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Abstract

We consider the multivariate independence testing problem between pairs of random vectors for high-dimensional data
and develop three high-dimensional nonparametric independence tests based on spatial sign and spatial rank, which
have greater power than many existing popular tests, especially for heavy-tailed distributions. Under the elliptically
symmetric distributions, which are much more general than the widely studied multivariate normal distributions, we
establish asymptotic properties of the proposed tests and demonstrate their power superiority via frequently used
numerical experiments. To explore the correlation between different financial markets, we first apply the proposed
methods to test the dependence between the return rate data of the stocks from US S&P500 index and China CSI300
index, and then apply them to test the dependence between the return rate data of the stocks from the Shanghai Stock
Exchange and the Shenzhen Stock Exchange in China.

Keywords: Elliptically symmetric, Heavy-tailed, Spatial rank, Spatial sign, Stock return.
2010 MSC: 62F03 Hypothesis testing

1. Introduction

With the deepening of economic globalization and financial integration, the fluctuation of one country’s financial
market is usually not only affected by internal factors, but also by the fluctuation of other countries’ financial markets.
Hence, more and more attention has been paid to the relationships between major international financial markets
[7, 12], in order to identify linkages between them and to construct a reasonable portfolio for global investment [18].
A test of independence between the return rate vectors of the assets from two financial markets can help investigate
their relationship, which can be considered as the basis of follow-up analysis.

In multivariate data analysis, it is important to determine whether two sets of variables are related [16]. Let (X,Y)
be a random sample of size n from a (p + q)-variable distribution, where X = (X1, · · · , Xn)> with Xi ∈ Rp is an
n × p data matrix of the return rates of p assets from one financial market and Y = (Y1, · · · ,Yn)> with Y j ∈ Rq is an
n × q data matrix of the return rates of q assets from another financial market. We consider the null hypothesis of the
independence of the X- and Y-variables, written as

H0 : X and Y are independently distributed. (1)

The classical parametric test for (1) is the likelihood ratio test based on the multivariate normal model [26], whose
statistic is W = |A|/(|AXX‖AYY |), where AXX, AYY are the sample covariance matrices of X, Y respectively, and A is
the sample covariance matrix of (X>,Y>)>. It is optimal under the multivariate normal model when the dimensions
p, q are fixed and smaller than the sample size n. However, it fails in the high-dimensional situation when p, q are
larger than n.
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In recent years, researchers have paid more and more attention to the independence test of high-dimensional data.
For example, Srivastava and Reid [20] proposed a test based on the Frobenius norm of sample covariance and corre-
lation matrices between X and Y. Jiang et al. [10] proposed the corrected likelihood ratio test and large-dimensional
trace criterion to test the independence of two large sets of multivariate variables. Yang and Pan [27] extended the
classic canonical correlation analysis to high-dimensional cases. Yata and Aoshima [28] modified Srivastava and Reid
[20]’s test by using the extended cross-data-matrix methodology. In addition, Bodnar et al. [2] proposed alternative
tests that are motivated from a classical multivariate analysis of variance and were defined as linear spectral statistics
of a Fisher matrix. Despite the progress in this pursuit, there are many problems, one of which is that these tests are
normal or similar-to-normal theory methods. Thus, they may fail to deal with data from heavy-tailed distributions,
such as the multivariate t-distribution and the mixture of multivariate normal distribution.

To find robust and efficient alternatives to the multivariate normal theory methods, a large number of nonparamet-
ric methods, including multivariate sign or rank-based methods, are being developed. For example, Chen and Qin
[3] proposed a two-sample test for the means of high-dimensional data, as the data dimension is much larger than the
sample size, which does not require explicit conditions on the relationship between the data dimension and sample
size. Li et al. [14] proposed two tests for the equality of covariance matrices between two high-dimensional popula-
tions, which do not require parametric distribution assumptions for the two populations. Wang et al. [25] proposed a
high-dimensional nonparametric test for the population mean vector for a general class of multivariate distributions
for non-normal high-dimensional multivariate data. Leung and Drton [13] considered the problem of testing mutual
independence between variables and presented some rank-based tests, constructed as sums or sums of squares of
pairwise rank correlations, which have power advantages in the case of non-normal distributions even when the data
dimension is larger than the available sample size. Guo and Chen [6] considered testing regression coefficients in
high-dimensional generalized linear models and proposed a test applicable for diverging dimensions, which is robust
enough to accommodate a wide range of link functions. Feng et al. [5] concerned tests for the two-sample location
problem when the data dimension is larger than the sample size, which is scalar-invariant and useful when different
components have different scales in high-dimensional data. Zou et al. [29] concerned sign-based tests for sphericity in
cases in which the data dimension is larger than the sample size, which is robust with respect to high dimensionality.
Feng and Liu [4] proposed two rank-based tests inspired by Spearman’s rho and Kendall’s tau for testing sphericity in
case of high-dimensional data.

For tests of independence between two multivariate random vectors, Taskinen et al. [22] proposed an affine in-
variant extension of the quadrant test statistics based on spatial signs. Taskinen et al. [23] proposed multivariate
extensions of Kendall’s tau and Spearman’s rho statistics. These statistics performed very well in low-dimensional
cases, but are not available in high-dimensional cases, since the sample spatial sign or rank covariance matrices to
be inverted in the construction of the statistics are singular. To solve the high-dimensional problem, Paindaveine and
Verdebout [17] proposed a high-dimensional sign test for some very special distribution types. To make this more
general, in this paper, we propose a more extensive high-dimensional multivariate sign test for independence between
two random vectors. In addition, we propose two high-dimensional multivariate rank-based tests for independence
between two random vectors. The main difference between the proposed rank-based tests and those in [13] is that we
test independence between two groups of variables, while Leung and Drton [13] tested mutual independence between
all the involved variables. The common feature of all these rank-based tests is the advantage of power in non-normal
situations. The theoretical contribution of this paper is its establishment of asymptotic theories of the three proposed
nonparametric tests under the family of elliptically symmetric distributions, which is a very large distribution family,
including a large number of well-known heavy tailed distributions, such as t distribution, mixed normal distribution,
and power law distribution. We construct the corresponding testing procedures based on asymptotic theories such as
these and demonstrate the power gain of the proposed testing procedures in comparison with existing tests through
numerical results as well as two real data analyses. In particular, the power gain is especially clear in high-dimensional
and heavy-tailed situations.

The remainder of the paper is organized as follows. In Sections 2 and 3, we propose a spatial sign test and two
spatial rank tests for the high-dimensional independence testing problem and establish their asymptotic properties,
respectively. The simulation performance of the three proposed tests are demonstrated in Section 4, followed by
the two empirical applications of the proposed methods in correlation analysis between different financial markets in
Section 5. Finally, we conclude the paper with some discussions in Section 6 and relegate the technical proofs to the
Appendix.
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2. High-dimensional multivariate sign test

Let X1, . . . , Xn be a sequence of independent and identically distributed (iid) observations of a p-dimensional
vector X with an elliptically symmetric density

det(ΩX)−1/2gX{‖Ω−1/2
X (x − θX)‖}, (2)

where ‖z‖ = (z>z)1/2 denotes the Euclidean length of a vector z, θX is the center of symmetry, and ΩX is a posi-
tive definite symmetric p × p scatter matrix. Similarly, let Y1, . . . ,Yn be a sequence of independent and identically
distributed (iid) observations of a q-dimensional vector Y with an elliptically symmetric density

det(ΩY)−1/2gY{‖Ω−1/2
Y (y − θY)‖}, (3)

where θY is the center of symmetry and ΩY is a positive definite symmetric q × q scatter matrix. Note that elliptically
symmetric distributions are second-order distributions with probability densities whose contours of equal height are
ellipses. This class is very general and includes the multivariate normal and sine-wave distributions and others that
can be generated from certain first-order distributions. The spatial sign function is defined as U(z) = ‖z‖−1zI(z , 0).
Let εX

i
.
= Ω

−1/2
X (Xi − θX) for each i ∈ {1, · · · , n}, where “ .=” denotes “is defined as”. Then, 1) the modulus ‖εX

i ‖ and
the direction uX

i
.
= U(εX

i ) are independent; 2) the direction vector uX
i is uniformly distributed on the p-dimensional

unit sphere; 3) E(uX
i ) = 0 and cov(uX

i ) = p−1Ip, where Ip denotes the p × p identity matrix. Similar conclusions can
be derived for εY

i
.
= Ω

−1/2
Y (Yi − θY) and uY

i
.
= U(εY

i ).
In a traditional fixed-dimension case, to test the independence between two random vectors, the so-called “inner

centering and inner standardization” sign-based statistics as follows is commonly used (see Section 10.3 of [16]):
QS = npqtr(Ã>Ã), where Ã = n−1 ∑n

i=1 ŨX
i (ŨY

i )>, ŨX
i = U(S−1/2

X (Xi − θ̃X)), ŨY
i = U(S−1/2

Y (Yi − θ̃Y)) and tr(·) denotes
the trace function of a matrix. Here θ̃X and SX are the HRE’s of the location vector and the scatter matrix for X
[9], which satisfy the following conditions:

∑n
i=1 ŨX

i = 0 and pn−1 ∑n
i=1 ŨX

i (ŨX
i )> = Ip. Similarly, the HRE’s θ̃Y

and SY for Y can be obtained. As mentioned in [22], under H0, QS
d→ χ2

pq. However, in case of p, q > n, QS fails
because SX and SY are singular, which cannot be inverted in the construction of QS. A common strategy used to
resolve this problem is to replace the scatter matrices SX and SY in QS with Ip and Iq, respectively. Moreover, as SX is
not available, θ̃X is correspondingly not available; hence, we replace θ̃X with a rotation equivariant spatial median θ̂X
inspired by Möttönen and Oja [15], which is a minimizer of the criterion function of L(θ) =

∑n
i=1 ‖Xi − θ‖. Similarly,

we replace θ̃Y with θ̂Y .
Based on the above replacement, we rewrite QS as follows Q

′
S = npqtr(Â>Â) = 2pqn−1 ∑

1≤i< j≤n(ÛX
i )>ÛX

j (ÛY
i )>ÛY

j +

pq, where Â = n−1 ∑n
i=1 ÛX

i (ÛY
i )>, ÛX

i = U(Xi − θ̂X), ÛY
i = U(Yi − θ̂Y). We can see that

∑
1≤i< j≤n(ÛX

i )>ÛX
j (ÛY

i )>ÛY
j

is the leading role of Q
′
S. Because var(ÛX

i ) , Ip/p and var(ÛY
i ) , Iq/q, we consider using the standardization of∑

1≤i< j≤n(ÛX
i )>ÛX

j (ÛY
i )>ÛY

j and hence propose the following high-dimensional multivariate sign test (abbreviated as
HS) for testing independence between vectors X and Y:

THS =
n
∑

1≤i< j≤n(ÛX
i )>ÛX

j (ÛY
i )>ÛY

j√
2
∑

1≤i< j≤n((ÛX
i )>ÛX

j )2 ∑
1≤i< j≤n((ÛY

i )>ÛY
j )2

. (4)

Let ΣX = var(X) = p−1E(‖εX
i ‖2)ΩX, ΣY = var(Y) = q−1E(‖εY

i ‖2)ΩY , for any i ∈ {1, · · · , n}. Let λmax(·) denote the
largest eigenvalue of a matrix. In deriving the asymptotic properties of THS, we impose the following two commonly
used conditions, which were previously used by [25].

(C1) tr(Σ4
X)tr(Σ4

Y) = o(tr2(Σ2
X)tr2(Σ2

Y)) as max{p, q} → ∞;

(C2) If p→ ∞, then tr4(ΣX)
tr2(Σ2

X) exp
{
− tr2(ΣX)

128pλ2
max(ΣX)

}
= o(1); and if q→ ∞, then tr4(ΣY )

tr2(Σ2
Y ) exp

{
− tr2(ΣY )

128qλ2
max(ΣY )

}
= o(1).

As mentioned by [25], these two conditions are quite relaxed. In particular, condition (C1) holds trivially if all
eigenvalues of ΣX and ΣY are bounded away from 0 and∞. In fact, the bounded eigenvalues assumption is commonly
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adopted in the literature of estimating high-dimensional covariance matrices (see [1]). It has also been shown that
condition (C1) holds under some general conditions if some of the eigenvalues are unbounded (see [3]).

Condition (C2) was first imposed by [25], which also holds if all eigenvalues of ΣX and ΣY are bounded away
from 0 and ∞. This permits the eigenvalues to be unbounded, as the exponential term is expected to converge to
zero quickly if tr(ΣX)/{ √pλmax(ΣX)} and tr(ΣY)/{ √qλmax(ΣY)} diverge to ∞. In particular, as mentioned in [25], if
p → ∞, let λ1 ≤ λ2 ≤ · · · ≤ λp be ordered eigenvalues of ΣX. Assume that as p → ∞, k1 eigenvalues converge to 0;
k2 eigenvalues diverge to ∞, and p − k1 − k2 eigenvalues remain bounded with lower bound c1 > 0 and upper bound
c2 < ∞. Then,

tr(ΣX)√
pλmax(ΣX)

≥ k1λ1 + c1 (p − k1 − k2) + k2λp−k2+1√
pλp

,
tr2(ΣX)

tr
(
Σ2

X

) ≤ k2
2λ

2
p + (p − k2)2 c2

2 + 2k2 (p − k2) c2λp

k1λ
2
1 + (p − k1) c2

1

.

Assume λ1 = p−b1 and λp = pb2 for b1 > 0, b2 > 0. If k1 and k2 are bounded, then

tr4(ΣX)
tr2(Σ2

X)
exp

{
− tr2(ΣX)

128pλ2
max(ΣX)

}
= o(1)

in condition (C2) is satisfied if b2 <
1
2 .

Now, under the above two conditions, we present the asymptotic normality of THS in (4) under H0 in (1).

Theorem 1. Under conditions (C1), (C2) and H0 in (1), if (p, q) = O(n2), THS
d→N(0, 1), where THs is given in (4).

To illustrate and compare the efficiencies of different test statistics for independence, we derive the limiting distri-
bution of the test statistic under specific contiguous alternative sequences (see Section 10.4 in [16]). Let

(
Xi − θX
Yi − θY

)
=

(
Ip M1

M2 Iq

) (
X∗i − θX∗
Y∗i − θY∗

)
,

where M1 ∈ Rp×q, M2 ∈ Rq×p, X∗i and Y∗i are independent, with density functions (2) and (3), respectively. Define

A∗X =E(U(X∗i − θX∗ )U(X∗i − θX∗ )>), A∗Y = E(U(Y∗i − θY∗ )U(Y∗i − θY∗ )>), (5)

Λ =E((rX∗
i )−1rY∗

i )M1A∗Y + E((rY∗
i )−1rX∗

i )A∗XM>
2 , (6)

where rX∗
i = ‖X∗i − θX∗‖, rY∗

i = ‖Y∗i − θY∗‖. Define the covariance matrix of X∗i and Y∗i as Σ∗X and Σ∗Y , respectively. We
impose the following conditions for an alternative hypothesis:

(C1
′
) tr(Σ∗4X )tr(Σ∗4Y ) = o(tr2(Σ∗2X )tr2(Σ∗2Y )) as max{p, q} → ∞;

(C2
′
) If p→ ∞, then tr4(Σ∗X)

tr2(Σ∗2X ) exp
{
− tr2(Σ∗X)

128pλ2
max(Σ∗X)

}
= o(1); and if q→ ∞, then tr4(Σ∗Y )

tr2(Σ∗2Y ) exp
{
− tr2(Σ∗Y )

128qλ2
max(Σ∗Y )

}
= o(1);

(C3
′
) ntr(Λ>Λ) = O(σ∗1), {E((rX∗

i )−1rY∗
i )}2tr(M1A2

YM>
1 AX) = o(σ∗21 ), {E((rY∗

i )−1rX∗
i )}2tr(M2A2

XM>
2 AY) = o(σ∗21 ),

where σ∗21 = n(2(n − 1))−1tr(A∗2X )tr(A∗2Y ).

Under the above sequence of alternatives, we obtain the following limiting distribution of THS in (4).

Theorem 2. Under conditions (C1
′
)-(C3

′
), if (p, q) = O(n2), THS

d→N
(
ntr(Λ>Λ)/

√
2tr(A∗2X )tr(A∗2Y ), 1

)
, where THS is

given in (4), A∗X, A∗Y are given in (5) and Λ is given in (6).

3. High-dimensional multivariate rank test

Next, we propose two spatial rank tests for independence that are essentially high-dimensional multivariate exten-
sions of Spearman’s rho and Kendall’s tau tests for independence testing problems.
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3.1. High-dimensional Spearman’s rho test
For the independence testing problem in the traditional fixed dimension case, the multivariate Spearman’s rho test

statistic is proposed [23]: QR = npqtr
(
(Σ̃R

XY)>Σ̃R
XY

)
/{tr((Σ̃R

X)2)tr((Σ̃R
Y)2)}, where

Σ̃R
XY = n−1

n∑

i=1

R̃X
i (R̃Y

i )>, Σ̃R
X = n−1

n∑

i=1

R̃X
i (R̃X

i )>, Σ̃R
Y = n−1

n∑

i=1

R̃Y
i (R̃Y

i )>,

R̃X
i = n−1

n∑

j=1

U
(
(SR

X)−1/2(Xi − X j)
)
, R̃Y

i = n−1
n∑

j=1

U
(
(SR

Y)−1/2(Yi − Y j)
)
.

SR
X and SR

Y are full-rank transformation matrices that satisfy Σ̃R
X ∝ Ip and Σ̃R

Y ∝ Iq, respectively. Recall that under

the null hypothesis as well as some general assumptions, it can be concluded that QR
d→ χ2

pq [23]. However, in
high-dimensional cases when p > n, QR is not available, as the matrices SR

X and SR
Y are singular, which cannot

be inverted in the construction of QR. To tackle this problem, we can use a similar strategy to that used in the
previous section. We can simply replace SR

X and SR
Y with Ip and Iq in QR, respectively. The resulting test statistic is

Q
′
R = npqtr

(
(Σ̂R

XY)>Σ̂R
XY

)
/{tr((Σ̂R

X)2)tr((Σ̂R
Y)2)}, where

Σ̂R
XY = n−1

n∑

i=1

R̂X
i (R̂Y

i )>, Σ̂R
X = n−1

n∑

i=1

R̂X
i (R̂X

i )>, Σ̂R
Y = n−1

n∑

i=1

R̂Y
i (R̂Y

i )>,

R̂X
i = n−1

n∑

j=1

U(Xi − X j), R̂Y
i = n−1

n∑

j=1

U(Yi − Y j).

By using the commonly used leave-out strategy for Q
′
R, we develop a high-dimensional version of Spearman’s rho

test (abbreviated as HR) for testing the independence between X and Y:

THR =

√
2n

∑∗ U(Xi − X j)>U(Xk − X`)U(Yi − Y`)>U(Yk − Y j)√∑∗[U(Xi − X j)>U(Xk − X`)]2 ∑∗[U(Yi − Y j)>U(Yk − Y`)]2
, (7)

where
∑∗ denotes summation over distinct indexes. Here “leave-out” means that we remove the items with some

common indices, U(Xi − X j)>U(Xk − X`)U(Yi − Y`)>U(Yk − Y j)’s, whose indices i, j, k, l are not mutually different,
from

∑
i, j,k,l U(Xi −X j)>U(Xk −X`)U(Yi −Y`)>U(Yk −Y j). As mentioned in [3], such items with common indices will

generally lead to additional bias and stronger demands on the dimensionality.
Below, we present the asymptotic normality of THR. Define

B∗X = E
(
VX∗

i (VX∗
i )>

)
, B∗Y = E

(
VY∗

i (VY∗
i )>

)
, (8)

where VX∗
i = E

(
U(X∗i − X∗j )|X∗i

)
, VY∗

i = E
(
U(Y∗i − Y∗j )|Y∗i

)
; and then define

Λ̃ = E
(
(r̃X∗

i j )−1r̃Y∗
i j

)
M1B∗Y + E

(
(r̃Y∗

i j )−1r̃X∗
i j

)
B∗XM>

2 , (9)

where r̃X∗
i j = ‖X∗i −X∗j‖ and r̃Y∗

i j = ‖Y∗i −Y∗j ‖. To derive the limiting distribution of THR under the alternative hypothesis,
we impose the following condition to replace condition (C3

′
):

(C4
′
) ntr(Λ̃>Λ̃) = O(σ∗2),

{
E

(
(rX∗

i j )−1r̃Y∗
i j

)}2
tr(M1B∗2Y M>

1 B∗X) = o(σ∗22 ),
{
E

(
(rY∗

i j )−1r̃X∗
i j

)}2
tr(M2B∗2X M>

2 B∗Y) = o(σ∗22 ),
where σ∗22 = n{2(n − 1)}−1tr(B∗2X )tr(B∗2Y ).

Theorem 3. (i) Under conditions (C1), (C2) and H0 in (1), THR
d→N(0, 1), where THR is given in (7).

(ii) Under conditions (C1
′
), (C2

′
) and (C4

′
), THR

d→N
(
ntr(Λ̃>Λ̃)/

√
2tr(B∗2X )tr(B∗2Y ), 1

)
, where THR is given in (7),

B∗2X , B∗2Y are given in (8) and Λ̃ is given in (9).
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3.2. High-dimensional Kendall’s tau test
Taskinen et al. [23] also proposed the multivariate Kendall’s tau test statistic for the independence problem in

traditional fixed-dimension cases: QT = npqtr
(
(Σ̃T

XY)>Σ̃T
XY

)
/{4(n − 1)2tr

(
(Σ̃R

X)2)tr((Σ̃R
Y)2)}, where

Σ̃T
XY =

1
n2

n∑

i=1

n∑

j=1

U
(
(SR

X)−1/2(Xi − X j)
)
U
(
(SR

Y)−1/2(Yi − Y j)
)>
.

QT is also asymptotically chi-square distributed with pq degrees of freedom, under the null distribution and some
general assumptions. Like QR, QT is also not available in the high-dimensional case; hence, in QT, we can similarly
replace the scatter matrix SR

X and SR
Y with Ip and Iq respectively, and accordingly consider the following statistics

Q
′
T = npqtr

(
(Σ̂T

XY)>Σ̂T
XY

)
/{tr((Σ̂R

X)2)tr((Σ̂R
Y)2)}, where Σ̂T

XY = n−2 ∑n
i=1

∑n
j=1 U(Xi − X j)U(Yi − Y j)>. By using the

leave-out strategy for Q
′
T, we develop a high-dimensional version of Kendall’s tau test (abbreviated as HT) for testing

the independence between X and Y:

THT =
n
∑∗ U(Xi − X j)>U(Xk − X`)U(Yi − Y j)>U(Yk − Y`)√

2
∑∗[U(Xi − X j)>U(Xk − X`)]2 ∑∗[U(Yi − Y j)>U(Yk − Y`)]2

. (10)

Theorem 4. (i) Under conditions (C1), (C2) and H0 in (1), THT
d→N(0, 1), where THT is given in (10).

(ii) Under conditions (C1
′
), (C2

′
) and (C4

′
), THT

d→N
(
ntr(Λ̃>Λ̃)/

√
2tr(B∗2X )tr(B∗2Y ), 1

)
, where THT is given in (10),

B∗2X , B∗2Y are given in (8) and Λ̃ is given in (9).

3.3. Power comparison
According to Theorems 1-4, the power functions of THS, THR, THT in (4), (7), (10), are

βHS(M1,M2) =Φ


−zα +

ntr(Λ>Λ)√
2tr(A∗2X )tr(A∗2Y )


, βHR(M1,M2) = Φ


−zα +

ntr(Λ̃>Λ̃)√
2tr(B∗2X )tr(B∗2Y )


,

βHT(M1,M2) =Φ


−zα +

ntr(Λ̃>Λ̃)√
2tr(B∗2X )tr(B∗2Y )


,

respectively, where zα is α-quantile of the standard normal distribution. In addition, the power function of the testing
method proposed in [28] (abbreviated as EC) is

βEC(M1,M2) = Φ


−zα +

ntr(Σ>XYΣXY)
√

2tr(Σ∗2X )tr(Σ∗2Y )


,

where ΣXY is the covariance matrix between X and Y. Therefore, the asymptotic relative efficiencies (AREs) of the
proposed tests with respect to EC are

ARE(HS, EC) =
tr(Λ>Λ)

tr(Σ>XYΣXY)

√
tr(Σ∗2X )tr(Σ∗2Y )

tr(A∗2X )tr(A∗2Y )
, ARE(HR, EC) = ARE(HT, EC) =

tr(Λ̃>Λ̃)
tr(Σ>XYΣXY)

√
tr(Σ∗2X )tr(Σ∗2Y )

tr(B∗2X )tr(B∗2Y )
,

and

ARE(HS, HR) =
tr(Λ>Λ)
tr(Λ̃>Λ̃)

√
tr(B∗2X )tr(B∗2Y )

tr(A∗2X )tr(A∗2Y )
, ARE(HT, HR) = 1.
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To clearly show the relations among HS, HR, HT, and EC, we consider the special case of X and Y: p = q,
gX∗ = gY∗ , ΩX∗ = Ip, ΩY∗ = Iq. Now, the power function of THS, THR, THT and TEC becomes

βHS(M1,M2) =Φ

−zα +
n{E((rX∗

i )−1)E(rX∗
i )}2tr{(M1 + M>

2 )>(M1 + M>
2 )}√

2p

 ,

βHR(M1,M2) =Φ

−zα +
n{E((r̃X∗

i )−1)E(r̃X∗
i )}2tr{(M1 + M>

2 )>(M1 + M>
2 )}√

2p

 ,

βHT(M1,M2) =Φ

−zα +
n{E((r̃X∗

i )−1)E(r̃X∗
i )}2tr{(M1 + M>

2 )>(M1 + M>
2 )}√

2p

 ,

βEC(M1,M2) =Φ

−zα +
ntr{(M1 + M>

2 )>(M1 + M>
2 )}√

2p

 .

Accordingly,

ARE(HS, EC) ={E((rX∗
i )−1)E(rX∗

i )}2 ≥ 1, ARE(HR, EC) = {E((r̃X∗
i j )−1)E(r̃X∗

i j )}2 ≥ 1,

ARE(HT, EC) ={E((r̃X∗
i j )−1)E(r̃X∗

i j )}2 ≥ 1,

ARE(HS, HR) ={E((rX∗
i )−1)E(rX∗

i )}2{E((r̃X∗
i j )−1)E(r̃X∗

i j )}−2 → 1, ARE(HT, HR) = 1,

where the three inequalities are followed by the Cauchy inequality and the convergence is followed by Lemma 1 in
[4].

4. Simulation study

We now present simulation results to demonstrate the performance of the proposed tests HS, HR, HT, and compare
them with four existing tests proposed by [20], [28], [10], [2], abbreviated as CS, EC, TJ, LH, respectively. Note that
all simulation results are obtained based on 2,500 replications. We consider the following three commonly studied
simulation settings:

(I) Multivariate normal distribution, X∗ ∼ N(0,ΣX∗ ) and Y ∼ N(0,ΣY);

(II) Multivariate t-distribution, X∗ ∼ tp(0,ΣX∗ , 3) and Y ∼ tq(0,ΣY , 3);

(III) Multivariate mixture normal distribution, X∗i ’s are generated from MN p,γ,9(0,ΣX∗ )
.
= γN(0,ΣX∗ ) + (1 −

γ)N(0, 9ΣX∗ ), where γ is chosen to be 0.8. Similarly, Yi’s are generated fromMNq,γ,9(0,ΣY).

For these three settings, X∗ and Y are independent, ΣX∗ = (0.5|i− j|)1≤i, j≤p and ΣY = (0.5|i− j|)1≤i, j≤q.
First, we consider the low-dimension case in which p ≤ q < n. Let n = 100 and p = q ∈ {10, 20}. For power

comparison, we consider four alternative settings. The first is as follows.

(i) Xi = X∗i +n−1/2νWi, where Wi is composed of the first few p variables of Yi. When X∗ and Y are generated from
settings (I)-(III), we labeled these settings under the alternative hypothesis as (I-i), (II-i), and (III-i), respectively.

If ν = 0, then Xi is independent of Yi, while if ν is large, Xi would be strongly correlated with Yi. Let ν ∈ {0, 1.5, 2}.
Table 1 reports the empirical sizes and power of these seven methods for testing independence between X and Y. For
setting (I), under the normal model, all seven methods have similar performances. For settings (II) and (III), as non-
normal models are used to generate data, HS, HR, HT, and EC have better performance in controlling the empirical
sizes.

Let (p, q) ∈ {(80, 100), (160, 200), (320, 400), (640, 800), (800, 1000)} and n ∈ {30, 50, 100}. Then, we consider a
high-dimension case in which n < p ≤ q. Data for this case are generated in a manner similar to that described above.
Since LH is not designed for data with particularly large dimensions and TJ fails to control the size in non-normal
situations, we exclude them from comparison. Tables 2-4 summarize the empirical sizes and power of the methods
for settings (I)-(III), respectively. These tables suggest that for setting (I), under high-dimensional normal models, all
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Table 1: The empirical sizes and power of the involved tests for independence between X and Y in low dimensional cases, where the data are
generated via setting (i) of the alternative and settings (I), (II), (III) of the distribution. n = 100, p = q ∈ {10, 20} and ν ∈ {0, 1.5, 2}.

(p, q) = (10, 10) (p, q) = (20, 20)
(p, q) HR HT HS CS EC LH TJ HR HT HS CS EC LH TJ

(I) Multivariate normal distribution, n = 100
v = 0 4.7 5.3 6.7 5.4 7.2 5.6 4.1 5.8 4.6 6.1 6.2 4.8 7.1 4.8
v = 1.5 38 37 35 38 42 41 28 39 40 39 42 44 36 25
v = 2 65 66 62 68 80 74 63 68 69 68 73 80 66 55

(II) Multivariate t-distribution, n = 100
v = 0 5.8 5.4 6.5 12 6.1 15 16 4.3 4.5 5.5 14 5.5 25 22
v = 1.5 54 52 53 43 48 54 49 57 56 57 43 43 65 54
v = 2 81 82 82 66 77 85 76 88 87 88 63 75 87 77

(III) Multivariate mixture normal distribution, n = 100
v = 0 6.2 6.1 6.7 11 5.0 13 100 5.8 4.2 5.5 16 6.0 26 100
v = 1.5 51 51 50 42 44 54 100 57 56 56 45 48 62 100
v = 2 79 79 80 69 78 79 100 86 87 87 69 78 82 100

five methods have similar performance; for non-normal settings (II) and (III), HS, HR, HT and EC perform better in
controlling the empirical sizes than CS. Furthermore, HS, HR and HT outperform EC in the power comparison.

Furthermore, we investigate the performance of the proposed tests in a situation in which one of the two sets of
variables has a low dimension while the other has a high dimension. Specifically, we let p = 5 and q ∈ {100, 200, 400}
with n = 100. The corresponding results are summarized in Table 5, where the proposed tests have similar perfor-
mance to the EC test and the size of the CS test is also out of control in non-normal situations.

Next, we consider the second setting of the alternative.

(ii) This setting is the same as setting (i) except for the construction of Xi. Specifically, Xi = X∗i + n−1/2νWi, where
Wi is composed of the first few p/2 variables of Yi. When X∗ and Y are generated from settings (I)-(III), we
labeled these settings under the alternative hypothesis as (I-ii), (II-ii), (III-ii), respectively.

For this setting, we let n = 100 and (p, q) ∈ {(80, 100), (160, 200), (320, 400), (640, 800), (800, 1000)}. As suggested
by the above results of setting (i), the size of the CS test is often out of control, especially for non-normal distributions,
and the size performance of the remaining tests are very similar. Hence, we exclude the CS test and the size results in
the following comparison. The corresponding results are summarized in Table 6, which are very similar to the above
results for setting (i).

Finally, we consider the remaining two settings of the alternative as follows.

(iii) Multivariate t-distribution, Zi = (X>i ,Y
>
i )>, where Zi ∼ tp+q(0,ΣZ , 3).

(iv) Multivariate mixture normal distribution, Zi = (X>i ,Y
>
i )>, where Zi ∼ MN p+q,γ,9(0,ΣZ).

Here, ΣZ = (ai j)1≤i, j≤p+q, aii = 1, ai j = ρ = n−1 for i , j. The difference between settings (iii), (iv) and settings (i), (ii)
is whether the joint distribution of Xi and Yi is considered. In particular, in settings (iii) and (iv), the joint distributions
of Xi and Yi are set to be multivariate t-distribution and multivariate mixture normal distribution, respectively, which
are members of the family of elliptically symmetric distributions. The corresponding results are summarized in Table
7 and suggest that HS is the most powerful of these involved tests. On the other hand, HR and HT still perform
similarly to each other and outperform EC in most cases.

In summary, the simulation results show that the three proposed methods are more powerful than existing popular
testing procedures, especially for high-dimensional and heavy-tailed data.
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Table 2: The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the
data are generated via setting (i) of the alternative and setting (I) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), · · · , (800, 1000)} and
ν ∈ {0, 1.5, 2}.

v = 0 v = 1.5 v = 2
(p, q) HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30
(80,100) 6.2 6.0 5.8 5.9 6.1 37 37 37 37 38 70 70 67 68 70
(160,200) 4.8 4.9 5.2 3.8 5.2 33 33 33 34 36 68 67 62 67 71
(320,400) 5.4 5.1 7.5 6.6 5.8 37 37 28 35 38 72 72 48 65 68
(640,800) 5.3 5.6 9.2 6.7 5.1 35 35 29 34 37 71 71 50 64 67
(800,1000) 5.2 5.4 9.8 5.7 5.4 35 35 30 33 36 72 71 51 65 66

n = 50
(80,100) 5.7 5.4 5.3 5.2 4.8 38 38 38 38 40 71 72 71 73 71
(160,200) 5.3 4.9 5.0 4.7 5.7 37 37 38 36 36 73 72 73 73 76
(320,400) 5.7 5.4 5.1 5.6 5.3 43 42 43 43 38 72 73 73 73 77
(640,800) 5.3 5.8 6.3 5.7 5.1 42 42 42 41 37 72 72 72 71 76
(800,1000) 5.4 5.6 6.8 5.4 5.3 43 42 43 41 38 72 73 72 71 77

n = 100
(80,100) 5.4 5.2 4.9 5.4 4.9 39 40 40 40 41 74 74 74 74 76
(160,200) 4.9 5.1 5.2 5.1 6.2 43 43 44 43 36 75 75 75 76 76
(320,400) 6.3 5.8 5.7 4.9 6.8 41 40 40 41 40 82 81 82 82 78
(640,800) 5.8 5.7 5.9 4.8 6.3 40 40 40 40 39 81 81 81 82 79
(800,1000) 5.7 5.8 6.3 4.9 6.3 42 40 41 41 39 83 81 82 82 80

5. Empirical application

5.1. Dependence between US and Chinese stock markets

Much research has analyzed correlations between global financial markets, especially in some special periods such
as financial crisis. For example, Sunil and Nivedita [21] used correlation and network methods to investigate the effect
of important financial indices on the organization structure; Vodenska et al. [24] used network theory and community
analysis to understand the structure of the coupled financial network formed by global stock market indices and
currencies; Junior and Franca [11] and Sensoy et al. [19] analyzed the cross-correlation matrix of index returns of the
main financial markets after the 2007-2009 crisis using random matrix theory methods.

In this section, we conduct a correlation study of the stocks from the S&P500 index and the CSI 300 index as an
example to investigate the relationship between US and Chinese financial markets. Specifically, we use the proposed
HS method to test independence between the weekly return rate vector of the stocks from the S&P500 index, denoted
as X, and that of the stocks from the CSI300 index, denoted as Y, where the weekly return rate vectors of the stocks
from the two indices at different weeks are considered to be i.i.d. observations of X and Y, respectively.

We test the independence between X and Y using observations from January 2005 to November 2018. Considering
the timeliness of stock analysis, we use one consecutive year as a sliding window, take one week as a step, and then
successively test the independence between X and Y using the observations within the sliding window.

In Fig. 1, we present the resulting p-value sequence of the independence test between X and Y for all the sliding
windows, where each p-value in the sequence at week t corresponds to a one-consecutive-year sliding window from
week t − 52 to week t. From Fig. 1, it can be seen that for most of the time, X and Y are judged as independent under
both significance levels of 0.01 and 0.05.

In Fig. 2, we present two time series of the prices of the CSI300 index and the S&P500 index, respectively. To
build the connection between Fig. 2 and Fig. 1, we draw a vertical red line at each week that corresponds to a p-value
smaller than 0.01, that is, the p-value of the independence test between X and Y using observations during the week
as well as in the first 52 weeks. The vertical red lines are mainly divided into three parts: 2010-2012, 2016-2017, and
2018-present. In the first part, the two indices show similar trends within some sub-parts; in the second part, they grew
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Table 3: The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the
data are generated via setting (i) of the alternative and setting (II) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), · · · , (800, 1000)} and
ν ∈ {0, 1.5, 2}.

v = 0 v = 1.5 v = 2
(p, q) HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30
(80,100) 5.2 5.4 5.4 22 6.8 53 54 54 46 45 83 82 82 62 67
(160,200) 4.9 4.9 4.2 22 8.1 54 54 54 48 37 81 82 82 62 67
(320,400) 5.2 5.0 8.6 22 5.8 55 55 57 45 41 80 80 82 61 65
(640,800) 4.9 5.1 9.7 22 5.9 55 55 56 43 40 81 80 82 62 64
(800,1000) 5.6 5.4 10 23 5.8 55 56 57 43 40 80 82 81 64 63

n = 50
(80,100) 5.6 6.4 5.3 20 5.8 59 59 58 43 39 87 88 87 58 65
(160,200) 5.3 5.3 5.0 21 6.8 62 62 61 43 39 87 87 87 59 69
(320,400) 5.8 5.2 7.8 21 5.7 67 67 66 44 44 87 88 86 58 67
(640,800) 5.7 5.1 8.3 21 5.2 66 66 66 43 40 87 88 85 57 68
(800,1000) 5.4 5.4 8.9 22 5.4 67 66 67 42 41 88 88 86 58 68

n = 100
(80,100) 5.2 4.5 4.9 23 5.0 62 62 61 43 46 90 90 91 59 71
(160,200) 4.8 5.8 5.2 25 5.1 63 64 64 42 44 92 93 92 54 72
(320,400) 6.0 4.8 5.7 24 4.8 66 67 66 38 44 97 98 97 50 71
(640,800) 5.8 5.1 5.4 24 5.3 66 66 66 39 44 96 96 96 51 70
(800,1000) 5.9 5.5 5.5 25 5.2 65 65 66 39 43 96 96 97 50 70

simultaneously; and in the last part, their trends are just the opposite. Fig. 3 and Fig. 4 suggest that in the above three
parts with p-values smaller than 0.01, the time series of the return rates of the two indices as well as the differences
between the two time series have relatively small fluctuations.

Based on the above results, the stock markets of the two countries are considered independent for most of the
time, except for some special periods. With the financial crisis in 2007-2009, the global economic recovery brought
about the growth of both the US and Chinese stock markets. At that time, the financial markets of the two countries
showed a strong correlation. This may be the reason for the correlation in 2010-2012. On the other hand, after the
establishment of the Shanghai-Hong Kong Stock Exchange in 2015, international capital was able to enter China’s
stock market in large quantities, which will had a significant impact on the Chinese stock market. This may be the
reason for the correlation in 2016-2017 and 2018-present.

Finally, as the remaining two testing methods proposed in this paper obtain very similar conclusions, they are not
presented in this paper. Moreover, we use a nonparametric method in this study to analyze the stock return rate data
because most of the stocks involved have non-normal distributions for their weekly return rates, especially for the
stocks from CSI300 index, which is suggested by Fig. 5.

5.2. Dependence between the Shanghai and Shenzhen Stock Exchanges

We compiled monthly returns on all the securities in Chinese stock markets that have been listed from June 2005
to May 2019. Because the securities listed in Chinese stock markets change over time, we only consider p + q = 1340
securities that were listed throughout the entire period. There are p = 559 securities in the Shenzhen Stock Market
and q = 781 securities in the Shanghai Stock Exchange. From June 2005 to May 2019, a total of n = 144 consecutive
observations were obtained.

First, we test whether the stocks in the Shenzhen Stock Exchange are independent from the stocks in the Shanghai
Stock Exchange. Since HS, HT and HR have very similar performance, below, we only compare EC with HS for
this real data analysis. The obtained test statistics of EC and HS are 100.46 and 98.56, respectively, based on which
both methods reject the null hypothesis. Thus, we believe that the stock return vectors of the two markets are deeply
dependent on each other.
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Table 4: The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the
data are generated via setting (i) of the alternative and setting (III) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), · · · , (800, 1000)} and
ν ∈ {0, 1.5, 2}.

v = 0 v = 1.5 v = 2
(p, q) HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30
(80,100) 5.7 5.0 6.3 26 7.3 54 55 55 46 40 82 82 82 60 68
(160,200) 4.3 4.4 5.6 31 7.5 57 58 57 45 41 87 86 86 61 68
(320,400) 5.8 4.9 6.5 34 8.0 61 61 60 49 39 83 83 82 61 66
(640,800) 5.4 5.1 7.3 34 8.2 60 61 60 48 40 82 82 83 60 65
(800,1000) 5.3 5.4 7.6 33 8.1 60 60 60 47 41 83 82 82 61 66

n = 50
(80,100) 4.7 4.7 5.9 29 5.8 58 57 57 46 45 87 88 86 62 69
(160,200) 5.4 5.9 4.4 30 4.5 59 59 59 45 40 90 90 89 58 72
(320,400) 4.7 5.4 6.5 32 5.1 66 65 65 44 40 92 91 92 57 72
(640,800) 5.5 5.3 6.9 31 4.9 65 65 65 43 41 91 91 92 56 70
(800,1000) 5.1 5.6 7.1 31 5.8 66 65 67 43 42 90 90 91 57 71

n = 100
(80,100) 6.1 4.9 4.9 29 5.3 60 60 59 44 37 93 93 92 58 75
(160,200) 4.9 5.3 6.4 35 5.4 62 62 63 45 42 94 93 92 54 77
(320,400) 5.3 4.8 6.0 36 6.8 67 67 66 44 45 92 94 93 54 75
(640,800) 5.1 4.9 5.7 35 6.2 66 66 65 45 45 93 93 93 53 76
(800,1000) 5.0 5.6 5.4 33 5.9 65 65 65 44 46 92 92 94 53 75

It is well-known that the stocks are correlated because they have many common factors. Hence, to remove the
influence of these common factors, we consider the following Fama-French three-factor model

Zi j = ri j − r fi = α j + β j1(rmi − r fi) + β j2S MBi + β j3HMLi + εi j,

for j ∈ {1, · · · , p + q} and i ∈ {1, · · · , n}, where {1, · · · , p} corresponds to the stocks in the Shenzhen Stock Market and
{p + 1, · · · , p + q} corresponds to the stocks in the Shanghai Stock Exchange. The rate of 10-year Chinese Treasuries
is chosen as the risk-free rate (r f j) for each stock j. The value-weighted return on all the stocks of the Shanghai Stock
Exchange and the Shenzhen Stock Exchange is used as a proxy for the market return (rmi). The average return on
the three small portfolios minus the average return on the three big portfolios (S MBi), and the average return on two
value portfolios minus the average return on two growth portfolios (HMLi) are calculated based on the stocks listed
on the Shanghai Stock Exchange and the Shenzhen Stock Exchange. We use ri j to denote the return rate of security j
on time i. All data are measured in percent per month.

We remove the common factors as follows. Let

Xi j
.
= Zi j −

(
α̂ j + β̂ j1(rmi − r fi) + β̂ j2S MBi + β̂ j3HMLi

)

for i ∈ {1, · · · , n} and j ∈ {1, · · · , p}; and for i ∈ {1, · · · , n} and j′ ∈ {1, · · · , q}, let

Yi j′
.
= Zi, j′+p −

(
α̂ j′+p + β̂ j′+p,1(rmi − r fi) + β̂ j′+p,2S MBi + β̂ j′+p,3HMLi

)
.

Here α̂ j, β̂ j1, β̂ j2 and β̂ j3 are the estimations of α j, β j1, β j2 and β j3 under the Fama-French three-factor model. We then
consider the null hypothesis of the independence of the X- and Y-variables: the stocks in the Shenzhen stock market
are independent from the stocks in the Shanghai Stock Exchange.

We apply EC and HS to the data of Xi j’s and Yi j′ ’s, and the test statistics are 56.64 and 52.90, respectively, based
on which the null hypothesis is still rejected. Thus, we still believe that the two markets are deeply dependent on each
other. To make the advantage of HS explicit, we adopt a random sampling procedure. In particular, we randomly
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Table 5: The empirical sizes and power of the involved tests for testing independence between X and Y in cases of low p with large q, where the
data are generated via setting (i) of the alternative and settings (I), (II), (III) of the distribution. n = 100, (p, q) ∈ {(5, 100), (5, 200), (5, 400)} and
ν ∈ {0, 3, 6}.

v = 0 v = 3 v = 6
(p, q) HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

Multivariate normal distribution, setting (I-i)
(5,100) 5.3 5.6 5.0 3.8 6.6 29 28 30 33 36 92 90 93 97 97
(5,200) 5.2 5.7 5.0 5.0 4.8 18 18 19 21 25 75 75 77 83 85
(5,400) 4.7 5.3 5.4 3.8 8.1 14 15 15 15 16 60 60 62 58 66

Multivariate t distribution, setting (II-i)
(5,100) 4.9 5.8 5.6 13 5.3 38 38 40 54 38 93 94 95 93 86
(5,200) 5.3 4.6 4.8 14 6.0 26 26 27 52 30 79 80 80 92 68
(5,400) 5.6 5.4 4.6 14 6.2 21 20 22 50 24 57 56 58 87 54

Multivariate mixture normal distribution, setting (III-i)
(5,100) 5.9 5.8 5.4 14 5.7 37 38 39 48 39 94 94 95 98 90
(5,200) 4.2 5.6 5.2 16 5.5 25 25 26 41 26 78 76 78 96 76
(5,400) 5.6 4.6 4.8 15 5.6 20 20 21 38 20 57 58 58 94 60

2006 2008 2010 2012 2014 2016 2018
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Significance level: 0.05
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Fig. 1: p-value series of sliding annual independence test between return rates of two groups of stocks in CSI500 index and the S&P500 index,
respectively.

select n′ months from the total n = 144 months, p′ stocks from the p = 559 stocks in the Shenzhen Stock Exchange,
and q′ stocks from the q = 781 stocks in the Shanghai Stock Exchange. Table 8 reports the power of these two tests
in a different setting of n′, p′ and q′, where for each setting of n′, p′ and q′ we perform random sampling 1,000 times.
We observe that HS is more powerful than EC for each setting, which may be due to the heavy-tailed distributions of
the return data, presented in Fig. 6, as well as the high dimensionality.

6. Conclusions

We have proposed three high-dimensional nonparametric independence tests based on the spatial sign and ranks
that provide more powerful alternatives to the widely studied multivariate normal theory methods. The power superi-
ority of the three proposed tests in comparison with existing test procedures is especially clear for high-dimensional
and heavy-tailed data, as shown by numerical evidence as well as two real data analyses on stock return rate data.

Choosing the appropriate test in practical applications depends on the distribution of the practical data and the
dependence between the two high-dimensional random vectors. The proposed tests are advantageous in non-normal
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Table 6: The empirical power of the involved tests for testing independence between X and Y, where the data are generated via setting (ii) of the
alternative and settings (I), (II), (III) of the distribution. n = 100, (p, q) ∈ {(80, 100), (160, 200), (320, 400)} and ν ∈ {2, 3}.

ν = 2 ν = 3
(p, q) HR HT HS EC HR HT HS EC

setting (I-ii)
(80,100) 33 33 33 37 81 81 81 82
(160,200) 34 34 35 37 84 84 85 81
(320,400) 34 34 35 35 85 84 85 85

setting (II-ii)
(80,100) 55 55 56 35 92 93 94 76
(160,200) 55 56 57 39 95 95 96 78
(320,400) 57 58 60 35 95 96 96 78

setting (III-ii)
(80,100) 50 50 51 35 93 94 94 79
(160,200) 53 53 54 33 96 95 96 81
(320,400) 56 56 57 35 97 96 97 81

Table 7: The empirical power of the involved tests for testing independence between X and Y, where the data are generated via settings (iii) and
(iv). n = 100 and (p, q) ∈ {(160, 200), (320, 400), (640, 800)}.

n = 30 n = 50 n = 100
(p, q) HR HT HS EC HR HT HS EC HR HT HS EC

(iii)
(160,200) 78 77 100 49 60 60 100 58 36 36 93 60
(320,400) 96 95 100 51 89 88 100 58 73 72 100 57
(640,800) 100 100 100 52 100 100 95 56 98 98 100 59

(iv)
(160,200) 81 82 95 50 60 60 100 57 35 34 72 60
(320,400) 96 96 83 51 91 90 98 61 70 70 99 62
(640,800) 100 100 80 49 100 100 98 58 99 99 100 62

situations when testing whether linear dependence exists between two high-dimensional random vectors. In compar-
ing these proposed tests, when the dimension is larger than the square of sample sizes, the spatial rank-based tests
generally have better performance in controlling the size than the spatial sign-based tests, which are, however, much
more time consuming due to the more complex statistics. Hence, the spatial sign-based test is preferable unless the
dimensionality is very large.
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Fig. 2: Time series of the prices of the CSI300 index and the S&P500 index, respectively.
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Fig. 3: Time series of the return rates of the CSI300 index and the S&P500 index, respectively.

Appendix

Proof of Theorem 1

Let UX
i = U(Xi − θX), UY

i = U(Yi − θY), rX
i = ‖Xi − θ̂X‖, rY

i = ‖Yi − θ̂Y‖, µ̂X = θ̂X − θX, µ̂Y = θ̂Y − θY ,
AX = E(UX

i (UX
i )>) and AY = E(UY

i (UY
i )>). Before presenting the proof of the main theorems, we propose some

necessary lemmas. First, we recall Lemma 1 in [25] as follows.

Lemma 1. Under conditions (C1) and (C2) given in Section 2, E
(
(UX

i )>UX
j

)4
= O(1)

[
E((UX

i )>UX
j )2

]2
, E((UX

i )>AXUX
i )2 =

O(1)
[
E((UX

i )>AXUX
i )

]2
and E((UX

i )>AXUX
j )2 = O(1)

[
E((UX

i )>AXUX
j )

]2
.

Let Tr = (n− 1)−1 ∑
1≤i< j≤n(ÛX

i )>ÛX
j (ÛY

i )>ÛY
j and σ̂2

1 = 2{n2(n− 1)2}−1 ∑
1≤i< j≤n((ÛX

i )>ÛX
j )2 ∑

1≤i< j≤n((ÛY
i )>ÛY

j )2.
Then THS = Tr/σ̂1. Let σ2

1 = n{2(n − 1)}−1tr(A2
X)tr(A2

Y). To prove Theorem 1, we only need to prove the following
two propositions.

Proposition 1. Under conditions (C1), (C2) given in Section 2 and H0 in (1), Tr/σ1
d→N(0, 1).

Proposition 2. Under conditions (C1) and (C2) given in Section 2, as n→ ∞, σ̂1/σ1
p→ 1.
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Fig. 4: Time series of the difference of the return rates of the CSI300 index and the S&P500 index, respectively.

Table 8: Empirical power comparison at the 5% level for independence between the Shanghai Stock Exchange and the Shenzhen Stock Exchange.

n = 12 n = 15 n = 20
(p, q) HS EC HS EC HS EC
(200,160) 66 61 81 76 94 89
(240,200) 74 69 88 84 98 94
(280,240) 81 77 91 85 99 96

Lemma 2.

U(Xi − θ̂X) = U(Xi − θX) − 1
rX

i

(Ip − U(Xi − θX)U(Xi − θX)>)(θ̂X − θX) − 1
2(rX

i )2
‖(θ̂X − θX)‖2U(Xi − θX) + op(n−1).

Note that the proof of Lemma 2 can be found in Lemma 2 in Appendix of [29].

Lemma 3. µ̂X admits the following asymptotic representation: µ̂X = (ncX)−1
n∑

i=1
U(Xi − θX) + op(bn,p), where cX =

E((rX
i )−1) and bn,p = c−1

X n−1/2.

Note that the proof of Lemma 3 can be found in Lemma 1 in Appendix of [29].

Lemma 4. Suppose all the conditions imposed in Theorem 1 hold. Let T1 = (n − 1)−1 ∑
1≤i< j≤n(UX

i )>UX
j (UY

i )>UY
j ,

then Tr = T1 + op(σ1).

Proof. Using the Taylor expansion, Tr can be written as

n
n(n − 1)

∑

1≤i< j≤n

{U(Xi − θ̂X)>U(X j − θ̂X)U(Yi − θ̂Y)>U(Y j − θ̂Y)}

=
1

(n − 1)

∑

1≤i< j≤n

(UX
i )>UX

j (UY
i )>UY

j −
1

(n − 1)

∑

1≤i< j≤n

{ 1
rX

i

µ̂>X[Ip − UX
i (UX

i )>]UX
j (UY

i )>UY
j

+
1
rX

j

µ̂>X[Ip − UX
j (UX

j )>]UX
i (UY

i )>UY
j +

1
rY

i

µ̂>Y [Iq − UY
i (UY

i )>]UY
j (UX

i )>UX
j

+
1
rY

j

µ̂>Y [Iq − UY
j (UY

j )>]UY
i (UX

i )>UX
j } +

1
(n − 1)

∑

1≤i< j≤n

{ 1
rX

i rY
i

µ̂>X[Ip − UX
i (UX

i )>]UX
j
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Fig. 5: Q-Q plots of the CSI300 index, the S&P500 index and the first three stocks (arranged in alphabetical order) in each index respectively,
which suggest that most stocks have heavy-tailed distributions for their weekly return rates, especially for stocks from the CSI300 index.
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Fig. 6: Q-Q plots for four stocks used for demonstration: 000001.SZ and 000002.SZ in the Shenzhen Stock Exchange, 600000.SH and 600004.SH
in the Shanghai Stock Exchange, which suggest that most stocks in the two markets have heavy-tailed distributions for their monthly return rates.

× (UY
j )>[Iq − UY

i (UY
i )>]µ̂Y +

1
rX

i rY
j

µ̂>X[Ip − UX
i (UX

i )>]UX
j (UY

i )>[Iq − UY
j (UY

j )>]µ̂Y

+
1

rX
j rY

i

µ̂>X[Ip − UX
j (UX

j )>]UX
i (UY

j )>[Iq − UY
i (UY

i )>]µ̂Y +
1

rX
j rY

j

µ̂>X[Ip − UX
j (UX

j )>]UX
i

× (UY
i )>[Iq − UY

j (UY
j )>]µ̂Y +

1
rX

i rX
j

µ̂>X[Ip − UX
i (UX

i )>][Ip − UX
j (UX

j )>]µ̂X

× U(Yi − θ̂Y)>U(Y j − θ̂Y) +
1

rY
i rY

j

µ̂>Y [Iq − UY
i (UY

i )>][Iq − UY
j (UY

j )>]µ̂Y

× U(Xi − θ̂X)>U(X j − θ̂X)} − 1
(n − 1)

∑

1≤i< j≤n

{ 1
rX

i rX
j rY

i

µ̂>X[Ip − UX
i (UX

i )>]

× [Ip − UX
j (UX

j )>]µ̂Xµ̂Y[Iq − UY
i (UY

i )>]UY
j +

1
rX

i rX
j rY

j

µ̂>X[Ip − UX
i (UX

i )>]

× [Ip − UX
j (UX

j )>]µ̂Xµ̂Y[Iq − UY
j (UY

j )>]UY
i +

1
rX

i rY
i rY

j

µ̂>X[Ip − UX
i (UX

i )>]
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× UX
j µ̂
>
Y [Iq − UY

i (UY
i )>][Iq − UY

j (UY
j )>]µ̂Y +

1
rX

j rY
i rY

j

µ̂>X[Ip − UX
j (UX

j )>]

× UX
i µ̂
>
Y [Iq − UY

i (UY
i )>][Iq − UY

j (UY
j )>]]µ̂Y} + R0 + op(n−4)

=
1

(n − 1)

∑

1≤i< j≤n

(UX
i )>UX

j (UY
i )>UY

j + op(σ1),

where R0 denote the rest part of Tr. For simplicity, we only show (n−1)−1 ∑
1≤i< j≤n(rX

i )−1µ̂>X[Ip−UX
i (UX

i )>]UX
j (UY

i )>UY
j =

op(σ1), while we can similarly know that the other parts in Tr are all op(σ1). Let G1 = (n−1)−1 ∑
1≤i< j≤n rX

i µ̂
>
XUX

j (UY
i )>UY

j ,
then E(G2

1) = op(σ2
1), because

E(G2
1) =

1
n2(n − 1)2

∑

1≤i< j≤n

E{ 1
rX

i cX
(UX

i )>UX
j (UY

i )>UY
j }2

=
1

2n(n − 1)
E((UX

i )>UX
j )2E((UY

i )>UY
j )2 =

1
2n(n − 1)

tr(A2
X)tr(A2

Y) = op(σ2
1).

Then, we conclude that Tr = T1 + op(σ1). �

Lemma 5. Suppose that all the conditions imposed in Theorem 1 hold, then T1/σ1
d→N(0, 1).

Proof. Let Z j = (n − 1)−1
j−1∑
i=1

(UX
i )>UX

j (UY
i )>UY

j , for j = 2, · · · , n. Let S m =
m∑

j=2
Z j, Vi = (X>i ,Y

>
i )> and Fm =

σ{V1, · · ·Vm}, which is the σ-algebra generated by {V1, · · ·Vm}. Hence T1 =
n∑

j=2
Z j. We can verify that for each n,

{S m,Fm}nm=2 is a sequence of zero mean and square integrable martingale. In order to prove the normality of T1,
according to [8], it suffices to show the following tow results:

∑n
j=2 E[Z2

j |F j−1]

σ2
1

p→ 1,

and for any ε > 0,

σ−2
1

n∑

j=2

E[Z2
j I(|Z j| > εσ1|)|F j−1]

p→ 0.

Below, we will prove the first result. We see that

n∑

j=2

E[Z2
j |F j−1] =

1
(n − 1)2

n∑

j=2

E[(
j−1∑

i=1

(UX
i )>UX

j (UY
i )>UY

j )2|F j−1]

=
1

(n − 1)2

n∑

j=2

E[(
j−1∑

i1,i2=1

(UX
i1 )>UX

j (UX
j )>UX

i2 (UY
i1 )>UY

j (UY
j )>UY

i2 )|F j−1]

=
1

(n − 1)2

n∑

j=2

j−1∑

i1,i2=1

(UX
i1 )>E[UX

j (UX
j )>|F j−1]UX

i2 (UY
i1 )>E[UY

j (UY
j )>|F j−1]UY

i2

=
1

(n − 1)2

n∑

j=2

j−1∑

i1,i2=1

(UX
i1 )>AXUX

i2 (UY
i1 )>AYUY

i2

=
1

(n − 1)2

n∑

j=2

j−1∑

i=1

(UX
i )>AXUX

i (UY
i )>AYUY

i +
1

(n − 1)2

n∑

j=2

j−1∑

i1,i2

(UX
i1 )>AXUX

i2 (UY
i1 )>AYUY

i2
.
= C1 + C2.
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By using simple algebra, we can obtain that E(C1) = σ2
1, E(C2) = 0 and

var(C1) =
1

(n − 1)4

n∑

j=2

j2{E((UX
i )>AXUX

i )2E((UY
i )>AYUY

i )2 − tr2(A2
X)tr2(A2

Y)},

var(C2) =
1

(n − 1)4

n∑

j=3

j(n − j + 1)( j − 1)
2

tr(A4
X)tr(A4

Y) = op(σ4
1).

By Lemma 1, we can see that E((UX
i )>AXUX

i )2 = O(1)E2((UX
i )>AXUX

i ) = O(tr2(A2
X)) and E((UY

i )>AYUY
i )2 =

O(tr2(A2
Y)). Hence var(C1) = op(σ4

1) and C1/σ
2
1

p→ 1. By using condition C(1), we have var(C2) = op(σ4
1), which

implies that C2 = op(σ2
1).

Next, we will prove the second result. Note that σ−2
1

∑n
j=2 E[Z2

j I(|Z j| > εσ1|)|F j−1] ≤ σ−4
1 ε−2 ∑n

j=2 E[Z4
j |F j−1].

Accordingly, the assertion of this lemma is true if we can show E
{∑n

j=2 E[Z4
j |F j−1]

}
= o(σ4

1). Note that

E



n∑

j=2

E[Z4
j |F j−1]


=

n∑

j=2

E(Z4
j ) = O(n−4)

n∑

j=2

E(
j−1∑

i=1

(UX
i )>AXUX

j UY
i AYUY

j )4,

which can be decomposed as 3Q + P. Here

Q =O(n−4)
n∑

j=2

j−1∑ j−1∑

s<t

E((UX
j )>AXUX

s (UX
s )>AXUX

j (UX
j )>AXUX

t (UX
t )>AXUX

j

× (UY
j )>AYUY

s (UY
s )>AYUY

j (UY
j )>AYUY

t (UY
t )>AYUY

j ),

P =O(n−4)
n∑

j=2

j−1∑

i=1

E(((UX
j )>AXUX

i )4)E(((UY
j )>AYUY

i )4).

Obviously, Q = O(n−1)E((UX
j )>AXUX

s (UX
s )>AXUX

j )2E((UY
j )>AYUY

s (UY
s )>AYUY

j )2. By Lemma 1, we have

E((UX
j )>AXUX

s (UX
s )>AXUX

j )2 = O(1){E2((UX
j )>AXUX

s (UX
s )>AXUX

j )} = O(tr4(A2
X))

and E(((UX
j )>AXUX

i )4) = O(tr4(A2
X)). Thus, Q = o(σ4

1), P = o(σ4
1) and T1/

√
var(T1)

d→N(0, 1), where var(T1) =

n{2(n − 1)}−1tr(A2
X)tr(A2

Y). This complete the proof of Lemma 5. �
Proof of Proposition 1: Using Lemma 3 and Lemma 4, proof of Proposition 1 can be directly obtained.
Proof of Proposition 2: Taking the same procedure as in the proof of Lemma 4, we can see that

σ̂2
1 =

2
n2(n − 1)2

∑

1≤i< j≤n

((ÛX
i )>ÛX

j )2
∑

1≤i< j≤n

((ÛY
i )>ÛY

j )2 =
2

n2(n − 1)2

∑

1≤i< j≤n

((UX
i )>UX

j )2
∑

1≤i< j≤n

((UY
i )>UY

j )2 + op(σ2
1).

Obviously, E( 2
n2(n−1)2

∑
1≤i< j≤n((UX

i )>UX
j )2 ∑

1≤i< j≤n((UY
i )>UY

j )2) = σ2
1, which implies that

var
( 2
n2(n − 1)2

∑

1≤i< j≤n

((UX
i )>UX

j )2
∑

1≤i< j≤n

((UY
i )>UY

j )2)

=O(n−4)E((UX
i )>UX

j )4E((UY
i )>UY

j )4 + O(n−2)E{((UX
i )>UX

j )2((UX
i )>UX

l )2}E{((UY
i )>UY

j )2((UY
i )>UY

l )2}
=O(n−4tr2(A2

X)tr2(A2
Y)) + O(n−2tr2(A2

X)tr2(A2
Y)) = op(σ4

1).

Thus, σ̂2
1 = σ2

1(1 + op(1)). �
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Proof of Theorem 2

By the Taylor Expansion, we have

U(Xi − θ̂X) =U(X∗i − θX∗ − (θ̂X∗ − θX∗ ) + M1(Y∗i − θY∗ ) −M1(θ̂Y∗ − θY∗ ))

=U(Xi − θX) − 1
rX

i

(Ip − U(Xi − θX)U(Xi − θX)>)(θ̂X − θX)

+
rY∗

i

rX∗
i

(Ip − U(Xi − θX)U(Xi − θX)>)M1U(Y∗i − θY∗ ) − 1
rX∗

i

(Ip − U(Xi − θX)U(Xi − θX)>)M1(θ̂Y∗ − θY∗ )

− 1
2(rX

i )2
‖(θ̂X − θX) + M1(Y∗i − θY∗ ) −M1(θ̂Y∗ − θY∗ ))‖2U(Xi − θX) + op(n−1)

and

U(Yi − θ̂Y) =U(Y∗i − θY∗ − (θ̂Y∗ − θY∗ ) + M2(X∗i − θX∗ ) −M2(θ̂X∗ − θX∗ ))

=U(Yi − θY) − 1
rY

i

(Ip − U(Yi − θY)U(Yi − θY)>)(θ̂Y − θY)

+
rX∗

i

rY∗
i

(Ip − U(Yi − θY)U(Yi − θY)>)M2U(X∗i − θX∗ ) − 1
rY∗

i

(Ip − U(Yi − θY)U(Yi − θY)>)M2(θ̂X∗ − θX∗ )

− 1
2(rY

i )2
‖(θ̂Y − θY) + M2(X∗i − θX∗ ) −M2(θ̂X∗ − θX∗ ))‖2U(Yi − θY) + op(n−1).

Then, taking the same procedure as in Lemma 3, under conditions (C1
′
)-(C3

′
), we have

Tr =T1 +
1

n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (rX∗
j )−1rY∗

j (UY∗
i )>M>

1 M1UY∗
j (UY∗

i )>UY∗
j

+
1

n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (rY∗
j )−1rX∗

j (UX∗
i )>M>

2 M2UX∗
j (UX∗

i )>UX∗
j

+
1

n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (rY∗
j )−1rX∗

j (UY∗
i )>M>

1 UX∗
j (UY∗

i )>M2UX∗
j

+
1

n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (rX∗
j )−1rY∗

j (UX∗
i )>M>

2 UY∗
j (UX∗

i )>M1UY∗
j

+
1

n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (UX∗
i )>UX∗

j (UY∗
i )>M2UX∗

j +
1

n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (UY∗
i )>M>

1 UX∗
j (UY∗

i )>UY∗
j + op(σ1).

By condition (C3
′
), we have

E


1

n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (UX∗
i )>UX∗

j (UY∗
i )>M2UX∗

j



2

= O[{E((rY∗
i )−1rX∗

i )}2tr(M2A2
XM>

2 AY)] = o(σ2
1),

E


1

n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (UY∗
i )>M>

1 UX∗
j (UY∗

i )>UY∗
j



2

= O[{E((rX∗
i )−1rY∗

i )}2tr(M1A2
YM>

1 AX)] = o(σ2
1),

1
n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (rY∗
j )−1rX∗

j (UX∗
i )>M>

2 M2UX∗
j (UX∗

i )>UX∗
j =

n
2
{E((rY∗

i )−1rX∗
i )}2tr(M2A∗2X M>

2 ) + op(σ1),
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1
n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (rX∗
j )−1rY∗

j (UY∗
i )>M>

1 M1UY∗
j (UY∗

i )>UY∗
j =

n
2
{E((rX∗

i )−1rY∗
i )}2tr(M1A∗2Y M>

1 ) + op(σ1),

1
n − 1

∑

1≤i< j≤n

(rX∗
i )−1rY∗

i (rY∗
j )−1rX∗

j (UY∗
i )>M>

1 UX∗
j (UY∗

i )>M2UX∗
j =

n
2
{E((rX∗

i )−1rY∗
i )E((rY∗

i )−1rX∗
i )}tr(M1A∗YM2A∗X) + op(σ1),

1
n − 1

∑

1≤i< j≤n

(rY∗
i )−1rX∗

i (rX∗
j )−1rY∗

j (UX∗
i )>M>

2 UY∗
j (UX∗

i )>M1UY∗
j =

n
2
{E((rX∗

i )−1rY∗
i )E((rY∗

i )−1rX∗
i )}tr(M2A∗XM1A∗Y) + op(σ1).

Thus, Tr = T1 + ntr(Λ>Λ)/2 + op(σ1), where Λ = E((rX∗
i )−1rY∗

i )M1A∗Y + E((rY∗
i )−1rX∗

i )A∗XM>
2 . According to the results

of Theorem 1, we can easily obtain the result. Here we complete the proof.

Proof of Theorem 3

Define VX
i = E(U(Xi − X j)|Xi), VX

j = −E(U(Xi − X j)|X j), VY
i = E(U(Yi − Y j)|Yi), VY

j = −E(U(Yi − Y j)|Y j),
U(Yi−Y j) = VY

i + VY
j +WY

i j, U(Yk −Y`) = VY
k + VY

` +WY
k`, U(Xi−X j) = VX

i + VX
j +WX

i j , U(Xk −X`) = VX
k + VX

` +WX
k`,

BX = E(VX
i (VX

i )>) and BY = E(VY
i (VY

i )>).
Define

Tρ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(Xi − X j)>U(Xk − X`)U(Yi − Y`)>U(Yk − Y j)},

σ̂2
2 =

1
2n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(Xi − X j)>U(Xk − X`))2 ×

∗∑
(U(Yi − Y j)>U(Yk − Y`))2.

Hence, THR = Tρ/σ̂2. To prove Theorem 3, we only need to prove the following proposition.

Proposition 3. Under conditions (C1), (C2) given in Section 2 and H0 in (1), as n→ ∞, Tρ/σ2
d→N(0, 1).

Here σ2
2 = 8n

n−1 tr(B2
X)tr(B2

Y).

Proposition 4. Under conditions (C1
′
), (C2

′
) and (C4

′
) given in Section 2, as n→ ∞, σ̂2

2/σ
2
2

p→ 1.

Lemma 6. As n→ ∞ , (σ̃2)−1
{
(n − 1)−1 ∑∗(VX

i )>VX
k (VY

i )>VY
k

} d→N(0, 1), where σ̃2
2 = 2n(n − 1)−1tr(B2

X)tr(B2
Y).

Proof. Define T2 = (n − 1)−1 ∑∗(VX
i )>VX

k (VY
i )>VY

k . Obviously, E(T2) = 0 and

var(T2) =
1

(n − 1)2 E


∗∑

(VX
i )>VX

k (VY
i )>VY

k



2

=
2n

n − 1
E((VX

i )>VX
k )2E((VY

i )>VY
k )2 =

2n
n − 1

tr(B2
X)tr(B2

Y).

We only need to show the asymptotic normality of T2. For each i ∈ {2, · · · , n}, define Z̃i = (n−1)−1
i−1∑
k=1

(VX
i )>VX

k (VY
i )>VY

k

and Vi = (X>i ,Y
>
i )>. Then, for each m ∈ {2, · · · , n}, define S̃ m =

m∑
i=2

Z̃i and F̃m = σ{V1, · · ·Vm}, where σ{V1, · · ·Vm}

is the σ-algebra generated by {V1, · · ·Vm}. Now T2 =
n∑

i=2
Z̃i. We can verify that for each n, {S̃ m, F̃m}nm=2 is a sequence

of zero mean and square integrable martingale. In order to prove the normality of Z̃2, according to [8], it suffices to
show the following two results:

∑n
i=2 E[Z̃2

i |F̃i−1]

σ̃2
2

p→ 1
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and for any ε > 0,

σ̃−2
2

n∑

i=2

E[Z̃2
i I(|Z̃i| > εσ̃2|)|F̃i−1]

p→ 0.

Below we will prove the first result. Note that

n∑

i=2

E[Z̃2
i |F̃i−1] =

1
(n − 1)2

n∑

i=2

E[(
i−1∑

k=1

(VX
i )>VX

k (VY
i )>VY

k )2|F̃i−1]

=
1

(n − 1)2

n∑

i=2

E[(
i−1∑

k1,k2=1

(VX
k1

)>VX
i (VX

i )>VX
k2

(VY
k1

)>VY
i (VY

i )>VY
k2

)|F̃i−1]

=
1

(n − 1)2

n∑

i=2

i−1∑

k1,k2=1

(VX
k1

)>E[VX
i (VX

i )>|F̃i−1]VX
k2

(VY
k1

)>E[VY
i (RY

i )>|F̃i−1]VY
k2

=
1

(n − 1)2

n∑

i=2

i−1∑

k=1

(VX
k )>BXVX

k (VY
k )>BYVY

k +
1

(n − 1)2

n∑

i=2

i−1∑

k1,k2

(VX
k1

)>BXVX
k2

(VY
k1

)>BYVY
k2

.
= C3 + C4.

By simple algebra, we can obtain that E(C3) = σ̃2
2, E(C4) = 0 and

var(C3) =
1

(n − 1)4

n∑

i=2

j2{E((VX
k )>BXVX

k (VY
k )>BYVY

k )2 − tr2(B2
X)tr2(B2

Y)};

var(C2) =
1

(n − 1)4

n∑

i=3

i(n − i + 1)(i − 1)
2

tr(B4
X)tr(B4

Y) = op(σ̃4
2).

By Lemma 1 we can easily get E((VX
k )>BXVX

k )2 = O(1)E2((VX
k )>BXVX

k ) = O(tr2(B2
X)), and similarly, we get

E((VY
k )>BYVY

k )2 = O(tr2(B2
Y)). Hence var(C3) = op(σ̃4

2) and C3/σ̃
2
2

p→ 1. By using condition (C4
′
), we have

var(C4) = op(σ̃4
2), which implies that C4 = op(σ̃2

2).
Next, we will prove the second result. Note that

σ̃−2
2

n∑

i=2

E[Z̃2
i I(|Z̃i| > εσ̃2|)|F̃i−1] ≤ σ̃−4

2 ε−2
n∑

i=2

E[Z̃4
i |F̃i−1].

Accordingly, the assertion of this lemma is true if we can show E
{∑n

i=2 E[Z̃4
i |F̃i−1]

}
= o(σ̃4

2). Note that

E


n∑

i=2

E[Z̃4
i |F̃i−1]

 =

n∑

i=2

E(Z̃4
i ) = O(n−4)

n∑

i=2

E(
i−1∑

k=1

(VX
k )>BXVX

k (VY
k )>BYVY

k )4,

which can be decomposed as 3Q̃ + P̃. Here

Q̃ =O(n−4)
n∑

i=2

i−1∑ i−1∑

s<t

E((VX
i )>BXVX

s (VX
s )>BXVX

i (VX
i )>BXVX

t (VX
t )>BXVX

i

× (VY
i )>BYVY

s (VY
s )>BYVY

i (VY
i )>BYBYVY

t (VY
t )>BYVY

i ),

P̃ =O(n−4)
n∑

j=2

j−1∑

i=1

E((VX
i )>BXVX

k )4E((VY
i )>BYVY

k )4.

Obviously, Q̃ = O(n−1)E((VX
i )>BXVX

s (VX
s )>BXVX

i )2E((VY
i )>BYVY

s (VY
s )>BYVY

i )2. By Lemma 1,we have

E((VX
i )>BXVX

s (VX
s )>BXVX

i )2 = O(1)E2((VX
i )>BXVX

s (VX
s )>BXVX

i ) = O(tr4(B2
X))
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and E((VX
i )>BXVX

k )4 = O(tr4(V2
X)). Then we can obtain that Q̃ = o(σ̃4

2), P̃ = o(σ̃4
2) and T2/

√
var(T2)

d→N(0, 1),
where var(T2) = 2n(n − 1)−1tr(B2

X)tr(B2
Y). �

Proof of Proposition 3: Under H0, we can decompose Tρ as follows,

Tρ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(Xi − X j)>U(Xk − X`)U(Yi − Y`)>U(Yk − Y j)}

=
1

(n − 1)(n − 2)(n − 3)

∗∑
(VX

i + VX
j + WX

i j )
>(VX

k + VX
` + WX

k`) × (VY
i + VY

` + WY
i`)
>(VY

k + VY
j + WY

k j)

=
2

n − 1

∗∑
{(VX

i )>VX
k (VY

i )>VY
k } +

12
(n − 1)(n − 2)

∗∑
{(VX

i )>VX
k (VY

i )>VY
` }

+
4

(n − 1)(n − 2)(n − 3)

∗∑
{(VX

i )>VX
k (VY

j )>VY
` }

+ Op(n−3)
∗∑[

(WX
i j )
>VX

k (VY
j )>VY

` + (WX
i j )
>WX

k`U(Yi − Y j)>U(Yk − Y`)

+ (WX
i j )
>VX

k (VY
i )>VY

` + (WX
i j )
>VX

k (WY
i`)
>VY

k + (WX
i j )
>WX

k`(W
Y
i`)
>WY

k j

+ U(Xi − X j)>U(Xk − X`)(WY
i`)
>WY

k j + (WX
i j )
>WX

k`(W
Y
i`)
>VY

k

]
.
= J1 + J2 + J3 + J4.

Based on Lemma 6, it can be concluded that J1/σ2
d→N(0, 1), where σ2

2 = 8n(n − 1)−1tr(B2
X)tr(B2

Y). Thus we only
need to show the other parts are all op(σ2). In fact,

E(J2
2) = O(n−1)E((VX

i )>VX
k (VY

i )>VY
` )2 = O(n−1)tr(B2

X)tr(B2
Y) = op(σ2

2),

E(J2
3) = O(n−2)E((VX

i )>VX
k (VY

j )>VY
` )2 = O(n−2)tr(B2

X)tr(B2
Y) = op(σ2

2).

For J4, we just consider the first part in J4, and rest part can be handled in the similar way.

E
(
O(n−6)

∗∑
(WX

i j )
>VX

k (VY
j )>VY

`

)2
=O(n−3)E

(
(WX

i j )
>VX

k (VY
j )>VY

`

)2

=O(n−3)E((WX
i j )
>VX

k (VX
k )>WX

i j )E((VY
j )>VY

` )2 = O(n−3)E((WX
i j )
>BXWX

i j )tr(B
2
Y).

Next, we will show E((WX
i j )
>BXWX

i j ) = Op(tr(B2
X)). In fact, E

(
U(Xi − X j)>BXU(Xi − X j)

)
= Op(tr(B2

X)), because

E
(
U(Xi − X j)>BXU(Xi − X j)

)
=U(Xi − X j)>BXU(Xi − X j) = { Xi − X j

‖Xi − X j‖ }
>BXU(Xi − X j)

={Xi − X0 + X0 − X j

‖Xi − X j‖ }>BXU(Xi − X j)

={ Xi − X0

‖Xi − X j‖ }
>BXU(Xi − X j) + { X0 − X j

‖Xi − X j‖ }
>BXU(Xi − X j)

=U(Xi − X0)>BXU(Xi − X j)
‖Xi − X0‖
‖Xi − X j‖ + U(X0 − X j)>BXU(Xi − X j)

‖X0 − X j‖
‖Xi − X j‖ .

Additionally,

E(U(Xi − X0)>BXU(Xi − X j)
‖Xi − X0‖
‖Xi − X j‖ ) =E(E(U(Xi − X0)>BXU(Xi − X j)

‖Xi − X0‖
‖Xi − X j‖ |Xi))

=E((VX
i )>BXVX

i )E(
‖Xi − X0‖
‖Xi − X j‖ ) = Op(tr(B2

X)).
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So, we have E(O(n−6)
∑∗(WX

i j )
>VX

k (VY
j )>VY

` )2 = O(n−3)tr(B2
X)tr(B2

Y) = op(σ2
2), which completes this proof. �

Proof of Proposition 4:

σ̂2
2 =

1
2n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(Xi − X j)>U(Xk − X`))2 ×

∗∑
(U(Yi − Y j)>U(Yk − Y`))2

=
8

n2(n − 1)2

∗∑
((VX

i )>VX
j )2

∗∑
((VY

i )>VY
j )2 + op(σ2

2).

Obviously, E
(
8{n2(n − 1)2}−1 ∑∗((VX

i )>VX
j )2 ∑∗((VY

i )>VY
j )2) = 8n(n − 1)−1tr(B2

X)tr(B2
Y). Then E(σ̂2

2) = σ2
2(1 + op(1))

and

var
( 8
n2(n − 1)2

∗∑
((VX

i )>VX
j )2

∗∑
((VY

i )>VY
j )2)2

=O(n−4)E((VX
i )>VX

j )4E((VY
i )>VY

j )4 + O(n−2)E{((VX
i )>VX

j )2((VX
i )>VX

` )2}E{((VY
i )>VY

j )2((VY
i )>VY

` )2}
=O(n−4tr2(B2

X)tr2(B2
Y)) + O(n−2tr2(B2

X)tr2(B2
Y)) = op(σ4

2).

Thus, σ̂2
2 = σ2

2(1 + op(1)). �
Next, we will prove the corresponding results under the alternative hypothesis. Let VX∗

i = E(U(X∗i − X∗j )|X∗i ),
VX∗

j = −E(U(X∗i − X∗j )|X∗j ), VY∗
i = E(U(Y∗i − Y∗j )|Y∗i ), VY∗

j = −E(U(Y∗i − Y∗j )|Y∗j ), U(Y∗i − Y∗j ) = VY∗
i + VY∗

j + WY∗
i j ,

U(Y∗k −Y∗` ) = VY∗
k + VY∗

` +WY∗
k` , U(X∗i −X∗j ) = VX∗

i + VX∗
j +WX∗

i j , U(X∗k −X∗` ) = VX∗
k + VX∗

` +WX∗
k` , B∗X = E(VX∗

i (VX∗
i )>)

and B∗Y = E(VY∗
i (VY∗

i )>).
Taking the same procedure as in Proposition 3, under conditions (C1

′
), (C2

′
) and (C4

′
), we have

Tρ/2 =T2 +
1

n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (r̃X∗
i j )−1r̃Y∗

i j (VY∗
i )>M>

1 M1VY∗
j (VY∗

i )>VY∗
j

+
1

n − 1

∑

1≤i< j≤n

(r̃Y∗
i j )−1r̃X∗

i j (r̃Y∗
i j )−1r̃X∗

i j (VX∗
i )>M>

2 M2VX∗
j (VX∗

i )>VX∗
j

+
1

n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (r̃Y∗
i j )−1r̃X∗

i j (VY∗
i )>M>

1 VX∗
j (VY∗

i )>M2VX∗
j

+
1

n − 1

∑

1≤i< j≤n

(r̃Y∗
i j )−1r̃X∗

i j (r̃X∗
i j )−1r̃Y∗

i j (VX∗
i )>M>

2 VY∗
j (VX∗

i )>M1VY∗
j

+
1

n − 1

∑

1≤i< j≤n

(r̃Y∗
i j )−1r̃X∗

i j (VX∗
i )>VX∗

j (VY∗
i )>M2VX∗

j +
1

n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (VY∗
i )>M>

1 VX∗
j (VY∗

i )>VY∗
j + op(σ2).

By condition (C4
′
), we have

E


1

n − 1

∑

1≤i< j≤n

(r̃Y∗
i j )−1r̃X∗

i j (VX∗
i )>VX∗

j (VY∗
i )>M2VX∗

j



2

=O[{E((r̃Y∗
i j )−1r̃X∗

i j )}2tr(M2B2
XM>

2 BY)] = o(σ2
2),

E


1

n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (VY∗
i )>M>

1 VX∗
j (VY∗

i )>VY∗
j



2

=O[{E((r̃X∗
i j )−1r̃Y∗

i j )}2tr(M1B2
YM>

1 BX)] = o(σ2
2),

1
n − 1

∑

1≤i< j≤n

(r̃Y∗
i j )−1r̃X∗

i j (r̃Y∗
i j )−1r̃X∗

i j (VX∗
i )>M>

2 M2VX∗
j (VX∗

i )>VX∗
j =

n
2
{E((r̃Y∗

i j )−1r̃X∗
i j )}2tr(M2B∗2X M>

2 ) + op(σ2),

1
n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (r̃X∗
i j )−1r̃Y∗

i j (VY∗
i )>M>

1 M1VY∗
j (VY∗

i )>VY∗
j =

n
2
{E((r̃X∗

i j )−1r̃Y∗
i j )}2tr(M1B∗2Y M>

1 ) + op(σ2),

1
n − 1

∑

1≤i< j≤n

(r̃X∗
i j )−1r̃Y∗

i j (r̃Y∗
i j )−1r̃X∗

i j (VY∗
i )>M>

1 VX∗
j (VY∗

i )>M2VX∗
j =

n
2
{E((r̃X∗

i j )−1r̃Y∗
i j )E((r̃Y∗

i j )−1r̃X∗
i j )}tr(M1B∗YM2B∗X) + op(σ2),
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1
n − 1

∑

1≤i< j≤n

, (r̃Y∗
i j )−1r̃X∗

i j (r̃X∗
i j )−1r̃Y∗

i j (VX∗
i )>M>

2 VY∗
j (VX∗

i )>M1VY∗
j =

n
2
{E((r̃X∗

i j )−1r̃Y∗
i j )E((r̃Y∗

i j )−1r̃X∗
i j )}tr(M2B∗XM1B∗Y) + op(σ2).

Thus, Tρ/2 = T2 + ntr(Λ̃>Λ̃)/2 + op(σ2). According to the results of Theorem 3-(i), we can easily obtain the result.
Here we complete the proof.

Proof of Theorem 4

First, we will prove the results under the null hypothesis. Define

Tτ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(Xi − X j)>U(Xk − X`)U(Yi − Y j)>U(Yk − Y`)},

σ̂2
3 =

2
n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(Xi − X j)>U(Xk − X`))2 ×

∗∑
(U(Yi − Y j)>U(Yk − Y`))2.

Hence THT = Tτ/σ̂3. To prove Theorem 4-(i), we only need to prove the following propositions.

Proposition 5. Under conditions (C1), (C2) given in Section 2 and H0 in (1) ,as n → ∞, Tτ/σ3
d→N(0, 1), where

σ2
3 = 32n(n − 1)−1tr(B2

X)tr(B2
Y).

Proposition 6. Under conditions (C1) and (C2) given in Section 2, as n→ ∞, σ̂2
3/σ

2
3

p→ 1.

Proof of Proposition 5: Under H0, similar to Tρ, we can decompose Tτ as follows:

Tτ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(Xi − X j)>U(Xk − X`)U(Yi − Y j)>U(Yk − Y`)}

=
4

n − 1

∗∑
{(VX

i )>VX
k (VY

i )>VY
k } +

8
(n − 1)(n − 2)

∗∑
{(VX

i )>VX
k (VY

i )>VY
` }

+
4

(n − 1)(n − 2)(n − 3)

∗∑
{(VX

i )>VX
k (VY

j )>VY
` } + Op(n−3)

∗∑[
(WX

i j )
>VX

k (VY
j )>VY

`

+ (WX
i j )
>VX

k (VY
i )>VY

` + (WX
i j )
>VX

k (WY
i j)
>VY

k + (WX
i j )
>WX

k`U(Yi − Y j)>U(Yk − Y`)

+ U(Xi − X j)>U(Xk − X`)(WY
i j)
>WY

k` + (WX
i j )
>WX

k`(W
Y
i j)
>VY

k + (WX
i j )
>WX

k`(W
Y
i j)
>WY

k`
]

=
4

n − 1

∗∑
{(VX

i )>VX
k (VY

i )>VY
k } + op(σ3).

Based on Lemma 6, it can be concluded that Tτ/σ3
d→N(0, 1). �

Proof of Proposition 6:

σ̂2
3 =

2
n2(n − 1)2(n − 2)2(n − 3)2

∗∑(
U(Xi − X j)>U(Xk − X`)

)2 ×
∗∑(

U(Yi − Y j)>U(Yk − Y`)
)2

=
32

n2(n − 1)2

∗∑(
(VX

i )>VX
j
)2

∗∑(
(VY

i )>VY
j
)2

+ op(σ2
3).

E
(
32{n2(n − 1)2}−1 ∑∗((VX

i )>VX
j )2 ∑∗((VY

i )>VY
j )2) = σ2

3. Since

var


2

n2(n − 1)2

∗∑(
U(Xi − X j)>U(Xk − X`)

)2
∗∑(

U(Yi − Y j)>U(Yk − Y`)
)2



=O(n−4)E
(
(VX

i )>VX
j
)4E

(
(VY

i )>VY
j
)4) + O(n−2)E

{(
(VX

i )>VX
j
)2((VX

i )>VX
`

)2}E{(
(VY

i )>VY
j
)2((VY

i )>VY
`

)2}

=O(n−4tr2(B2
X)tr2(B2

Y)) + O(n−2tr2(B2
X)tr2(B2

Y)) = op(σ4
3),

we can see that σ̂2
3 = σ2

3(1 + op(1)). �
The proof of Theorem 4-(ii) are very similar to the proof of Theorem 3-(ii), hence we omit the details here.
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