

− (2/
√
3)γ − (

√
3 + 2)/

√
3 ≥ 0 where γ = β/β0. E.g., at γ = 3 the

esign ξ ∗

β0
has the form

ξ ∗

β0
=

(
(0, 0)T (1, 0)T (0, 1)T

√
3

√
4

√
4

√

)
. (19)
3+8 3+8 3+8
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W

Fig. 1. The curve of the function ρ(β1,β2) from (17) at the parameter vector β = (1, 1, β, 1, 3, β)T , 1 ≤ β ≤ 10.

Fig. 2. The function ψ(x, ξ ∗

β0
,β0) from (20) for the locally A-optimal saturated design ξ ∗

β0
given by (19), at the parameter vector β0 = (1, 3, 3)T , on

the experimental region [0, 1]2 for any correlation ρ ∈ (−1, 1).

e can approve the local A-optimality of ξ ∗

β0
from (19) in Ξ using condition (9) of the general equivalence theorem. To

this end, define the function

ψ(x, ξ ∗

β0
,β0) = tr

(
R−1fTβ(x)M

−2(ξ ∗

β0
,β)fβ(x)

)
− tr

(
M−1(ξ ∗

β0
,β)

)
, x ∈ X . (20)

Then ξ ∗

β0
from (19) is A-optimal if and only if ψ(x, ξ ∗

β0
,β) ≤ 0 for all x ∈ [0, 1]2. The function (20) is plotted in Fig. 2 at

β = 1⊗ β0 where β0 = (1, 3, 3)T and −1 < ρ < 1. It can be seen that ψ(x, ξ ∗

β0
,β) is bounded by 0 for all x ∈ [0, 1]2 and

ψ(x, ξ ∗

β0
,β) = 0 for x ∈ {(0, 0)T, (1, 0)T, (0, 1)T}, i.e., at the support points of ξ ∗

β0
. From calculations, the A-optimality of

ξ ∗

β0
in Ξ seems to be independent of ρ.
In addition to the previous examples provided under particular restrictions, it is worthy to propose certain algorithms

to find unrestricted locally optimal designs numerically with emphasis on the D-criterion. For simplification purposes we
concentrate on bivariate generalized linear models, i.e., m = 2. We propose the multiplicative algorithm (see Yu [31]
and Harman and Trnovská [10]) and the general non-linear optimization using augmented Lagrange multiplier method
via software R (see R Core Team [22]), package Rsolnp.

Let us begin with a model with linear predictors of one factor{
η1(x,β1) = β10 + β11x
η2(x,β ) = β20 + β21x

, x ∈ [0, 1].

2
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Table 2
Numerical solutions for locally D-optimal designs for a one-factor bivariate gamma model
on the experimental region X = [0, 1] at the correlation ρ = 0.99.

Design point x∗

Parameter values 0 0.240 0.415 1

β10 β11 β20 β21 Optimal weights

1 0 1 0 0.5000 0.5000
1 1 1 1 0.5000 0.5000
1 1 1 0 0.3900 0.2195 0.3905
1 4 1 1 0.3663 0.2673 0.3664

Fig. 3. The sensitivity function under numerically D-optimal designs ξ ∗∗ given by (22) for a one-factor bivariate GLM at the parameter vectors
β = (1, 1, 1, 0)T (Left panel) and β = (1, 4, 1, 1)T (Right panel) for the correlation ρ = 0.99.

or the parameter vector β = (βT
1,β

T
2)

T
= (β10, β11, β20, β21)T, the locally D-optimal saturated design (see Idais [13])

nder each marginal model is given by

ξ ∗

1/2 =

(
0 1
0.5 0.5

)
. (21)

he correlation range (16) is given by [±minx∈(0,1) ρ(x,β1,β2)], where

ρ(x,β1,β2) =

√
4 − (d1(x, ξ ∗

1/2,β1) + d2(x, ξ ∗

1/2,β2))

4 − 2d12(x, ξ ∗

1/2,β1,β2)
, x ∈ (0, 1).

For ρ ∈ [±minx∈(0,1) ρ(x,β1,β2)] numerical solutions are expected to be coincide with the analytic results from
Theorem 5. In contrast to that, at the parameter vector β = (1, 1, 1, 0)T or β = (1, 4, 1, 1)T and ρ outside the respective
range, specifically at ρ = 0.99, numerical solutions showed that a locally D-optimal deign ξ ∗∗ may contain one additional
point

ξ ∗∗
=

(
0 x∗ 1
ω∗ 1 − 2ω∗ ω∗

)
, (22)

where x∗
∈ (0, 1). Table 2 presents the design points of ξ ∗∗ with corresponding weights derived numerically at certain

values of β and ρ = 0.99. As it is shown, at β = (1, 0, 1, 0)T and β = (1, 1, 1, 1)T the design is given by ξ ∗

1/2 since the
correlation ρ = 0.99 belongs to the respective range. Otherwise, at β = (1, 1, 1, 0)T and β = (1, 4, 1, 1)T although the
resulting designs may not saturated, the weights of both 0 and 1 are equal. The equivalence theorem (8) were employed to
approve the local D-optimality of designs in Ξ for ρ = 0.99 at the parameter vectors β = (1, 1, 1, 0)T and β = (1, 4, 1, 1)T

as it shown in Fig. 3. Under both parameter vectors the sensitivity function d(x, ξ ∗∗,β) = tr
(
R−1fTβ(x)M

−1(ξ ∗∗,β)fβ(x)
)

is bounded by 4 for all x ∈ [0, 1] and equality holds at the support points of the design ξ ∗∗.
The D-efficiency of the saturated design ξ = ξ ∗

1/2 from (21) at ρ = 0.99 can be examined on a specific region of
parameter values determined specifically by β = (1, β11, 1, 1)T, 0 ≤ β11 ≤ 5. For calculating the efficiency we use locally
D-optimal designs ξ ∗∗ from (22) which is obtained numerically at ρ = 0.99. The D-efficiencies of ξ , as a function of β,
are calculated by

Eff(ξ,β) =

(
detM(ξ,β)
detM(ξ ∗,β)

)1/p

.

β
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Fig. 4. Efficiencies of ξ from (21) at the parameter vectors β = (1, β11, 1, 1)T , 0 ≤ β11 ≤ 5 for the correlation ρ = 0.99.

Table 3
Numerical solutions for locally D-optimal designs for a two-factor bivariate gamma model on the experimental region
X = [0, 1]2 at the parameter vector β = (1, 3, 3, 1, 1,−0.8)T with the corresponding efficiencies under some values of
the correlation ρ.

Correlation ρ

Design points 0 0.3 0.5 0.7 0.9 0.99

x1 x2 Optimal weights

0 0 0.3157 0.3152 0.3141 0.3041 0.2337 0.2035
0 1 0.3116 0.3107 0.3085 0.2970 0.2302 0.2027
1 0 0.1899 0.1901 0.1905 0.1918 0.1942 0.1997
1 1 0.1828 0.1840 0.1869 0.1916 0.1949
0 0.50 0.0155 0.0877 0.0381
0 0.55 0.0593 0.1570
0.85 1 0.1753
0.90 1 0.0237

D-Efficiencies 0.9729 0.9737 0.9752 0.9780 0.9163 0.6638

Here, p = 4 and ξ ∗

β = ξ ∗∗. The D-efficiencies of ξ are depicted in Fig. 4. It can be seen that for β11 very close to zero
the saturated design ξ = ξ ∗

1/2 performs better than ξ ∗∗. Then we have the perfect performance when β11 moves towards
2 because we get ξ = ξ ∗∗. Otherwise, as β11 increases the efficiencies curve tends to have small values. The overall
performance of ξ does not show satisfactory at ρ = 0.99. This is of course because the optimality of the saturated design
in Ξ depends on ρ.

Next we focus on a bivariate GLM with two factors in the experimental region [0, 1]2 and linear predictors{
η1(x,β1) = β10 + β11x1 + β21x2,
η2(x,β2) = β20 + β21x1 + β22x2,

where x = (x1, x2)T ∈ [0, 1]2 and β = (βT
1,β

T
2)

T
= (β10, β11, β12, β20, β21, β22)T. We consider β1 and β2 having different

types. For example; at β = (1, 3, 3, 1, 1,−0.8)T numerical solutions cannot provide D-optimal saturated designs as it is
shown by Table 3. It can be seen that the results depend on the value of ρ. It may be desirable to study the potential merits
of the locally D-optimal designs ξ ∗

β derived numerically for ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} at β =

(1, 3, 3, 1, 1,−0.8)T by employing the function of D-efficiency with p = 6. For examination of the efficiency we select the
design ξ1/4 which is uniform on (0, 0)T, (1, 0)T, (0, 1)T, (1, 1)T. Note that ξ1/4 is locally D-optimal at β = (1, 0, 0, 1, 0, 0)T
for the bivariate model as well as it is locally D-optimal for the jth marginal model on [0, 1]2 at βj = (1, 0, 0)T. The
efficiencies of ξ1/4 are depicted in Fig. 5 and some of them are presented in Table 3. It can been noted that for ρ ≤ 0.9 the
design ξ1/4 performs quite well. Otherwise, ξ1/4 shows the worst performance for ρ > 0.9 where the minimum efficiency
is equal to 0.6638 at ρ = 0.99. The maximum efficiency is given by 0.9780 at ρ = 0.7.

5. Product type designs

Another situation of the multivariate structure of GLMs can be considered when all components follow specifically

univariate gamma models assuming seemingly unrelated linear predictors. That means, we allow different factors which
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Fig. 5. D-Efficiencies of the uniform design ξ1/4 at the parameter vector β = (1, 3, 3, 1, 1,−0.8)T for a two-factor bivariate gamma model on the
xperimental region X = [0, 1]2 .

elong to different experimental regions and different regression functions in the linear predictors. Let νj denote the
umber of the factors associated with the component j and ν denote the total number of all factors in the MGLM,
.e., ν =

∑m
j=1 νj. For any unit i the univariate responses Yj(xij), j ∈ {1, . . . ,m}, are assumed to be correlated through

he correlation matrix R. Here, all Yj(xij), j ∈ {1, . . . ,m}, come from gamma distributions where the experimental
ondition xij = (xij1, . . . , xijνj )

T may differ across the components of unit i and is chosen from an experimental region
j ⊆ Rνj , νj ≥ 1, j ∈ {1, . . . ,m}. As in Gaffke et al. [9], the univariate gamma models with power links can be employed

ηj(xij,βj) = µ
κj
j (xij,βj), ηj(xij,βj) = f T

j (xij)βj =

pj∑
l=1

fjl(xij)βjl.

ote that κj is a given nonzero real number and denotes the exponent of the power link in the jth model. Furthermore,

j is the vector of pj linearly independent regression functions fj1, . . . , fjpj and βj =
(
βj1, . . . , βjpj

)T
∈ Rpj . The intensity

unction is given by uj(xij,βj) = αjκj
(
f T
j (xij)βj

)−2. Here, αj is the shape parameter of a gamma distribution. Note that
jκj is a positive constant and can be ignored. The expected mean µj(xij,βj) for the gamma distribution is positive and
herefore, we assume f T

j (xij)βj > 0 for all i ∈ {1, . . . , n}.
The experimental region X for the MGLM with power links and seemingly unrelated linear predictors is given by

he Cartesian product of all marginal experimental regions Xj, j ∈ {1, . . . ,m}, i.e., X = ×
m
j=1Xj. The p × m block

iagonal multivariate regression is given by f(xi) = diag
(
f 1(xi1), . . . , f m(xim)

)
where xi = (xTi1, . . . , x

T
im)

T
∈ X . Obviously,

i = (xi11, . . . , xi1ν1 , . . . , xim1, . . . , ximνm )
T is a ν-tuple. Let the stacked parameter p-vector β = (βT

1, . . . ,β
T
m)

T be given. The
GLM with univariate gamma models is defined by

η(xi,β) =
(
µ
κ1
1 (xi1,β1), . . . , µ

κm
m (xim,βm)

)T
, η(xi,β) = fT(xi)β.

n particular, for multivariate models with seemingly unrelated linear models, i.e., ηj(xij,βj) = µj(xij,βj) with uj(xij,βj) = 1
or all j ∈ {1, . . . ,m}, Soumaya et al. [27] reduced the optimality problem to the marginal counterparts and product type
esigns were developed. In the following, we will extend their results under the MGLM with seemingly unrelated gamma
odels. The product type design is supported by the cross-product of the finite sets of design points of the designs under
arginal νj-factor gamma models and the weights are given by the product of the weights of those designs. To be more
pecific, denote by ξj a design defined on Xj for a marginal νj-factor gamma model (1 ≤ j ≤ m). We present ξj as in (6)
hich assigns the weights ωj1, ωj2, . . . , ωjrj to the support points xj1, xj2, . . . , xjrj . Then the product type design ξ =

⨂m
j=1 ξj

s defined on X = X1 × . . .×Xm and has r =
∏m

j=1 rj design points xi1,...,im = (x1i1 , . . . , xjim )
T with corresponding weights

i1,...,im =
∏m

j=1 ωjij , ij ∈ {1, . . . , rj}, j ∈ {1, . . . ,m}.
For each component j denote f j,βj

(xij) =
(
f T
j (xij)βj

)−1f j(xij) for all i ∈ {1, . . . , n}. Note that f j,βj
(xij) involves

mplicitly the intercept term, i.e., there exists a constant vector c j such that cT
j f j,βj

(xij) = 1 for all i ∈ {1, . . . , n}. Here,
= β , j ∈ {1, . . . ,m}. As a result, the quasi-Fisher information matrix for the MGLM factorizes analogously to Soumaya
j j
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M
r

et al. [27] and the optimality problem at β = (βT
1, . . . ,β

T
m)

T for the MGLM can be reduced to the marginal νj-factor models
at βj, j ∈ {1, . . . ,m}.

The following theorem develops a product structure of a locally optimal design for our MGLM with respect to the
D- and A-criteria. The proof is similar to the analogous results in Soumaya et al. [27].

Theorem 6. Consider a MGLM with seemingly unrelated gamma models. Let ξ =
⨂m

j=1 ξj be a product-type design on the
experimental region X = ×

m
j=1Xj. Let a parameter point β = (βT

1, . . . ,β
T
m)

T be given. For each marginal design ξj denote by
j(ξj,βj) =

∫
Xj

f j,βj
(xj)f T

j,βj
(xj) ξj(dxj) and by mj(ξj,βj) =

∫
Xj

f j,βj
(xj) ξj(dxj) the information matrix and the moment vector,

espectively. Then the quasi-Fisher information matrix of design ξ has the form

M(ξ,β) = diag
(
ρ(jj) (M j(ξj,βj) − mj(ξj,βj)m

T
j (ξj,βj)

))
+ m(ξ,β)R−1mT(ξ,β),

where m(ξ,β) = diag
(
mj(ξj,βj)

)m
j=1

. If the information matrix M j(ξj,βj) for all j ∈ {1, . . . ,m} is nonsingular then the

quasi-Fisher information matrix M(ξ,β) for the MGLM with seemingly unrelated gamma models is nonsingular and

M−1(ξ,β) = diag
(

1
ρ(jj)

(
M−1

j (ξj,βj) − βjβ
T
j

))m

j=1
+ BRBT,

where B = diag
(
βj
)m
j=1. Moreover, for each j ∈ {1, . . . ,m}, let ξ ∗

j be a locally D- or A-optimal design (at βj) for the jth univariate
gamma model on the experimental region Xj. Then the product type design ξ ∗

=
⨂m

j=1 ξ
∗

j is a locally D- or A-optimal design
(at β) for the MGLM with seemingly unrelated gamma models on the experimental region X = ×

m
j=1Xj, respectively.

Example 1. Consider a bivariate generalized linear model with two marginal univariate gamma models with seemingly
unrelated linear predictors, i.e., m = 2. Let us begin with only one factor in each linear predictor where{

η1(x1,β1) = β10 + β11x1, x1 ∈ X1 = [0, 1],
η2(x,β2) = β20 + β21x2, x2 ∈ X2 = [0, 1].

According to Idais [13] the locally D-optimal design for each jth one-factor gamma model with the experimental region
Xj = [0, 1] is ξ ∗

j = ξ ∗

1/2 given in (21) at any parameter vector βj = (βj0, βj1)T such that βj0 > 0 and βj1 > −βj0 for j = 1, 2.
So ξ ∗

j assigns weights 1/2 to the boundaries 0 and 1. Based on Theorem 6 the product type design

ξ ∗
= ξ ∗

1 ⊗ ξ ∗

2 =

(
(0, 0)T (1, 0)T (0, 1)T (1, 1)T
1/4 1/4 1/4 1/4

)
, (23)

is locally D-optimal for the bivariate gamma model with seemingly unrelated linear predictors at β =
(
β10, β11, β20, β21

)T
such that βj0 > 0 and βj1 > −βj0 for j = 1, 2.

Moreover, the multiplicative algorithm can be used to a find locally optimal design numerically for the proposed
bivariate model. The resulting optimal designs are not necessarily of product type. For example; when ρ = 0 the numerical
results show that as the ratio βj1/βj0 becomes smaller the locally D-optimal design is given by the product type design of
form (23). Otherwise, as βj1/βj0 becomes larger the weights of (0, 0)T and (1, 1)T decrease whereas the weights of (1, 0)T
and (0, 1)T increase. E.g., at β = (1, 7, 1, 7)T and ρ = 0 the locally D-optimal design is given numerically by

ξ ∗∗
=

(
(0, 0)T (1, 0)T (0, 1)T (1, 1)T
0.185 0.315 0.315 0.185

)
. (24)

Although ξ ∗∗ is not a product type design, we have detM(ξ ∗,β) = detM(ξ ∗∗,β). As a result, neither ξ ∗ from (23)
nor ξ ∗∗ is unique at β = (1, 7, 1, 7)T. For another parameter point for instance, β = (1, 3, 1, 4)T and arbitrary
ρ ∈ {0.3, 0.5, 0.7, 0.9, 0.99} the locally D-optimal design on the experimental region [0, 1]2 is uniformly supported by
its vertices which is given by (23). So the product type design (23) is independent of ρ ∈ {0.3, 0.5, 0.7, 0.9, 0.99}.

Now we consider marginal gamma models with two-factor linear predictors{
η1(x1,β1) = β10 + β11x11 + β12x12, x1 = (x11, x12)T ∈ X1 = [0, 1]2,
η2(x,β2) = β20 + β21x21 + β22x22, x2 = (x21, x22)T ∈ X2 = [0, 1]2.

Idais [13] provided a complete solution of the local D-optimality in the two-factor gamma model with a linear predictor
as given above. In particular, for the first marginal gamma model on X1 the saturated design

ξ ∗

1 =

(
(0, 0)T (1, 0)T (1, 1)T
1/3 1/3 1/3

)
,

is locally D-optimal at any β1 = (β10, β11, β12)T with (β10 +β11)2 +β11β12 ≤ 0 such as β1 = (1,−0.8, 1)T. For the second
∗ T
marginal gamma model on X2 the uniform design ξ2 given by (24) is locally D-optimal at any β2 = (β20, β21, β22)
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ith β20 > 0, β21 = β22 = 0. Then by Theorem 6 the product type design ξ ∗
= ξ ∗

1 ⊗ ξ ∗

2 which assigns the weights
ωi = 1/12, i ∈ {1, . . . , 12} to the support points

(0, 0, 0, 0)T, (0, 0, 1, 0)T, (0, 0, 0, 1)T, (0, 0, 1, 1)T, (1, 0, 0, 0)T, (1, 0, 1, 0)T,
(1, 0, 0, 1)T, (1, 0, 1, 1)T, (1, 1, 0, 0)T, (1, 1, 1, 0)T, (1, 1, 0, 1)T, (1, 1, 1, 1)T

s locally D-optimal for the bivariate gamma model with seemingly unrelated linear predictors at the parameter vector
=
(
β10, β11, β12, β20, 0, 0

)T such that (β10 + β11)2 + β11β12 ≤ 0, β10 > 0, β20 > 0.

. Conclusion

In the present paper we studied the local optimality of designs for the multivariate generalized linear model with
espect to the D- and A-criteria. The model can deal with multiple responses observed for a unit where each response
omes from a one-parameter exponential family distributions. We found that the focus on all saturated designs simplifies
he optimality solutions. That is the optimality problem reduces to the marginal univariate models. Consequently, the
ocally optimal saturated design is still optimal for the MGLM in the set of all saturated designs and is independent of
he correlation. For D-optimality and an exchangeable correlation matrix the general equivalence theorem provides a
ecessary and sufficient condition for the saturated design to be D-optimal for the MGLM in the set of all designs. Here,
he correlation is bounded by certain limits determined by the sensitivity functions in the general equivalence theorem
nder the univariate marginal models. Our results were discussed for responses coming from gamma distributions.
n this situation, locally D- and A-optimal saturated designs are provided analytically. Then we employed particular
lgorithms to find locally D-optimal non-saturated designs for different correlation values. We concluded this paper
ith the development of optimal designs for multivariate gamma models with seemingly unrelated linear predictors.
he optimal design is given by the product of optimal designs obtained under the marginal models.
There are wide applications for the results introduced in Section 3. Besides gamma models presented in Section 4 the

irst order Poisson models can be considered. That is Yj comes from a Poisson distribution and thus the canonical link is
iven by ηj(x,βj) = log

(
µj(x,βj)

)
= f T

j (x)βj = βj0 +
∑ν

k=1 βjkxk for all x ∈ X and for all j. The intensity function is given
y uj(x,βj) = exp

(
f T
j (x)βj

)
for all x ∈ X and for all j.

According to Russell et al. [24] the equally weighted design ξ ∗

1/p0
on X = [0, 1]ν with support given by Table 1 is

locally D-optimal for the jth univariate Poisson model at βj = (βj0, βj1, . . . , βjν)T with βjk = −2 for all k ∈ {1, . . . , ν} and
for all j ∈ {1, . . . ,m}. By Theorem 2 the design ξ ∗

1/p0
is locally D-optimal in Ξp0 for the MGLM at β = (βT

1, . . . ,β
T
m)

T such
hat βjk = −2 for all k ∈ {1, . . . , p0} and for all j ∈ {1, . . . ,m}. In this situation even Theorem 4 can approve the local
D-optimality of ξ ∗

1/p0
in Ξ .

Theorem 2 covers MGLMs that combine multiple responses from distinct probability distributions. As an example;
let m = 2 so we only get Y = (Y1, Y2)T. Assume that Y1 comes from a gamma distribution and Y2 is from a Poisson
distribution. Let X = [0, 1]2 and f j(x) = (1, x1, x2)T with βj = (βj0, βj1, βj2)T, j = 1, 2. Thus by Theorem 2, the equally
eighted design ξ ∗

1/3 with support (0, 0)T, (1, 0)T, (0, 1)T is locally D-optimal in Ξ3 for the bivariate GLM at β = (βT
1,β

T
2)

T

uch that β2
10 ≤ β11β12 and β21 = β22 = −2.
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ppendix

roof of Theorem 5. We employ condition (8) of the general equivalence theorem to approve the D-optimality of the satu-
ated design ξ ∗ inΞ . To this end, denote A = fTβ(x)M

−1(ξ ∗,β)fβ(x). Then the l.h.s. of condition (8) with R from (13) is equal

o tr
(
R−1A

)
=

1
1−ρ tr(A +

ρ

1+(m−1)ρ 11
TA). We can write A = A1 + A2 where A1 = (1 − ρ)diag(f T

βj
(x)M−1

j (ξ ∗,βj)f βj
(x))mj=1

nd A2 = ρ

[
f T

βj
(x)M−1

jh (ξ ∗,βj,βh)f βh
(x)
]h=1,...,m

j=1,...,m
. It is straightforward to obtain tr(A1) = (1 − ρ)

∑m
j=1 dj(x, ξ

∗,βj) and

r(A2) = ρ
∑m

j=1 dj(x, ξ
∗,βj). Thus tr(A) =

∑m
j=1 dj(x, ξ

∗,βj). Note that ρ

1+(m−1)ρ 11
TA =

ρ

1+(m−1)ρ (11
TA1 + 11TA2) with

tr(11TA1) = tr(A1) and tr(11TA2) = ρ
∑m

j=1 dj(x, ξ
∗,βj) + 2ρ

∑m
j<h=1 djh(x, ξ

∗,βj,βh). It follows that

tr
(
R−1A

)
= tr

(
R−1fTβ(x)M

−1(ξ ∗,β)fβ(x)
)

=
1

1 − ρ

(
tr(A) −

ρ

1 + (m − 1)ρ
(tr(11TA1) + tr(11TA2))

)
=

1
1 − ρ

(1 + (m − 2)ρ
1 + (m − 1)ρ

m∑
j=1

dj(x, ξ ∗,βj) −
2 ρ2

1 + (m − 1)ρ

m∑
j<h=1

djh(x, ξ ∗,βj,βh)
)
,

hich is less than or equal to mp for all x ∈ X by (14). □
0
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Proof of Lemma 5. Denote by x∗

i for all i ∈ {1, . . . , p0} the support points of the design ξ ∗
∈ Ξp0 . Since f j(x) = f 0(x) for

all x ∈ X and for all j we have F j = F 0 for all j. Define the vector a(x) =
(
F T
0

)−1f 0(x) = (a1(x), . . . , ap0 (x))
T for all x ∈ X .

Let uij = uj(x∗

i ,βj) for all i ∈ {1, . . . , p0}. Denote ũij(x,βj) = uj(x,βj)u
−1
ij for all x ∈ X . Let Q j(x,βj) = diag

(
ũij(x,βj)

)p0
j=1

nd Q jh(x,βj,βh) = diag
(
ũ1/2
ij (x,βj)ũ

1/2
ih (x,βh)

)p0
j=1 for all x ∈ X . Then we have

dj(x, ξ ∗,βj) = f T
0(x)F

−1
0 diag

(
uj(x,βj)u

−1
ij

)p0
j=1

(
F T
0

)−1f 0(x) = aT(x)Q j(x,βj)a(x) =

p0∑
i=1

a2i (x)ũij(x,βj), x ∈ X ,

djh(x, ξ ∗,βj,βh) = aT(x)Q jh(x,βj,βh)a(x) =

p0∑
i=1

a2i (x)
√
ũij(x,βj)ũih(x,βj), x ∈ X .

ince Q j(x,βj) and Q jh(x,βj,βh) are positive definite we have aT(x)Q j(x,βj)a(x) > 0 and aT(x)Q jh(x,βj,βh)a(x) > 0 for all

∈ X . Let r(x) = aT(x)Q j(x,βj)a(x)−aT(x)Q jh(x,βj,βh)a(x) =
∑p0

i=1 a
2
i (x)

(
ũij(x,βj)−

√
ũij(x,βj)ũih(x,βj)

)
for all x ∈ X . For

n arbitrary point x0 ∈ X , if r(x0) ≥ 0, we get aT(x0)Q j(x0,βj)a(x0) ≥ aT(x0)Q jh(x0,βj,βh)a(x0) ≥ aT(x0)Q h(x0,βh)a(x0).
therwise, if r(x0) ≤ 0, we get aT(x0)Q j(x0,βj)a(x0) ≤ aT(x0)Q jh(x0,βj,βh)a(x0) ≤ aT(x0)Q h(x0,βh)a(x0). Hence, the
emma is proved. □
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