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a b s t r a c t

The varying coefficient partially linear model is considered in this paper. When the plug-
in estimators of coefficient functions are used, the resulting smoothing score function
becomes biased due to the slow convergence rate of nonparametric estimations. To reduce
the bias of the resulting smoothing score function, a profile-type smoothed score function
is proposed to draw inferences on the parameters of interest without using the quasi-
likelihood framework, the least favorable curve, a higher order kernel or under-smoothing.
The resulting profile-type statistic is still asymptotically Chi-squared under some regularity
conditions. The results are then used to construct confidence regions for the parameters
of interest. A simulation study is carried out to assess the performance of the proposed
method and to compare it with the profile least-squares method. A real dataset is analyzed
for illustration.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric models with a large number of predictors have frequently appeared in contemporary statistical studies.
Various semiparametric models have been proposed to achieve a balance between modeling bias and the ‘‘curse of
dimensionality’’. One model of importance is the varying coefficient partially linear model (VCPLM). Suppose that Y is a
response variable and (U,XT , ZT ) are the associated covariates. The VCPLM takes the form:

Y = XTα(U) + ZTβ + ε, (1.1)

where α(·) = (α1(·), . . . , αq(·))
T is a q-dimensional vector of unknown regression functions, β = (β1, . . . , βp)

T is a p-
dimensional vector of unknown regression coefficients and ε is an independent random error with E(ε|X, Z,U) = 0 almost
certain. Model (1.1) consists of the unknown regression parameter vector β that serves as the parameter of interest and the
unknown coefficient function α(·) that is taken as the nonparametric nuisance component.

The VCPLM is, of course, an extension of the partially linearmodel and the varying coefficientmodel [6] and has attracted
much attention. Examples can be found in the studies of Li et al. [9], Xia et al. [21], Ahmad et al. [1], Fan and Huang [5], You
and Chen [22], Li and Liang [10], and Zhou and Liang [23]. Lam and Fan [8] investigated the generalized varying coefficient
partially linear model (GVCPLM) when the number p of the parameters β grows with the sample size. They consider the
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profile likelihood ratio inference for the GVCPLM with a growing number of parameters. Li et al. [11] have also employed
the empirical likelihood to study this model with a growing dimension p of parameters of interest.

In this paper, we are interested in inferring the parameter vector β . To investigate the accuracy of the estimator of
β , the confidence region of β often needs to be constructed. One classical method is to use a normal approximation and
sandwich formula and the other typical nonparametric approach is to apply the empirical likelihood method. If the normal
approximation is used, we need to estimate the limiting variance or covariance matrix of the estimate of the parameters of
interest. However, in nonparametric and semiparametric regression settings, the estimate of the variance or the covariance
matrix is often complicated and inaccurate. In addition, the confidence region derived from the limiting normal distribution
is predetermined to be symmetric, which may not be adequate when the underlying distribution is typically asymmetric.
To avoid estimating the variance or the covariance matrix, the likelihood ratio or empirical likelihood is often used as an
alternative. When the model has a known likelihood (or a known quasi-likelihood framework), the profile likelihood can be
applied; see, for example, [15,17,16,3]. In this case, if the ‘‘least favorable cure’’ for the nonparametric function can be well
defined and consistently estimated, the limit of the likelihood ratio is tractable. In addition, although the empirical likelihood
method avoids estimating the variance or the covariance estimate of the parameters of interest and has many advantages in
the construction of confidence regions, the limit of the empirical log-likelihood ratio is no longer a chi-square variable while
a weighted sum of chi-square variables with unknown weights when there are infinite-dimensional nuisance functions.
Thus, there is a need to investigate bias-corrected techniques (see [25,12,24]). Furthermore,when the semiparametricmodel
cannot be expressed as a regression framework, one has to estimate a conditional expectation, making the bias-correction
procedures complicated and likely to be inefficient. This motivates us to propose a new method for drawing inferences
for β .

To overcome the problems discussed above, an alternative approach via the smoothed score function was proposed by
Manski [13,14]. However, the smoothed score function cannot be used to draw inferences for β due to the slow convergence
rate of the nonparametric estimation. In this paper, we investigate a profile-type smoothed score function that is different
from those proposed by Severini and Staniswalis [16] and Severini and Wong [17]. This general methodology can be
employed in many semiparametric models in which nonparametric nuisance functions (infinite-dimensional nuisance
parameters), such as the varying coefficient partially linearmodel (1.1) are included. Unlike prior analysis of relevantmodels
which have an infinite-dimensional nuisance parameter (e.g., [17,16,8]), the following conditions need not be assumed
in investigating this profile-type smoothed score function: the distributions of the variables involved are given, a quasi-
likelihood framework applies, a higher order kernel and under-smoothing are used to reduce the bias, and the least favorable
curve applies.

The rest of the paper is organized as follows. In Section 2, the varying coefficient partially linear model is considered and
the profile-type smoothed score function for parameters of interest is proposed. In Section 3, the theoretical results of the
resulting profile-type statistic are investigated under some regularity conditions. In Section 4, simulation studies are carried
out to assess the performance of the proposed method. A real data example is given for illustration. The technical proofs of
the main theoretical results are relegated to the Appendix.

2. Model and methodology

Let {(Yi;XT
i , Z

T
i ,Ui), 1 ≤ i ≤ n} be an independent identically distributed (i.i.d.) random sample which comes from

model (1.1). That is,

Yi = XT
i α(Ui) + ZT

i β + εi, i = 1, . . . , n, (2.1)

where ε1, . . . , εn are independent and identically distributed (i.i.d.) random errors with E(εi|Xi, Zi,Ui) = 0. Note that in this
model, the distribution and variance of εi are not specified, and hence the profile (quasi) likelihood method is unavailable.
Let g(·) be the unknown density function of ε. To draw inferences for the unknown parameter vector β , we first introduce
the score function as an auxiliary vector

1
√
n

n−
i=1

ηi(β) =
1

√
n

n−
i=1

∂

∂β
log g(εi(β)) =

1
√
n

n−
i=1

∂
∂β

g(εi(β))

g(εi(β))

= −
1

√
n

n−
i=1

g ′(εi(β))

g(εi(β))
Zi, (2.2)

where g ′(·) denotes the derivative of g(·) with regard to a parameter vector β and

ηi(β) =
∂

∂β
log g(εi(β)) = −

g ′(εi(β))

g(εi(β))
Zi.

Note that {ηi(β), 1 ≤ i ≤ n} are independent and E[ηi(β)] = 0 when α(u) and β are respectively the true coefficient
function and the parameter vector. Thus, we can construct an estimating equation

∑n
i=1 ηi(β) = 0.
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Because ηi(β) in fact contains the unknown g(·), g ′(·), α(·), a natural way of solving this problem is to replace them
with their consistent estimators. To this end, we first estimate the coefficient function using a local polynomial smoother
(see [4]). Rewrite model (2.1) as

Yi − ZT
i β = XT

i α(Ui) + εi, i = 1, . . . , n, (2.3)

where α(u) = (α1(u), . . . , αq(u))T . Obviously, if β is known, (2.3) is a version of the usual varying coefficient model. Thus,
the local linear regression approximation can be used to estimate the coefficient functions {αj(·), j = 1, . . . , q}. For v in a
neighborhood of u, approximate each αj(v) by

αj(v) ≈ αj(u) + α′

j(u)(v − u) ≡ aj + bj(v − u), j = 1, . . . , q. (2.4)

Denote a = (a1, . . . , aq)T and b = (b1, . . . , bq)T . For any fixed β , a local linear fit is defined as the following solution of the
weighted least-squares problem: finding a and b to minimize

n−
i=1

{Yi − XT
i (a + b(Ui − u)) − ZT

i β}
2Kh(Ui − u), (2.5)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h represents the size of the local neighborhood called a bandwidth.
The kernel function is introduced to reflect the fact that the local model (2.4) is only applied to the data around u. It gives a
larger weight to the data closer to the point u. Let â and b̂ be the solutions of the minimization of (2.5). Then

[âT , hb̂T
]
T

= (DT
uWuDu)

−1DT
uWu(Y − Zβ), (2.6)

where

Du =


XT

1
U1 − u

h
XT

1

...
...

XT
n

Un − u
h

XT
n

 , Z = (Z1, . . . , Zn)
T

=

Z11 · · · Z1p
...

. . .
...

Zn1 · · · Znp

 ,

Y = (Y1, . . . , Yn)
T , Wu = diag(Kh(U1 − u), . . . , Kh(Un − u)).

Note that â and b̂ thereby typically depend on β . If β is given, we can estimate α(u) by

α̂(u, β) = (Iq, 0q)(DT
uWuDu)

−1DT
uWu(Y − Zβ), (2.7)

where Iq denotes a q-dimensional identity matrix and 0q is the q× qmatrix with all the entries being zero. Substituting the
estimate α̂(u, β) into (2.3), we then have the following approximate residuals:

ε̂i(β) = Yi − ZT
i β − XT

i α̂(Ui, β)

= Yi − ZT
i β −

n−
k=1

Sik(Yk − ZT
kβ)

= Yi − Ŷi − βT (Zi − Ẑi), i = 1, . . . , n, (2.8)

where Ŷ = (Ŷ1, . . . , Ŷn)
T

= SY , Ẑ = (Ẑ1, . . . , Ẑn)
T

= SZ, Sik is the (i, k)th element of the smoothing matrix S, which
depends only on the observations {(Ui,Xi), i = 1, . . . , n}, with

S =

(XT
10

T )(DT
u1Wu1Du1)

−1DT
u1Wu1

...

(XT
n0

T )(DT
unWunDun)

−1DT
unWun

 .

From (2.7) and (2.8), we can estimate g(εi(β)) and g ′(εi(β)) respectively by

ĝ(ε̂i(β)) =
1
n

n−
j=1

Lh(ε̂i(β) − ε̂j(β)), (2.9)

ĝ ′(ε̂i(β)) =
1
n

n−
j=1

L′

h(ε̂i(β) − ε̂j(β)), (2.10)
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where Lh(·) = h−1L(·/h) is a kernel function and h is a bandwidth that depends on the sample size n. We plug the estimators
α̂(u, β), ĝ(ε̂i(β)) and ĝ ′(ε̂i(β)) into ηi(β) in (2.2), respectively. A plug-in estimating smoothed score function can be defined
as follows

1
√
n

n−
i=1

ηi(β) = −
1

√
n

n−
i=1

ĝ ′(ε̂i(β))

ĝ(ε̂i(β))
Zi. (2.11)

Although each component of 1
√
n

∑n
i=1ηi(β) is asymptotically zero when β is the true parameter vector, such replacement

slows the convergence rate and results in non-negligible bias and enhanced variance because the convergence rates of
the plug-in estimators α̂(u, β), ĝ(ε̂i(β)) and ĝ ′(ε̂i(β)) are slower than n−1/2 when an optimal bandwidth is adopted
(see [4]). Thus, we cannot draw inferences for β directly from (2.11). Furthermore, such replacement ignores the functional
dependence of α̂(Ui, β) in (2.7) on β implicitly. From (2.8), note that ε̂i(β) contains the estimated coefficient function
α̂(Ui, β), which is dependent on the unknown parameter vector β . To make inferences for β , we define the profile-type
smoothing score function (PSSF) as follows:

PSSF(β) =
1

√
n
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1

√
n
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∂

∂β
log ĝ(ε̂i(β))

=
1
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∂
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1
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ĝ ′(ε̂i(β))

ĝ(ε̂i(β))
(Zi − Ẑi), (2.12)

where Ẑi =
∑n

k=1 SikZk. Note that the second component in (2.12) vanishes in a solely parametric framework or if
the estimate α̂(·) does not depend on β . In general, the profile-type score function in semiparametric models has two
components. Wang et al. [19] propose a similar procedure for a marginal generalized semiparametric partially linear model
with longitudinal/clustered data. This modification turns out to be the key to constructing the confidence regions for β . As
shown in Section 4 and later illustrated in the simulation, the asymptotic property of PSSF(β) is insensitive to the choice of
bandwidth. For example, the optimal bandwidth h of order O(n−1/5) can be used.

3. Theoretical results

Throughout the paper, let Γ (u) = E(XXT
|U = u), Φ(u) = E(XZT

|U = u) and µ(u) = ΦT (u)Γ −1(u). In this section, we
establish the asymptotic result for PSSF(β) defined in (2.12). We need the following conditions to derive the main results.

(C1) The random variable U has a compact support Ω . The density function fU(u) of U has a continuous second derivative
and is uniformly bounded away from zero.

(C2) The density function g(·) of ε is bounded away from zero on T and satisfies the Lipschitz condition of order 1 on T ,
where T is a bounded support set of R.

(C3) The q × qmatrix Γ (u) is non-singular for each u ∈ Ω . Γ (u), Γ (u)−1 and Φ(u) are all Lipschitz continuous.
(C4) {αi(·), i = 1, . . . , q} have continuous second derivatives in u ∈ Ω .
(C5) The kernel functions K(·) and L(·) are the bounded symmetric density functions with bounded support.
(C6) The bandwidth h satisfies that nh8

→ 0 and nh3/(log n)3 → ∞.
(C7) There is an s > 2 such that E‖Z‖2s < ∞, E‖X‖

2s < ∞ and E‖µ(U)X‖
2s

≤ ∞ for some δ < 2 − s−1 such that
n2δ−1h → ∞.

(C8) V (β) and Σ = E{ε(Z − ΦT (U)Γ −1(U)X)}⊗2 are the positive definite matrices, where A⊗2
= AAT .

Note that the above conditions are assumed to hold uniformly in u ∈ Ω . Conditions (C1)–(C5) are also found in the study
of Fan and Huang [5]. These conditions are actually quite mild and can be easily satisfied. Condition (C6) gives a range of
bandwidths from O(n−1/3 log n) to O(n−1/8) that includes the order of optimal bandwidth. Condition (C8) ensures that there
exists an asymptotic variance for the estimator of β .

For the sake of convenience, let V̂ (β) =
1
n

∑n
i=1 η̂i(β)η̂T

i (β), where

η̂i(β) = −
ĝ ′(ε̂i(β))

ĝ(ε̂i(β))
(Zi − Ẑi)

is defined in (2.12). We first give the following Proposition 1 which is a crucial theoretical result of this article and the key
to investigation of the asymptotic properties of PSSF(β).

Proposition 1. Assume that conditions (C1)–(C8) hold. If β is the true value of the parameter vector, we have

PSSF(β) =
1

√
n

n−
i=1

ξi(β) + oP(1), (3.1)
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and

V̂ (β) = V (β) + oP(1), (3.2)

where ξi(β) = −
g ′(εi(β))

g(εi(β))
(Zi − ΦT (Ui)Γ

−1(Ui)Xi) and V (β) = Cov(ξ(β)) is a positive matrix.

Theorem 1. Assume that conditions (C1)–(C8) hold. If β is the true value of the parameter vector, we have

PSSF(β)
d

−→ N(0, V (β)), (3.3)

where ‘‘
d

−→’’ denotes the convergence in distribution and V (β) is defined in Proposition 1.

To construct the confidence regions of β , we first define the following asymptotic profile-type statistic:

L̂(β) = PSSFT (β)V̂−1(β̂)PSSF(β), (3.4)

where V̂ (β̂) can be obtained by using the plug-in method, then

V̂ (β̂) =
1
n

n−
i=1

ĝ ′(ε̂i(β̂))

ĝ(ε̂i(β̂))
(Zi − Ẑi)


ĝ ′(ε̂i(β̂))

ĝ(ε̂i(β̂))
(Zi − Ẑi)

T

(3.5)

with ε̂i(β̂) = Yi − ZT
i β̂ − XT

i α̂(Ui, β̂). From (2.1) and (2.8), β̂ is the profile least-squares estimator of β defined by

β̂ = argmin
β


1
n

n−
i=1

{Yi − XT
i α̂(Ui, β) − ZT

i β}
2



=


n−

i=1

(Zi − Ẑi)(Zi − Ẑi)
T

−1 n−
i=1

(Zi − Ẑi)(Yi − Ŷi). (3.6)

Theorem 2. Assume that conditions (C1)–(C8) hold. If β is the true value of the parameter vector, we have

L̂(β)
d

−→ χ2
p as n → ∞, (3.7)

where χ2
p denotes the chi-square distribution with p degrees of freedom.

As a conclusion of Theorem2, L̂(β) can be used to construct a confidence region forβ . More precisely, for any 0 < α < 1,
let cα be such that P(χ2

p > cα) ≤ 1 − α. Then

Iα(β) =

β ∈ Rp

: L̂(β) ≤ cα


constitutes a confidence region for β with asymptotic coverage 1 − α.

4. Numerical studies

Throughout this section, we use the quartic kernel K(u) =
15
16 (1 − u2)2

+
, and use a ‘‘leave-one-sample-out’’ method to

select the bandwidth h. This method has been widely applied in practice (see, for example, [2,5,23]). We define the cross-
validation score for h as CV(h) = n−1∑n

i=1{Yi − XT
i α̂h,−i(Ui) − ZT

i β̂−i}
2, where β̂−i is the profile least-squares estimator

defined by (3.6) and is computed from data with measurements of the ith observation deleted and α̂h,−i(·) is the estimator
defined in (2.7) with β replaced by β̂−i. Then cross-validation smoothing parameter hcv is then theminimizer of CV(h). That
is, hcv = argminhCV(h). Next, we use the same quartic kernel K(u) to estimate the density function g(ε(β)). Theoretically,
in the argument in (2.9), the bandwidth for the density estimator ĝ(ε̂i(β)) can be taken as the same as the bandwidth for
the local polynomial smoother α̂(·) and this does not impact our theoretical result. We therefore use the same bandwidth
h to estimate the density function g(ε(β)).

4.1. Simulation study

In this subsection, we present the results of Monte Carlo simulations to illustrate the finite sample performance of the
proposed method. Our simulated data were generated from the following model:

Yi = XT
i α(Ui) + ZT

i β + εi. (4.1)
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Fig. 1. Theplot of the true density and the estimateddensities for three bandwidths. The left panel shows a standardnormal distributionwithhcv = 0.3319.
The middle panel shows a mixture normal distribution with hcv = 0.3621. The right panel shows a standard t-distribution with three degrees of freedom
and hcv = 0.4022.

In our simulation study, the covariate Ui is uniformly distributed on [0, 1], the nonparametric component α(u) = (α1(u),
α2(u))T with q = 2 in which Xi1 and Xi2 are independent and normal with mean zero and variance 0.8. Because we take
two-dimensional parametric components β = [1.5, −2.5]T , the covariable Zi is a two-dimensional normal random vector
with mean zero and a covariance matrix (σij) with σij = 0.5|i−j|. Furthermore, the varying coefficient functions are given as

α1(u) = exp(−u2) + sin(2πu) and α2(u) = 2u(1 − u) − cos(πu).

In the simulations, we draw 1000 random samples of sizes n = 200, 400 and 600 from the above model, respectively.
The first aim of these simulations is to study the performance of the proposed method for three model noises. The three

model noises ε are generated from the following three different distributions, respectively: the standard normal distribution,
the mixture normal distribution 2/3 ∗ N(0, 1/2) + 1/3 ∗ N(0, 2), and the standard t-distribution with three degrees of
freedom. To demonstrate the insensitive bandwidth for the density estimator ĝ(ε̂i(β)), we take the smoothing parameter at
three values h = 0.5 ∗ hcv, h = 2 ∗ hcv and h = 4 ∗ hcv under the three different distributions. The plots of the true density
function and the estimated density function with the sample size n = 400 at the three different levels of bandwidth are
presented in Fig. 1. The optimal bandwidths are about hcv = 0.3319, 0.3621 and 0.4022 for the above three model noises,
respectively. Fig. 1 shows that the proposed method is insensitive to the choice of bandwidth.

The second aim of this simulation study is to construct the confidence regions of parameters β of interest. We consider
two approaches for comparison: the profile-type smoothed score function (PSSF) approach and normal approximation by
the profile least-squares estimator (PLS). Similar to the results of Fan and Huang [5], the profile least-squares estimator
defined by (3.6) can be proved to be asymptotically normal as follows:

√
nBΣ−1/2(β̂ − β)

d
−→ N(0, 1),

where B = E(Z1ZT
1) − E[ΦT (U1)Γ

−1(U1)Φ(U1)] and Σ is defined in condition (C6). To construct confidence regions, we
also need to estimate the asymptotic variance of the form:

B̂ =
1
n

n−
i=1

(Zi − Ẑi)(Zi − Ẑi)
T , Σ̂ =

1
n

n−
i=1

ε̂2
i (Zi − Ẑi)(Zi − Ẑi)

T ,

where ε̂i = Yi − XT
i α(Ui, β̂) − ZT

i β̂ . The confidence regions and their coverage probabilities with the nominal level
1 − α = 0.95, are computed. The comparison is made through the average coverage probabilities and the average area
of the confidence regions for three sample sizes n = 200, 400 and 600. Because the two methods are similar in terms of
coverage accuracy, we present only the confidence region plots for the sample size n = 400 here.

Table 1 reports the simulation results for the average coverage probabilities and Fig. 2 reports the confidence regions.
From Table 1 and Fig. 2, we can see that the average coverage probabilities and the sizes of the confidence regions estimated
by eachmethod are about the samewhen themodel noise ε is generated from the standard normal distribution. This shows
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Table 1
Coverage probabilities of (β1, β2) with 95% nominal level.

n PSSF PLS
N(0, 1) Nmix

a t(3) N(0, 1) Nmix
a t(3)

200 0.9340 0.9370 0.9360 0.9330 0.9310 0.9320
400 0.9420 0.9450 0.9450 0.9430 0.9420 0.9390
600 0.9480 0.9490 0.9480 0.9470 0.9460 0.9460
a Nmix denotes the mixture normal distribution.

beta1 beta1

be
ta

2

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

PLS
PSSF

1.2 1.3 1.4 1.5 1.6 1.7

PLS
PSSF

PLS
PSSF

–2.7

–2.65

–2.6

–2.55

–2.5

–2.45

–2.4

–2.35

–2.3

be
ta

2

be
ta

2

–2.7

–2.65

–2.6

–2.55

–2.5

–2.45

–2.4

–2.35

–2.3

–2.65

–2.6

–2.55

–2.5

–2.45

–2.4

–2.35

–2.3

beta1

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

Fig. 2. The confidence regions for three model noises. The left panel shows a standard normal distribution. The middle panel shows a mixture normal
distribution. The right panel shows a standard t-distribution with three degrees of freedom.

Table 2
Coverage probabilities for β1 and β2 with 95% nominal level.

β n PSSF PLS
N(0, 1) Na

mix t(3) N(0, 1) Na
mix t(3)

β1 200 0.9280 0.9320 0.9290 0.9290 0.9310 0.9270
400 0.9390 0.9430 0.9410 0.9380 0.9420 0.9380
600 0.9470 0.9490 0.9470 0.9470 0.9480 0.9460

β2 200 0.9320 0.9350 0.9310 0.9290 0.9330 0.9300
400 0.9410 0.9450 0.9420 0.9390 0.9440 0.9380
600 0.9470 0.9490 0.9460 0.9450 0.9470 0.9450

a Nmix denotes the mixture normal distribution.

Table 3
Average lengths of the confidence intervals for β1 and β2 with 95% nominal level.

β n PSSF PLS
N(0, 1) Na

mix t(3) N(0, 1) Na
mix t(3)

β1 200 0.1261 0.1183 0.1231 0.1255 0.1202 0.1247
400 0.1108 0.0994 0.1102 0.1129 0.1026 0.1128
600 0.0955 0.0857 0.0947 0.0984 0.0901 0.0979

β2 200 0.1259 0.1136 0.1261 0.1332 0.1311 0.1348
400 0.1098 0.1025 0.1107 0.1164 0.1103 0.1162
600 0.0946 0.0853 0.0945 0.1009 0.0908 0.1021

a Nmix denotes the mixture normal distribution.

that the PSSF method achieves slightly higher coverage levels than the PLS does, while the PSSF-based confidence regions
are smaller than those obtained by the PLS when the model noises are the mixture normal distribution and the standard
t-distribution with three degrees of freedom.

The proposed method can also be used to construct the confidence interval for one component of the regression
parameter. For example, we can construct the confidence interval of β1 while we replace β2 by its consistent estimator
(such as PLS estimator). The average coverage probabilities and average lengths of the confidence intervals for β1 and β2
are given in the following Tables 2 and 3, respectively. From Tables 2 and 3, we further see that the PSSF method performs
better than the PLS method.
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Fig. 3. Q–Q plot and density function curve of the residual ε̂.

Fig. 4. 95% confidence regions for the coefficients (β1, β2) of the sales and assets variables.

4.2. A real data example

Wenow illustrate the proposedmethod through its application to CEO data and compare it with the profile least-squares
(PLS) method. The CEO dataset was collected from Forbes’ 1999 list of Corporate America’s Most Powerful People. The CEO
sample contains 447 observations and 7-non-constant independent variables: salary (1999 salary + bonuses), totcomp
(1999 CEO total compensation), tenure (number of years as CEO, tenure equals 0 if less than 6 months), age (age of CEO),
sales (total 1998 sales revenue of firm), profits (1998 profits of firm), assets (total assets of firm in 1998). For simplicity of
notation, the covariates of age, tenure, sales, assets, totcomp, and profits are denoted respectively by U, X2, Z1, . . . , Z4. The
dataset is standardized to zero mean and unit variance to ensure the comparability of the different variables. The following
model is then considered

Y = α1(U) + α2(U)X2 + β1Z1 + β2Z2 + β3Z3 + β4Z4 + ε, (4.2)

where response variable Y denotes the CEO’s salary. The quartic kernel is employed to estimate the coefficient functions and
the density function of ε, and the cross-validation (CV) method is used to select the bandwidth hcv = 3.7593. We obtain the
profile least-squares estimators (0.1292, 0.2801, 0.2553 and 0.0961) of (β1, . . . , β4). The Q–Q plot and the density function
curve (Fig. 3) of the residual ε̂ show that the model error does not have a normal distribution and the distribution has very
heavy tail.

To compare the PSSF method with the PLS method, we obtain the 95% confidence regions for the coefficients (β1, β2) of
the sales and assets variables that are shown in Fig. 4. We also obtain similar results for other coefficients but we omit them
from this paper. From Fig. 4, we find that the PSSF-based confidence region is smaller than that based on the PLS.
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Appendix. Proofs of the main results

For the sake of convenience, let c(0 < c < ∞) denote a constant that does not depend on n but takes a different value at
each appearance. The following notations will be used in the proof of the lemmas and theorems. Let µi =


uiK(u)du, νi =

uiK 2(u)du, and i = 1, 2, 3, 4.

Lemma 1. Suppose that conditions (C1)–(C6) hold. If h → 0 and nh → ∞ as n → ∞, then letting cn =
 log n

nh

1/2
+ h2 and

dn =
 log n

nh

1/2
,

sup
u∈Ω

1
n

n−
i=1

Kh(Ui − u)

Ui − u

h

l

Xijεi = OP(dn),

sup
u∈Ω

1n
n−

i=1

Kh(Ui − u)

Ui − u

h

l

Xij1Xij2 − fU(u)µlΓj1j2(u)

 = OP(cn),

sup
u∈Ω

1n
n−

i=1

Kh(Ui − u)

Ui − u

h

l

XijZik − fU(u)Φjk(u)

 = OP(cn),

where j1, j2, j = 1, . . . , q, k = 1, . . . , p, l = 0, 1, 2, 4, Γj1j2(u) is the (j1, j2)th element of Γ (u) and Φjk(u) is the (j, k)th
element of Φ(u).

Because the proof of Lemma 1 is similar to that of Lemma A.2 of [20], we omit the details here.
For any given parametric component β , the following lemma provides the consistency rate of the estimators of

nonparametric functions. Let αj(u) denote the jth component of α(u), j = 1, . . . , q.

Lemma 2. Under the conditions of Lemma 1, as n → ∞, we have

‖α̂(u, β) − α(u)‖ = OP(cn), (A.1)

and

max
1≤j≤q

sup
u∈Ω

|α̂j(u, β) − αj(u)| = OP(cn) (A.2)

holds uniformly in u ∈ Ω , the support of U.
Proof. We first present the proof of Eq. (A.1). Let

Sn,l =

n−
i=1

Kh(Ui − u)XiXT
i


Ui − u

h

l

, l = 0, 1, 2.

Note that

DT
uWuDu =


Sn,0 Sn,1
Sn,1 Sn,2


.

Each element of the above matrix is in the form of a kernel regression. By Lemma 1 and some elementary calculations, we
find that

Sn,l = nfU(u)µlΓ (u)(1 + OP(cn)) (A.3)

holds uniformly in u ∈ Ω . By (A.3), we also see that

DT
uWuDu = nfU(u)Γ (u) ⊗


1 0
0 µ2


{1 + OP(cn)} (A.4)

holds uniformly in u ∈ Ω . By (2.7) and (A.4), we have

α̂(u, β) = [nfU(u)Γ (u)]−1
n−

i=1

Kh(Ui − u)Xi(Yi − ZT
i β) + OP(cn)

= [nfU(u)Γ (u)]−1
n−

i=1

Kh(Ui − u)Xi

XT

i α(Ui) + εi


+ OP(cn). (A.5)
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Applying Lemma 1, similar to the calculation of (A.3), we can easily show that

1
n

n−
i=1

Kh(Ui − u)XiXT
i α(Ui) = fU(u)Γ (u)α(u){1 + OP(cn)} (A.6)

and that

1
n

n−
i=1

Kh(Ui − u)Xiεi = oP(1) (A.7)

holds uniformly in u ∈ Ω . By (A.5)–(A.7), α̂(u, β) = α(u) + OP(cn) holds uniformly in u ∈ Ω . This completes the proof of
Eq. (A.1).

To prove (A.2), similar to Xia and Li [20], we further decompose α̂j(u, β), j = 1, . . . , q. Without loss of generality, we
only consider α̂1(u, β). For convenience, let Kih(u) = Kh(Ui − u), Si = (Xi2, . . . , Xiq), Ti = (Xi1, . . . , Xiq). Without confusion,
we let Vi = (Si, (Ui − u)Ti) although it relates to u. Following Lemma 3 of [7], we have

α̂1(u, β) = α1(u) +

n∑
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )XT
i (α(Ui) − α(u) − α′(u)(Ui − u))

n∑
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2
+

n∑
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )εi

n∑
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2

=: α1(u) + I1 + I2,

where

Hn =

n−
i=1

Kih(u)V T
i Vi =


n−

i=1

Kih(u)STi Si h
n−

i=1

Kih(u)

Ui − u

h


STi Ti

h
n−

i=1

Kih(u)

Ui − u

h


T T
i Si h2

n−
i=1

Kih(u)

Ui − u

h

2

T T
i Ti


=:


Pn hRn

hRT
n h2Qn


,

Jn =

n−
i=1

Kih(u)Xi1Vi =


n−

i=1

Kih(u)Xi1Si, h
n−

i=1

Kih(u)

Ui − u

h


Xi1Ti


=: (An, hBn).

Let A(u) = (Γ12(u), Γ13(u), . . . , Γ1q(u)), P(u) = (Γij(u))i, j=2,...,q and Q (u) = (Γij(u))i,j=1,...,q. By Lemma 1 and condition
(C5), it is easy to show that

1
n
An = fU(u)A(u) + OP(cn),

1
n
Bn = OP(cn)1T

q ,
1
n
Rn = OP(cn)1q−11T

q ,

1
n
Qn = fU(u)µ2Q (u) + OP(cn),

1
n
Pn = fU(u)P(u) + OP(cn).

(A.8)

Here 1q is the q × 1 vector with 1 as all the elements. It can be seen that Pn is a symmetric matrix and its inverse exists,
then

H−1
n =


P−1
n + h2P−1

n RnK
−1
n RT

nP
−1
n −hP−1

n RnK
−1
n

−hK−1
n RT

nP
−1
n K−1

n


,

where Kn = h2(Qn − RT
nP

−1
n Rn), and

JnH−1
n = (AnP−1

n + h2AnP−1
n RnK

−1
n RT

nP
−1
n − h2BnK

−1
n RT

nP
−1
n , −hAnP−1

n RnK
−1
n + hBnK

−1
n ),

JnH−1
n V T

i = AnP−1
n STi + h2AnP−1

n RnK
−1
n RT

nP
−1
n STi − h2BnK

−1
n RT

nP
−1
n STi − h(Ui − u)(AnP−1

n RnK
−1
n T T

i − hBnK
−1
n T T

i ).

From (A.8), we have

JnH−1
n = (A(u)(P(u))−1

+ OP(cn), OP(cn)1T
q ),

JnH−1
n JTn = nA(u)(P(u))−1AT (u)fU(u) + OP(cn).
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To deal with Ii for i = 1, 2, we consider their denominator first. Note that

1
n

n−
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2 =
1
n

n−
i=1

Kih(u)X2
i1 −

1
n
JnH−1

n JTn

= Γ11(u)fU(u) − A(u)(P(u))−1AT (u)fU(u) + OP(cn)
= fU(u) det(Q (u))/ det(P(u)) + OP(cn) (A.9)

holds uniformly inu ∈ Ω . Nowweare in the position to handle I1. Using the Taylor expansion,αj(Ui)−αj(u)−α′

j(u)(Ui−u) =

1
2α

′′

j (u
∗)(Ui − u)2, j = 1, . . . , q, where u∗ is a point between Ui and u. By the Cauchy–Schwarz inequality, Lemma 1 and

condition (C4), uniformly over 1 ≤ j ≤ q, we have1n
n−

i=1

Kih(u)(Xi1 − JnH−1
n V T

i )XT
ij (αj(Ui) − αj(u))


≤


1
n

n−
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2
1
n

n−
i=1

Kih(u)X2
ij (αj(Ui) − αj(u))2

1/2

=


1
n

n−
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2
1
4n

n−
i=1

Kih(u)X2
ijα

′′2
j (u∗)(Ui − u)4

1/2

= c{[fU(u) det(Q (u))/ det(P(u)) + OP(cn)] · h4
[µ4fU(u)Γ11(u) + OP(cn)]}1/2

= OP(h2). (A.10)

From (A.9) and (A.10), we have |I1| = OP(h2). For I2, we again apply Lemma 1 to obtain

1
n

n−
i=1

Kih(u)T T
i εi = OP(dn),

1
n

n−
i=1

Kih(u)

Ui − u

h


T T
i εi = OP(dn),

where dn is defined in Lemma 1. Therefore, we can obtain that

1
n

n−
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )εi = (1, −JnH−1
n )


1
n

n−
i=1

Kih(u)Tiεi,
1
n

n−
i=1

Kih(u)(Ui − u)Tiεi

T

= (1, −A(u)(P(u))−1)
1
n

n−
i=1

Kih(u)T T
i εi + OP(hcndn). (A.11)

Combining (A.9) with (A.11) and invoking Lemma 1 again, we have |I2| = OP(dn). Thus, this completes the proof of (A.2). �

Proof of Proposition 1. Assume that β is known. From (2.8) and (2.9), we have

ε̂i(β) = Yi − ZT
i β − XT

i α̂(Ui, β),

ĝ(ε̂i(β)) =
1
n

n−
j=1

Lh(ε̂i(β) − ε̂j(β)).

For simplicity, let Hi = XT
i (α(Ui) − α̂(Ui, β)). By Lemma 1 and condition (C5), and using the Taylor expansion, we have

ĝ(ε̂i(β)) =
1
n

n−
j=1

Lh(ε̂i(β) − ε̂j(β))

=
1
n

n−
j=1

Lh(εi(β) − εj(β) + Hi − Hj)

=
1
n

n−
j=1

Lh(εi(β) − εj(β)) +
1
n

n−
j=1

L′

h(εi(β) − εj(β))(Hi − Hj) + OP(cn)

=: g(εi(β)) + R1i + OP(cn),

where

R1i = ĝ(εi(β)) − g(εi(β)) +
1
n

n−
j=1

L′

h(εi(β) − εj(β))(Hi − Hj).
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Then
1

ĝ(ε̂i(β))
=

1
g(εi(β))

1
1 +

1
g(εi(β))

(R1i + OP(cn))

=
1

g(εi(β))
−

R1i

g2(εi(β))
+ OP(cn). (A.12)

From (A.12) and the definition of η̂i(β) in (2.12), and through some elementary calculation, we have

η̂i(β) = ξi(β) −
g ′(εi(β))

g(εi(β))
(ΦT (Ui)Γ

−1(Ui)Xi − Ẑi) −
ĝ ′(ε̂i(β)) − g ′(εi(β))

g(εi(β))
(Zi − Ẑi)

+ ĝ ′(ε̂i(β))(Zi − Ẑi)

[
R1i

g2(εi(β))
+ OP(cn)

]
=: ξi(β) + Mi,1 + Mi,2 + Mi,3. (A.13)

From (2.12) and (A.13), we obtain

PSSF(β) =
1

√
n

n−
i=1

ξi(β) +

3−
k=1


1

√
n

n−
i=1

Mi,k


=:

1
√
n

n−
i=1

ξi(β) +

3−
k=1

Mk.

Thus, to prove (3.1), we need only to show thatM1,M2 andM3 are of the order oP(1). We first deal withM1, a p-dimensional
column vector. Invoking Lemma 1 and the proof of Lemma 2, it is easy to show that

M1 = −
1

√
n

n−
i=1

g ′(εi(β))

g(εi(β))
(ΦT (Ui)Γ

−1(Ui)Xi − Ẑi)

= −
1

√
n

n−
i=1

g ′(εi(β))

g(εi(β))
1pOP(cn).

Here 1p is the p × 1 vector with 1 as all the elements. Given that E


g ′(εi(β))2

g(εi(β))2

Xi,Ui, Zi


≤ ∞, we have

‖M1‖ =


p
n

n−
i=1


g ′(εi(β))

g(εi(β))

2

OP(c2n )

1/2

= OP(cn),

which implies thatM1 = oP(1). Using similar arguments forM1, we obtain

M2 = −
1

√
n

n−
i=1

ĝ ′(ε̂i(β)) − g ′(εi(β))

g(εi(β))
(Zi − Ẑi)

= −
1

√
n

n−
i=1

ĝ ′(ε̂i(β)) − g ′(εi(β))

g(εi(β))
([Zi − ΦT (Ui)Γ

−1(Ui)Xi] + 1pOP(cn))

=: M2,1 + M2,2.

Basic algebraic calculation makes it easy to check that M2,1 has a slower rate of convergence than M2,2. Therefore, we need
only to control the rate of M2,1. For simplicity, let µ(U) = ΦT (U)Γ −1(U) be a p × q matrix and let µk(U) denote the kth
row of µ(U), andZik = Zik − µk(Ui)Xi be the kth component of Zi − µ(Ui)Xi. By conditions (C1)–(C3) and (C6)–(C7) and
Theorem C of [18], and by invoking independence from the other sample, we have

‖M2,1‖ =


p−

k=1

1
n

n−
i=1


ĝ ′(ε̂i(β)) − g ′(εi(β))

g(εi(β))

2Z2
ik

1/2

= OP(h2
+ (1/nh3)1/2) = oP(1).

By noting that ‖M2‖ ≤ ‖M2,1‖+‖M2,2‖ and thatM2,2 has a faster rate thanM2,1, we can derive thatM2 = oP(1). In addition,
by employing Lemmas 1 and 2, and invoking similar arguments forM1 andM2, we can see thatM3 = oP(1). This completes
the proof of (3.1).

We now prove (3.2). LetM∗

i = Mi,1 + Mi,2 + Mi,3. From (A.13) and V̂ (β) =
1
n

∑n
i=1 η̂i(β)η̂T

i (β), we have

V̂ (β) =
1
n

n−
i=1

ξi(β)ξ T
i (β) +

1
n

n−
i=1

ξi(β)M∗T
i +

1
n

n−
i=1

M∗

i ξ
T
i (β) +

1
n

n−
i=1

M∗

i M
∗T
i

=: J1 + J2 + J3 + J4.
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By the law of large numbers, it is easy to show that J1
P

−→ V (β). We now need to prove that Ji = oP(1), i = 2, 3, 4. For J2,
note that

J2 =
1
n

n−
i=1

ξi(β)MT
i,1 +

1
n

n−
i=1

ξi(β)MT
i,2 +

1
n

n−
i=1

ξi(β)MT
i,3

=: J21 + J22 + J23.

Let J21,rs denote the (r, s) component of J21 and let ξi,r(β) and Mi,1s denote the rth and sth components of ξi(β) and Mi,1,
respectively. By the Cauchy–Schwarz inequality, we have

|J21,rs| ≤


1
n

n−
i=1

ξ 2
i,r(β)

1/2 
1
n

n−
i=1

M2
i,1s

1/2

. (A.14)

By condition (C8) and E(ξi(β)) = 0 and using a similar proof to that of M1, we find that 1
n

∑n
i=1 ξ 2

i,r(β) = OP(1) and
1
n

∑n
i=1 M

2
i,1s = oP(1). Together with (A.14), these equations prove that J21 = oP(1). Similarly, we can show that J22 = oP(1)

and J23 = oP(1). Thus, we have J2 = oP(1). Looking at the structure of J3 and J4, we can see that they are very similar to that
of J2. Thus, using similar arguments to those employed for J2, we find that J3 = oP(1) and J4 = oP(1). (3.2) then follows. �

Proof of Theorem 1. When β is the true value of the parameter vector, it is easy to see that ξ(β) ≡
1

√
n

∑n
i=1 ξi(β) is a sum

of independent and identically distributed random variables. Note that

E(ξ1(β)) = −E
[
g ′(ε1(β))

g(ε1(β))
(Z1 − ΦT (U1)Γ

−1(U1)X1)

]
= −E


E
[
g ′(ε1(β))

g(ε1(β))
(Z1 − ΦT (U1)Γ

−1(U1)X1)|X1, Z1,U1

]
= −E


(Z1 − ΦT (U1)Γ

−1(U1)X1)E

g ′(ε1(β))

g(ε1(β))


.

Note that for any given U, ΦT (U)Γ −1(U)X is the projection of Z onto the space spanned by X. By this, it is easy to show that
E{(Z1 − ΦT (U1)Γ

−1(U1)X1)} = o(1). In addition, by condition (C2), we have

E

g ′(ε1(β))

g(ε1(β))


=

∫
T

g ′(ε1(β))

g(ε1(β))
g(ε1(β))dε1(β) =

∫
T

g ′(ε1(β))dε1(β)

=
∂

∂ε1(β)

∫
T

g(ε1(β))dε1(β) = 0.

Therefore, we obtain that E(ξ(β)) = 0. By the central limit theorem, we can show that

1
√
n

n−
i=1

ξi(β)
d

−→ N(0, V (β)), (A.15)

where V (β) is as defined in Proposition 1. By (3.1) and (A.15) and the Slutsky theorem, the result holds. �

Proof of Theorem 2. By Theorem 4.1 of [5], it is easy to see that the profile least-squares estimator β̂ defined by (3.6) is a
√
n-consistent estimator of β . Together with (3.2), we then have V̂ (β̂)

P
−→ V (β). Therefore, Theorem 2 directly holds from

Theorem 1 and Proposition 1. We omit the details from this paper. �
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