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Law of the Logarithm for Density and Hazard Rate
Estimation for Censored Data*

X1A0NNG XIANG

University of Oregon and University of Chicago

In this note, we establish law of the logarithm for kernel-type density and hazard
rate estimators based on censored data. These results are applied to get optimal
bandwidths with respect to strong uniform consistency.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Arbitrarily right-censored data arise naturally in industrial life testing
and medical follow-up studies. Let X, ..., X, be independent and identically
distributed (i.i.d.) nonnegative random variables with common distribution
function F(t), called the survival time distribution. Our model is that of
right random censoring, that is, associated with each X, there is an inde-
pendent nonnegative censoring time Y, and Y, ..., Y, are assumed to be
1.1.d. random variables with common distribution function G(¢). The obser-
vations in this model are the pairs (7, d,), where T,=min(X,, ¥;) and
0, =Ix<vy i=1,2,.,n Clearly, T, are iid. with common distribution
function D(¢)=1—(1 — F(¢})(1 — G(¢)). Throughout this paper we assume
that F(z) and G(t) are continuous. Let f(z) = F'(¢) be the density function
of X,. The hazard rate function is defined by

__J

“TTR for F(r)<1. (1.1}

h(r)
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Based on such right-censored data, one would like to estimate f(¢) and A(?)
uniformly on an interval. A very popular estimator of f(r) is the kernel
estimator defined by

1 r—x\ .
fin =1 [ K(S5) db0, (12)
a" an
where K(z) is an appropriate kernel function, {a,} is a sequence of
bandwidths with a,}0, and F, is the Kaplan-Meier estimator. The
Kaplan—Meier estimator is of the form

; 3
n—i “
~ 1— I_I ( ) ’ t<Tlni’

F,(1) To<e \H—i+1
]9 IZT(,;)y

where T, < T;,< --- < T, are the order statistics of T, and &), ..., §,,
are the corresponding J,. From (1.1) and (1.2), a natural estimator of A(t)
is

h,,(t)——m)—— for t<T,,. (1.3)

T1-E()

Estimation of f(¢) or A(r) in the presence of censoring has been widely
studied by Blum and Susarla [1], Foldes er al. [4], Tanner and Wong
[14], Padgett and McNichols [10], Mielniczuk [9], Marron and Padgett
[8], Diehl and Stute [2], Lo et al. [6], and Karunamuni and Yang [5],
among others. The strong uniform consistency rate of the estimator (1.2)
can be found in [2, 5]. Let

T.(1) =ij1<(t_x) dF(x).

n n

Under certain conditions, Diehl and Stute [2] showed

. na, 1—G(1) - 12
,.linl \/log a S{‘:E’ ) L) — fo(1)] = (2 f K*(x) dX> as.,
(1.4)

where J=[c, d] is an interval. Furthermore, if £)(¢) is continuous on
J.,=[c—¢,d+¢] for some ¢ >0, Diehl and Stute’s result implies

ri(2r+1
suptf”(t)—f(r)l=o((’351)“ ) as (L5)

teJ
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with bandwidth a, = (log n/n)"* * "), The rate given by (1.5) is optimal. In
contrast, the strong uniform consistency rate obtained by Karunamuni and
Yang [5, Thm. 2.27 is incorrect. In the absence of censoring, (1.4) reduces
to Theorem 1.3 of Stute [13].

The first aim of this note is to prove (1.4) under the weaker condition.
In [2], Diehl and Stute has required g(t)= G'(z) is bounded. This condi-
tion has been relaxed based on a different approach. The second aim of this
paper is to show a similar result to (1.4) for estimator (1.3). This result is
applied to get the strong uniform consistency rate of 4, (1) to h(z).

In this paper, we require that K(¢) is symmetric and for some /> 1,

K(t)e C'(— oo, o0), K(t) has compact support [—-1,1], (1.6)
where
C'(— o0, )= {g:g" is continuous on (— oo, oc)}.

We also require that for some integer r > 2,

1

1
f Kxyde=1; [ VK(x)de=0,j=1,..r—1;
1 1

(1.7)
J x"K(xydx=u,#0.

2. MAIN RESULTS

In our approach, a strong embedding result due to Major and Rejto [7]
plays an important role. Let H(t)=P(T,<1t), H(t)=P(T,<t, 6;=1),
H(ty=P(T,<t, 6,=0), and T, =inf{sr: H(r)=1}. Major and Rejté [7]
have shown that, for 1 < T,

Fo(0)— F() =——

7

W, () +r. (1), (2.1)

where

‘B,(H*(y)) = B,(1 - H(y))

0= (1 = poy { [ PR O
BAHU1) 1 By(H'D) .
TG TGy )}’ (22)
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and B,(1), 0<t<1, is a Brownian bridge. Moreover,

(log n)®
n

sup |r,(1)| = 0( >, as. for T< Ty, (2.3)

re [0, 7]

In order to use the result of modulus of continuity of Brownian bridge,
we require hereafter that for the sequence of bandwidth {a,}

] -1
-0, (i) 2o L (24)
na, log log n

loga, '

(i) na,too; (i)

Let B,(t) be a Brownian bridge and A(¢) be a function defined on [0, o)
with 0 < A(r)< 1. Assume that 4(¢) has a uniformly continuous derivative
a(t) with 0<d<a(t)< M < oo for all teJ, < [0, c0). We claim that the
results of Stute [12] for «,(¢) and B,(t) also hold for B,(¢) and B,(A(1)),
respectively. For example, from Shorack and Wellner [ 11, p. 5597, we have

—B
lim sup |B,(1) — B, ()] =1 as., (2.5)

=% cay<t—u<day \/2(1‘*11) lOg a;l
J

fue

where 0 < ¢ < &< oo are fixed numbers. (2.5) is similar to Theorem 2.10 of
Stute [12] and the analogue of Theorem 2.13 of Stute [12] is

|B.(A(1)) — B, (A(u))|

lim sup =1 a.s., (2.6)
"X cap <1 — u < fuy -_— ~1
cansr—uzcun /21 —u) alx,,) log a,

where x,, is any point between u and 1. Let

L,,(x):LjKC;x) dB,(A(x)). 2.7)

n n

With an argument similar to that of Stute [13], we have the following
lemma.

LEMMA 2.1. Suppose that a(1)y=A'(t) is continuous on J, with
O<o<ga(t)ysM< oo for all telJ,. Assume that (1.6) holds for I=1. Then
with probability 1,

- a, IL, (1) Yo, 12
lim ’1oga;'s,‘:‘,’\/a’(7)_<2LK(x)dx> . (2.8)

Let J,< (0, T,,). The following result is a refined version of Corollary 2
of Diehl and Stute [2].
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THEOREM 2.2. Assume that f(1) is continuous on J, with 0 <d < f(1) <
M < oo for all te J, and (1.6) holds for | = 1. Then if na, = n® for some a >0,

“m\/ s p./l—G(z (1) = Flt (J K )2. (29)
logan (s 10

Remark. Assume that f"(¢) is continuous on J, for some r 2 and that
(1.7) holds: Then from Theorem 2.2 and

Flt)=J ()= T2, 1) +0la))

with the same argument as that of Stute [13]}, the optimal bandwidth is
obtained by minimizing the term

r —_— (r ”2
@ \/T_G(_flf '(t)lj K ()| du+(2——§i—f K¥( u)du) :
r! IE./ ' \/f( )

The optimal bandwidth is of the order O((log n)/n)"* *!’). The bandwidth
with order O((log n)/n)""? * D) yields (1.5).

Let

Salt)
— F(1)’

(’)— for F(1)<1

The following result is a law of logarithm for the estimator 4,,(z).

THEOREM 2.3. Under the assumptions of Theorem 2.2.,

) na, 1 —D(z) B v, 12
nlgr;\/l—-*ga lfggfh(t) (1) = B (¢ 1—( f}(x)dx) . (210)

Remark. From Theorem 2.3, under the assumptions in the remark of
Theorem 2.2, for a, = ((log n)/n)"/+ 1),

L2r+ 1)
sup |A,(1) — h(1)] =0<<l°g ”) ) as. (2.11)

ted n

The rate given by (2.11) is optimal.

In the following proof, we use the notation b,~c, if and only if
b,/c,— 1, as n— co.
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Proof of Theorem 2.2. From (2.1) and (2.3), we can write

- 1 r—
- ~ dWln
JAORSAD ﬁa,,(l—G(t))JK( =)W

SO | t—x (log n)*
rX g K s (BE). e

where
Wult)= BB
and
W)= = (1= Flo)) | A ar(3),
Let
o= swp W 0-Wawl,  i=123

lu—t| <huted

be the oscillation modulus of W, (¢). Thus as A0, Lévy’s theorem (cf.
Shorack and Wellner [11, p. 534]) and the smoothness conditions
imposed on G(t) and F(t) imply that with probability 1,

w,(h)= O(h'"*(log h~")'?) and w,;(h)= O(h), =2,3. (2.13)

—~f (

with A(r)= H*(1), (2.13) implies that with probability 1,

Hence, if we write

)dB (A(x)) (2.14)

_ 1
fn(t)—ﬂz(f)~an(1)-

On the other hand, from

(2.15)

0= (1 =Gy dF(y),
we have

a()=A'(t) = (1 - G(1)) f(1).
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Hence, Lemma 2.1 and (2.14) imply

. a, |L, ()} ( v, >”2
lim | e (2] Kx)dx) . (216
g logan'?gg\/f(t)(]—(?(t)) jrl (x) dx (2.16)

The conclusion follows from (2.15) and (2.16).
Proof of Theorem 23. Write

Fult) = ful2)
1— F(t)

F,(1)—F(1)

1—F,(n][1 —F(zn}
F(1)— F(1)

[1-F, ()]l —F(t)]}

£,(1)— F(1)

[1—F (0] _F(;)]}

RO O
= +zl 1,(1). (2.17)

f=

hn(t)—ﬁn(l)= + [f;r(t)_fn(t)] {[

L0 — 1] {

+f(t){

The conclusion follows if we can show

I\ 1,2
sup |1,(8) =0 ((loﬂﬁ—) ) as. fori=1,2,3 (2.18)

ted ha,

We only show (2.18) for i=3. Other cases follow in a similar manner.
Choose 0 <6 < (1/2)[1 — F(d)] and write

F()—F() }
1 —F(t)—(F ()= F())1[1 = F(1)]

x I( sup |F,(1)— F(1)| <)

13,.(1)=f(1){[

0<r<d
E()—F(1) }
/) {[1 —FO) — (Bu(0) — FN I — F()]
x I( sup |F,(1)— F(1)] > 8)
= Sln(t) + S2n(t)'

Let M = max,., f(t). Since

2M .
sup 1S1,(1)] <SG Ray P |F, (1) — F(2)],
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Corollary 1 of Foldes and Rejté [3] implies

1 — 1N /2
sup |S,,(t)| =0 ((E—g—"—> ) a.s.
ted nan

Moreover, for each £> 0,

P( |2 sup 1S5, (1) >s> < P(sup |F,(1) = F(1) > 5).
log a,  ieJ tet

Hence, Theorem 2 of Foldes and Rejtdo [3] and the Borel-Cantelli lemma

imply
l -1\ 172
sup]Sz,,(t)|=o<(-————Oga"> ) as.
tedJ nan

(2.18) holds for i=3.

We now consider the strong uniform consistency rate of the kernel
estimators of higher derivatives. Assume that (1.6) holds for /=m+1 for
some m = 1. Consider the kernel estimator

apE— f & (———"x) dF ,(x). (2.19)
a, a,
Define
70 =z [ K () o (220)
a, a,

We only give the following result without proof.

THEOREM 2.4. Assume that (1.6) holds for I=m+ 1 for some m>21 and
[ is continuous on J, with 0<6< f(1)<M< oo for all teJ,. Then if
na, = n* for some x>0,

m [ o VI GO )
nex log an ted \/jft—)

12

=(2 [ ‘1 [K"")(x)]zdx> . (221)

In addition if for some r>=2, "™ *"(¢t) is continuous on J,, and assume
that (1.7) holds. Then with a, = ((log n)/n)V/3r+m+1),

ri2(r+m)+1)
supIfi,’"’(t)—f‘”"(m=0((1°5”) ) as.  (222)

teJ
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