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1. INTRODUCTION

Suppose X1, ..., Xn are independent observations on a d-dimensional
random column vector X with expectation E(X)=m and nonsingular
covariance matrix T=E[(X−m)(X−m)Œ], where the prime denotes
transpose. Let X̃=T−1/2(X−m) denote the standardized vector with
E[X̃]=0 and E[X̃X̃Œ]=Id, the unit matrix of order d. Let

Zj=(z1j, ..., zdj)Œ=S
−1/2
n (Xj−X̄n), j=1, ..., n,

where X̄n=n−1;n
j=1 Xj and Sn=n−1;n

j=1 (Xj−X̄n)(Xj−X̄n)Œ are the
sample mean vector and the sample covariance matrix of X1, ..., Xn,
respectively. We assume that Sn is nonsingular with probability one. This
condition is satisfied if X has a density with respect to Lebesgue measure



and n \ d+1 (Eaton and Perlman, 1973). Writing Ỹ for an independent
copy of X̃=(t1, ..., td)Œ, Mardia (1970) introduced the affine-invariant
skewness measure

b1, d=E(X̃ŒỸ)3 (1)

=C
d

r=1
(E[t3r])

2+3 C
r ] s
(E[t2rts])

2+6 C
1 [ r < s < t [ d

(E[trtstt])2,

and the multivariate sample skewness

b1, d=
1
n2

C
n

i=1
C
n

j=1
[(Xi−X̄n)Œ S

−1
n (Xj−X̄n)]

3=
1
n2

C
n

i, j=1
(Z −iZj)

3, (2)

and he proposed to use b1, d for testing the hypothesis H0 that the distribu-
tion of X is nondegenerate d-variate normal. b1, d is closely related to the
first nonzero component of Neyman’s smooth test of fit for multivariate
normality, introduced by Koziol (1987).

The pertaining test statistics are built up as follows. First, a system of
orthonormal multivariate polynomials is defined. To this end, suppose Hk
are the normalized Hermite polynomials; Hk is a polynomial of degree k,
orthonormal on the (univariate) standard normal distribution. In particular,

H1(x)=x, H2(x)=(x2−1)/`2 ,

H3(x)=(x3−3x)/`3! , H4(x)=(x4−6x2+3)/`4! (3)

Multivariate polynomials are then defined by

Lk1, ..., kd (X̃)=Hk1 (t1) · · ·Hkd (td), k1, ..., kd ¥N0.

Let {Lr} denote the sequence arising from an arbitrary ordering. Since,
under H0,

E[Lr(X̃) Ls(X̃)]=D
d

i=1
E[Hki (ti) Hmi (ti)]=D

d

i=1
dkimi=drs, (4)

where dij denotes Kronecker’s delta, the sequence is orthonormal. Usually,
the polynomials are ordered by their degree k=k1+·· ·+kd; particularly,
L0=1. The smooth test of order k for multivariate normality rejects H0 for
large values of

Ŷ2n, k=C
r
V̂2n, r, V̂n, r=

1

`n
C
n

j=1
Lr(Zj), (5)
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where summation is over all polynomials of degree at most k. Summing
only over all polynomials of degree k yields the kth smooth component
Û2n, k.

Since the standardized values Zj are used in the definition of V̂n, r, V̂n, r=0
for each polynomial Lr of degree one or two; hence, the first two compo-
nents are zero (see, e.g., Rayner and Best (1989, p. 102)). Consequently,

Ŷ2n, k=Û
2
n, 3+·· ·+Û

2
n, k

for k \ 3. The first nonzero component Û2n, 3 consists of H3(xj),
H2(xj) H1(xk), and H1(xj) H1(xk) H1(xl), where j, k, l are different integers
in the range {1, ..., d}. This gives

Û2n, 3=
1
n
3C
r

1
6
1C
i
(z3ri−3zri)2

2

+C
r ] s

1
2
1C
i
(z2ri−1) zsi 2

2

+ C
r < s < t

1C
i
(zrizsizti)2

24

and hence, by comparison with (2), the identity (Koziol, 1987)

n
6
b1, d=Û

2
n, 3. (6)

An alternative affine-invariant measure of multivariate skewness was
introduced by Móri et al. (1993); they proposed

b̃1, d=
1
n2

C
n

i=1
C
n

j=1
Z −iZj ||Zi ||

2 ||Zj ||2 (7)

with population counterpart b̃1, d=||E(X̃ ||X̃||2)||2=E[(X̃ŒỸ)(X̃ŒX̃)(ỸŒỸ)].
b̃1, d was further examined in Henze (1997).

To derive the limit null distribution of Mardia’s skewness measure,
several different approaches have been utilized. Mardia (1970) showed that
b1, d is asymptotically equivalent under H0 to a quadratic form of a normal
vector; Koziol (1987) used the theory of empirical processes and weak
convergence arguments to establish the appropriate distribution theory
under multivariate normality. Rayner and Best (1989) derived the limit law
of b1, d under H0 as score statistics (concerning difficulties of this approach
see Mardia and Kent (1991, p. 356); Kallenberg et al. (1997, p. 45)).
Baringhaus and Henze (1992) represented b1, d as a V-statistic and utilized
the appertaining distribution theory to study the asymptotic behavior of
Mardia’s skewness measure under arbitrary distributions. They showed
that in the special case of an elliptical distribution, the limit law is a
weighted sum of two independent q2-variates.
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The present paper gives a unified treatment of the limit laws of both
skewness measures and other statistics like multivariate kurtosis which are
closely related to components of Neyman’s smooth test of fit for multi-
variate normality.

In Section 2 we state a general result about the limit distribution of sta-
tistics which are built up similarly as the components of a smooth test.
Using these findings, the limit laws of b1, d and b̃1, d are derived if the
underlying distribution is elliptically symmetric. We point out that the
skewness measure b̃1, d, albeit being asymptotically distribution-free under
elliptical symmetry, is not well balanced in a certain sense. Hence, we
propose a new skewness measure similar to Mardia’s skewness, but
asymptotically distribution-free under elliptical symmetry.

In Section 3, we consider measures of multivariate kurtosis and the
fourth component of Neyman’s smooth test for multivariate normality.
The limit law of Mardia’s kurtosis measure and of the fourth component
under elliptical distributions is examined in detail.

Higher order variants of multivariate skewness and kurtosis are con-
sidered in Section 4. Since these statistics do not consist of orthogonal
polynomials, the necessary computations are more involved. A kurtosis
measure introduced by Koziol (1989) and higher order analogues are
closely examined.

2. THE LIMIT DISTRIBUTION OF SOME MEASURES OF
MULTIVARIATE SKEWNESS

We first derive the asymptotic distribution of the random vector
V̂n=(V̂n, 1, ..., V̂n, r)Œ, where V̂n, s=n−1/2;n

j=1 Ls(Zj) as in (5) and the multi-
variate polynomials Ls are of degree at least 3, but at most k (k \ 3). Put
J=(J1, ..., Jq)Œ=(m, T−1) (q=(d2+3d)/2), and write Ls(X, J) instead of
Ls(X̃) to indicate the dependence of Ls(X̃) on J. Furthermore, let NJh(x; J)
denote the (r×q)-matrix with entries “hi(x; J)/“Jj, where h(x; J)=
(L1(x; J), ..., Lr(x; J))Œ.

Since the multivariate skewness, and hence the first nonzero component
Û2n, 3, consists of products Z −iZj, it is affine-invariant; i.e.,

Û2n, 3(X1, ..., Xn)=Û
2
n, 3(b+BX1, ..., b+BXn)

for each nonsingular (d×d)-matrix B and each b ¥ Rd. Since the same
property holds for each of the statistics studied in this paper, we always
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assume m=0 and T=Id. Assuming further that E ||X||2k <., we have
`n (X̄n−m)=

1
`n

;n
i=1 Xi+oP(1) and

`n (S−1n −Id)=−
1

`n
C
n

i=1
(XiX

−

i−Id)+oP(1) (8)

(see, e.g., Baringhaus and Henze (1992)), and hence `n (Ĵn−J)=
1
`n

;n
i=1 l(Xi)+oP(1), where Ĵn=(X̄n, S

−1
n ) and the function l satisfies

EP[l(X)]=0.

Theorem 2.1. (a) Assume that E ||X||2k <.. Let y=(y1, ..., yr)Œ=
(E[L1(X̃)], ..., E[Lr(X̃)])Œ. Then

V̂n−y|Q
D

Nr(0, S), (9)

where the covariance matrix S is given by

S=E[(v1(X, J), ..., vr(X, J))(v1(X, J), ..., vr(X, J))Œ]−yyŒ, (10)

and vi(x, J)=Li(x, J)+E[NJLi(X, J)] l(x, J) for i=1, ..., r.
(b) Let X have distribution P ¥Pk

0 , where P
k
0 is the set of probability

distributions on Rd defined by

Pk
0 :={P: EP[Lj(X̃)]=0 for each polynomial Lj of degree

less than or equal to k, EP ||X||2k <.}. (11)

Then the covariance matrix in (9) takes the form

S=E[(L1(X̃), ..., Lr(X̃))(L1(X̃), ..., Lr(X̃))Œ]. (12)

Proof. Part (a) follows by a series expansion similar as in Theorem 2.1
of Klar (2000). Under the hypothesis H0 of multivariate normality,
EJ[NJh(X; J)]=−CJ, where CJ is the (r×q)-matrix with entries

cij=EJ 5hi(X; J)
“ log f(X; J)

“Jj
6

(see Klar (2000, Theorem 2.1)). Now, some computation yields cij=0
(i=1, ..., r, j=1, ..., q) (see Rayner and Best (1989, p. 101)). Alternatively,
this can be verified along the lines of the proof of Theorem 3.1 in Klar
(2000). Hence, (b) follows under H0. The general case P ¥Pk

0 can be
treated similarly as in Theorem 2.3 of Klar (2000), noting that “Ls/“Jj is a
polynomial of degree at most k. L
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Using Theorem 2.1, it is possible to derive the limit law of statistics
which consists of polynomials Ls. For example, the asymptotic distribution
of a component of the smooth test of fit depends on whether y=0 or y ] 0.
If y=0, it is well known that

Û2n, k |Q
D C

r

j=1
N2j , (13)

where (N1, ..., Nr)Œ ’Nr(0, S). The limit law is a weighted sum of inde-
pendent chi-squared random variables, the weights being the eigenvalues
of S.

In particular, if X has some nondegenerate d-dimensional normal dis-
tribution Nd, Eq. (4) shows that Nd ¥Pk

0 and y=0. Using Theorem 2.1(b)
and (4) again yields S=Id. Hence, the asymptotic distribution of Û2n, k and
Ŷ2n, k under Nd is q2n , where n equals the number of polynomials which are
used to build up Û2n, k and Ŷ2n, k, respectively. Since there are (k+d−1k ) poly-
nomials of degree k, Û2n, 3 has a limit q2-distribution with (d+23 ) degrees of
freedom under Nd; the limit law of Û2n, 4 is q2n with n=(d+33 ), and Ŷ2n, k has a
limit chi-squared distribution with

Rd+2
3
S+R

d+3

4
S+·· ·+R

k+d−1

k
S=R

k+d

k
S−R

2+d

2
S

degrees of freedom. However, if y ] 0,

`n 1 Û
2
n, k

n
−yŒy2|Q

D
N 10, 4 C

r

i, j=1
sijyiyj 2 , (14)

where sij denote the entries of S (see, e.g., Serfling (1980, Corollary 3.3)).

Remark. The above results show that a test for multivariate normality
based on the components Û2n, j of order at most k is not consistent against
distributions of Pk

0 . An analogous remark applies to each of the statistics
examined in the following sections.

2.1. The Limit Distribution of Mardia’s Skewness Measure
In this section, we derive the asymptotic distribution of Û2n, 3 (and, hence,

of Mardia’s measure b1, d) by means of Theorem 2.1 if the underlying
distribution PX is elliptically symmetric.

A d-dimensional random vector X has a spherically symmetric distribu-
tion (or simply spherical distribution) if HX|Q

D X for every orthogonal
(d×d)-matrix H. The distribution of X is elliptically symmetric (or simply
elliptical) with parameters m ¥ Rd and D ¥ Rd×d if there is a random (k×1)-
vector Y having a spherical distribution and a (k×d)-matrix A of rank k
such that D=AŒA and X=D m+AŒY.
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Proposition 2.2 (see Fang et al. (1989, p. 72)). Let X=(X1, ..., Xd)Œ
have an elliptically symmetric distribution. Let s1, ..., sd be nonnegative
integers, and put s=s1+·· ·+sd. Then

E 5D
d

i=1
X sii 6=˛E(||X|| s) 1

2
d
2[l] D

d

i=1

(2li)!
4 li(li)!

,
if si=2li, li ¥N0,

i=1, ..., d, s=2l;

0, if at least one of the si is odd,

where a[l]=a(a+1) · · · (a+l−1).

Corollary 2.3. Let ms1, ..., sd=E[<
d
i=1 X

si
i ], where zeroes are suppressed

in the notation since the order of the si is irrelevant. Then, from Proposi-
tion 2.2,

m4=3m22; m6=5m42=15m222;

m8=7m62=
35
3 m44=35m422=105m2222.

If PX is elliptical with parameters m and D, and if E ||X||2 <., then
E[X]=m, Cov(X)=E[R2] D/rank(D). If D is positive definite and E(R2)
> 0, the standardized vector X̃=[Cov(X)]−1/2 (X−m) satisfies E[X̃]=0
and E[X̃X̃Œ]=Id. Hence, X̃ has a spherically symmetric distribution with
E ||X̃||2=d. The mixed moments of X̃ are given in 2.2; in particular, b1, d in
(1) satisfies

b1, d=E[(X̃ŒỸ)3]=0. (15)

Hence, elliptically symmetric distributions belong to the class P3
0 of distri-

butions with b1, d=0. The covariance matrix S can be computed by
Eq. (12). The third component consists of Lr(X̃)=H3(tr), Lrs(X̃)=
H2(tr) H1(ts) (r ] s), and Lrst(X̃)=H1(tr) H1(ts) H1(tt) (r, s, t ¥ {1, ..., d},
r < s < t), where the Hermite polynomials Hj are given in (3). We obtain
the following entries in the covariance matrix:

s1=E[L2r (X̃)]=
1
6
E[(t31−3t1)

2]=
1
6
(m6−6m4+9),

s12=E[Lr(X̃) Lsr(X̃)]=
1

2`3
(m42−3m22−m4+3),

s2=E[L2rs(X̃)]=
1
2
E[(t21−1)

2 t22]=
1
2
(m42−2m22+1),
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s22=E[Lrs(X̃) Lts(X̃)]=
1
2
(m222−2m22+1),

s3=E[L2rst(X̃)]=m222.

The remaining entries vanish by Proposition 2.2. Arranging the polyno-
mials in the form

L1, L21, L31, ..., Ld1,

L2, L12, L32, ..., Ld2,

...

Ld, L1d, L2d, ..., Ld−1, d,

L123, L124, L125, ..., Ld−2, d−1, d,

the correlation between polynomials of different rows is zero; i.e., the
covariance matrix partitions into d+1 block diagonal matrices.

For simplification, we consider in the following the covariance matrix of
the polynomials pertaining to 6Û2n, 3. Using Corollary 2.3 and putting
u=6s22=m6/5−2m4+3, v=6s2=3/5m6−2m4+3 and hence 6s1=2u+v,
6s12=`3u, the (d×d)-covariance matrix corresponding to one of the first
d rows takes the form

S1, d=R
2u+v

:
`3u `3u · · · `3u

`3u v u · · · u

`3u u z z x

x x z z u

`3u u · · · u v

S . (16)

The characteristic equation of S1, d can be written equivalently as

det R
2u+v−l (d−1)`3u

:
`3u · · · `3u

`3u (d−2) u+v−l u · · ·u

0 0 v−u−l 0

x x z

0 0 0 v−u−l

S=0.
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Hence, two eigenvalues are solutions of (2u+v−l)((d−2) u+v−l)−
3(d−1) u2=0, which yields l1=v−u=2m6/5 and l2=(d+1) u+v=
(d+4) m6/5−2(d+2) m4+3(d+2). Furthermore, l3=v−u=2m6/5 is an
eigenvalue of multiplicity d−2.

The matrix pertaining to the last row is a diagonal matrix with entries
6s3; hence, it has the eigenvalue l4=6m222=2m6/5 with multiplicity (d3).

By (13), the limit distribution of 6Û2n, 3 is a weighted sum of (d+23 ) inde-
pendent q21 random variables. Since only two different weights occur, we
have the following result:

Theorem 2.4. Let X have an elliptical distribution with expectation m
and nonsingular covariance matrix T such that E[{(X−m)Œ T−1(X−m)}3]
<.; hence, PX ¥P3

0. Then

6Û2n, 3 |Q
D
a1q

2
n1
+a2q

2
n2

as nQ., where

a1=
2
5
m6, n1=d(d−1)+R

d

3
S=d
6
(d−1)(d+4),

a2=
d+4
5
m6−2(d+2) m4+3(d+2), n2=d,

and q2ni are independent chi-squared random variables with ni degrees of
freedom.

Remark 2.5. Putting r2k=E(X̃ŒX̃)k and noting that, for elliptical dis-
tributions, r4=m4d(d+2)/3, r6=m6d(d+2)(d+4)/15 (cf. Theorem 4.3),
we have

a1=
6r6

d(d+2)(d+4)
, a2=

3
d
1 r6
d+2

−2r4+d(d+2)2 .

In view of (6), Theorem 2.4 corresponds to Theorem 2.2 in Baringhaus and
Henze (1992) which was proved in a different way under the additional
assumption P(X=m)=0.

2.2. The Skewness Measure of Móri, Rohatgi, and Székely
The skewness measure of Móri et al. (1993) in (7) can be written as

b̃1, d=
1
n2
3 C
d

r=1

1C
i
z3ri 2

2

+2 C
r ] s

1C
i
z3ri C

j
zrjz

2
sj
2

+C
r ] s

1C
i
z2rizsi 2

2

+ C
r ] s ] t

1C
i
zriz

2
si C

j
zrjz

2
tj
24 .
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Defining V̂r=(1/`n );n
i=1 Lr(Zi) and V̂rs=(1/`n );n

i=1 Lrs(Zi) with
Lr and Lrs given in Section 2.1, b̃1, d takes the form

nb̃1, d=6C
r
V̂2r+4`3 C

r ] s
V̂rV̂sr+2 C

r ] s
V̂2rs+2 C

r ] s ] t
V̂srV̂tr.

Furthermore, puttingWr=(V̂r, V̂1r, ..., V̂r−1, r, V̂r+1, r, ..., V̂dr)Œ, it follows that

nb̃1, d=W
−

1AW1+·· ·+W
−

dAWd, (17)

where the (d×d)-matrix A has the entries a11=6, a1k=ak1=2`3
(1 < k [ d) and akl=2, otherwise. By (17), the asymptotic distribution of
nb̃1, d is readily obtained if the underlying distribution is elliptically symme-
tric.

Theorem 2.6. Under the assumptions of Theorem 2.4, we have

nb̃1, d |Q
D (d+2) a2

3
q2d,

where a2=(d+4) m6/5−2(d+2) m4+3(d+2) as in Theorem 2.4.

Proof. Wr and Ws (r ] s) are uncorrelated and hence asymptotically
independent (cf. Section 2.1). The covariance matrix of Wr is S1, d/6 with
S1, d given by (16). We therefore consider the quadratic formW −

1AW1 which
is asymptotically distributed as a weighted sum of independent q21 random
variables, the weights being the eigenvalues of the (d×d)-matrix S1, dA/6.

Note that A=2ede
−

d, where ed=(`3 , 1, ..., 1)Œ ¥ Rd is the eigenvector
of S1, d pertaining to the eigenvalue a2. Consequently, S1, dA=2a2ede

−

d.
Hence, (d+2) a2/3 is a simple eigenvalue of S1, dA/6 with eigenvector ed,
and 0 is an eigenvalue of multiplicity d−1. L

Remark 2.7. 1. Under the additional assumption P(X=m)=0,
Theorem 2.6 was proved in Henze (1997) by a completely different
reasoning.

2. The above proof yields the representation

nb̃1, d=2 C
d

r=1
(W −

red)
2. (18)

Hence, the skewness statistic of Móri et al. uses the projections of the Wr
on the eigenvector ed.
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3. For a distribution with b̃1, d > 0, Corollary 3.3 in Serfling (1980)
yields

`n (b̃1, d− b̃1, d)|Q
D

N(0, yŒ(A+diag(A))Œ S(A+diag(A)) y).

2.3. A New Measure of Skewness

Theorem 2.4 shows that b1, d is not asymptotically distribution-free
within the class of elliptical distributions. The skewness of Móri et al. can
be modified to obtain an asymptotically distribution-free statistic, but this
property is achieved by projection of the vectors Wr into a particular direc-
tion (see (18)). Therefore, one may ask whether there is a skewness measure
which gives equal weights to all polynomials of order three as does
Mardia’s skewness in the case of a normal distribution and at the same
time being asymptotically distribution-free within the whole class of ellip-
tically symmetric distributions. The previous sections show that this will be
the case for the statistic

V=6W −

1S
−1
1, dW1+·· ·+6W

−

dS
−1
1, dWd+

6
a1

C
r ] s ] t

V̂rst,

where V̂rst=(1/`n );n
i=1 Lrst(Zi). V has a limit chi-squared distribution

with (d+23 ) degrees of freedom if PX is elliptical. With the notations of
Section 2.1, we have

S−11, d=
1
c
R
(d−2) u+v

:
−`3u −`3u · · · −`3u

−`3u du+v −u · · · −u

−`3u −u z z x

x x z z −u

−`3u −u · · · −u du+v

S ,
where c=(v−u)((d+1) u+v)=a1a2. Hence

V=
6
a1a2

C
d

r=1
W −

r
1a2Id−

u
2
A2Wr+

6
a1

C
r ] s ] t

V̂rst

=
6
a1
Û2n, 3−

3u
a1a2

nb̃1, d,

where u=(a2−a1)/(d+2). Since the moments m4 and m6 figuring in the
definition of a1 and a2 are unknown, they have to be replaced by the
corresponding empirical moments. This yields the following result.
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Theorem 2.8. Let X have an elliptically symmetric distribution with
expectation m and nonsingular covariance matrix T such that E[{(X−m)Œ
T−1(X−m)}3] <.. Let r̂2k=

1
n;n

i=1 (Z
−

iZi)
k and

â1=
6r̂6

d(d+2)(d+4)
, â2=

3
d
1 r̂6
d+2

−2r̂4+d(d+2)2 .

Then

nb̃̃1, d :=
n
â1
b1, d−

3(â2− â1)
(d+2) â1 â2

nb̃1, d

has a limit chi-squared distribution with (d+23 ) degrees of freedom.

Remark. A test for elliptical symmetry based on nb̃̃1, d is consistent
against all distributions with b1, d > 0.

3. MULTIVARIATE KURTOSIS AND THE FOURTH COMPONENT
OF NEYMAN’S SMOOTH TEST

Mardia (1970) introduced the measure of multivariate kurtosis

b2, d=
1
n
C
n

i=1
(Z −iZi)

2=
1
n
3 C
d

r=1
C
i
z4ri+C

r ] s
C
i
z2riz

2
si
4 ,

which is an estimator of b2, d=E[(X̃ŒX̃)2]=E ||X̃||4. Hence, b2, d only
examines the fourth moment of ||X̃||. Koziol (1989) proposed the alterna-
tive kurtosis measure

bg2, d=
1
n2

C
n

i=1
C
n

j=1
(Z −iZj)

4

=
1
n2
3 C
d

r=1

1C
i
z4ri 2

2

+4 C
r ] s

1C
i
(z3rizsi)2

2

+3 C
r ] s

1C
i
(z2riz

2
si)2

2

+6 C
r ] s ] t

1C
i
(z2rizsizti)2

2

+24 C
1 [ r < s < t < u [ d

1C
i
(zrizsiztizui)2

24

(19)

with population counterpart bg
2, d=E[(X̃ŒỸ)

4]. In contrast to Mardia’s
kurtosis measure, bg2, d is a next higher degree analogue of b1, d.
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To derive a connection of these measures with a component of Neyman’s
smooth test for multivariate normality, consider the polynomials

H4(yj), H3(yj) H1(yk), H2(yj) H2(yk), H2(yj) H1(yk) H1(yl),

H1(yj) H1(yk) H1(yl) H1(ym)

of degree 4 and the pertaining fourth component

Û2n, 4=
1
n
3C
r

1
24
1C
i
(z4ri−3)2

2

+C
r] s

1
6
1C
i
(z3rizsi)2

2

+C
r] s

1
8
1C
i
(z2riz

2
si−1)2

2

+
1
4

C
r] s] t

1C
i
(z2rizsizti)2

2

+ C
r < s < t < u

1C
i
(zrizsiztizui)2

24.

Since ; i zri=0 and ; i z
2
ri=1, one obtains the algebraic identity

Û2n, 4=
n
24
(bg2, d−6b2, d+3d(d+2))

(Koziol, 1989). Moreover,

`n (b2, d−d(d+2))=C
d

r=1

1

`n
C
i
(z4ri−3)+C

r ] s

1

`n
C
i
(z2riz

2
si−1)

=
`24

n
C
d

r=1
C
i
Lr(Zi)+

4

`n
C
r < s

C
i
L sr(Zi), (20)

where the polynomials Lr(z1, ..., zd)=(z
4
r −6z

2
r+3)/`24 and L sr(z1, ..., zd)

=(z2r −1)(z
2
s −1)/2 belong to the building blocks of Û2n, 4.

After centering, the individual terms in (20) are asymptotically normal
(cf. (9)); due to the different weights in (20), the covariance matrix Ŝ differs
from S. Hence, the limit law of `n (b2, d−b2, d) is N(0, eŒŜe) with e=
(1, ..., 1)Œ. If y=0, then

b2, d=C
d

j=1
E[t4j ]+C

i ] j
E[t2i t

2
j ]=3d+d(d−1)=d(d+2).

Using the general results of Section 2, one has to consider two cases to
derive the asymptotic distribution of Û2n, 4. If y=0, the limit law of Û2n, 4 is a
weighted sum of q21-distributed random variables and, in particular, a
chi-squared distribution with (d+34 ) degrees of freedom under normality. If
y ] 0, the limit distribution of (Û2n, 4/`n−`n yŒy) is normal.
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3.1. The Limit Law of Mardia’s Kurtosis Measure under Elliptical
Distributions

In this section, we obtain the asymptotic distribution of`n (b2, d−d(d+2))
if the underlying distribution P is elliptically symmetric. Now, if P ¨P4

0 (see
(11)), i.e., y ] 0, then b2, d ] d(d+2) and, by the above results, b2, d tends to
infinity. Hence, we consider elliptical distributions P ¥P4

0. In principle, Ŝ can
be computed as in (12), taking into account the different weights in (20). Using
Corollary 2.3, an elliptical distribution is in P4

0 if m4 takes the normal value 3.
Ŝ has the entries

ŝ11=24E[L2r (X̃)]=E[(t
4
r −6t

2
r+3)

2]=m8−12m6+99,

ŝ12=24E[Lr(X̃) Ls(X̃)]=E[(t
4
r −6t

2
r+3)(t

4
s −6t

2
s+3)]

=m44−12m42+36m22+6m4−27=3m8/35−12m6/5+27,

ŝ21=16E[(Lsr(X̃))
2]=4(3m8/35−4m6/5+7),

ŝ22=16E[Lsr(X̃) L
t
r(X̃)]=4(m8/35−8m6/15+5),

ŝ23=16E[Lsr(X̃) L
u
t (X̃)]=4(m8/105−4m6/15+3),

ŝ31=4`24 E[Lr(X̃) L
s
r(X̃)]=2(m8/7−12m6/5+21),

ŝ32=4`24 E[Lr(X̃) L
t
s(X̃)]=2(m8/35−4m6/5+9),

where r, s, t, u ¥ {1, ..., d}, r < s < t < u. Now, ŝ11 appears d times in Ŝ,
ŝ12d(d−1) times, ŝ21(d2) times, ŝ222(d−2)(d2) times, ŝ23(d2)(

d−2
2 ) times,

ŝ314(d2) times and, finally, ŝ322(d−2)(d2) times. Summing over all terms
yields the variance

eŒŜe=m8
d
105
(d3+12d2+44d+48)−m6

4d
15
(d3+8d2+20d+16)

+d(3d3+20d2+44d+32).

Replacing m2k (k=2, 3, 4) by r2k=E(XŒX)k as in Section 2.1 (for elliptical
distributions, r8=(m8/105) d(d+2)(d+4)(d+6), see 4.3), eŒŜe takes the
form

eŒŜe=r8−4(d+2) r6+d(d+2)2 (3d+8).

This is the result of Henze (1994a, Example 3.3), letting m4=3. Under
multivariate normality, eŒŜe=8d(d+2), which is the well-known result of
Mardia (1970).
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Remark. If P ¨P4
0, the limit law of `n (b2, d−b2, d) could be deter-

mined in a similar way using Theorem 2.1(a) and (14) (regarding
the necessary computation to obtain the entries of S in this case; see
Section 4).

3.2. The Limit Distribution of the Fourth Component under Elliptical
Symmetry

As a second example in this section, we derive the limit law of 24Û2n, 4 if
the underlying distribution is elliptically symmetric. Again, we consider
elliptical distributions P ¥P4

0 (i.e., with m4=3), since otherwise Û2n, 4 tends
to infinity (in this case, one could determine the asymptotic distribution of
`n (Û2n, k/n−yŒy) using (14)). As in Section 2.1, we have to determine the
eigenvalues of the covariance matrix in (12), multiplied with the factor 24.
Besides the polynomials Lr and L sr, Û

2
n, 4 consists of Lrs(z1, ..., zd)=

(z3r −3zr) zs/6 (r ] s), Lrst(z1, ..., zd)=(z
2
r −1) zszt/2 (r ] s, t, s < t), and

Lrstu(z1, ..., zd)=zrzsztzu (r < s < t < u). First note that the covariance of
any polynomial which is part of b2, d and the remaining polynomials is zero
since it solely consists of moments which are zero by Proposition 2.2; we
have, e.g.,

E[(X̃4−6X̃2+3)(X̃2−1) ỸZ̃]=m611−7m411+9m211−3m11=0.

For the same reason, the correlation of Lrstu and any other polynomial is
zero. Hence, the covariance matrix can be decomposed into three parts.

The matrix pertaining to the polynomials Lrstu is a (d4)×(
d
4)-diagonal

matrix with entries 24m2222=24m8/105. Hence, a1=8m8/35 is an eigenvalue
of multiplicity (d4).

The second matrix has the nonzero entries

s41=24E[L2rs(X̃)]=4(m8/7−6m6/5+9),

s42=24E[Lrs(X̃) Lsr(X̃)]=4(3m8/35−6m6/5+9),

s43=24E[L2rst(X̃)]=12(m8/35−2m6/15+1),

s44=24E[Lrst(X̃) Lst(X̃)]=4`3 (m8/35−2m6/5+3),

where r, s, t ¥ {1, ..., d}, r ] s ] t ] r. Arranging the polynomials in the
form
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L12, L21, L312, L412, ..., Ld12,

L13, L31, L213, L413, ..., Ld13,

...

L1d, Ld1, L21d, L31d, ..., Ld−1, 1, d,

...

Ld−1, d, Ld, d−1, L1, d−1, d, L2, d−1, d, ..., Ld−2, d−1, d,

the matrix under consideration splits into (d2) matrices

R
s41 s42

:
s44 · · · s44

s42 s41 s44 · · · s44

s44 s44 s43 0

x x z

s44 s44 0 s43

S . (21)

Here, the diagonal matrix has dimension d−2. For the matrix in (21),
a2=s43 is an eigenvalue of multiplicity d−3. The remaining eigenvalues
are those solutions of the equation ((s41−l)(s43−l)−(s44)2 (d−2))2=
(s42(s43−l)−(s44)2 (d−2))2 which differ from s43. This yields the addi-
tional eigenvalue a1=8m8/35 and the two eigenvalues

a3, 4=
22
35 m8−

28
5 m6+42±

2
35`24d−23 (m8−14m6+105)

which depend on the dimension d.
Computing the eigenvalues of the third matrix is more involved since all

entries are nonzero; up to constant factors due to the different weighting,
the matrix corresponds to the covariance matrix of b2, d: defining s11=ŝ11,
s12=ŝ12, s21=3ŝ21/2, s22=3ŝ22/2, s23=3ŝ23/2, s31=(3/2)1/2 ŝ31, and
s32=(3/2)1/2 ŝ32 and replacing ŝ ij in the covariance matrix of Section 3.1
by the corresponding s ij yields the third matrix which we denote by S3.
For a proof of the following lemma, see Klar (1998, Lemma 1.3.10).

Lemma 3.1. S3 has the following eigenvalues: a1=8m8/35 is an eigen-
value of multiplicity (d2) (where (

1
2)=0);

a5=4 1
(d+6)
35

m8−
2d+8
5
m6+3(d+4)2
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is an eigenvalue of multiplicity d−1; finally,

a6=
d2+10d+24

35
m8−
4(d2+6d+8)

5
m6+3(3d2+14d+16)

is a simple eigenvalue.

Summarizing all results, we obtain the following theorem.

Theorem 3.2. Let X have an elliptically symmetric distribution with
expectation m and nonsingular covariance matrix T. Assume X̃ ¥P4

0; i.e.,
E[(X̃ŒX̃)4] <. and m4=E[t

4
1]=3, where X̃=(t1, ..., td)Œ=T

−1/2(X−m).
Then

24Û2n, 4 |Q
D C

6

i=1
aiq

2
ni
,

where

a1=8m8/35, n1=R
d

4
S+2 R

d

2
S ,

a2=12(m8/35−2m6/15+1), n2=(d−3) R
d

2
S ,

a3, 4=
22
35
m8−
28
5
m6+42±

2
35
`24d−23 (m8−14m6+105), n3, 4=R

d

2
S ,

a5=4 1
(d+6)
35

m8−
2d+8
5
m6+3(d+4)2 , n5=d−1,

a6=
d2+10d+24

35
m8−
4(d2+6d+8)

5
m6+3(d2+14d+16), n6=1

and q2ni are independent chi-squared random variables with ni degrees of
freedom.

Remark. Under multivariate normality, we obtain ai=24 for i=
1, ..., 6; since ;6

i=1 ni=(
d+3
4 ), Û

2
n, 4 has a chi-squared distribution with

(d+34 ) degrees of freedom.
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4. THE LIMIT LAW OF VARIANTS OF MULTIVARIATE
SKEWNESS AND KURTOSIS

In this section, similar methods as in Sections 2 and 3 are used to treat
other statistics such as bg2, d in (19) which are not directly related to com-
ponents of the smooth test of fit for multivariate normality, but which are
direct higher degree analogues of b1, d.

The results are again based on Theorem 2.1(a) which makes no use of
the orthogonality of the polynomials (see the remark after 2.1). However,
the computation of the covariance matrix S pertaining to the polynomials
which build up the statistics is more involved: whereas the examples in 2
and 3 make use of the fact that S can be computed by (12) not only under
the hypothesis of normality but also in the class Pk

0 , one always has to
compute the covariance matrix in case of nonorthogonal polynomials (i.e.,
even under the parametric hypothesis) using Eq. (10).

In the following, we determine the limit distribution of the statistics

bk00=
1
n2

C
n

i, j=1
((Xi−X̄n)Œ S

−1
n (Xj−X̄n))

k=
1
n2

C
n

i, j=1
(Z −iZj)

k,

where k is a positive integer. Again we assume that Sn is nonsingular with
probability 1. An alternative notation is

bk00= C
k1, ..., kd \ 0
k1+· · ·+kd=k

R k

k1 · · · kd
S 11
n
C
n

i=1
D
d

r=1
zkrri 2

2

.

The population counterpart of bk00 is

bk00=E[((X−m)Œ T−1(Y−m))k]

= C
k1, ..., kd \ 0
k1+· · ·+kd=k

R k

k1 · · · kd
S RE rD

d

r=1
tkrr sS

2

,

where t1, ..., td are the components of X̃=T−1/2(X−m). Since bk00 is affine-
invariant, assume without restriction m=0 and T=Id. Again, E ||X||2k <..

The parameterization used in Section 2 is no longer convenient since it
requires the partial derivatives of T−1/2 with respect to the elements of T−1.
Besides the expected value m, we therefore use the elements t−1/2ij of T−1/2 as
parameters. The linear representation, which is now required explicitly, is
easily found: using (8) and

`n (S−1n −Id)=`n (S
−1/2
n −Id)(S

−1/2
n +Id),
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we obtain

`n (S−1/2n −Id)=−
1

2`n
C
n

i=1
(XiX

−

i−Id)+oP(1).

Hence, lij(x, J)=−(xixj−dij)/2. Now, it is not difficult to compute the
necessary partial derivatives. Noting that “tr/“mi |(m, T)=(0, Id)=−t

−1/2
ri |(0, Id)

=−dri, we obtain

“tk11 · · ·t
kd
d

“mi
:
(0, Id)
=−kit

k1
1 · · ·t

ki−1
i−1 t

ki −1
i tki+1i+1 · · ·t

kd
d (22)

for i=1, ..., d if ki \ 1. Using “tr/“t
−1/2
ij |(0, Id)=dirtj yields the derivatives

“tk11 · · ·t
kd
d

“t−1/2ij

:
(0, Id)
=kit

k1
1 · · ·t

ki −1
i · · ·tkj+1j · · ·tkdd , (23)

for i, j=1, ..., d, if ki \ 1. Therefore all quantities required to compute the
covariance matrix S are known. Arranging the building blocks
( k
k1, ..., kd )

1/2 xk11 · · · x
kd
d of bk00 in an arbitrary order and denoting them by

hl(x), l=1, ..., dk, defining y=(y1, ..., ydk) by yl=E[hl(X̃)], and letting

vl(x)=hl(x)+C
d

i=1
E 1“hl(X̃)

“mi
2 xi−

1
2

C
d

i, j=1
E 1“hl(X̃)
“t−1/2ij

2 (xixj−dij), (24)

we can compute S using (10).
Regarding the limit distribution, one has to distinguish two cases as in

Section 2. If y=0 (which is only possible for odd k), the asymptotic distri-
bution is a weighted sum of independent chi-squared distributed random
variables

nbk00 |Q
D C

dk

j=1
ljq

2
1(j),

where the weights are the eigenvalues of S. Note that the statistic b300
coincides with Mardia’s skewness b1, d. For higher odd values of k, Henze
et al. (1999) determined the weights lj under elliptical symmetry.

If y ] 0 (which is always the case for nondegenerate distributions if k is
even), it follows from (14), using yŒy=bk00,

`n (bk00−bk00)|Q
D

N(0, 4yŒSy). (25)
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To examine the case bk00 > 0 (k \ 3) more closely, we express the variance
s2=4yŒSy of the limit distribution in a different way. To this end, let
h=(h1, ..., hdk)Œ and v=(v1, ..., vdk)Œ. Further define

h1, k(x) :=yŒh(x)=E[(xŒX)k]. (26)

Combining (25) and (10) gives

s2=4yŒE[(v(X̃) v(X̃)Œ] y−4yŒ(yyŒ) y

=E[(2yŒv(X̃))(2yŒv(X̃))Œ]−4b2k00. (27)

Besides h1, k(x), the product yŒv(x) consists of terms such as xi ; l

ylE[“hl(X̃)/“mi] and (xixj−dij); l ylE[“hl(X̃)/“t
−1/2
ij ]. Using (22) and

(23), a comparison of the coefficients shows that the sums are given by

C
dk

l=1
E[hl(X̃)] E 5

“hl(X̃)
“mi
6=(−k) E[(X̃ŒỸ)k−1 gi]

and

C
dk

l=1
E[hl(X̃)] E 5

“hl(X̃)
“t−1/2ij

6=kE[ti(X̃ŒỸ)k−1 gj].

In view of these equations and with the definitions

ak=E[(X̃ŒỸ)k−1 ỸŒ],

Bk=(bij)1 [ i, j [ d=E[X̃(X̃ŒỸ)k−1 ỸŒ],

uk=(2, −kb11, −kb12, ..., −kb1d, −kb21, ..., −kbdd, −2ka
−

k)Œ,

Zk=(h1, k(X̃)−bk00, t
2
1−1, t1t2, ..., t1td, t2t1, ..., t

2
d−1, X̃Œ)Œ,

(28)

the asymptotic variance in (27) can be written as s2=u −kE[ZkZ
−

k] uk.
Summarizing, we have the following result.

Theorem 4.1. Let the random vector X with expectation m and nonsin-
gular covariance matrix T satisfy E[{(X−m)Œ T−1(X−m)}k]=E((X̃ŒX̃)k]
<.. Assume that the empirical covariance matrix Sn is nonsingular with
probability 1, and that bk00 > 0. Then

`n (bk00−bk00)|Q
D

N(0, u −kE[ZkZ
−

k] uk),

where the (1+d2+d)-dimensional vectors uk and Zk are defined in (28).
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Remark. In the cases k=3, k=4, and k odd, this is the assertion of
Theorem 3.2 in [1], Theorem 2.2 in [7], and Theorem 4.3 in [9], respec-
tively. In these papers, the proofs are based on the theory of V-statistics,
which entails the additional requirement that the support of PX has
positive Lebesgue measure.

Example 4.2. In the univariate case d=1, the quantities in (26) and
(28) are

h1, k(x)=mkxk, ak=mk−1mk, Bk=m
2
k,

uk=(2, −km
2
k, −2kmk−1mk)Œ, Zk=(mkX̃k−m

2
k, X̃

2−1, X̃)Œ

and consequently

E[ZkZ
−

k]=r
m2k(m2k−m

2
k) mk(mk+2−mk) mkmk+1

mk(mk+2−mk) m4−1 m3

mkmk+1 m3 1

s .
This yields

u −kE[ZkZ
−

k] uk=4m
2
k
1m2k−kmkmk+2+

k2

4
m4m

2
k−
(k−2)2

4
m2k

+k2m3mk−1mk−2kmk−1mk+1+k2m
2
k−1
2 .

In particular, for k=3,

u −3E[Z3Z
−

3] u3=4m
2
3(m6+9+9m

2
3(m4−1)/4−6m4−3m3m5+11m

2
3)

(cf. Baringhaus and Henze (1992a, Example 3.3)). After normalizing, we
obtain the well-known result of Gastwirth and Owens (1977).

In the remainder of this section, we derive the variance of the limit
normal distribution of `n (b2k, 0, 0−b2k, 0, 0) (k \ 2) under elliptical symme-
try. As a special case, the asymptotic distribution of Koziol’s kurtosis
measure bg2, d=b400 (cf. Section 2) is obtained. Under elliptical symmetry,
b2k, 0, 0 has a simple representation.

Theorem 4.3. Let X=(X1, ..., Xd)Œ have a spherical distribution with
E ||X||2k <., and let Y be an independent copy of X. Then

r2k=E[(XŒX)k]=m2k
d(d+2) · · · (d+2k−2)
1 · 3 · 5 · · · (2k−1)

,
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where m2k=E[X
2k
1 ]. Furthermore,

b2k, 0, 0=E[(XŒY)2k]=r
2
2k

1 · 3 · 5 · · · (2k−1)
d(d+2) · · · (d+2k−2)

,

and

B2k=E[X(XŒY)2k−1 YŒ]=r
2
2k

1 · 3 · 5 · · · (2k−1)
d2(d+2) · · · (d+2k−2)

Id.

Proof. Assume d > 1. If N ’Nd(0, Id), it is well known that

E ||N|| s=
C((d+s)/2) 2 s/2

C(d/2)

and hence E[(NŒN)k]=C(d/2+k) 2k/C(d/2)=d(d+2) · · · (d+2(k−1)).
Using Theorem 2.2, one obtains m2k/m

N
2k=r2k/r

N
2k, where mN2k and rN2k

denote the corresponding quantities for N. Since mN2k=1·3 ·5 · · · (2k−1),
the first assertion follows.

To show the remaining parts, let U be uniformly distributed on
Sd={x ¥ Rd : ||x||=1}. Sd has the surface area A=2pd/2/C(d/2). If
u1 ¥ Rd with ||u1 ||=1, Lemma 2.5.1 of Fang and Zhang (1990) yields

E[(u −1U)
2k]=

C(d/2) C 1k+1
2
2

`p C 1k+d
2
2
=D

k−1

j=0

2j+1
d+2j

.

Since PX is spherically symmetric, the decomposition X=D RU, where
R=D ||X|| and R, U are independent, gives

h1, 2k(z)=E[(zŒX)2k]=||z||2k E[R2k] D
k−1

j=0

2j+1
d+2j

. (29)

Hence, the second assertion follows. In view of Proposition 2.2, it is not
difficult to see that B2k=b11Id. Using trace(B2k)=b2k, 0, 0, we obtain
b11=b2k, 0, 0/d. L

In view of Theorem 2.2, the vector a2k defined in (28) is zero. Putting

d=D
k−1

j=0
(2j+1)/(d+2j), (30)

Theorem 4.3 yields

uk=(2, −2kdr
2
2k/d · e

−

1, −2kdr
2
2k/d · e

−

2, ..., −2kdr
2
2k/d · e

−

d, 0Œ)Œ,
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where ej=(0, ..., 1, 0, ..., 0)Œ denotes the jth unit vector in Rd. Writing
L2k=h1, 2k (X̃) −b2k, 0, 0 and Wj=(tj t1, ..., tj tj−1, t

2
j −1, tj tj+1, ..., tj td)Œ

for j=1, ..., d, the vector Z2k in (28) can be written as Z2k=
(L2k, W

−

1, ..., W
−

d, X̃Œ)Œ. Using (29) and Theorem 4.3, we obtain L2k=
dr2k(||X̃||2k−r2k), which yields E[L2kX̃]=0, E[L

2
2k]=d

2r22k(r4k−r
2
2k), and

E[L2kWj]=dr2k 1
r2k+2
d
−r2k 2 ej (j=1, ..., d).

Furthermore, E[X̃W −

j]=O (j=1, ..., d), where O is the zero matrix of
order d. Defining (d×d)-matrices

Bij=E[WiW
−

j]=(b
(i, j)
k, l )1 [ k, l [ d (i, j=1, ..., d)

and putting r=dr2k(r2k+2/d−r2k), the matrix E[Z2kZ
−

2k] of order 1+
d2+d can be written as

E[Z2kZ
−

2k]=|
E[L22k] re

−

1 re −2 · · · re −d 0Œ

re −1 B11 B12a ... B1d O

re −2 B21 B22 · · · B2d O

x x x x x

re −d Bd1 Bd2 · · · Bdd O

0 O O · · · O Id

} .
Noting that b (i, i)i, i =3r4/(d(d+2))−1 (i=1, ..., d) and b (i, j)i, j =r4/(d(d+2))
−1 (i, j=1, ..., d, i ] j), s22k=u

−

2kE[Z2kZ
−

2k] u2k takes the form

s22k=4d
2r22k 1 r4k−(k−1)2 r22k−

2k
d
r2kr2k+2+

k2

d2
r4r

2
2k
2 , (31)

where d is defined in (30). Summarizing, we have the following result.

Theorem 4.4. Let X be elliptically symmetric with expectation m and
nonsingular covariance matrix T. Further, let E[{(X−m)Œ T−1(X−m)}k]
<., and assume that the empirical covariance matrix Sn is nonsingular with
probability 1. Then

`n (b2k, 0, 0−b2k, 0, 0)|Q
D

N(0, s22k),

where s22k is given by (31). In particular,

`n (bg2, d−b
g
2, d)

=`n (b400−b400)|Q
D

N 10, 36r24
d2(d+2)2
1 r8+4

r4
d
1 r24
d
−r6 2−r24 22 .
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Remark. The result requires neither that the support of PX has positive
Lebesgue measure nor that P(X=0)=0 as assumed in Henze (1994b,
Corollary 3.1), for the case k=2.

Corollary 4.5. If X has a nondegenerate normal distribution, then

`n (b2k, 0, 0−D
k−1

j=0
(2j+1)(d+2j))|Q

D
N(0, s22k),

where

s22k=4 D
k−1

j=0
(2j+1)2 (d+2j) 5D

2k−1

j=k
(d+2j)−

d+2k2

d
D
k−1

j=0
(d+2j)6 .
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