
Journal of Multivariate Analysis 100 (2009) 152–161

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Penalized quadratic inference functions for single-index models with
longitudinal data
Yang Bai a,∗, Wing K. Fung a, Zhong Yi Zhu b

a Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
b Department of Statistics, Fudan University, Shanghai 200433, China

a r t i c l e i n f o

Article history:
Received 15 May 2007
Available online 15 April 2008

AMS 2000 subject classification:
46N30

Keywords:
Longitudinal data
P-splines
Quadratic inference functions
Single-index models

a b s t r a c t
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that the proposed estimation method has good asymptotic properties. We also evaluate
the finite sample performance of the proposed method via Monte Carlo simulation studies.
Furthermore, the proposed method is illustrated in the analysis of a real data set.
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1. Introduction

Single-index models describe the relationship between a dependent scalar variable y and a d-dimensional vector x in the
form,

E(y|x) = h0(x
′β0),

where h0(.) is an unknown univariate link function, β0 is an unknown vector in Rd with the restriction ‖β0‖ = 1 (‖.‖ denotes
the Euclidean norm here), and y can be either a discrete or continuous random variable. The first nonzero element of β0 is
positive, which is used for model identifiability.

This kind of model [1–3] is an important extension of linear models to generalized linear models, without assuming that
the link function h0(.) is known. The single-index models can also avoid the so-called “curse of dimensionality” by combining
the multivariate predictors into a univariate index x′β0, and still capture important features of high-dimensional data. The
single-index models have useful applications in a variety of fields such as discrete choice analysis in econometrics and dose-
response models in biometrics, where high-dimensional regression models are often employed [4,5]. For more examples
of motivating the single-index models refer to [3,6]. Carroll et al. [7] extend the single-index models to the generalized
partially linear single-index models (GPLSIM) which cover more situations, and Yu [8] proposes a penalized spline estimation
for GPLSIMs which is more computationally expedient and stable in practice than the estimation in [7]. More recently, the
literature on the applications of single-index models for repeated data is available, especially for panel data in econometrics.
For example, Honoré and Kyriazidou [9] and Carro [10] propose some estimating methods for dynamic panel data discrete
choice models. Panel data in econometrics can be extended to the more generally longitudinal/clustered data, which arise
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frequently in biometrical, epidemiological and social studies. So it will be meaningful to study the applications of the single-
index models on longitudinal data, where the covariance structure of measurements within each subject is being taken into
account.

Qu and Li [11] applied the method of quadratic inference functions (QIF), proposed by Qu et al. [12], to the varying-
coefficient models for longitudinal data. They first used penalized splines with a fixed number of knots to approximate
the unknown varying-coefficient function β(t), and then used QIF to construct estimating equations. Penalized splines, or
following Eilers and Marx [13], P-splines are regression splines fitted by least squares with a roughness penalty. P-splines
are similar to smoothing splines, but the type of penalty used in the P-splines is somewhat more general than that in the
smoothing splines. Moreover, the number and location of knots of the P-splines are not fixed as the smoothing splines. In
general, the knots of the P-splines are at fixed quantiles of the independent variable and the only tuning parameters to be
chosen are the number of knots and the penalty parameter. Since Eilers and Marx [13] developed the method of P-splines,
a huge literature related to the method is available, such as [14,15] and the references therein. In this article, we will use
the P-splines method to approximate the unknown link function h(.) in single-index models for longitudinal data; then the
penalized quadratic inference functions (P-QIF) [11] would be applied to such models.

The QIF method, introduced by Qu et al. [12], is a strong competitor to the generalized estimating equations (GEE)
approach first introduced by Liang and Zeger [16] in analyzing longitudinal data. It avoids estimating the nuisance
correlation structure parameters by assuming that the inverse of working correlation matrix can be approximated by a
linear combination of several known basis matrices. Qu et al. [12] arrive at a conclusion that the QIF approach is as efficient
as the GEE approach under the right working correlation structure; if the working correlation structure is misspecified, the
QIF approach is still optimal within the family where the inverse of the misspecified working correlation structure has an
approximate linear representation of some basis matrices. It means that the QIF estimator could be generally more efficient
than the GEE estimator. Recently, Bai et al. [17] have generalized the QIF approach to partial linear models for longitudinal
data where they use the B-splines to approximate the nonparametric part and consider the normal response. Whereas in
this article, by combining the P-splines and QIF method, we construct a new estimating procedure for both single-index
parameters and the unknown nonparametric link function in single-index models for discrete as well as continuous data in
longitudinal studies; no such work has been found in the literature. We also propose a nonparametric goodness-of-fit test
on the unknown link function.

We organize the remaining of this article as follows: Section 2 provides an estimating procedure under the single-index
model for longitudinal data. In Section 3, we discuss several practical issues that we have to face when we use the proposed
estimating method. We establish and prove the consistency and asymptotic normality of the proposed estimator in Section 4.
In Section 5, a nonparametric goodness-of-fit test on the unknown link function is obtained. Finally, we conduct Monte Carlo
simulations and a real data analysis to assess the finite sample performance of the proposed procedure in Section 6.

2. Model and estimation method

Without loss of generality, we consider a longitudinal study with N subjects and ni observations over time for the ith
subject (i = 1, . . . ,N) with a total of n =

∑N
i=1 ni observations. Each observation consists of a response variable yij and a

covariate vector xij ∈ Rd taken from the ith subject. Suppose that the full data set

{(xij, yij), i = 1, . . . ,N, j = 1, . . . , ni}

is observed and can be modeled as

µ0
ij = E(yij|xij) = h0(x

′

ijβ0), i = 1, . . . ,N, j = 1, . . . , ni, (1)

where β0 is a d-vector of unknown regression coefficients and h0 is an unknown smooth function.
An assumption of the second moment condition is taken for observations {yij}, var(yij) = v(µ0

ij), where v(·) is a known
variance function. If the link function h0(.) is known, Model (1) is a generalized linear model for longitudinal data considered
by Liang and Zeger [16], Prentice and Zhao [18] and so on; if the single-index part is only a univariate time dependent
variable, then the model can be reduced to a general nonparametric regression model for longitudinal data, see [19,20]. So
model (1) can be regarded as a kind of semiparametric model for longitudinal data.

Following Qu and Li [11], under the working assumption that h0(.) is a p-degree spline function with K fixed knots
k1, . . . , kK , we then have h0(t) = B′(t)γ0 where

B(t) = (1, t, t2, . . . , tp, (t − k1)
p
+, . . . , (t − kK)

p
+)
′,

a p-degree truncated power spline basis with knots k1, . . . , kK , and (t)p+ = tpI (t ≥ 0).
In a matrix form, for i = 1, . . . ,N, we let µi = (µi1, . . . ,µini)

′, Yi = (yi1, . . . , yini)
′, Xi = (xi1, . . . , xini)

′ and Ai =

diag(var(yi1), . . . , var(yini
)), the marginal variance matrices of Yi. If we denote θ0 = (β′0, γ

′

0)
′, then the mean function

µ0
i = µi(θ0) =


µ0

i1
...

µ0
ini

 =

h0(x

′

i1β0)
...

h0(x
′

ini
β0)

 =

B′(x′i1β0)γ0

...
B′(x′iniβ0)γ0

 ,
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and

µ̇i(θ) =
∂µi(θ)

∂θ
=


B′d(x

′

i1β)γx
′

i1 B′(x′i1β)
...

...
B′d(x

′

ini
β)γx′ini B′(x′iniβ)

 ,

where

Bd(t) =
∂B(t)

∂t
= (0, 1, 2t, . . . , ptp−1, p(t − k1)

p−1
+ , . . . , p(t − kK)

p−1
+ )′

is the first derivative of B(t).

Following Liang and Zeger [16], we simplify the covariance of the ith subject Vi by taking Vi = A
1
2
i R(α)A

1
2
i where R(α) is

a common working correlation with a small number of nuisance parameters α. Based on the estimation theory associated
with the working correlation structure, the GEE estimator of the regression coefficient proposed by Liang and Zeger [16]
is consistent if consistent estimators of the nuisance parameters α can be obtained. However, even in some simple cases,
such as the examples provided in [21], consistent estimators of α do not always exist. To avoid this drawback, Qu et al. [12]
suggest that the inverse of the working correlation matrix is represented by a linear combination of a class of basis matrices
as

s∑
l=1

alMl, (2)

where M1, . . . ,Ms are known symmetric matrices. They used the QIF to construct estimating equations for the mean
parameters in which consistent estimators of the nuisance parameters α are not necessary.

For our model, following the idea of [12], we define the extended score functions

gi(θ) =


µ̇′iA
−

1
2

i M1A
−

1
2

i (Yi − µi)
...

µ̇′iA
−

1
2

i MsA
−

1
2

i (Yi − µi)

 = Kron(Is, µ̇′i)Ti(Yi − µi), (3)

where Ti = (A
−

1
2

i M1A
−

1
2

i , . . . , A
−

1
2

i MsA
−

1
2

i )′ are known matrix functions. According to the moment assumptions, we can obtain
that E(gi(θ0)) = 0. In the method of moments situation, it looks like that we can set the sample mean vector

ḡN(θ) =
1
N

N∑
i=1

gi(θ)

to be zero to estimate θ. However, it does not work because the dimension of ḡN(θ) is obviously greater than the number of
unknown parameters. Using the idea of generalized method of moments in the econometrics literature [22], Qu et al. [12]
defined the quadratic inference functions

QN(θ) = ḡ′N(θ)C̄
−1
N (θ)ḡN(θ), (4)

and got the estimator of θ as the form:

θ̂ = arg min
θ

QN(θ), (5)

where C̄N(θ) = (1/N)
∑N

i=1 gi(θ)g′i(θ). In our situation, because we use P-splines functions to approximate the unknown link
function, in order to avoid the well-known undersmoothing problem, we borrow the idea of [11] and propose the P-QIF,

QN(θ)+ λNθ
′Dθ, (6)

where D = diag{(0′(d+p+1)×1, 1
′

K×1)
′
}, and θ′Dθ is a common quadratic penalty. Thus, we get the estimator of θ using

θ̂N = arg min
θ
{QN(θ)+ λNθ

′Dθ}. (7)

As for the numerical computation, we can use the Newton–Raphson method to solve for θ.

3. Some issues in practice

In the practical situation, we have to choose the basis matrices for the inverse of the working correlation structure, choose
the appropriate knots and penalties, and determine the magnitude of the smoothing parameter λ. In this section, we discuss
these practical issues.
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3.1. Choosing the basis matrices

The choice of the basis matrices Ml in (2) is not difficult, especially for those special correlation structures which are
frequently used. For example, if we assume an exchangeable working correlation matrix where all pairs of observations
share the same correlation coefficient, we can choose M1 as the identity matrix I, and M2 with 0 on the diagonal and 1 off-
diagonal. For more examples and details the readers are referred to [12]. If there was no prior information on the correlation
structure, Qu and Lindsay [23] provided an adaptive estimation equations approach to approximate the true correlation
empirically.

3.2. Choosing the knots and other penalties

We recommend that the K knots should be placed at equally spaced sample quantiles of the predictor variable, which
in our context is the single-index part x′β. A detailed study of the choice of K has been given by Ruppert [14]. According to
Ruppert’s [14] suggestion and our simulation investigation, we find that 5–10 knots are adequate for most smooth, especially
monotonic or unimodal, unknown link functions. However, more than 10 knots may sometimes be needed, but generally
they are not necessary in most practical applications of the single-index model. Moreover, if the unknown link function has
a discontinuity, then that is important to have a knot near to it. The QIF approach itself also can provide a goodness-of-fit
test to select the number of knots. The readers are referred to [11] for details. In the case of our numerical analysis, we
search the optimal degree of P-splines and number of knots over the combinations of [p, K], and choose the optimal values
by performing the goodness-of-fit test [11].

Besides the common quadratic penalty function that we used, the non-quadratic penalty may also be employed for P-
splines smoothing. Ruppert and Carroll [24] gave a general Lq penalty form

K∑
k=1
|θp+k|

q, q > 0

and showed that for regression functions with discontinuities, penalties with q less than or equal to 1 can outperform a
quadratic penalty, especially if piecewise constant or linear (p = 0 or 1) splines are used. Otherwise, the quadratic penalty
is still preferred. In this article, we use the common quadratic penalty in our proposed P-QIF (7).

3.3. Choosing the smoothing parameter

Selection of the smoothing parameter is crucial in P-splines model fitting. It is desirable to have a simple data-driven
method in the choice of the smoothing parameter. In our situation, we borrow the idea of [11] and extend the generalized
cross-validation with the P-QIF. Following the technique of penalized least squares in [14], we define a generalized cross-
validation statistic as

GCV(λ) =
QN

(1− N−1df)2 , (8)

where df = trace{(Q̈N + λD)−1Q̈N} is the effective degree of freedom, and Q̈N is the second derivative of QN with respect to θ.
Therefore λ̂ = arg minλ GCV(λ). In practice, the above minimization can be carried out by searching over a grid of λ values.

4. Asymptotic properties

Before considering the asymptotic properties, we first have to handle the constraints ‖β0‖ = 1 and β01 > 0 on the d-
dimensional single-index parameter β0. Just as Yu and Ruppert [6] did, we let φ = (φ1, . . . ,φd−1)

′ be a d − 1-dimensional
parameter and define

βφ =



√
1− (φ2

1 + · · · + φ
2
d−1)

φ1
φ2
...

φd−1


, (9)

and the true parameter φ0 must satisfy the constraint ‖φ0‖ < 1. Based on this reparametrization, we can find that βφ0
satisfies the constraints. We also define θφ = (φ′, γ ′)′, where θφ is one dimension lower than θ = (β′φ, γ

′)′. Under this
reparametrization, the corresponding mean function is

µi(θφ) =


B′(x′i1βφ)γ

...
B′(x′iniβφ)γ

 , (10)
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and the gradient matrix of the mean function is

µ̇i(θφ) =


(
Bd(x

′

i1βφ)γ[−(1− ‖φ‖2)−
1
2 φ, Id−1]xi1

)′ (
B(x′i1βφ)

)′
...

...(
Bd(x

′

ini
βφ)γ[−(1− ‖φ‖2)−

1
2 φ, Id−1]xini

)′ (
B(x′iniβφ)

)′
 . (11)

From θ to θφ, we have the Jacobian matrix

J(φ) =

−(1− ‖φ‖2)−
1
2 φ′ 0

Id−1 0
0 Ip+K+1

 . (12)

In order to derive the asymptotic properties of the proposed P-QIF approach, we require the following assumptions, where
‖A‖ is used for the modulus of the largest singular value of matrix or vector A.

(A1) {ni} is a bounded sequence of positive integers.
(A2) The parameter space Θ is a compact set, and the true parameter vector θφ0 is an interior point of Θ .
(A3) The spline regression parameter θ is identified, that is, there is a unique θ0 ∈ Θ satisfying the mean zero condition

µ0
= B′(X′β0)γ0.

(A4) The random error vector ei = (yi1−µ
0
i1, . . . , yini −µ

0
ini

)′ satisfies Eeie′i = Vi, supi ‖Vi‖ <∞, and there exists some ζ > 0
such that supi E‖ei‖

2+ζ <∞.
(A5) All the variance matrices Ai ≥ 0, and supi ‖Ai‖ <∞.
(A6) The covariate matrices Xi should satisfy that supi ‖Xi‖ is bounded in probability.
(A7) Because of the independent but not identical distributed properties between the subjects, we have to have some

convergence assumptions:
(a) 1

N

∑N
i=1 E(ġi(θφ)) converges uniformly in θφ in a neighborhood of θφ0 as N→∞, and specially denote Gd0 = Gd(θφ0)

as the convergent vector at θφ = θφ0 ;
(b) 1

N

∑N
i=1 E(gi(θφ)g′i(θφ)) converges uniformly in θφ in a neighborhood of θφ0 as N → ∞, and specially denote

C0 = C(θφ0) > 0 as the convergent matrix at θφ = θφ0 .

Under (A1), the total sample size n =
∑N

i=1 ni is of the same order as the number of subjects N, and this means that N = O(n).
The conditions (A2)–(A6) are some regularity conditions and usually easy to check. Condition (A7) is commonly used in
nonlinear models; see similar conditions used in [6,11,25]. Now we can establish the asymptotic properties of the penalized
quadratic inference function estimator in (7). Theorem 1 provides the root N consistency and asymptotic normality of the
resulting estimator.

Theorem 1. Under conditions (A1)–(A7),

(1) if the smoothing parameter λN = o(1), then the penalized quadratic inference function estimator θ̂N , obtained by
minimizing (6), exists and converges to θ0 in probability;

(2) if the smoothing parameter λN = o(N−
1
2 ), then the penalized quadratic inference function estimator θ̂N , obtained by

minimizing (6), is asymptotically normal and efficient (i.e., the asymptotic variance of the estimator reaches the lower bound).
That is

√
N(θ̂N − θ0)→p N(0, J(φ0)(G

′

d0
C−1

0 Gd0)
−1J′(φ0)).

It is necessary to point out that the efficiency property of the proposed estimator is based on that the inverse of the true
correlation matrix belongs to the class (2). If not, the proposed estimator is still optimal within the family where the inverse
of the working correlation has a linear representation of the basis matrices.

Proof of Theorem 1. If we can prove that θ̂φ, obtained by minimizing {QN(θφ) + λNθ
′

φDθφ}, exists, converges to θφ0 in
probability, and is asymptotically normal and efficient, then we can get the result of Theorem 1 easily and directly.

The existence of θ̂φ is obvious since (6) has 0 as a lower bound and the global minimum exists.
Under condition (A7), according to the theorem given in page 5 of [25], we can get the following two useful conclusions:

if some θ̃φ→p θφ0 , then

C̄N(θ̃)→p C0; (13)

˙̄gN(θ̃)→p Gd0 . (14)

By (3),
√
NḡN(θφ0) =

√
N( 1

N

∑N
i=1 Kron(Is, µ̇′i0)Tiei), so under conditions (A3)–(A6), using the Liapunov central limit theorem,

we can get
√
NḡN(θφ0)→p N(0, C0). (15)
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Considering θ̂φ = arg minθφ {QN(θφ)+ λNθ
′

φDθφ}, then obviously,

QN(θ̂φ)+ λN θ̂
′

φDθ̂φ ≤ QN(θφ0)+ λNθ
′

φ0
Dθφ0 ,

and by (15), we also know that

QN(θφ0) = ḡ′N(θφ0)C̄
−1
N (θφ0)ḡN(θφ0) = Op

( 1
N

)
= op(1).

So if the smoothing parameter λN = o(1), then we can get QN(θ̂φ) = op(1), that means

QN(θ̂φ)→p 0. (16)

Now we can use the first conclusion of Lemma 4 in [17] to obtain θ̂φ→p θφ0 , thus,

θ̂N→p θ0.

We denote Q̇N and Q̈N to be the first and second derivatives of QN with respect to θφ, and then by (7), the estimator θ̂φ satisfies

Q̇N(θ̂φ)+ 2λNDθ̂φ = 0.

Using the mean value theorem, we get

Q̇N(θφ0)+ 2λNDθφ0 + {Q̈N(θ̃)+ 2λND}(θ̂φ − θφ0) = 0, (17)

where θ̃ is between θφ0 and θ̂φ. Therefore,

θ̂φ − θφ0 = −{Q̈N(θ̃)+ 2λND}
−1
{Q̇N(θφ0)+ 2λNDθφ0 }.

If λN = o(N−
1
2 ), using the fact that Q̈N = 2 ˙̄g′NC̄

−1
N
˙̄gN + op(1) in [12] and the above conclusions (13) and (14), we can get

{Q̈N(θ̃)+ 2λND}
−1
=

1
2
(G′d0

C−1
0 Gd0)

−1
+ op

(
N−

1
2
)
,

and

Q̇N(θφ0)+ 2λNDθφ0 = 2G′d0
C−1

0 ḡN(θφ0)+ op
(
N−

1
2
)
.

Therefore,
√
N(θ̂φ − θφ0) = −

√
N(G′d0

C−1
0 Gd0)

−1G′d0
C−1

0 ḡN(θφ0)+ op(1).

Finally, using (15) again, we obtain
√
N(θ̂φ − θφ0)→p N(0, (G′d0

C−1
0 Gd0)

−1), and directly,
√
N(θ̂N − θ0)→p N(0, J(φ0)(G

′

d0
C−1

0 Gd0)
−1J′(φ0)).

The proof for efficiency is omitted here because it is a standard result in the generalized method of moments [22]. �

5. Nonparametric goodness-of-fit test

As we know, a good property about the quadratic inference functions approach is that we can provide a series of analogies
to the likelihood ratio test without considering the second moment estimators of the parameters of interest. For the single-
index model, it is of particular interest to test whether the model overfits the data, i.e. whether a linear model is good enough
to describe the data. In other words, if we reexpress the p + K + 1-dimensional vector of parameters γ as (γ ′1, γ

′

2)
′, where

γ1 = (γ11, γ12)
′ is a two-dimensional vector and γ2 is a p+ K − 1-dimensional vector, then we are interested in testing the

null hypothesis:

H0 : γ2 = γ
0
2 = 0 = (0, . . . , 0)′. (18)

Under the null hypothesis, considering the norm 1 constraint on β, the mean function is reduced to µij = h(x′ijβ) =

B′(x′ijβ)γ = γ11 + x′ijβγ12 = (1, x′ij)β
NC , where the new parameter βNC

= (γ11,β
′γ12)

′ is free from the norm 1 restriction;
then we can get QN(β̃

NC, γ0
2), where β̃NC

= arg minβNC QN(β
NC, γ0

2), and here the penalty part vanishes naturally. Two test
statistics can be constructed to test for H0:

T = N{QN(β̃
NC, γ0

2)− QN(θ̂N)}, (19)
and

Tp = N{QN(β̃
NC, γ0

2)− QN(θ̂N)− λN θ̂
′

NDθ̂N}. (20)
In the following, we demonstrate that under some regularity conditions, statistics T and Tp have the same limiting
distribution under H0.



158 Y. Bai et al. / Journal of Multivariate Analysis 100 (2009) 152–161

Fig. 1. Curve estimates for the single-index cosine simulation. True β = 1√
3
(1, 1, 1)′ . The data are represented by points. The solid curve is the true mean

function. The dashed curve is the average P-QIF fit over 200 replications. The dot-dashed curves correspond to the 5% and 95% quantiles.

Theorem 2. Under conditions (A1)–(A6), if the smoothing parameter λN = o(N−
1
2 ), T and Tp asymptotically follow the same

chi-squared distribution with p+ K − 1 degrees of freedom under the null hypothesis given in (18).

The proof of Theorem 2 is easy, which is similar to the proof of Theorem 1 in [12]. The only thing to do is to show that T
and Tp have the same limiting distribution. We find that Tp = T − NλN θ̂

′

NDθ̂N , and according to Theorem 1 in Section 4, we
also know that Nθ̂′NDθ̂N = Op(1). So if the smoothing parameter λN = o(N−

1
2 ), we can get NλN θ̂

′

NDθ̂N = op(1). This means that
Tp = T − op(1). Therefore, T and Tp asymptotically follow the same distribution.

6. Numerical results

In this section, we use two Monte Carlo simulation studies to assess the finite sample performance of the proposed
procedures in Sections 2 and 5. We also demonstrate the proposed method with an analysis of the epileptic seizure data set.

6.1. Simulation studies

Study 1 (normal response). We generate 50 subjects for each simulation. Each subject has 5 repeated observations, but
we allow each observation to have a 10% chance of missing so that different subjects would have different numbers of
observations. Data are generated from the following cosine model:

yij = cos(x1ijβ1 + x2ijβ2 + x3ijβ3)+ εij, (21)

where, for every subject i, x1ij are covariates independently from a normal distribution N(1, 0.25), x2ij are covariates
independently from Uniform(−1, 9), and the x3ij are 0 or 1 with probability 0.5 respectively, and the error terms εi =
(εi1, . . . , εi5)

′ are independently from a normal distribution N5(0,σ2R(ρ)). The simulation size is 200 replications. Here we
present the results for the case where β1 = β2 = β3 = 1/

√
3, σ2

= 0.2, and the true correlation structure is Rij = ρ
|i−j| with

ρ = 0.5, i.e. an AR(1) structure.
The proposed P-QIF estimator of the single-index parameter β, β̂PQIF , is obtained by minimizing (6). We also calculate the

QIF estimator β̂QIF when the exact cosine model is known in order to make a comparison. Here, we just list the results under
the AR(1) working correlation structure because the results by assuming exchangeable working correlation are similar to
those under the AR(1) correlation.

Fig. 1 shows the curve fitting to our simulated random sample. One can see that the proposed estimation method
described in Section 2 works well in fitting, since the P-splines fit is very close to the true mean function. Moreover the
5% and 95% quantiles are acceptable near to the true curve, meaning small variation in the fitting.

Fig. 2 gives the boxplots of index parameter estimates β̂ over 200 replications from our proposed P-QIF estimation and
the QIF estimation when the exact form of the cosine model is taken. Although we can find some small difference between
the estimates for the proposed P-QIF approach and the parametric QIF method based on the correct cosine model, the former
estimates are generally acceptable since we make no assumption on the link function.

Table 1 gives some summary statistics for the parameter estimates, including the sample mean (mean), standard error
(SE), bias and mean square error (MSE). The performance of the proposed P-QIF looks satisfactorily.

We apply the goodness-of-fit test result in Theorem 2 to illustrate how the P-QIF approach performs and see if there is
overfitting by the single-index model. We simulate the data such thatµij = E(yij|xij) = β0+x1ijβ1+x2ijβ2+x3ijβ3. We calculate
β̃NC and θ̂N by minimizing (6) when the null hypothesis (18) is true and when it is not, where ḡN is constructed by assuming
either the exchangeable or the AR(1) working correlation structure. Since the dimension of γ0

2 is K+p−1 = 8, under H0, the
test statistic N{QN(β̃

NC, γ0
2)− QN(θ̂N)} asymptotically follows χ2

8. From the quantile–quantile plots under both exchangeable
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Fig. 2. Boxplot of single-index parameter estimates for the cosine simulation. True β = 1√
3
(1, 1, 1)′ . Columns 1, 3, 5 correspond to the QIF estimates of

the single-index parameters based on the true model, while columns 2, 4, 6 correspond to the proposed P-QIF estimates.

Table 1
Summary of parameter estimates for the cosine simulation

Parameter Method Mean SE Bias MSE

β1 QIF 0.5755 0.0773 −0.0018 0.0060
PQIF 0.5687 0.1073 −0.0087 0.0118

β2 QIF 0.5804 0.0255 0.0031 0.0007
PQIF 0.5714 0.0391 −0.0059 0.0016

β3 QIF 0.5746 0.0688 −0.0027 0.0047
PQIF 0.5871 0.1016 0.0098 0.0104

True β = 1√
3
(1, 1, 1)′ . The estimates are calculated from 200 replications.

Fig. 3. For normal responses, quantile–quantile plots for test statistics versus χ2
8 under H0 , from 1000 replications: assuming (a) exchangeable working

correlation, and assuming (b) AR(1) working correlation.

and AR(1) working correlations in Fig. 3, we find that under H0 the empirical quantiles of N{QN(β̃
NC, γ0

2)−QN(θ̂N)} follow the
theoretical chi-squared distribution rather well, and the different working correlation structures do not affect the test very
much.

Study 2 (count response). In this example, we generate 50 subjects, and each subject has 10 repeated observations which
are generated from a correlated multiple Poisson distribution. Here we allow that each observation has a 20% chance of
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Fig. 4. Boxplot of single-index parameter estimates for the Poisson simulation. True β = 1√
3
(1, 1, 1)′ . Columns 1, 3, 5 correspond to the QIF estimates of

the single-index parameters based on the true model, while columns 2, 4, 6 correspond to the proposed P-QIF estimates.

Table 2
Summary of parameter estimates for the Poisson simulation

Parameter Method Mean SE Bias MSE

β1 QIF 0.5713 0.0586 −0.0055 0.0034
PQIF 0.5791 0.0660 0.0018 0.0043

β2 QIF 0.5763 0.0273 −0.0008 0.0007
PQIF 0.5742 0.0351 0.0032 0.0012

β3 QIF 0.5784 0.0842 0.0010 0.0071
PQIF 0.5808 0.0897 0.0034 0.0080

True β = 1√
3
(1, 1, 1)′ . The estimates are calculated from 200 replications.

missing. The simulation size is 200 replications. We let the count response variable yij has the marginal Poisson distribution

P(yij = m) =
µm

ij

m!
e−µij , (22)

where µij = E(yij|xij) = ex1ijβ1+x2ijβ2+x3ijβ3 , the correlation within the ith subject, corr(yij, yik) = 0.5, for j 6= k, the x1ij are
covariates independently from a normal distribution N(1, 0.25), x2ij are covariates independently from Uniform(−1, 2.25),
x3ij are similar to those in Study 1, and the parameter values β1 = β2 = β3 = 1/

√
3. In order to generate the correlated

count responses, we apply the MATLAB package discsim 2.11 written by Madsen and Dalthorp [26].
We obtain the proposed P-QIF single-index parameter estimators β̂PQIF by minimizing (6), and the QIF estimators β̂QIF

when the exact log-link function is known, under the working AR(1) correlation structure. As in Study 1, Fig. 4 gives the
boxplots of index parameter estimates β̂ over 200 replications from the proposed P-QIF estimation and QIF estimation when
the exact log-link function is taken. The difference between the estimates of the two approaches is rather small, showing
that β can be estimated by the proposed P-QIF method almost as well as when the log-link function is known. From the
results in Table 2, we also can find that the proposed P-QIF estimates of β are nearly as accurate as those obtained from
the QIF approach when the true link function is taken. Moreover, since the curve fitting and test results are similar to those
found in Figs. 1 and 3 of Study 1, they are not presented here for brevity.

6.2. Application to the epileptic seizure data

The proposed method is also illustrated by analyzing the data from an epileptic seizure study. Details about the study
can be found in [27,28]. The response variable is the number of seizures in a two-week period, and the scientific question
here is whether the drug helps to reduce the rate of epileptic seizures. Following Wang et al. [28], we consider the same
covariates including logarithm of age (logage), baseline seizure count (bsln, which is divided by 4 and then log-transformed),
treatment (trt, 0 for placebo, 1 for drug) and the interaction between treatment and baseline seizures (itat). Since the
interested response is the count of the epileptic seizure, many authors analyzed this data set under the framework of a

1 These MATLAB utilities are based on [26], and can be downloaded from Lisa Maden’s homepage:
http://www.stat.oregonstate.edu/people/lmadsen.

http://www.stat.oregonstate.edu/people/lmadsen
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Table 3
Parameter estimates (standard errors in the parentheses) for epileptic seizure data under the AR(1) working model

β̂GEE β̂PQIF

logage 0.465 (0.128) 0.393 (0.174)
bsln 0.446 (0.043) 0.493 (0.023)
trt −0.706 (0.199) −0.726 (0.228)
itat 0.294 (0.081) 0.274 (0.055)

longitudinal Poisson regression model and used the GEE method to estimate the regression coefficients. Here we also use
our proposed P-QIF method to analyze the epileptic seizure data set to see if the performance of the proposed method is
comparable to other existing methods.

First, we use our proposed nonparametric goodness-of-fit statistic to test if the null linear modelµij = β0 +β1logageij +

β2bslnij + β3trti + β4itatij is accepted. The model is rejected at the 5% level of significance, since the statistic Q = 9.953 and
the corresponding p-value is 0.041 based on the chi-square distribution with p + K − 1 = 4 degrees of freedom (here we
choose p = 2 and K = 3).

We then use the proposed P-QIF method for fitting the data, and obtain the estimate β̂PQIF (Table 3). The common GEE
estimate β̂GEE for the longitudinal Poisson regression model is also obtained, which is standardized to have unit norm, so as
to compare with the P-QIF estimate. Similar ways of comparison are common in the literature, see for example [7]. As we
can see from the values in Table 3, the two kinds of estimates are generally in agreement with each other. Moreover all the
covariates are statistically significant.
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