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On the Dependence of Structure of Multivariate
Processes and Corresponding Hitting Times

NADER EBRAHIMI

Northern lllinois University

A direct approach to derive dependence properties among the hitting times of
two processes has been initiated by N. Ebrahimi (1987, J. Appl. Probab. 24
115-122) and explored further by N. Ebrahimi and T. Ramalingam (1988, J. App!.
Probab. 28 355-362; 1989, J. Appl. Probab. 26 287-295). In this paper new results
are obtained for multivariate processes, which help us to identify positive and
negative dependent structure among hitting times of the processes. Furthermore, an
approach to derive dependence properties among the processes is proposed and a
partial solution to the question that what kinds of dependence properties, when
they are imposed on processes, are reflected as analogous properties of corre-
sponding hitting times is given.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The reliability, F(t), of a system (component) is the probability that the
system will preserve its characteristics within specified limits during a
specified time interval [0, ¢]. If a system failure is an event in which at least
one characteristics of the system shift outside certain permissible limits, and
if T is the time to failure, then

F(t)=P(T>1). (1.1)

Suppose that the system reliability is determined by a finite number, %,
of characteristics. For i=1, 2, .., k, denote the value of the i/th charac-
teristic at time ¢ by X,(¢) and assume that it is within permissible limits if
X(t)<a,, where a,, a,, .., a, are fixed and known values. One may, for
example, look upon a; as the breaking threshold of total damages, X,(r),
by time t. More general ways of defining permissible limits are clearly

Received June 23, 1992; revised August 30, 1993.
Key words and phrases: hitting times, POD, NOD, associated, negatively associated,
dependence function, extreme dependence function, stationary process, NWU, minimal repair,

autoregressive model.
AMS 1991 subject classifications: primary 60E05; secondary 62E10, 45E10.

55
0047-259X/94 $6.00

Copyright i 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



56 NADER EBRAHIMI

possible, but will not be pursued in this paper. Obviously, the random
time, 7,;(a,), at which the /th characteristic first crosses its limit is given by

Inf{re A4: X;(t) = a,},

oo if X;(t)<a,for all te 4, (1.2)

r(a)=|

where the index set 4 is a subset of R, = [0, oo). In this setting, the failure
time of the system, 7, is given by

T=min(7T(a,), ..., Ti(a,)). (1.3)
In view of (1.2) and (1.3),
Ft)=P(T,(a))>1, i=1, .., k) (1.4)

Formulation of system reliability by means of Eqs. (1.2)-(1.4) is relevant to
engineering disciplines relating to structural safety, mechanical vibration,
etc.

In general it is possible to assess the system reliability F(¢) provided that
one can jointly model X ,(2), ..., X,(¢). {See Ebrahimi and Ramalingam,
1993). However, such information may sometimes be unavailable or
difficult to obtain. In such situations, one can seek bounds for system
reliability. To obtain such bounds, information about the dependence
structure of 7,(a,),.., Tx(a,) is essential. For example if we know
that P(N*_, [Ti(a)>t])=T1., P(T:(a;)>1;), then we can assess
P(T(a)>1;), i=1, .., k and derive a bound for F(r). Besides bounds infor-
mation about the dependence structure may bring forth new inequalities
for stochastic processes. Ebrahimi (1987) has initiated a direct approach to
study the dependence structures of hitting times for bivariate processes. His
approach has been explored further by Ebrahimi and Ramalingam
(1988, 1989).

Certain kinds of dependence properties, when they are imposed on pro-
cesses, are reflected as analogous properties of corresponding hitting times.
These results are of value as they help us to understand in what ways the
hitting times for dependence structures of hitting times can be inherited
from the corresponding processes. Furthermore, these results sometimes
can tell us how to control the reliability of a system by controlling its
characteristics.

In Section 2 of this paper, we list several concepts of dependence. In
Section 3, we give several results which not only clarify some properties of
dependent processes, but also help us to identify positive or negative
dependent structures, both among processes and their hitting times.
Finally, in Section 4 we give several examples.



STRUCTURE OF MULTIVARIATE PROCESSES 57

2. PRELIMINARIES

Suppose that we are given a k-dimensional (k>2) stochastic vector
process {X(#)=(X(¢), ..., X, (1)): te€ A}, where the index set A always be a
subset of R, =[0, ). The state space of X(¢) is the cartesian product
E=E xE,x --- x E,, which will be a subset of k-dimensional Euclidean
space R*. If the index set is {0, 1, 2, ..}, then

k
P( N (T,-(a.-)>t.~)> =P( o Jmax X:(j)<a,i=1.,k) (21)
i=1 0<ji< ]
where [b] is the largest integer less than or equal to b.
We now present three concepts of positive (negative) dependence for any
k-dimensional stochastic vector process X(¢).

DermNiTION 2.1. The k22 different processes {X (1);re€ A}, ..., {X(t);
te A} are positively orthant dependent (POD) (negatively orthant
dependent (NOD)) if

k

P ( N Xt > ai]) > (<) T PLXA1)>a), (22)
i=1 i=1
k

P(ﬁ [X,-(t.»)sa.-]>>(<) [T P(X(t) <a), (2.3)
i=1] i=1

for all a,€ E; and t,€ A4, i=1,..,k, and {X,(t);te 4}, .., {X,(t);te 4} are
each (univariate) POD (NOD}. For j=1, .., k, we say that a one-dimen-
sional process X;(¢) is POD (NOD) if for any 0 <5, <s,< --- <5, 5,6 4
and a;€ E;, i=1, .., n,

n

P(ﬁ[X,-(s.»)>a,-])/( ) 1T P60 > a)

=1

and

P( N (X,(s,»)sa,»))z (<) T] PX,(s) <ay)

i=1 i=1

Also, the hitting times T(a,), ..., Tx(a,) are POD (NOD) if

k
P<(k] (Ti(a,«)>ti))>(<) [1 P(Ti(a))> 1)), (24)
i=1 i=1
and
P((k\ (T.-(a,»)St,-)>>(<) IT P(Ti(a)<1,), (2.5)
i=1 i=1

for every q;e E; and t,e A, i=1, .., k.
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From Definition (2.1), it is clear that if X,(¢,)=X,, i=1,..,k, then
X, ., X, are POD (NOD) if P(N_, (X;>x N2 () TT, P(X,>x,)
and P(N*_, (X;<x,))=(<)TT%, P(X,;< x;) which coincides with classi-
cal definitions of POD and NOD. (See Ebrahimi and Ghosh, 1981.)

For k=2, POD (NOD) will also be called positive quadrant dependent

(PQD) (negative quadrant dependent (NQD)).

DEFINITION 2.2. The processes {X(t);teA}, .., {X(t);ted} are
associated (k =2} if

cov(f(X,(t,), i=1, .., k), g(X,(t,), i=1, ... k)) =0, (2.6)

for all non-decreasing real valued functions f and g such that the
covariance exists and all r,e4, i=1,.,k, and {X,(¢);1e4},.., {X\(1);
te A} are each univariate associated. For j=1, .., k, a one-dimensional
process {X,(1);te A} is said to be associated if for any 0<s, <s,< -+ -5,
cov(f(X,(s,), i=1,.,n), g(X,(s;), i=1, .., n))=0. Also, we say the hitting
times 7T (a,), ..., T,(a,) are associated if

cov(f(T(a), ..., Tilay)), g(T (ay), .., Tilag))) =0, (2.7)

for all non-decreasing functions f and g such that the covariance exists and
all q,e E;,, i=1, ..,k

From Definition (2.2) it is clear that if X,(7;)=X,, the sequence
of random variables X, .. X, are associated if cov(f(X,, .., Xs),
g(X,, .., X;)) =0 which coincides with the Definition given by Barlow and
Proschan (1981).

DEFINITION 2.3. The processes {X,(¢):teAd}, .., (X, (1);ted} (k=2)
are negatively associated (NA) if for every disjoint subsets B, and B, of
{1,2,..,k},

cov(f(X;(t,), ie B)), g(X,(1,), i€ B,))<0, (2.8)

for all real valued non-decreasing functions f and g. Furthermore, each
{X;(1);1e A}, i=1,..,k, are NA. For j=1, .., k we say that a one-dimen-
sional process {X,(¢);1e A} is NA if for any 0<s, <s5,< ---5, and any
two disjoint subsets A4, and A4, of {1,2,.,n}, cov(f(X(s), ied,),
g(X,(s,), i€ 4,))) <O,

Also, the hitting times T,(a,), .., Tx(a,) are NA if for every pair of
disjoint subsets B, and B, of {1, 2, .., k},

cov(f(Ti(a,), i€ B,), g(Ti(a), i€ B,))<0, (29)
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for all non-decreasing real valued functions f and g for which the
covariance exists and all a,e £, i=1, ..,k

In Definition (2.3) if X;(t;)=2X,, then the X,,., X, are NA if
cov(f(X;, ie B)), g(X,,ie B,))<0 for any two disjoint subsets B, and B,
of {1, ..k}

It is clear that if the univariate process has stationary independent
increments and if for every te A the density function of X(z), fy(,, is
positive frequency of order 2(PF,), then {X(¢),te A} is associated. (A
function A(x) is said to be PF, if log h(x) is a concave function.) Also if the
process {X(1);te A} is a Markov process and P[X(¢)=y| X(s)=x] is
totally positive of order 2(TP,) in x and y for all s<r, then {X(r);re A}
is associated. (A function A(s, ¢) is said to be TP, if

h(sy, ty)  h(sy, t3) >0
h(sy, ;) h(sy, 13) ~

for all s, <s,, t;<t,.) For more properties of PF, and TP,, see Barlow
and Proschan (1981).

Having laid down some concepts of dependence, several comments
regarding independence among the components of X(¢) are in order. First,
we will say that X,(¢), ..., X, (¢) arc independent if for all t,e A4, i=1, ..., k,
X, (1)), .., X () are independent in the usual sense of independence among
k random variables. Second, we say that hitting times T,(a,), i=1, .., k, are
independent if for all a,e E,, i=1, .., k, T (a,), ..., Ti(a,) are independent.

Now, we list several properties of POD (NOD) and associated (NA)
stochastic processes. Here 4 is either POD, NOD, associated, or NA.

(a) If X,(2),.., X,(t) are 4, then any subset is also 4;

(b) If X (1), ..., X.(2) are 4, then g, (X,(¢)), ..., g.(X(?)) are 4 for all
non-decreasing (non-increasing) functions g, ..., g.

(c) 1If X(¢)= (X, (¢), ..., X, (2)) and Y(¢)=(Y,(¢), ..., Y, (¢)) are POD
(NOD), X(t) and Y(¢) are independent, and X(z) has independent com-
ponents, then X(¢) + ¥(¢) is POD (NOD).

(d) If X(¢) = (X,(2), ..., Xi(t)) and Y(r) = (Y,(2), ..., Y,(t)) are
associated (NA), X(¢) and Y(s) are independent, then X(z)+ Y(¢) is
associated (NA).

(e) If X(t)=(X,(2), ... Xi(2)) and Y(r)=(Y(¢), .., Y, {2)) are both
non-negative and associated (NA) processes and if X(z) and Y(¢)
are independent, then Z(1)=X(¢) Y(¢)=(X,(1) Y (1), ..., Xi (1) Y, (2}) is
associated (NA).
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fy 1If X,(¢),.., X,(t) are 4 and X,(¢+) has continuous sample path,
i=1,..,k, then Y(1), .. Y. (r) are 4, where Y,(t)=[} g.(u) X, (u)du,
i=1, ..,k and g;(u)’s are non-negative continuous functions.

Proof. The proof is straightforward and it is omitted.

3. THEORETICAL RESULTS

In this section we will assume that the index set 4= {0, 1, 2, ...}. Similar
results can be obtained for a general multi-dimensional process provided
that the process has continuous sample paths.

THEOREM 1. Consider a one-dimensional process {X,(1); te A} such that
X,(t) is 4, where A4 is either POD, NOD, associated, or NA. Then
T(a,), .., T(a,) are A. Here T(a,)=1Inf{n: X,(n) = a,}.

Proof. We will prove this theorem for k=2, and 4 is either POD or
associated.

(a) Suppose 4 is POD, then we need to show that for a, <a,,
2 2
P(ﬂ [T(a,-)>t,-]) [T P(T(a;}>1¢).
i=1 i=1
Now,
2
P(() (@)= 1 )= P( max () <ani=1.2)
i=1 O0< /< (4]
=P(X,(j)<a,,0<j<[1], X\(j)<a,,
[n]+1<j<[ D) (s, <1)
+ P(X,(j) <ay, 0< j<e[1]) I(t, > 1)
(Here I is the usual indicator function.)
ZP(X,(jy<a, 0<j<[0,]) PIX (j)<a,, [ ) +1<j< [ I, <)
+ X)) <ay, 0<j<t[11) I(1, > 1)
2 (T(a))> 1)) P(T(ay) > 1) (1, £ 1)
+ P(T(ay) > t,) P(T(ay) > 1,) I(t, > 1;) = P(T(a,) > 1,) P(T(ay) > 1,).

(b) Let f and g be two non-decreasing functions, and let 4 be
associated, then
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cov(f(T(a,), T(a,)), g(T(a,), T(a,))
=cov(f(min{n: X\(n) =a,}, min{n: X (n) > a,}),

g(min{n: X,(n)>a,}, min{n: X,(n)za,})=20. (3.1)

The last inequality in (3.1) comes from the fact that both fand g are non-
decreasing functions of {X,(n);ne {0, 1,2, ...}}. Similar arguments can be
used to prove for 4 being NOD or NA.

In order to prove our next result we need the following notations. Let
X=(X,, .., X,) be a d-dimensional vector with distribution function F and
the marginal distribution functions F;, 1< j<d. The dependence function
of X (or of F) is defined by

Di(uy, . ug) = P(Fy (X)) <, 1<j<d). (32)

It is clear that D, is the distribution function on [0, 1]¢ and it has uniform
marginal distributions if the F/’s are continuous. The marginal distributions
together with the dependence function determine F, since F(x,, .., x,)=
De(F(x,), ..., F4(x,)). Furthermore, a dependence function Dy is said to
be an “extreme dependence function” if all the marginals are non-
degenerative, and for each n> 1,

D% (uy, o ug)=Dp(ul, .., u?), (uy, ., ug) e [0, 114

Deheuvels (1983) and Hsing (1987) have excellent papers about the con-
cept of “dependence function.” Hsing (1987) showed that D is “extreme
dependence function” if and only if

DF"(ul’ ey ud) = DF(ul, B ud)s (ula sery ud) € [0’ ljd (3'3)

It is clear that if (X, .., X;), 1<i<n be independent random vectors
all having distribution F, then F” is the distribution function of
(max, c; <, X, - MaxX, ¢, <, X,y), and hence (3.3) is equivalent to

Dty o ug) = P(G;( max X,)<u, j=1, .., d), (3.4)

I<ign

where G, is the distribution function of max, ., , X; which is F7.

Now we define similar concepts for one-dimensional and k-dimensional
processes. For a one-dimensional process {X(t);te A}, {W(t,, .., 1)
ty, s tm€A4, me{0,1,..}} is said to be a “dependence function” if for a
given m, and 0<¢, <1, < --- <1,

WAty o to) = Drys v (3.5)
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Here from (3.2), Diryipr sy (Mis o u,,)=PF,(X(t))Su;, i=1,..,m),
where F,(x)= P(X(t,) < x). For a k-dimensional process {X,(1);re A}, ..,
(X (s ted}, {V(ty, o 1) £, 1, € A} is said to be a “dependence func-
tion” if for any ¢, ..., t, € 4,

V(tys o ti) =Dy, (3.6)

,,,,, Xple)?

where DFX1(I1L<.>Xkllki(ul’ e )= P(FAX,(t))<u;, i=1,..,k). Here Fi(x)=
P(X(1) < x).
We are now ready to prove our result.

THEOREM 2. Consider d-different processes {X(t); te A}, .., {X,(1);
te A} such that (a) X(t), .., X,(t) are 4 (Here A is either POD, NOD,
associated, or NA), (b) X;(¢t) is strictly stationary, i=1, .., d, (The process
Y(1) is said to be strictly stationary if for 0<t, <1, < --- <t, and h>0,
(Y(t,+h), .., Y, + 1) =9 (Y(2), ..., Y(£,))), () for h>0, (X (t+h), ..
X, (t+h) = (X,(t), ... X (1)), and (d) DG,.,,,,Z_,,,,M(“I’ Uyy oy Uy)=Dp(uy, ., uy)
for all n,,.,nge{0,1,..} and (uy,..,uz)€[0,1]% this condition is
equivalent to Condition (3.3) for the case that X ;s are not iid., where
DGnl,nz...,nd(ul’ Uy, o Uy)=P(G (max, ;0 Xy(/))<u, i=1,.,d), and
Dy(uy, .. uy)=P(F(X(0))<u,;, i=1,..,d), then T(a,), ..., Tila,) are 4.

Proof. We will prove this theorem for d=2 and 4 is POD. Similar
approach can be used to prove the theorem for other cases.

P(T\(a,)>ny, Tr(ay)>n,)

=P( max X,(j)<a,, max X,(j)<a,)

1<j<n I<jsm
=P(Gl(lm, X X, (j) <Gilay), Gyl 1mj X X,(J)) £Gylar))
<j€m </j€m

=Ds(G(a,), Gy(ay)) = Dp(Gi(a,), Gy(ay))
2 Dp(Gy(a,)) Dr(Gy(az))

=Dg,(Gi(a,)) Dg(Gy(a3))

= P(T(ay)>n,) P(T,(a,) > n,).

Here G, and G, are the distribution functions of max;;, X;(/) and
max, ¢ <., X2(/), respectively, G is the joint distribution function of
max, ¢ <, X1(j) and max, ¢ ;,, X5(j), Fx, x3) = P(X,(0) <x;, X5(0) < x3),
and F;(x,)=P(X;(0)<x,),i=1,2.

Clearly, if {X(n):ne{0,1,..}} and {Y(n):ne {0, 1,..}} are such that
(X(n), Y(n)), n=1,2, .., are iid. and (X(n), ¥(n)) is 4, then these two
processes satisfy the conditions of Theorem 2.
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THEOREM 3. Suppose {X(t);te A} and {Y(¥),te A} satisfy a linear
regression relationship of the form X(t)=aY(t)+ Z(t), a>0, where Z(t)
is a white noise process (ie., purely random process) independent of
{Y(2);te A}, and {Y(1); te A} is associated (NA). Then X(t) and Y(t) are
associated. Furthermore, the corresponding hitting times T (a) and T,(b) are
associated. Here T\(a)=1Inf{n, X(n)>=a}, To(b)=1Inf{n: Y(n)=b}.

Proof. We shall prove this theorem when Y(¢) is associated. First, it
is clear that {X(r);re A} is associated. Now, for any non-decreasing
functions f and g and n;,n,€ {0, 1,2, ..},

cov(f(X(n,), Y(n,)), g(X(n,), Y(ny))

=cov(f(Y(n,)+ Z(n,), Y(n,)), g(Y(n,)+ Z(n,), Y(ny)) 2 0. (3.7)
The last inequality comes from the fact that {Y(¢);te A} and {Z(z);1e A}
are associated and they are independent. Consequently {X(r);1e A} and

{Y(1); 1€ A} are associated.
Furthermore, one can show that for any ny, .., ny,,, n2(s -, Ry €

{0,1,2,..},
COV(f(X(n“), ¢ ] X(nlm)’ Y(”Zl)s eny Y(n2l))’

g(X(ny), - X(ny,), Y(ny), .., Y(ny))) =0, (3.8)

and consequently
cov(f(T(a), Tx(b)), g(T\(a), To(b)) =0.

The inequality comes from the fact that both f and g are non-decreasing
functions of {X(n):ne A} and {Y(n):ne A}.

Remark 3.1. In Theorem 3, one can assume X(¢z) and Y(¢) satisfy a
linear regression relationship but with a “delay” of 4 time units, that is,
X(ty=aY(t—d)+ Z(t) or in general X(¢)=3,_,dY(t—d)+ Z(1).

Consider a simple form of econometrical model relating the investment
and capital gain. Let X(¢) and Y(¢), te A, denote respectively the invest-
ment and capital gain at time ¢. The model is

Y(1)=aX(t— 1)+ Z,(1)
X(1)=bY(1) + Z(1),

(3.9)

where a, b>0, Z,(t) and Z,(¢) are both noise processes and (Z,(¢), Z,(¢))
are a sequence of independent random vectors. The following theorem
gives information about dependent structure of X(z) and Y(z) and their
hitting times.

683/50/1-5
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THEOREM 4. The bivariate process {(Y(n), X(n)): ne{0,1,2,..}} is
associated. Furthermore, T (a)=Inf{n: Y(n)=a}, T,(b)=Inf{n: X(n)=b}
is associated.

Proof. From Eq. (3.9) one can write

n

n—1
Y(n)= ) (aby" 'Z\(i)+ ) (@)"""b" "T'Zy(i),  nz],
i=0 i=0

(3.10)
Y(0) = Z,(0).

For any O<n,<n,< -.- <n, since Y(n,), .., Y(n,) are non-decreasing
functions of (Z (i), Z,(i)), i=0,..,n, we get that the process {Y(n);
ne {0, 1,..}} is associated. Similarly, from Eq. (3.9) we get that

X(0)=56Z,(0)+ Z,(0)
” n (3.11)
= Z n— lbn 1-+-lZ Z ab)n IZZ )

and consequently {X(n); ne {0, 1, ...} } process is also associated.
Now, for 0 <n, <n,, and non-decreasing functions f and g,

cov(f(X(ny), Y(n,)), g(X(n,), Y(n,)))
=cov(f(bY(n))+ Zy(ny), Y(n,)), g(bY(n,) + Z5(n,), Y(n,))) 2 0.

The last inequality comes from the fact that f and g are non-decreasing
functions of Y(n,), Z,(n,) and Y(n,).

The proof of the second part is similar to arguments used in the second
part of Theorem 3 and it is omitted.

4, EXAMPLES

ExaMpLE 1. Consider two different repair policies. The first policy is
that we replace a failed unit with a new identical unit. We let N(¢) denote
the number of replacements up to time t. The second policy consists of
repairing the unit to its condition just prior to failure, that is, a minimal
repair. We denote the number of minimal repairs up to time 7 by W(r).
Suppose the sequences {X,;n>1}, {¥,;n>1} denote the interarrival
times for renewal process N(t) and minimal repair process W{(r) respec-
tively. Then, it is clear that X, =Y,

PX,>t1X,=Y, i=1, ., n—1)=F1),
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and

Flt+y,+ -+ y,_1)
Fiy,+ - +y._1)

Suppose F(f) is a new worse than used (NWU), F is said to be NWU if
Flx+ y)= (F(x))E(»)) for all x, y>0, then one can easily show that for
any n,ne{l,2,..}, X,,.., X,, Y, .., Y, are POD. Using this fact we
get that

PY, >t X,=Y,=y,, Y, =y,i=2,.,n—1)=

P(N(t))>n, W(t))>n))=P(X )+ - + X, <t),., Y+ - +7,<1,)
2 P(N(t,)>n,) P(W(t,) > n,).
That is, {N(s);teR,} and {W(¢);teR,} are POD. If T (a)=
Inf{s: N(1) 2 a} and T,(b)=Inf{r: W(z) > b}, then
P(T\(a)>t,, T,(b)>t,)=P(N(t,)<a, W(t,)<b)
2 P(Ty(a)>1,) P(T,(b) > 1,).
That is hitting times are POD.

ExampLE 2. Consider the non-stationary process X(!) given by
X()=a() Y(1), 120, (4.1)

where «(?) is a deterministic continuous function such that a(¢) >0 and
¥(¢) is non-negative stationary process in the sense that

cov(¥(t), Y(r+ h)) = K(h),

for every t, h>0. The model in (4.1) is called the uniformly modulated
model (See Priestly, 1988, for more details). If Y(¢) is associated, then using
the property (e} in Section 2, X(¢) is also associated. From Theorem 1,
T(a,), .., T(a,) are also associated. Here T(a;) = {n: X(n) = a,}.

ExampLE 3. Block et al. (1988) proposed a bivariate exponential
autoregressive model of order m, BEAR(m),

E(n), n=0,.,m-—1

X(n)= (4.2)

Y, A(n,q) X(n—q)+ B(n) E(n), n=mm+1,.,
g=1

where E(n)=(E,(n), E;(n)) is a sequence of independent bivariate
exponential random vectors with mean (A;7', 4;'), 4,,4,>0, B(n) is a
2 x 2 diagonal matrix with B(n)=diag{n,(n), n,(n)}, 0<m,(n), ny(n) <1,
e; is an m-dimensional vector with component j equal to one and the
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other component equal to zero, j=1, .., n 0 is the m-dimensional zero
vector, I'(n)=(I(n, 1), .., I,(n,m), I,(n, 1), .., I,(n, m)) is a sequence of
2m-dimensional independent random vectors with components assuming
values one or zero independent of all E(n), and finally A(n, ¢g) is a 2x2
random diagonal matrix with A(n, q) =diag(/,(n, q), I,(n, q)), g=1, .., m.
It is assumed that

Y P{n, 1), .., Ii(n,m))=¢;} =1 —m,(n)
j=1
and

P{(Il(n, 1)9 ] I[(n,m))=0,} =n1(n)a

I=1,2.
The following theorem gives the result about dependence structure of the
bivariate process BEAR(m), X(n)= (X,(n), X,(n)).

THEOREM 5. Suppose for j=0,1,..,m—1, the random variables X,(}j),
X,(j) in (4.2) are associated. Then X(n) is associated. Furthermore, the
corresponding hitting times are also associated.

Proof. Part one comes from Lemma (3.10) of Block er al. (1988). The
proof of the second part of the theorem is similar to the proof of
Theorem 4 and it is omitted.

Remark 4.1. The bivariate geometric autoregressive model introduced
by Block et al. (1988) is also associated if the assumption of Lemma (3.12)
of Block et al. holds.

ExaMmpLE 4. Consider a k-dimensional multivariate stationary Gaussian
process {X(7)=(X (1), ..., Xx(1)): t€ {0, 1,..}} such that

cov(X,(1), X,(s))=r,(t—5)=0,
Cov(X,(1), X,(5)) = hy(t—5) >0,

for all t>s. Then, the corresponding hitting times are associated.
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