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a b s t r a c t

Let X ∼ Nv(0,Λ) be a normal vector in v (≥ 1) dimensions, where Λ is diagonal. With
reference to the truncated distribution of X on the interior of a v-dimensional Euclidean
ball, we completely prove a variance inequality and a covariance inequality that were
recently discussed by Palombi and Toti (2013). These inequalities ensure the convergence
of an algorithm for the reconstruction of Λ only on the basis of the covariance matrix of
X truncated to the Euclidean ball. The concept of monotone likelihood ratio is useful in
our proofs. Moreover, we also prove and utilize the fact that the cumulative distribution
function of any positive linear combination of independent chi-square variates is log-
concave, even though the same may not be true for the corresponding density function.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let X = (X1, . . . , Xv)T ∼ Nv(0,Λ) be a normal vector in v (≥ 1) dimensions, with zero means and covariance matrix
Λ = diag(λ1, . . . , λv). When truncated to the v-dimensional Euclidean ball B(ρ) = {x : xT x < ρ}, X has density as given
by

f (x)= k
v

n=1

{λ−1/2
n φ(λ−1/2

n xn)}, if x = (x1, . . . , xv)T ∈ B(ρ),

= 0, otherwise,
(1.1)

whereφ(.) is the standard univariate normal density and k is a normalizing constant.With reference to the truncated density
(1.1), inspired by [3,4], we prove the following results.

Theorem 1 (Variance Inequality). var(X2
n ) ≤ 2λnE(X2

n ), 1 ≤ n ≤ v.

Theorem 2 (Covariance Inequality). cov(X2
n , X

2
m) ≤ 0, 1 ≤ n ≠ m ≤ v.
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As noted in [3], the main interest in Theorems 1 and 2 originates from the fact that the inequalities there, if universally
true, are necessary and sufficient for the convergence of a fixed-point algorithm in [4] for the reconstruction of Λ in
case the only available information amounts to the covariance matrix of X arising from the truncated density (1.1). Such
reconstruction can be of practical importance, for example, in compositional analysis of multivariate log-normal data
affected by outlying contaminations. Another motivation for Theorems 1 and 2 arises from non-linear optimization issues.
We refer the reader to [3] for further details. A complete proof of these theorems is, however, quite nontrivial due to the
symmetry mismatch between Nv(0,Λ) and B(ρ) which hinders exact calculation of moments. A very informative and in-
depth discussion of the variance inequality in Theorem 1 was given in [3], where its truth was established for 0 < ρ < 2λn
and ρ ≫ λn, and the intermediate region was left as an open challenge. The covariance inequality in Theorem 2 was not
discussed in [3] and this was also left open.

The present paper aims at completely proving the above inequalities. Following [3], we observe that, for any fixed n, the
variance inequality in Theorem 1 is equivalent to

∂E(λ−1
n X2

n )/∂λn ≤ 0, (1.2)

irrespective of λm, m ≠ n. The concept of monotone likelihood ratio (MLR) is useful in our proofs. Moreover, we also
prove and utilize the fact that the cumulative distribution function (cdf) of any positive linear combination of independent
chi-square variates is log-concave, even though the same may not be true for the corresponding density function. This log-
concavity result, which is new to the best of our knowledge, should be of independent interest.

Incidentally, the inequalities in Theorems 1 and 2 were considered in [3,4] with respect to the conditional distribution
of X given X ∈ B(ρ). Our version in terms of the truncated distribution is equivalent to theirs and will somewhat simplify
the notation in the sequel.

2. Proof of variance inequality

First let v = 1, which corresponds to the univariate case. Let Φ(.) be the standard univariate normal cdf and write
t = (ρ/λ1)

1/2. Then from (1.1), with the normalizing constant k there considered explicitly, it is not hard to see that
E(λ−1

1 X2
1 ) = µ(t), where µ(t) = 1 − 2tφ(t)/{2Φ(t)− 1}. Note that

µ′(t) = 2µ1(t)φ(t)/{2Φ(t)− 1}2, (2.1)

where the prime stands for differentiation andµ1(t) = (t2 − 1){2Φ(t)− 1} + 2tφ(t). Sinceµ1(t) tends to zero as t → 0+
and µ′

1(t) = 2t{2Φ(t) − 1} > 0 for t > 0, it follows that µ1(t) ≥ 0 for t > 0, i.e., by (2.1), µ(t) is nondecreasing in t for
t > 0. This implies that E(λ−1

1 X2
1 ) is nonincreasing in λ1. Thus (1.2) and hence the variance inequality in Theorem 1 follow

for v = 1.
Turing to the general case v ≥ 2, we now prove the variance inequality for n = 1, without loss of generality. Let

Yn = λ−1
n X2

n , 1 ≤ n ≤ v. In the absence of truncation, Y1, . . . , Yv are independent, each distributed as chi-square with
1 degree of freedom (df). Hence with truncation as in (1.1), their joint density equals k

v
n=1 g1(yn), if

v
n=1 λnyn < ρ, and

0 otherwise, where gj(.) is the chi-square density with j df. As a result, the marginal density of Y1 is given by, say,

ψ(y1; λ1)= kg1(y1)H(ρ − λ1y1), if 0 < y1 < ρ/λ1,
= 0, otherwise, (2.2)

where for u > 0, H(u) is the integral of
v

n=2 g1(yn) over positive y2, . . . , yv satisfying
v

n=2 λnyn < u. Clearly, H(u) can
be interpreted as the cdf of a linear combination of independent chi-square variates with positive coefficients. The λ1 on
the left-hand side of (2.2) makes the dependence of the marginal density on λ1 explicit and is useful below in applying
arguments based on MLR.

Lemma 1. For any positive λ̄1, λ̂1, satisfying λ̄1 < λ̂1, the ratioψ(y1; λ̂1)/ψ(y1; λ̄1) is nonincreasing in y1 over 0 < y1 < ρ/λ̄1.

Proof. By (2.2),

ψ(y1; λ̂1)/ψ(y1; λ̄1)= k0{H(ρ − λ̂1y1)/H(ρ − λ̄1y1)}, if 0 < y1 < ρ/λ̂1,

= 0, if ρ/λ̂1 ≤ y1 < ρ/λ̄1,
(2.3)

where k0 is a positive constant which does not involve y1. Differentiation with respect to y1 shows that the ratio H(ρ −

λ̂1y1)/H(ρ − λ̄1y1) is nonincreasing in y1 over 0 < y1 < ρ/λ̂1 if and only if

λ̄1{H ′(ρ − λ̄1y1)/H(ρ − λ̄1y1)} ≤ λ̂1{H ′(ρ − λ̂1y1)/H(ρ − λ̂1y1)}. (2.4)

Since λ̄1 < λ̂1, (2.4) holds if H ′(u)/H(u) is nonincreasing in u, i.e., if H(u) is log-concave for u > 0. This, in turn, follows
from Theorem 3 in Section 4 because, as mentioned above, H(u) can be interpreted as the cdf of a linear combination of
independent chi-square variates with positive coefficients. Therefore, (2.4) holds and the truth of the lemma is evident from
(2.3). �



R. Mukerjee, S.H. Ong / Journal of Multivariate Analysis 139 (2015) 1–6 3

Since, with λ̄1 < λ̂1, the support of ψ(y1; λ1) is contained in [0, ρ/λ̄1] for both λ1 = λ̄1 and λ1 = λ̂1, the MLR property
established in Lemma 1 induces a stochastic ordering of the marginal distributions of Y1 for λ1 = λ̄1 and λ1 = λ̂1, and
shows that the expectation of Y1 for λ1 = λ̂1 cannot exceed that for λ1 = λ̄1, whenever λ̄1 < λ̂1. Thus E(Y1)[= E(λ−1

1 X2
1 )]

is nonincreasing in λ1, which proves (1.2) and hence the variance inequality in Theorem 1 for v ≥ 2.

3. Proof of covariance inequality

Without loss of generality, we show that cov(Y1, Y2) ≤ 0, where Yn = λ−1
n X2

n , 1 ≤ n ≤ v. For u > 0, let H̃(u) be the
integral of

v
n=3 g1(yn) over positive y3, . . . , yv satisfying

v
n=3 λnyn < u. Analogously to (2.2), then the marginal density

of (Y1, Y2) equals kg1(y1)g1(y2)H̃(ρ − λ1y1 − λ2y2) if y1, y2 > 0 and λ1y1 + λ2y2 < ρ, and 0 otherwise. Hence by (2.2), the
conditional density of Y2 given Y1 = y1, 0 < y1 < ρ/λ1, turns out to be

ψcond(y2|y1)= g1(y2)H̃(ρ − λ1y1 − λ2y2)/H(ρ − λ1y1), if 0 < y2 < (ρ − λ1y1)/λ2,
= 0, otherwise.

(3.1)

Note that as with H(u) in Section 2, H̃(u) is log-concave for u > 0, by Theorem 3 in Section 4.

Lemma 2. For any fixed ȳ1, ŷ1, satisfying 0 < ȳ1 < ŷ1 < ρ/λ1, the ratio

ψcond(y2|ŷ1)/ψcond(y2|ȳ1)

is nonincreasing in y2 over 0 < y2 < (ρ − λ1ȳ1)/λ2.

Proof. By (3.1), the ratio considered here equals k̃{H̃(ρ − λ1ŷ1 − λ2y2)/H̃(ρ − λ1ȳ1 − λ2y2)} if 0 < y2 < (ρ − λ1ŷ1)/λ2,
and 0 if (ρ − λ1ŷ1)/λ2 ≤ y2 < (ρ − λ1ȳ1)/λ2. Here k̃ is a positive quantity which does not involve y2. For v = 2, this ratio
simply equals k̃ over 0 < y2 < (ρ − λ1ŷ1)/λ2, because then the term involving H̃(.) does not arise in (3.1); as a result, the
lemma is immediate. On the other hand, for v ≥ 3, this ratio is nonincreasing in y2 over 0 < y2 < (ρ − λ1ŷ1)/λ2, a fact
which can be established as in Lemma 1 if one notes that ȳ1 < ŷ1 and invokes the log-concavity of H̃(u) for u > 0. Thus the
lemma holds again. �

Analogously to Section 2, the MLR property shown in Lemma 2 implies that E(Y2|Y1 = y1) is nonincreasing in y1 over
0 < y1 < ρ/λ1. Therefore, cov{ Y1, E(Y2|Y1)} ≤ 0, and hence a conditioning argument yields cov(Y1, Y2) ≤ 0, proving the
covariance inequality in Theorem 2.

4. A log-concavity theorem

Theorem 3. The cdf of any linear combination of independent chi-square variates with positive coefficients is log-concave over
(0,∞).

Proof. It will be convenient to present the proof through several steps.
Step 1 (Preliminaries): Due to the reproductive property of independent chi-squares, it suffices to prove the theorem for the
case where each chi-square variate in the linear combination has 1 df. To that effect, let U =

s
i=1 aiY

(i), where a1, . . . , as
are positive constants and Y (1), . . . , Y (s) are independent chi-square variates eachwith 1 df. LetH(.) be the cdf ofU . Without
loss of generality, suppose

a1 ≤ · · · ≤ as and a1 = 1. (4.1)

While the first condition in (4.1) is clearly allowable, the second condition also entails no loss of generality as the log-
concavity of H(u) over u > 0 is equivalent to that of H(u/a), for any a > 0.
Step 2 (A background result): If a1 = · · · = as = 1, then the theorem follows from the well-known log-concavity of the cdf
of a chi-square variate; see e.g., [1]. Let, therefore, s ≥ 2 and suppose at least one of a2, . . . , as is greater than 1. In view of
(4.1), then following Theorem 2 in [6],

H(u) =

∞
j=0

pjGs+2j(u), (4.2)

where Gs+2j(.) is the chi-square cdf with s + 2j df,

p0 =

s
i=2

a−1/2
i and pj = j−1

j−1
i=0

Mj−ipi, j ≥ 1, (4.3)
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with

Mj =
1
2
(c j2 + · · · + c js), j ≥ 1, and ci = 1 − a−1

i , 2 ≤ i ≤ s. (4.4)

Incidentally, (4.2) was reported earlier in [5] without, however, the recursion formula (4.3) that will be crucial to us. From
(4.1) and (4.4), 0 ≤ ci < 1 for each i, and at least one of them is positive, since at least one of a2, . . . , as exceeds 1. By
(4.3), this implies that each pj is positive. Indeed, as noted in [6, p. 545],


∞

j=0 pj = 1, i.e., {pj} is a probability sequence.
Consequently, the sequence of partial sums {Wi}, where

Wi =

i
j=0

pj, i ≥ 0, (4.5)

is bounded.
Step 3 (Power series expansion): By standard results on power series expansion for the chi-square cdf, from (4.2) and (4.5),
we now get, for u > 0,

H(u) = exp(−u/2)
∞
j=0

∞
i=j

pj(u/2)s/2+i/Γ (s/2 + i + 1)

= exp(−u/2)
∞
i=0

Wi(u/2)s/2+i/Γ (s/2 + i + 1)

= exp(−u/2)(u/2)s/2−1β(u) (4.6)

where

β(u) =

∞
i=0

Wi(u/2)i+1/Γ (s/2 + i + 1) =

∞
i=0

Wi−1(u/2)i/Γ (s/2 + i), (4.7)

with W−1 = 0. The change in the order of summation to reach (4.6) is valid because {Wi} is bounded and hence the power
series β(u) has infinite radius of convergence. The point just noted also validates term-by-term differentiation of β(u) as
used in Steps 4 and 6 below.
Step 4 (Proof for s = 2): Let s = 2. Then from [5, p. 556] or directly from (4.3) and (4.4),

pj = p0


2j
j


(c2/4)j, j ≥ 0. (4.8)

As c2 < 1, this yields pj+1/pj = (2j + 1)c2/(2j + 2) < 1, j ≥ 0, i.e., {pj} is a decreasing sequence. From (4.5)–(4.7) on
simplification, it now follows that for u > 0,

H ′′(u) =
1
4
exp(−u/2)

∞
i=0

(Wi+1 − 2Wi + Wi−1)(u/2)i/i !

=
1
4
exp(−u/2)

∞
i=0

(pi+1 − pi)(u/2)i/i ! ≤ 0.

Thus H(u) is concave, and hence log-concave, over (0,∞) and the theorem is proved for s = 2.
Step 5 (Discussion on s ≥ 3) The approach for s = 2 does not work for general s, due to lack of the nonincreasing property
of {pj}; e.g., if s = 4 and a1 = 1, a2 = a3 = a4 = 5, then by (4.4), c2 = c3 = c4 = 0.8,M1 = 1.2, and (4.3) yields p1 = 1.2p0.
For s ≥ 3, however, s/2 > 1 and in view of (4.6) and (4.7), onemaywonder if the log-concavity ofH(u) can be deduced from
Theorem 2.1 in [2, p. 107]. This would require (a)


∞

i=0 Wi < ∞, and (b) log-concavity of the sequence {Wi}. While Lemma
3 below proves (b), condition (a) is not met here becauseWi tends to


∞

j=0 pj(= 1) as i → ∞. Nevertheless, the arguments
in [2] go through, because β(u) has infinite radius of convergence and hence allows term-by-term differentiability. In order
to convince the reader and also for completeness, the details are shown in the next step.
Step 6 (Proof for s ≥ 3) Let s ≥ 3. Since exp(−u/2) is log-concave, in view of (4.6) it suffices to show the log-concavity of
L(u) = (u/2)s/2−1β(u) over (0,∞). AsW−1 = 0, by (4.7), for u > 0.

L′(u) =
1
2
(u/2)s/2−2

∞
i=0

Wi(u/2)i+1/Γ (s/2 + i) =
1
2
(u/2)s/2−2

∞
i=0

Wi−1(u/2)i/Γ (s/2 + i − 1),

L′′(u) =
1
4
(u/2)s/2−2

∞
i=0

Wi(u/2)i/Γ (s/2 + i − 1).
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Note that the case s = 2 required a separate treatment because then Γ (s/2 + i − 1) is undefined at i = 0 and hence the
aforesaid expression for L′′(u) is invalid. For i ≥ 0, write

d(0, i) = Wi, d(1, i) = Wi−1, (4.9)

q(i, 0) = (u/2)i/Γ (s/2 + i − 1), q(i, 1) = (u/2)i+1/Γ (s/2 + i). (4.10)

Also, let Z = (zjm) and Z (n) = (z(n)jm ), n ≥ 1, be 2 × 2 matrices such that zjm =


∞

i=0 d(j, i)q(i,m) and z(n)jm =
n

i=0 d(j, i)
q(i,m), for j,m = 0, 1. From (4.7), (4.9), (4.10), and the expressions for L′(u) and L′′(u) as shown above, then for u > 0,

L′′(u) =
1
4
(u/2)s/2−2z00, L′(u) =

1
2
(u/2)s/2−2z01 =

1
2
(u/2)s/2−2z10, L(u) = (u/2)s/2−2z11,

so that

L(u)L′′(u)− {L′(u)}2 =
1
4
(u/2)s−4 det(Z) =

1
4
(u/2)s−4 lim

n→∞
det(Z (n)). (4.11)

Now, Z (n) = DnQn, where Dn is a 2× (n+1)matrix with (j, i)th element d(j, i) (j = 0, 1; 0 ≤ i ≤ n), and Qn is an (n+1)×2
matrix with (i,m)th element q(i,m) (0 ≤ i ≤ n;m = 0, 1). For 0 ≤ i < r ≤ n, let Dn(i, r) be the 2 × 2 submatrix of Dn
consisting of its ith and rth columns, and Qn(i, r) be the 2× 2 submatrix of Qn consisting of its ith and rth rows. Then by the
Cauchy–Binet formula,

det(Z (n)) = det(DnQn) =

n−1
i=0

n
r=i+1

det{Dn(i, r)} det{Qn(i, r)}. (4.12)

For 0 ≤ i < r ≤ n, by (4.9), Lemma 3 below and the fact that W−1 = 0, we have det{Dn(i, r)} = WiWr−1 − WrWi−1 ≥ 0,
while after some simplification, (4.10) yields

det{Qn(i, r)} = (u/2)i+r+1(i − r)/{Γ (s/2 + i)Γ (s/2 + r)} < 0.

Hence by (4.12), det(Z (n)) ≤ 0 for every n ≥ 1. Therefore, limn→∞ det(Z (n)) ≤ 0 and the log-concavity of L(u) is immediate
from (4.11). This completes the proof of the theorem. �

Remark 1. In view of the similarity between (4.2) and a noncentral chi-square cdf, one may wonder if Theorem 3 could
be proved along the lines of [1]. This possibility is precluded by the fact that, unlike the Poisson weights appearing in a
noncentral chi-square cdf, the sequence {pj} here is not log-concave in general; e.g., with s = 2, by (4.8), p1 =

1
2 c2p0,

p2 =
3
8 c

2
2p0, and p21 < p0p2, as c2 > 0. Indeed, unlike with a noncentral chi-square, the density h(u) corresponding to

our H(u) may not be log-concave. Thus, with s = 2 again, from (4.6) one can check that h(u)h′′(u) − {h′(u)}2 tends to
(p0p2 − p21)/16 > 0 as u → 0+.

Lemma 3. The sequence {Wi} is log-concave, i.e., W 2
i ≥ Wi−1Wi+1, i ≥ 1.

Proof. Since Wi =
i

j=0 pj, one can check that W 2
i ≥ Wi−1Wi+1 if and only if pi+1/pi ≤ Wi/Wi−1. It, therefore, suffices to

prove the inequality

{(i + 1)pi+1}/(ipi) ≤ Wi/Wi−1, i ≥ 1, (4.13)

which is even stronger. Since 0 ≤ ci < 1, for 2 ≤ i ≤ s, it is clear from (4.4) that

Mj ≥ Mj+1, j ≥ 1. (4.14)

Also, from (4.3), p1 = M1p0 and 2p2 = M2p0 +M1p1 = (M2 +M2
1 )p0. Hence by (4.14), 2p2/p1 = M2M−1

1 +M1 ≤ 1+M1 =

(p0 +p1)/p0 = W1/W0, i.e., (4.13) holds for i = 1. To apply themethod of induction, let (4.13) hold for 1 ≤ i ≤ n. If possible,
suppose (4.13) does not hold for i = n + 1. Then by (4.3),

n+1
i=0 Mn+2−ipi/

n
i=0 Mn+1−ipi > Wn+1/Wn, i.e., recalling (4.4),

s
j=2

n+1
i=0

cn+2−i
j pi

s
j=2

n
i=0

cn+1−i
j pi

>
Wn+1

Wn
,
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which implies that
n+1

i=0 cn+2−i
j pi/

n
i=0 c

n+1−i
j pi > Wn+1/Wn, for some j. Obviously, cj > 0 for this j. Moreover, as cj < 1,

writing c for this cj, it follows that there exists c , 0 < c < 1, such that

n+1
i=0

cn+2−ipi

n
i=0

cn+1−ipi
>

Wn+1

Wn
=

n+1
i=0

pi

n
i=0

pi
, i.e., c +

pn+1
n

i=0
cn−ipi

> 1 +
pn+1
n

i=0
pi
,

i.e., (1 − c)


n

i=0

cn−ipi


n

i=0

pi


< pn+1

n−1
i=0

(1 − cn−i)pi,

i.e.,


n

i=0

cn−ipi


n

i=0

pi


< pn+1

n−1
i=0

n−i−1
j=0

c jpi, (4.15)

division of both sides by 1 − c in the last step being permissible as 0 < c < 1.
Forn = 1, (4.15) reduces to (cp0+p1)(p0+p1) < p2p0, and as cp0 > 0, this yields p2p0 > p1(p0+p1), i.e., p2/p1 > W1/W0.

As a result, 2p2/p1 > W1/W0, which violates the truth of (4.13) for i = 1.
Next, suppose n ≥ 2. Since by induction hypothesis, (4.13) holds for i = n, we get pn+1/pn < {(n + 1)pn+1}/(npn) ≤

Wn/Wn−1, i.e., pn+1 < pn
n

i=0 pi/
n−1

i=0 pi. Using this in (4.15),
n

i=0

cn−ipi


n−1
i=0

pi


< pn

n−1
i=0

n−i−1
j=0

c jpi,

i.e.,


n−1
i=0

cn−ipi + pn


n−1
i=0

pi


< pn


n−2
i=0

n−i−1
j=1

c jpi +
n−2
i=0

pi + pn−1


,

i.e.,


n−1
i=0

cn−ipi


n−1
i=0

pi


< pn


n−2
i=0

n−i−1
j=1

c jpi


,

i.e.,


n−1
i=0

cn−i−1pi


n−1
i=0

pi


< pn


n−2
i=0

n−i−1
j=1

c j−1pi


= pn


n−2
i=0

n−i−2
j=0

c jpi


, (4.16)

as c > 0. Note that (4.16) has the same form as (4.15) with n in (4.15) replaced by n − 1. Continuation of the above steps,
with the use of the induction hypothesis for i = n, n− 1, . . . , eventually leads to (4.15) with n = 1. But, as noted in the last
paragraph, this contradicts the truth of (4.13) for i = 1.

Thus if (4.13) holds for 1 ≤ i ≤ n, then it must hold for i = n + 1. Since (4.13) holds for i = 1, this establishes the truth
of (4.13) for every i ≥ 1 and hence proves the lemma. �
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