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Asymptotic Behavior of Heat Kernels
on Spheres of Large Dimensions
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For n�2, let (+x
{, n){�0 be the distributions of the Brownian motion on the unit sphere

Sn/Rn+1 starting in some point x # Sn. This paper supplements results of Saloff-Coste
concerning the rate of convergence of +x

{, n to the uniform distribution Un on Sn for

{ � � depending on the dimension n. We show that, limn � � &+x
{n, n&Un&=

2 } erf(e&s�- 8) for {n :=(ln n+2s)�(2n), where erf denotes the error function. Our
proof depends on approximations of the measures +x

{, n by measures which are
known explicitly via Poisson kernels on Sn, and which tend, after suitable projec-
tions and dilatations, to normal distributions on R for n � �. The above result as
well as some further related limit results will be derived in this paper in the slightly
more general context of Jacobi-type hypergroups. � 1996 Academic Press, Inc.

1. ASYMPTOTIC BEHAVIOR OF GAUSSIAN MEASURES
ON n-SPHERES

For n�2 let Un be the uniform distribution on the n-sphere Sn/Rn+1.
If Ln is the Laplace�Beltrami operator on S n, then (H{, n){�0 :=(e&{Ln){�0

forms a Markovian selfadjoint semigroup of operators on LP(S n, Un)
(1� p��) which may be regarded as semigroup of operators related to
Brownian motion on Sn. The semigroup (H{, n){�0 admits a kernel
(H{, n){�0 with

H{, n f (x)=|
S n

h{, n(x, y) f ( y) dUn( y) ( f # L p(Sn, Un)) (1.1)

and with 0<h{, n(x, y)<� for {>0, x, y # Sn. In particular, for each
x # S n, the functions hx

{, n( y) :=h{, n(x, y) are the L1-densities of the semi-
group (+x

{, n :=hx
{, nUn){�0 of the distributions of the Brownian motion on

Sn starting in x at time 0.
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It is well known that lim{ � � h{, n(x, y)=1 for fixed n, and it is natural
to ask for quantitative estimates on how h{, n tends to 1 depending on the
dimension n. Problems of this kind were studied recently in several papers
where much attention was paid mainly to finite structures; see Diaconis
et al. (1988, 1990, 1992), and references cited there. Recently, the
orthogonal groups SO(n) as well as the spheres Sn and projective spaces
were investigated by Rosenthal (1994), Saloff-Coste (1994), and Voit
(1995). In particular, Saloff-Coste (1994) used that the Laplace�Beltrami
operator Ln on Sn has eigenvalues

*k=k(k+n&1) (k # N0=[0, 1, ...]) (1.2)

with multiplicities

hk=
(k+n&2)!
(n&1)! k !

(2k+n&1), (1.3)

and he obtained the following estimations for hx
{ (see Section 3.3 of Saloff-

Coste, 1994):

(a) e&s�&hx
{, n&1&2�- 5e&s

for { :=
ln(n+1)+2s

2n

(b) &hx
{, n&1&1�- 5e&s

for { :=
ln(n+1)+2s

2n

(c) &hx
{, n&1&1�2 } (1&8e&2s)

for { :=
ln n&2s

2n
, 0<s<

ln n
2n

.

(Notice that the L1-norm here differs by a factor 2 from the total variation
norm in [14].) The main purpose of this paper is to derive the exact
asymptotic rate of &hx

{, n&1&1 for n � � and {={(n) as given in (a). More
precisely, we prove the following

1.1. Theorem. For each s # R,

lim
n � �

&hx
{n , n&1&1=2 } erf(e&s�- 8) with {n :=

ln(n+1)+2s
2n

,

where erf (z)=(2�- ?) �z
0 e&t2 dt denotes the error function.

231HEAT KERNELS ON SPHERES



File: 683J 163503 . By:CV . Date:04:11:96 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 2896 Signs: 1990 . Length: 45 pic 0 pts, 190 mm

To compare Theorem 1.1 with the estimations (a), (b), and (c) above,
consider two special cases. If s is positive and large, then

2 } erf(e&s�- 8)&

- 2

- ?
e&s (1.4)

which means that the estimation (b) is sharp for large positive s up to some
constant. Moreover, if s is negative and large, then

2 } erf(e&s�- 8)&2 \1&
- 8 } es

- ?
} exp(&e&2s�8)+ (1.5)

which tends to the maximal distance 2 extremly rapidly. In particular, this
rate of convergence to 2 is much higher than the rate given in (c) above.

Theorem 1.1 is similar to asymptotic results of Diaconis (1988), Diaconis
and Graham (1992), and Diaconis, Graham, and Morrison (1990) for the
rate of convergence to equilibrium for random walks on hypercubes where
there also the error function appears. In all cases, the error function comes
in by comparing two normal distributions with different means.

We prove Theorem 1.1 by a method introduced in Voit (1996a) for
random walks on hypercubes: For s # R, n�2, and x # S n we construct
probability measures px

n, s on Sn with the following properties:

(a) The measures px
n, s are good approximations of the probability

measures hs
{n, nUn on Sn ({n being given as in Theorem 1.1); more precisely,

&hx
{n , n Un& px

n, s &=O(ln n�n) for n � �, s fixed. (1.6)

(b) The measures px
n, s are explicitly known, have a simple shape, and

satisfy

&px
n, s&Un&&2 } erf(e&s�- 8) for s # R fixed, n � �. (1.7)

(a), (b), and the triangle inequality then lead to Theorem 1.1. Notice again
that the total variation norm here differs by the factor 2 from Diaconis
et al. (1988, 1990, 1992), Saloff-Coste (1994), Voit (1996a).

In order to describe the construction of the measures px
n, s on Sn, we

proceed as follows by reducing the problem on spheres to a problem on a
fixed compact interval.

1.2. Reduction to a Problem on a Compact Interval. Fix some dimension
n�2 as well as some x # Sn. The orthogonal group SO(n+1) acts trans-
itively on Sn, and SO(n) may be identified with the stabilizer subgroup of
x in SO(n+1). Then, SO(n+1)�SO(n)&Sn. Moreover, the double coset
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space SO(n+1)��SO(n) will be identified with the compact interval
[&1, 1] such that the canonical projection

?n : SO(n+1)�SO(n)=S n � SO(n+1)��SO(n)&[&1, 1]

is given by ?n( y)=cosM( y, x) for y # S n/Rn+1. Let

Mb(Sn | SO(n)) :=[+ # Mb(S n) : A(+)=+ for all A # SO(n)]

be the Banach space of all SO(n)-invariant Borel measures on Sn. If the
mapping of taking images of measures under ?n is again denoted by ?n ,
then

?n : Mb(Sn | SO(n)) � Mb([&1, 1])

becomes an isometric isomorphism of Banach spaces. In particular, the
image ?n(Un) of the uniform distribution on Sn is given by

d|n(x) :=cn } (1&x2)n�2&1 dx with cn=
1((n+1)�2)

- ? } 1(n�2)
, (1.8)

and the distributions +x
{ # Mb(S n | SO(n)) of the Brownian motion have

images on [&1, 1] whose |n-densities have well-known expansions in
ultraspherical polynomials (see Bloom and Heyer, 1995; Hartman and
Watson, 1974; Mueller and Weissler, 1982; Saloff-Coste, 1994; and Section
2.2 below). We prove that good approximations of +x

{ on Sn are given by
the unique SO(n)-invariant probability measures on Sn with ?n-images

dp(n)
r :=cn }

1&r2

(1+r2&2rx)(n+1)�2 (1&x2)n�2&1 dx (x # [&1, 1]),

(1.9)

where r # [0, 1[ is related to { and where cn is given as in (1.8):

1.3. Theorem. Fix some s # R. If {(n) :=(ln(n)+2s)�2n and r(n) :=e&n{(n),
then

&?n(+x
{(n), n)& p (n)

r(n) &=O(ln n�n) for n � �.

If we consider p (n)
r(n) for r(n) :=e&n{(n) then

&p(n)
r(n)&N(e&s�- n&2, 1�(n&2))&=O(1�n), (1.10)

&|n&N(0, 1�(n&2))&=O(1�n), (1.11)
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where N(m, _2) is the normal distribution on R with mean m and variance
_2. Theorem 1.1 now follows from (1.10), (1.11), and Theorem 1.3; see also
Theorem 2.6 below.

The well-known approach above reduces the problem on spheres to a
problem on [&1, 1], where for each dimension n this interval inherits
some convolution structure from SO(n+1) and S n related to the
ultraspherical polynomials (P (:)

k )k�0 with :=n�2&1. As the complete
machinery works for all indices : # R, :> & 1

2 , we embed the theorems
above into the slightly more general theory of random walks on hyper-
groups on [&1, 1] associated with ultraspherical polynomials; see
Section 2.

Before doing this, we give a brief outline of this paper: In Section 2 we
first recapitulate some facts on ultraspherical polynomials and the related
hypergroups (for a general approach to hypergroups see Bloom and
Heyer, 1995). After having introduced Gaussian measures on [&1, 1]
(which are essentially equal to the measures ?n(+x

{(n)) above) as well
as so-called Poisson measures (cf. Eq. (1.9)), we claim in Section 2 that
these Poisson measures are good approximations of Gaussian measures for
large indices :. This result corresponds to Theorem 1.3(1); it is proved in
Section 3 by using L2-methods for the ultraspherical Fourier transform.
Generalizations of Theorems 1.3(2) and 1.1 are stated in Theorems 2.5 and
2.6, respectively; these theorems are proved in Section 4. Finally, in Section
5 we transfer Theorem 1.1 from spheres to the real projective spaces Pn(R).

I would like to thank Margit Ro� sler for some very fruitful discussions.

2. GAUSSIAN MEASURES ON ULTRASPHERICAL
HYPERGROUPS

In this section we embed the results of Section 1 into the more general
setting of ultraspherical hypergroups on [&1, 1]. We first recapitulate
some facts.

2.1. Ultraspherical Hypergroups on [&1, 1]. Fix :> & 1
2 , and consider

the ultraspherical polynomials defined by

P (:)
k (x) := 2F1(&k, k+2:+1; :+1; (1&x)�2) (x # R, k�0) (2.1)

which are normalized by P (:)
k (1)=1 and which are orthogonal on [&1, 1]

with respect to the probability measure

d|:(x) :=c:(1&x2): dx (2.2)
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with

c: :=\|
1

&1
(1&x2): dx+

&1

=
1(2:+2)

1(:+1)2 22:+1
=

1(:+3�2)

1(:+1) - ?
(2.3)

(where in the last equation the duplication formula was used). By
Gegenbauer's product formula, the ultraspherical polynomials satisfy

P (:)
k (cos s) } P (:)

k (cos t)

=c:&1�2 |
?

0
P (:)

k (cos s cos t+sin s sin t cos z)(sin z)2: dz (2.4)

for s, t # [0, ?] with c:&1�2 being given according to (2.3); see Eq. (2.23) of
Askey (1975). Thus, for x, y # [&1, 1] we find unique probability
measures, say $x V $y , on [&1, 1] with

P (:)
k (x) } P (:)

k ( y)=|
1

&1
P (:)

k (z) d($x V $y)(z) for all k�0.

This convolution $x V $y of point measures can be extended uniquely to a
bilinear and weakly continuous convolution V on the Banach space
Mb([&1, 1]) of all (complex) Borel measures on [&1, 1] such that
(Mb([&1, 1]), V ) becomes a commutative Banach algebra. Moreover, V
establishes a hypergroup structure on [&1, 1]. For details see Bloom and
Heyer (1995).

We next turn to some details concerning ultraspherical hypergroups
needed later on. Let M1([&1, 1]) be the set of of all probability measures.
Then the orthogonality measure |: # M1([&1, 1]) is the normalized Haar
measure of our hypergroup, i.e., + V |:=|: for all + # M1([&1, 1]).
(Notice that for :=n�2&1, the measure |: is just the projection ?n(Un)
of the uniform distribution on the sphere Sn; see Section 1.2.) If we
embed L1([&1, 1], |:) into Mb([&1, 1]) in the natural way, then
L1([&1, 1], |:) is an ideal in Mb([&1, 1]), and the nontrivial multi-
plicative linear functionals of L1([&1, 1], |:) are given by the polynomials
P(:)

k (k�0) via f [ �1
&1P (:)

k f d|: . In other words, the Gelfand transform of
L1-functions is just the ultraspherical Fourier transformation

L1([&1, 1], |:)�c0(N0), f [f� with f� (k)=|
1

&1
P (:)

k (x) f (x) d|:(x).

(2.6)
If we put

h (:)
k :=\|

1

&1
P (:)

k (x)2 d|:+
&1

=
(2k+2:+1) } (2:+1)k

(2:+1) } k !
(k # N0), (2.7)
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then the mapping f [ f� can be extended to an isometric isomorphism
between L2([&1, 1], |:) and l 2(N0 , (h (:)

k )k # N0
). The measure ��

k=0 h (:)
k $k

on N0 is called the Plancherel measure of the ultraspherical hypergroup on
[&1, 1]; see [4, 10]. We finally recapitulate that, for :=n�2&1, the
Plancherel weight h (:)

k is just the multiplicity of the eigenvalue *k of the
Laplace�Beltrami operator on S n; see (1.2) and (1.3).

To state generalizations of the results of Section 1 properly, we next
introduce two families of probability measures on ultraspherical hyper-
groups on [&1, 1].

2.2. Gaussian Measures. For :>& 1
2, consider the function

q(k) :=q(:)(k) :=
k(k+2:+1)

2(:+1)
(k # N0). (2.8)

Then for all t>0, the heat kernel

ht(x, y) :=h (:)
t (x, y) := :

�

k=0

h (:)
k e&tq(k)�2P(:)

k (x) P (:)
k ( y) (x, y # [&1, 1])

(2.9)

is a positive continuous function on [&1, 1]_[&1, 1]. The probability
measures

d+t(x) :=d+ (:)
t (x) :=h (:)

t (x, 1) } d|:(x) (2.10)

on [&1, 1] are called the Gaussian measures on [&1, 1] with ``variances'' t.
In view of Section 2.1 it is clear that (+ (:)

t )t�0 forms a convolution semi-
group of probability measures on [&1, 1] with respect to the ultraspheri-
cal convolution. This semigroup is well studied from different points of
view; see Hartman and Watson (1974), Mueller and Weissler (1982),
Saloff-Coste (1994), and references cited there.

2.3. Poisson Measures. We begin with the following generating function
for ultraspherical polynomials due to Watson:

g (:)
r (x) :=

1&r2

(1+r2&2rx):+3�2= :
�

k=0

h (:)
k P (:)

k (x) rk ( |r|<1, x # [&1, 1])

(2.11)

(see page 292 of Watson, 1933, with x=cos % and cos .=1, and notice
that we use the normalization P (:)

k (1)=1). As

|
1

&1
g (:)

r (x) d|:(x)= :
�

k=0

h (:)
k rk |

1

&1
P (:)

k (x) d|:(x)=1, (2.12)
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we see that the measures p (:)
r := g (:)

r } |: are probability measures on
[&1, 1] for 0�r<1. We shall call these measures Poisson measures
on the ultraspherical hypergroup, as the functions g (:)

r were used by
Muckenhoupt and Stein (1965) in connection with ``Poisson kernels''
associated with ultraspherical polynomials (notice that the constant factor
of Eq. (2.13) in Muckenhoupt and Stein, 1965, is not correct).

We next state the main result of this paper; it will be proved in Section 3.

2.4. Theorem. The Gaussian and Poisson measures above have the
following properties:

(1) For each c # R there exist constants A=A(c) and M=M(c) of the
following kind: If

t :=ln :+c�0, r :=e&t�2,

then

&+ (:)
t & p(:)

r &�M }
ln :+c

:+1
for all :�A.

In particular, for c�0 and :�15, the following explicit estimation holds:

&+ (:)
t & p (:)

r &�
ln :+c
4(:+1)

} (15e&2c+70e&3c+166e&4c+4540e&5c)1�2.

(2) For each c # R there exist constants A=A(c) and M=M(c) as
follows: If

t :=2(ln :+c)�0, r :=e&t�2,

then the densities h (:)
t and g (:)

r of the Gaussian and Poisson measures respec-
tively satisfy

&h (:)
t & g (:)

r &��M }
ln :+c

:+1
for all :�A.

More precisely, for c�0 and :�10, the following, explicit estimation holds:

&h (:)
t & g (:)

r &��
ln :+c
2(:+1)

} (6e&2c+14e&3c+180e&4c).

Let us discuss some consequences of Theorem 2.4(1). The first one will
be a central limit theorem for the Gaussian semigroups (+ (:)

t )t�0 for
: � �, where we shall obtain convergence with respect to the total varia-
tion norm for probability measures on R.
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2.5. Theorem. For each s>0 consider the dilatation Ds : R � R, x [ sx,
and denote the image of a measure + # Mb(R) under Ds by Ds(+) # Mb(R).
Fix some constant c # R. Then, for t(:) :=ln :+c, the dilated Gaussian
measures D- 2: (+ (:)

t(:)) of + (:)
t(:) satisfy

&D- 2: (+ (:)
t(:))&N(- 2e&c�2, 1)&=O(ln :�:) for : � �

with respect to the total variation norm where N(m, 1) stands for the normal
distribution with mean m and variance 1.

Theorem 2.5 will be proved in Section 4. We there show that 2.5 leads
to the following asymptotic rate of convergence of the semigroups (+ (:)

t )t�0

to equilibrium for large :.

2.6. Theorem. For each constant c # R, the Gaussian measures + (:)
t

satisfy

lim
: � �

&+ (:)
t(:)&|:&= lim

: � �
&h (:)

t(:)&1&1=2 } erf(e&c�2�2)

with t(:) :=ln :+c

where erf (z)=(2�- ?) �z
0 e&t2 dt denotes the error function. More precisely

for : � �,

&+ (:)
t(:)&|:&=2 } erf(e&c�2�2)+O(ln :�:).

Using part (2) of Theorem 2.4 instead of part (1), we also obtain the
following asymptotic uniform rate of convergence; the proof will be given
also in Section 4.

2.7. Proposition. For each constant c # R, the densities h (:)
t of the

Gaussian measures + (:)
t satisfy

&h (:)
t(:)&1&�=exp(2e&c)&1+O(ln :�:) (: � �)

with t(:) :=2(ln :+c).

2.8. Remarks. (1) The theorems of Section 1 follow readily from the
theorems above. More precisely, Theorem 1.1 is a consequence of Theorem
2.6 while Theorem 1.3 follows from Theorem 2.4(1). This is clear, as the
notation of Section 1 is related to that of Section 2 by

:=n�2&1, t={ } 2n, c=2s+ln 2.

In the same way, Proposition 2.7 can be translated into the language of
Section 1.
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(2) In [3], Bingham studies certain families of Markov processes on
S2/R3 which depend on some parameter :>0 and which can also be
studied by using the ultraspherical polynomials (P (:)

k )k�0 and their
associated hypergroup structures. In this way, the above theorems can be
also applied to the Markov chains of Bingham; for a related result see also
Section 2.6(5) of Voit (1995a).

(3) We expect that the above results for Gaussian semigroups on the
spheres Sn can be extended to more general SO(n+1)-invariant Markov
chains (X n

t )t�0 on Sn for n � �. The proofs, however, will become much
more involved. Some results of this kind can be found in Voit [16] where
a completely different method via moment problems is used. Moreover, for
related results for projective spaces and more general hypergroup struc-
tures on [&1, 1] associated with Jacobi polynomials we refer to Voit
(1995a, 1996b, 1997). Real projective spaces will be discussed in Section 5
below.

3. APPROXIMATION OF GAUSSIAN MEASURES
BY POISSON MEASURES

This section is devoted to the proof of Theorem 2.4. Main ingredients
will be inequalities for the ultraspherical Fourier transform of Section 2.1.
The application of such inequalities to rates of convergence was propagated
by Diaconis et al. (1988, 1990, 1992) and others (see Rosenthal, 1994;
Saloff-Coste, 1994, and references therein). We here use a slight modifica-
tion as we compare arbitrary probability measures; cf. Voit (1996a, 1997);
these methods obviously work for general compact commutative hyper-
groups. In fact, Lemma 3.1 below is a special case of Lemma 2.2 of Voit
(1997). We here omit the more or less standard proof.

Before stating this lemma, we recapitulate that the ultraspherical
Fourier�Stieltjes transform of a Borel measure + # Mb([&1, 1]) is given by
+̂(k) :=�1

&1 P (:)
k (x) d+(x)(k # N0). If + has an |:-density f then +̂= f� by

Eq. (2.6).

3.1. Lemma. Let + be a signed measure on [&1, 1].

(1) If + has a |:-density f, then

&+&2�& f &2
2=& f� &2

2=&+̂&2
2= :

�

k=0

h (:)
k |+̂(k)| 2.
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(2) If +̂ satisfies ��
k=0 h (:)

k |+̂(k)|<�, then + has a continuous
|:-density f with

&+&�& f &��& f� &1=&+̂&1= :
�

k=0

h (:)
k |+̂(k)|.

We next prove Theorem 2.4. For simplicity, we often omit the super-
script :.

3.2. Proof of Part (1). Fix :�0. Lemma 3.1(1) and the definition of
r=e&t�2 imply that the Gaussian measures +t and the Poisson measures pr

satisfy

&+t& pr&2�&+̂t& p̂r&2
2= :

�

k=0

h (:)
k } |+̂t(k)& p̂r(k)| 2

= :
�

k=0

h (:)
k } |e&tk�2(k+2:+1)�(2:+2)&e&tk�2| 2

= :
�

k=0

h (:)
k e&tk } |e&tk(k&1)�(4(:+1))&1| 2,

where the summands vanish for k=0 and k=1. It follows from 1&e&x�x
for x�0 and from t=ln :+c that

&+t& pr &2� :
�

k=2

h (:)
k :&ke&kc }

k2(k&1)2 (ln :+c)2

16(:+1)2

=:
(ln :+c)2

16(:+1)2 :
�

k=2

uke&kc (3.1)

with

uk :=
2k+2:+1

2:+1
}
(2:+1)k

k!
}
k2(k&1)2

:k (k�2) (3.2)

Then

uk+1

uk
=

2k+2:+3
2k+2:+1

}
k+1
k&1

}
2:+k+1
:(k&1)

. (3.3)

Therefore, for c # R, we find A=A(c) and N=N(c) such that
e&c } uk+1 �uk� 1

2 for all k�N and :�A. It follows that

&+t& pr&2�
(ln :+c)2

16(:+1)2 \ :
N&1

k=2

uke&kc+2uNe&Nc+�
(ln :+c)2

16(:+1)2 } R(c)
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for some R(c)>0. The proof of the first part of Theorem 2.4(1) is now
complete.

Assume now that c�0 and :�15. Then a short computation yields that

2:+k+1
:(k&1)

�
36
60

for all k�5.

Therefore, for k�5, Eq. (3.2) leads to

uk+1

uk
�

43
41

}
6
4

}
2:+k+1
:(k&1)

�
43
41

}
6
4

}
36
60

�0.95.

Hence, by Eq. (3.1),

&+t& pr &2�
(ln :+c)2

16(:+1)2 \ :
4

k=2

uk } e&kc+20 } u5 } e&5c+ .

A short calculation yields

u2�15, u3�70, u4�166, u5�227 for :�15

which completes the proof of the second part of the proof of Theorem
2.4(1).

3.3. Proof of Part (2). We proceed as above. Here Lemma 3.1(2) yields

&ht& gr &��&+̂t& p̂r&1= :
�

k=0

h (:)
k |+̂t(k)& p̂r(k)|

�
ln :+c
2(:+1)

:
�

k=2

h (:)
k :&ke&ckk(k&1).

The first part of the theorem now follows immediately. To complete the
proof of the final assertion, assume that :�10. Consider

uk :=
2k+2:+1

2:+1
}

(2:+1)k

(k&2)! } :k .

Then a short calculation yields

u2�6, u3�14, u4�18,

and uk+1 �uk�0.9 for k�4. These estimations readily complete the proof.
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3.4. Remark. We do not know whether the order O(ln :�:) of con-
vergence in Theorem 2.4(1) is sharp for : � � and c # R fixed. If we apply
the inequality

&+t& pr &�&+̂t& p̂r&�= max
k # [0, 1, ...]

e&tk�2 } |e&tk(k&1)�(4(:+1))&1|

in the setting of Theorem 2.4(1), then t=ln :+c and k :=2 lead to the
lower bound

&+t& pr &�O(ln :�:2)

which is considerably weaker than the upper bound O(ln :�:).

4. APPROXIMATIONS BY NORMAL DISTRIBUTIONS

This section is devoted to proofs of Theorems 2.5 and 2.6 as well of
Proposition 2.7.

4.1. Proof of Theorem 2.5. Fix c # R and put

t(:) :=ln :+c, r(:) :=e&t(:)�2 for :�e&c.

As dilatations of bounded Borel measures on R form isometric
isomorphisms on Mb(R), Theorem 2.4(1) implies that the Gaussian
measures + (:)

t(:) and the measures p (:)
r(:) satisfy

&D- 2: (+ (:)
t(:))&D- 2: ( p (:)

r(:))&=O(ln :�:) for : � �. (4.1)

In order to complete the proof, we now compare the dilated Poisson
measures D- 2: ( p (:)

r(:)) with the normal distributions N(- 2 } e&c�2, 1) and
check that

M: :=&D- 2: ( p (:)
r(:))&N(- 2 } e&c�2, 1)&=O(1�:). (4.2)

To do this, we first introduce some abbreviations. Let

A(x) :=e&x2�2, A:(x) :=\1&
x2

2:+
:

,

B(x) :=exp(e&c&- 2 } e&c�2x), B:(x) :=(1+e&c�:&- 2 } xe&c�2�:):+3�2

and

d: :=
c:

- :
} (1&e&c�:) with c: as in Section 2.1.
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If we use the definition of r(:) and if we carry out the substitution
x [ x�- 2: in the definition of the Poisson measures in Section 2.3, then
we obtain that

M:=
1

- 2? |
[ |x|�- 2:]

A(x)

B(x)
dx+|

- 2:

&- 2: }
1

- 2?
}
A(x)

B(x)
&d: }

A:(x)

B:(x) } dx.

(4.3)

As the first integral obviously has order O(1�:), two applications of the tri-
angle inequality lead to

M:�O(1�:)+ } 1

- 2?
&d: } } |

- 2:

&- 2:

A(x)

B(x)
dx+d: |

- 2:

&- 2:

|A(x)&A:(x)|
B(x)

dx

+d: |
- 2:

&- 2:
A:(x) } } 1

B(x)
&

1
B:(x) } dx. (4.4)

By the definition of c: and an asymptotic formula for 1(x) (see 6.1.47 in
[1]), we have

c:

- 2:
&

1

- 2?
=

1

- 2? \
1(:+3�2)

1(:+1) - :
&1+=O(1�:) for : � �.

Therefore, as the integral of the second term of the right-hand side of (4.4)
remains bounded, we may estimate this second term by O(1�:). In order to
deal with the two remaining terms of the right-hand side of (4.4), we use
the following well-known inequality:

0�e&t&\1&
t
a+

a

�t2e&t�a for all a�1, |t|�a. (4.5)

This and d: � 1�- 2? imply that

d: |
- 2:

&- 2:

|A(x)&A:(x)|
B(x)

dx

�
d:

: |
- 2:

&- 2:

x2

4
} exp(&(x&- 2 } e&c�2)2�2) dx=O \1

:+ . (4.6)

To deal with the last term of (4.4), we conclude from (4.5) that

A:(x)�A(x), 0�B(x)&B:(x)�
B(x)

:
} (e&c&- 2 } e&c�2x)2 (4.7)
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for all |x|�- 2: and all : which are sufficiently large. Hence

|
- 2:

&- 2:
A:(x) } } 1

B(x)
&

1
B:(x) } dx

�|
- 2:

&- 2:
A(x) } |B(x)&B:(x)| }

1
B:(x)2 dx

�
1
: |

- 2:

&- 2:

A(x)
B(x)

}
B(x)2

B:(x)2 } (e&c&- 2 } e&c�2x)2 dx. (4.8)

As B(x)�B:(x)=O(1) uniformly for x # [&- 2:, - 2:] and : � � by
(4.7), and as

A(x)
B(x)

=exp(&(x&- 2 } e&c�2)2�2),

it follows that the last term of the right-hand side of (4.4) also has order
O(1�:). In summary, we obtain M:=O(1�:) which completes the proof of
Theorem 2.5.

The considerations of Section 4.1 make also sense for the limit case
c=�, i.e., e&c�2=0. Here, the Gaussian measure on [&1, 1] is the Haar
measure |: . Hence:

4.2. Lemma. If D- 2: (|:) is the dilatation of the Haar measure |: , then

&D- 2: (|:)&N(0, 1)&=O(1�:) for : � �.

We now use Theorem 2.5 and Lemma 4.1 in order to prove Theorem 2.6.

4.3. Proof of Theorem 2.6. Fix c # R and put t(:) :=ln :+c and
r(:) :=e&t(:)�2 as above. As dilatations of measures are isometric, we have

&+ (:)
t(:)&|:&=&D- 2: (+ (:)

t(:))&D- 2: (|:)&

for :>0. If now follows from Theorem 2.5 and Lemma 4.2 that

&+ (:)
t(:)&|:&=&N(- 2 } e&c�2, 1)&N(0, 1)&+O(ln :�:). (4.10)

A short computation yields

&N(m, 1)&N(0, 1)&=2 } erf(m�- 8) for all m�0

(see, for instance, p. 59 of [7]) which immediately implies Theorem 2.6.
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4.4. Remark. It is possible to derive Theorem 2.6 directly from
Theorem 2.4(1) without Theorem 2.5. In this case the complicated estima-
tions of Section 4.1 are not needed. We used Theorem 2.5 in the proof of
2.6 in order to illustrate the close connection between central limit
theorems and the asymptotic rate of convergence to equilibrium.

4.5. Proof of Proposition 2.7. Fix c # R and put

t(:) :=2(ln :+c), r(:) :=e&t(:)�2 for :�e&c.

As &h(:)
t(:)& g (:)

r(:)&�=O(ln :�:) for : � � by Theorem 2.4(2), it suffices to
check that

&g (:)
r(:)&1&�=exp(e&c)&1+O(1�:) for : � � (4.11)

in order to conclude that &h (:)
t(:)&1&�=exp(e&c)&1+O(ln :�:) as claimed

in Proposition 2.7. To prove (4.11), we use the definition of the densities
g: of Section 2.3 and observe that

x [
1&r2

(1&2rx+r2):+3�2 for x # [&1, 1]

takes its maximum and minimum in x=\1, respectively. Hence, (4.11)
follows immediately from the following three estimations:

1&r(:)2

(1&2r(:)+r(:)2):+3�2=
1&r(:)2

(1&r(:))2:+3

=
1+e&c�:

(1&e&c�:)2:+2=exp(e&c)+O(1�:),

1&r(:)2

(1+2r(:)+r(:)2):+3�2=
1&e&c�:

(1+e&c�:)2:+2=exp(&e&c)+O(1�:),

and |exp(&e&c)&1|�|exp(e&c)&1|. The proof of Proposition 2.6 is now
complete.

4.6. Remark. An analysis of proofs in Sections 4.1 and 4.3 shows that
it is possible to obtain explicit bounds of a reasonable size for the error
term in Eq. (4.11) whenever : is sufficiently large. Combining this with the
explicit bounds of Theorem 2.4(1), one obtains very good upper and lower
bounds for &+ (:)

t(:)&|:&=&h (:)
t(:)&1&1 of the form

2 } erf(c&c�2�2)\\M1, c }
ln :+c

:
+

M2, c

: +
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for certain constants Mi, c depending on c. Different bounds are derived in
Saloff-Coste (1994) by completely different methods.

5. PROJECTIVE SPACES OVER THE REAL NUMBERS

The results of the previous sections can be used to study the asymptotic
behavior of Gaussian measures on the real projective spacesPn=Pn(R) which
appear as quotient of Sn by identifying antipodal points. In this way, Gaussian
semigroups on Pn starting in some x # Pn can be lifted to Gaussian semigroups
on Sn starting in \x # Sn with the probability 1

2 . Transfering these semigroups
to [&1, 1]&SO(n+1)��SO(n), we land up with symmetrizations of the
Gaussian measures on [&1, 1] above. Hence, Theorems 1.3 and 1.1 for spheres
lead to corresponding results for Pn . The following basic lemma leads to the
asymptotic rate of convergence of the Brownian motion on Pn .

5.1. Lemma. If N(m, 1) is the normal distribution on R with mean m and
variance 1, then, for m�0

"N(0, 1)&
1
2

(N(m, 1)+N(&m, 1))"
=2 } erf(x0 �- 2)&erf \x0+m

- 2 +&erf \x0&m

- 2 + ,

where erf denotes the error function and where x0=x0(m) is given by

ex0m=em2�2+- em2
&1.

Proof. A short computation yields that the zeros of the Lebesgue
density of the signed measure N(0, 1)& 1

2(N(m, 1)+N(&m, 1)) are given by
\x0 with x0 as above. Therefore, symmetry arguments lead to the claim as

"N(0, 1)&
1
2

(N(m, 1)+N(&m, 1))"
=

4

- 2? |
x0

0 \e&x2�2&
1
2

} e&(x&m)2�2&
1
2

} e&(x+m)2�2+ dx

=2 } erf(x0 �- 2)&erf \x0+m

- 2 +&erf \x0&m

- 2 + .

In the following theorem we use the time-normalization of the heat semi-
group on Pn as studied in Section 4 of Saloff-Coste (1994). This theorem
follows immediately from Theorem 2.5, together with Lemma 5.1.
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5.2. Theorem. Let L� n be the Laplace�Beltrami operator on Pn with
eigenvalues

*k(Pn)=2k(2k+n&1) (k # N0).

Let (h� n
{){�0 be the kernel of the Brownian semigroup (e&{L� n){�0 on Pn ; fix

s # R. If

{n :=
ln n+2s

2n
for n # N,

then

lim
n � �

&h� n
{n

&1&1=2 } erf(x0 �- 2)&erf \x0+e&s

- 2 +&erf \x0&e&s

- 2 +
with respect to U� n on Pn , where x0=x0(e&s) is given according to Lemma 5.1.

5.3. Remark. We expect that results similar to Theorem 5.2 are
available for the projective spaces Pn(C) and Pn(H). In fact, this is
indicated by central limit theorems on Jacobi-type hypergroups on
[&1, 1] with indices (:, ;), where ; is fixed and : tends to infinity; see
Voit (1996b). The limit distributions there are noncentral /2��distributions
whose degrees of freedom depend on ;. We also mention that Voit (1995b)
contains a related two-dimensional central limit theorem for the double
coset hypergroups U(n)��U(n&1)&[z # C : |z|�1] for n � �. If one has
analogues of the Poisson measures for these hypergroups on [&1, 1] and
[z # C : |z|�1] (which can be handled in a sufficiently easy way), then the
methods above carry over to these examples.
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