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Multivariate asymptotic (normal) distributions for eigenvalues and unit-length
eigenvectors of sample variance and correlation matrices are derived. Beside the
general case, when existence of the (finite) fourth-order moments of the population
distribution is assumed, formulae for the asymptotic variance matrices in the cases
of normal and elliptical populations are also derived. It is assumed throughout that
population variance and correlation matrices are nonsingular and without multiple
eigenvalues. 1 1993 Academic Press, Inc.

INTRODUCTION

The first noteworthy results on the topic of this paper were obtained by
Girshick [5]. In the case of the p-dimensional normal population,
x ~ N(u, 2), he derived asymptotic variances and covariances of eigenvalues
of the sample variance matrix S and the sample correlation matrix R
assuming that the population variance matrix 2 is nonsingular and without
multiple roots: 2, > 4,> --- > A,>0. Under the same assumptions he got
asymptotic variances and covariances of coordinates of eigenvectors (with
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length \//_,) of the matrix S. Anderson [ 1] generalized Girshick’s results to
the case of multiple roots, A, 2 4,> --- 24,20, and unit-length eigen-
vectors of S. Waternaux [ 147 found the asymptotic (normal) distribution
of eigenvalues of S for a nonnormal population. She assumed the existence
of the (finite) fourth-order moments of the population distribution (let us
denote this assumption by M,(x)< ) and supposed that 4, > --- >
4,>0. Fujikoshi [4] derived the asymptotic expansion for the distribution
function of an eigenvalue of S under the assumptions of Waternaux [14].
Fang and Krishnaiah [3] generalized previous results and found
asymptotic expansions for functions of 4, (4, 24,2 --- 2 4,2>0) assuming
the existence of the moments of the distribution, occurring in the
expansions.

In matrix form the asymptotic distribution of eigenvalues of S was
presented by Kollo [7] for a class of distributions, including N(u, 2). In
this paper we give in matrix form Waternaux’s [14] result (in Theorem 5).

The asymptotic distribution of coordinates of unit-length eigenvectors of
S under the assumption M,(x)<oc was obtained by Davis [2]. He
presented the distribution assuming that 4, > 4,2 --- > 4,>0. In Kollo
[7] the asymptotic distribution of eigenvectors of S was presented in
matrix form for a class, including N(y, 2).

The asymptotic behaviour of eigenvalues and eigenvectors of the sample
correlation matrix R is more complicated. For a normal population
x~ N(u, X) the distribution of eigenvalues of R was obtained by Girshick
[5] under the assumptions indicated above. Kollo [6] presented the
asymptotic variance matrix of eigenvalues of R for a normal population
N(u, 2'). Konishi [9] got the asymptotic distribution and first terms of the
Edgeworth expansion of the distribution function of eigenvalues of matrix
R for a normal population x ~ N(y, 2) under the assumptions 4,2 --- =
4,20. Kollo [8] presented the multivariate asymptotic (normal)
distribution of eigenvalues of R assuming 4, > --- > 1,>0and M,(x) < «.
Fang and Krishnaiah [3] found asymptotic expansions for functions of
eigenvalues of R, from which as a special case we get the asymptotic
{normal) distribution of eigenvalues of R under the assumptions
M x)<owand 4, > --- 24,20

For the unit-length eigenvectors of R the asymptotic (normal) distribu-
tion was obtained by Kollo [7] under the assumption 4, > --- > 4,> 0 for
a class of distributions including N(u, 2). Konishi [9] derived asymptotic
(normal) distributions and asymptotic expansions of coordinates of eigen-
vectors of R and found expansions of asymptotic covariances between the
coordinates assuming that x~ N(y, 2)and 4,2 --- = 4,20.
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2. Basic CONVERGENCE RESULTS

Let X' '=(x,---x,) be a sample of n independent and identically
distributed observations from a p-dimensional population that is charac-
terized by the p x1 random vector x with mean E(x)=y, (nonsingular)
variance matrix D(x)=2, and fourth-order central moment M,(x)=
E[{x—u)x—p)®@(x—pu)x—u)]<o. Let ¥ and S be the usual
unbiased estimators of y and 2, respectively. Let us denote the correlation
matrix for x by P and its estimator by R; then

P=23,'"2x;'" and R=S,'7SS;'~

(The notation A, is used to indicate the diagonal pxp matrix with
diagonal elements @, ---a,, of the p x p matrix 4.)

In this paper we derive in matrix form the asymptotic (normal) distribu-
tions for eigenvalues and unit-length eigenvectors of S and R. For the
definition of asymptotic distribution see Theorem 1.

The main basic results used in the paper are the two following theorems.

THEOREM 1. Let {y,} be a sequence of random vectors y, and b
a compatible fixed vector. Assume that V/j [V —b]1-2 N(O, T)
(convergence in distribution), or_equivalently /n y, is asymptotically
normally distributed with mean \/; b and variance T.

Let f(z) be a vector function of a vector z with first and second derivatives
existing in a neighbourhood of z=b. Then

1L (Y) =S ()] 2> N(O, ®TD'),

where

is a matrix derivative.

THEOREM 2 (Parring [13], Neudecker and Wesselman [12]. Let
X' =(x,---x,) be a sample of n independent and identically distributed
observations from a p-dimensional population with E(x)=p, D(x)=2Z,
M, (x)<oC.

Let S,,=(n—1) "X'NX, N=I-n"'U, U=u', 1=(1---1). Then,

when n— G,

Jnvec(S,,— £) -2 N0, V), (1)
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where
V=M,(x)—(vec L)(vec 2)" (2)
The statement of Theorem 2 can be phrased alternatively
Jnvo(S,, —2)-2 N©O, DTVD*), (3)

where D is the appropriate duplication matrix and D* its Moore—Penrose
inverse.
As usual v(-) is the shortened version of vec(-) with

o(-y=D" vec(-)
and
vec(-)=Duv(-)

for symmetric matrices.

On matrix theory and especially duplication matrix, vec(-), and v(-)
operators see Magnus and Neudecker [10]. Reference is also made to
Appendix II of the present paper.

It is well known that the finite-sample variance matrix of \/)—1 vec S, is

MAx)+{(n—1)""U+KNZ®Z)— (vec X)(vec X)". (4)

(A proof can be found in Appendix L.}
For the normally distributed random vector x ~ N(u, '), the (asymptotic
variance) matrix V has the form

V=(I+K)I(Z®X), (5)

where K is the appropriate commutation matrix.

If it is assumed that the random vector is elliptically distributed (see
Muirhead [11, Sect. 1.5], for example), then the asymptotic variance
matrix is

V=(1+x)(I+ K} (2Z®2)+ r(vec L)}vec XY, (6)

where x is the common kurtosis coefficient.
For the correlation matrix R, a similar convergence takes place:

THEOREM 3 (Neudecker and Wesselman [12]). Under the assumptions
and definitions of the foregoing theorem we have, when n — o,

Jnvec(R,,, — P) -2 N(0O, ¥), (6)
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where
P={I-3(I+K)I®P)K}(Z;?®@Z;')
MEGPRIIWI- 3K (I® P+ K)}
={ZieL - U® P+ PX'®T) Ky}
V{E PRI KU Z, P+ I PRI

The equality follows readily from the properties KK,=K,, KV =V, and
(MRN)K;=K;(M®@®N)=(I® MN) K, for diagonal matrices M and N.

For the normal case we have
W=A,—A,— A5+ A,, (7)

where
A =(I+K}PRP)
A;=(POP)K,(I®P+P®I) (8)
A, =3IQP+PRN K PRP)K,IRP+PRI)
For the elliptical case we have
¥Y=B,—-B,—B,+B;, 9)
where
B =(1+x)I+KNP® P)+ x(vec P)(vec P)’
B,=[(1 +k)P® P)— ix(vec P)(vec PY ] K (IQ P+ P®]I)
By=1I®P+PRI)K,[(1+xkNP®P)
+ $k(vec P)(vec P) ] K,(I® P+ PQ®]I).

(10)

Having recapitulated these basic results we now look into the general
problem of asymptotic distributions of eigenvalues and unit-length
eigenvectors of a random matrix.

3. AsyMPTOTICS OF EIGENVALUES AND UNIT-LENGTH EIGENVECTORS
OF A RANDOM MATRIX

Let M be a real symmetric p x p matrix with eigenvalues 4, >4,> .-+ >
4,>0 and associated orthonormal (ie., orthogonal with unit length)
eigenvectors w; (i=1--- p). Thus

MW=WA
WWw=1,

(11)

683-47.2-9
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where W= (w,---w,) and A is an appropriate diagonal matrix of eigen-
values of M.

Let us then consider a real symmetric random matrix M(,,) {n again
being sample size) with eigenvalues i(,,,,. and orthonormal eigenvectors
W, these being estimators of the aformentioned parameters. (We omit
the sample-size indicator in the further development, whenever that is

sensible.)
We have
MW=WwA
.. (12)
Ww=lI
The following convergence is assumed to hold
Jnvee(M,,,— M)-2 N(0, G)
or alternatively phrased
(M, —M)-2 NO,D*GD""). (13)

Consider now the vector functions f;{v(Z)} and the scalar functions
Y, {v(Z)} of a vector v(Z) with first and second derivatives existing in a
neighbourhood of v(Z)=v(M), such that

wo=fi{o(M)}, A=y, {v(M)}, and
Wi=fi{U(M)}’ /1.-=!//.-{U(M)}‘

By using Theorem 1 we can then derive the asymptotic distributions of i,-
and w,. For this purpose we need the first derivatives. These are presented
in the following lemma.

LEMMA 1.

ofi{u(Z)} e P
W2=M—[W,-®W(}u,—1—/1) W]D

If further Y= (,---,), then

oy {v(Z)}

30(Z) =J (W W'D,

Z=M

where J=(e,®e,---e,®e,), e; being the compatible ith unit vector.
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Proaof. We differentiate Zf, =y, f; in the point Z = M, the perturbations
being symmetric. This leads to the following sequence of resuits:

(dZ)Yw, + M df,=(dy,;)w;+ A, df;
widZyw; +wiM df,=(df ) wiw,+ 1,w; df, (j#1)
wildZ)w,= (A, — 4;) w, df; as wjw,=0.
Further
dfi=1df,=3 wywdfi=Y ww df, (aswdf,=0)
i i
=Y (4—A) (A=A wwidfi=Y (4,—24;,)" wwi(dZ) w,

J#EI JF#EL

= {w,’-@ Y (h—=2)! ij_,’} D dv(Z)

J®i

(W@ W(i,I—A)* W) Ddu(Z).

From this we derive

ofi{v(Z)}
5v'(Z)

=[w.® W(i,I—A)* W]D.

zZ-M
Using dy, = w;(dZ) w; we get
df=(w, @w,---w,Qw,) dvec Z
— (W@ W)(e,®e,--¢,®e,)} D do(Z)
=J'(W@W')Ddv(Z).
From this follows

o {v(Z)} _ p '
———_50'(2) z=M—J(W ® W')D.

As immediate corollaries of Theorem 1 and Lemma 1 we have the
convergence results listed in the following theorem:

THEOREM 4. Under the assumptions and definitions of Lemma 1 and
convergence assumption (13) we have, when n — o0,

l‘ \/’; (‘i'ln)l'— “'1)’_2’ N(O’ Ti)s
where

T,=[w @ Wi~ A)* W]1G[w,® WiI—A)" W';
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2. Sn(i, =) -2 N[O, J (W W) GIW® W)J],

where

A=A A,) and &= (Ao A p)-
From Theorem 1 we obtain by the convergence (13) and Lemma 1 the
equality

T,=(w,@ WA, I—A)* W]DD*GD*'D'[w,® W(Ai,I—A)* W'].

As DD* A= A for any matrix 4 that is the variance matrix of a symmetric
stochastic matrix, we get the equality

DD*GD*'D' =G,

which proves the first statement.

A consequence of this fact is that there is no need to replace differentials
such as dvecZ by Ddv(Z) in the differentiation process set out in
Lemma 1.

In the next section we consider eigenvalues and unit-length eigenvectors
of the sample variance matrix S.

4, ASYMPTOTIC DISTRIBUTIONS OF EIGENVALUES AND UNIT-LENGTH
EIGENVECTORS OF THE SAMPLE VARIANCE MATRIX S

The results of Section3 can be immediately applied to the sample
variance matrix S. This yields the following result for the eigenvalues,
obtained by Waternaux [14] in the elementwise form:

THEOREM 5. Let the population variance matrix X have eigenvalues
Ay>Ay> oo > A, and associated orthonormal eigenvectors w; (i=1--.p).
The latter are assembled in the orthogonal matrix W. Let the sample
variance matrix S, —where n is the sample size—have eigenvalues i(,,,,»
(i=1, .., p), which are estimators of the A,.

Let Theorem 2 apply. Then, when n — «c,

1 Gy = 1) 2 NLO, T (W @ W) V(W@ W)J ],
where V is the asymptotic variance matrix of ﬁ vee S, J=(e,®e, -+
e,®e,), W=(w,---w,), A=A ---4,), and A, = (Agm1 - 4w ,). Hence
J (W W)Yy V(W® W)J is the asymptotic variance matrix of\/; Z‘,,,.
Using the equality V= M,(x)—(vec X)(vec ') we can write the

asymptotic variance matrix as J' (W' @ W') M (x)(W® W) J+ AUA. (See
Theorem 2 for the definition of U.)
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For the eigenvectors of S, we have the result:

THEOREM 6. Under the assumptions and definitions of Theorem 5, when
Sfurther W, are orthonormal eigenvectors of S, associated with 4,, we have
for n—

1 (= w,) B> N(O, T)),
where
T,={w,@ W(AI—A)" W} V{w,@ W(A,I—A)* W'}
={w] @ Wi l—A)* W'} M (x){w,@ W(AI—A)" W'}.
Comment. The second equality is obtained from
(Wi @ W(i,I—A)* W'} vec Z=W(AI—A)* WZw,
=4, Wi, I—A)* Ww,=0,

It is in order to specialize Theorems 5 and 6 to the normal and elliptical
cases. We get

CoroLLARY 1 (Kollo [7]). For the normal case, when n — o,
1 Gy — 2) -2 N0, 24%),
1 Oy —wi) 2> NIO, A, WA(LT— ) W'].
Proof. Now
T (WRW)VIWRW)I=J(W QW )I+KNERINWR W)J
=2J(WRWNERZ)NWR W)J
=2 (WEWR W EW)J
=27 (AR A)T=24Ax A=242,
as
(I+K)yJ=(I+K)e , ®e,--¢,8¢e,)=2(e, ®e,---¢,Re,)=2J.
We further use
{(Wi@W(AI-A)" WI+K)N(2®Z)
=wEQWiI—A)* WE+WOAI-A)* WERwE
=AW @ W(AI—A)* AW + WA T—A)* W' R iw!,
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which upon postmultiplication by w;, ® W(i,l — Ayt W’ yields
AWAQR T =AY W', as (4,1—A)* e;=0.

COROLLARY 2. For the elliptical case, when n — oo,

S Gy — 4) 2 N[0, 21 + k) A2+ kAUA]T,
1 G — w25 N[O, A1+ k) WA T— )7 W],

Proof. Substitute V=(1+k)I+K)NZ®2L)+k(vec X)(vecX) in the
expression for the asymptotic variance matrix J'(W' ® W') V(W ® W)J of
Theorem 5.

Further substitute V= (1+k)(/+ KNZ®2Z)+ k(vec )(vec L) in the
expression for the variance matrix 7; of Theorem 6.

This finishes the section on asymptotics of eigenvalues and unit-length
eigenvectors of the sample variance matrix S.

5. ASYMPTOTICS OF EIGENVALUES AND UNIT-LENGTH EIGENVECTORS
OF THE SAMPLE CORRELATION MATRIX R

We defined the sample correlation matrix R and the population
correlation matrix P,

R=58; 55,1
P= de ”222(17 1,!‘2,

where S(2) is the sample (population) variance matrix and S,(2,) is the
diagonal matrix displaying the diagonal elements of S(Z2). We do the same
analysis as in Section 4, but now applied to the eigenvalues and unit-length
eigenvectors of R.

Although this may be confusing, the same notation is used for eigen-
values and eigenvectors as before. This leads in the first instance to

THEOREM 7 (Kollo [8]). Let the population correlation matrix P have
eigenvalues A, >7%,> --- > 1,>0 and associated orthonormal eigenvectors
w; (i=1-.-p). Let the sample correlation matrix R ,y—where n is the sample
size—have eigenvalues 4,,, in decreasing order. It is assumed that Theorem 3
applies. Then, when n — oo,

1 Gy =22 N[O, (WR W) (W W)J],
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where W is the asymptotic variance matrix of \/; vec R,, as derived in
Theorem 3, J=(e,®e,:--€,®e,), A=(4A --4,); A=Ay 4ump)s
and W= (w,---w,).

The following result is

THEOREM 8. Under the assumptions and definitions of Theorem 7 we
have, when n — oo,

\/’—1 (M‘r"(n),-_’ W’i) —D’ N(O’ Ti)y

where
Ti={wi@ WA I-MN"*" W'} Plw,@ W(LI—A)* W'}

Again we give the specializations for the normal and elliptical cases.

COROLLARY 3. For the normal case, when n — oo,
1 Gy = 2) 25 N(O, T,
where
F=2A{I—A(Wx W) (Wx W)—(Wx WY (Wx W) A
+(Wx W) (Px P)(Wx W)} A.
The expression W x W is the elementwise (Hadamard) matrix product.

Proof. Weuse ¥=A,— A,— A5+ A4, (see (7) for the definitions).
This yields for the asymptotic variance of \/; (i(,,,), in rough form,

JWRQW WA —A,— A5+ A;))(WR W)
The following simplifications hold:
JSWQW)YA (W W)J
=J'(WRW)YI+KN(PRPYWRQW)J
=J' I+ K)WPWRWPW)J
=2J (AR A)J=2A%x A=24%
JWRW)A,(WRW)J
=S (WRQWHPRQP)K,(I@P+PRIINWRW)J
=J (AW AW )Ky(WRQWA+ WAR W)J
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=T (AQRAW @WK WRWNIRA+A® )]
=J (AN I (W QW)NJI(WRW)JI(IQA+ARQI)]
=AW x WYWx W)Ix A+ AxI)
=2A2(W x WY (Wx W)A;
J(WR®W)YA(WRW)J
=W RW)NIQP+PRI)Ky(P® P)
KI®P+PRNWRW)J
=L(IQA+ARIWR W) JJ'(P®P)
JTWRWYI®A+ARDT
=LIIQA+ AR JI(WQ W) JJ' (PR P)
AW W)JII®A+ AR
=2A(Wx W) (Px P)(Wx W)A.

For definitions and properties used in this proof see Appendix II.

Collecting the four terms we get the asymptotic variance matrix of
1 Ay

QA= AW W)Y (Wx W)— (Wx WY (Wx W)A
F(Wx WY (Px P)(Wx W)} 4.

COROLLARY 4. For the normal case, when n — oo,

1 O i—w) -2 N(O, Z,),

where
S = WAL AW = L, WA (AW A (w,) W(A+ A1) A, W'
— A WA (A + AT WA w,) WAA W'
+AWA A+ 2D WAWNP X P)Ad(w;)) WA+ A1) A, W',
where A, =(A1—A)* and A(w;) is the diagonal-matrix representation
of w;.

Proof. Again weuse P=A,—A,— A5+ A,.
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We evaluate the four terms. The first is
(W@ WAL W) A (w,@ WA, W)
= (W} ® WA, W NI+ K)P® P)w,® WA, W)
= (W@ WA, W)+ K)(A,w,@ WAA,,W')
=1, (W ® WA, W)w,@ WAA, W' + WAA W @w,)
=L WA W WAA LW + 2w WAA, W @ WA, W'w,
= WALAA W + Ae] AA W R WA, e,
=L WAL AW, as A,e;=0  and Ay AA = AT, A

For the evaluation of the other three terms it is essential to look into the
expression

K;(I®P+PRI)(w,Q@ WA, W')
=JI'(w, Q@ WAA W + iw,@ WA, W')
=JA(w,) WA+ A1) A, W
This result yields for the negative of the second and transposed third terms
(W RWA, W) A,(w,@ WA, W')
=W, QWA W WPROP)K;(IRP+PRIN)(w,@WA,; W)
=4 (W@ WA AW ) JA(w)) W(A+ i) Ay, W
=L WALAW A2 (w)) W(A+ 3 1) A, W'
Finally
W @WA W)Y A;(w,@ WAL W)
=W QWA W)INIQP+PRI)Ky(P®P)
KqU®P+PRINwW,Q@ WA, W)
=IWA A+ 21 WAw) T (PR P)JA(w,) WA+ A1) A, W'
= 1WA, (A+ 21 WAWNPx P)yA(w;) WA+ L1 A, W’

yields the fourth term. This finishes the proof.

COROLLARY 5. For the elliptical case, when n — oo,

S Gimy = 4) 2 NQO, T),
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where
IF'=2(1+x) A +4xAUA
=21+ k)A[AW' x WY WX W)+ (W' x WY Wx W)A]A
+2(1 + k) AW x WP xPYWx W)A.

Proof. We replace ¥ by B, — B, — B3+ B; in Theorem 7. (See (9) for
the definitions.) This yields for the asymptotic variance of \/;_1 Ay

J(WR®W)H)B,—B,— B,+ B,)(W® W)J.
It is easy to see that
J(WRW)B (W W)J
=(1+8)J(WRQW )N+ KPRPYWRW)J
+rJ' (W' ® W’)(vec P)(vec P) (W@ W)J
=2(14x)J (AR A)J +xJ'(vec A)(vec A)'J
=2(1+x) 4>+ kAUA.
Further
T (W @W)B,(WQ W)J
=(1+r)J(WRWHPRP)KURP+PRIINWRW)J
— ik (W' ® W')(vec P)(vec P) K4UQ P+ PRINWR W)J
=21 +K)J(ARANW @ W) JI'(WR W)I® A)J
—kJ'(vec A)(vec PY JI'(WR WHI® A)J
=2(1+xK)YJ (AR ST (W QWY (WRW)JJI® AY
—rJ'(vec A)(vec PY JI'(WR W)JJ (I A)J
=21+ k) AX(W' x WYHWx W) A—kAvecI) (WQ W) JA
=21+ k) AA(W' x WY W x W) A—kAUA.
Finally
J(WRW)B,(WRW)J
=21 +Kx)J(WQW)IQP+PRI)Ky (PR P)
KjUQP+PRINWRQW)J
+ik/ (W QW ))IRQ® P+ P®I)K,(vec P)(vec P)
Ky(IQP+PRINWRW)J
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=21+ k) AW x W HPx P Wx W)A
+ xkAJ (vec I')(vec I) JA
=21+ k) AW X W) Px PYWx W)A
+xAUA, in a similar way.
COROLLARY 6. For the elliptical case, when n — o0,
1 00— w,) 2 N(O, ),
where
Ei=(1+ k) AWAL AW — (1 + k) L, WA AW A (W) WA+ A1) AW
— (14 K) A, WAG(A+ A1) WA (w,) WAA ;W
+ 51+ x) WA (A+ A1) WA(w )P X PYA(w,) WA+ i) A, W',
where A, = (41— A)".

Proof. We insert ¥ =B, — B, — B, + B; in Theorem 8. We then get the
expression

(W, @ WA, W')(B, — By — By + B3)(w,® WA, W').
Consider
(W, @ WA W'Y B (w,@ WA, W')
= (14 K)(w, ® WA, W )+ K)P® P)(w,® WA, W)
+ k(W ® WA, W )(vec P)(vec P) (w,@ WA, W')
=(1+K) 4, WAL AW
Further
(Wi ®@ WA ,W') By(w,@ WA, W')
=(1+&x)(w/ @ WA, W')(P® P)
KqU®P+PRI)(w,@ WA, W')
— 1Kk(w; @ WA ;,W’')(vec P)(vec PY
- Ki(I®P+PRI)w;,@ WA, W)
= (L+K) L, WA AW A (w,) WAA W
+(L+K) A} WA AW A (w,)) WA (W'
=(1+w) A WA AW A2 (w,) WA+ L 1) A, W'
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Finally
(W@ WA, W) By(w,@ WA, W’)

=W, @ WALWII®P+PRI)Ky[(1+ KNP P)
+ sk(vec P)(vec PY 1 KJI® P+ PR N{w,;® WA, W

=L WALAW A(w,)+ A, WA W A(w)[(1 + k) Px P+ kU]
AA(w,)) WAA W+ 2,4(w,)) WA, W)

=4[ WA (A4 4 1) WAw)I[(1 +K) Px P+ 3xU]
[A(w) WA+ A1) A, W]

=11+ k) WA (A+ 2,1 WAWNPx P) A(w,) WA+ A1) A, W'

APPENDIX I. THE FINITE-SAMPLE VARIANCE MATRIX OF \/n vec S,,,:
A MATRIX DERIVATION

We define
VIEX—f pi= X
Y i =y, V) =X —'.

Clearly X'NX=Y'NY, as NY=N(X—ia')=NX. Hence /nS,, =
ﬁ {(n—1)"' Y'NY. Obviously D(vec Y'NY)=E[(vec Y'NY)(vec Y'NY)']
— [E(vec Y'NY)][E(vec Y'NY)]'. We have immediately

E(vec Y'NY)=(n—1)vec X.
The expectation of the product term is more difficult to obtain. We write

n.=1—n
Y'NY=Yn,y,y, wh )
%n,]},},, where {n,,= —~n~' (i#)).

Hence vec Y'NY =%, n;(y,®y,) and
E(vec Y'NY)(vec Y'NY')

= Z n:jnk/E()'; Yi®y, ri)

ijkt
= Z niin;_'/E(yi)”_/(®)’i)’;)+ Z n.?,'E(J"i_V,,I'®,V,'.V;)
P#j i#]

+ L mE i@y + L mE(y i ®y, )

i#Ej
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=Y ngn;E[(vec y; y/)(vec ¥; ¥;))' 1+ Y, niE(y,yi®y;y)) K

oy Iy
+Y nLE(y, yi®y v+ Y niE(yy®y; )
i i
=(n—1)n"Yvec X)(vec 2)”-+- n—n 'K(Z®X)
+(n—1Pn M)+ n—-1)n N (Z®X)
=n—1Pn"YvecZ)vecZ) +(n—1)>n""M,(x)
+n—)n U+ KNZ®ZX),

as the y; are independent with zero mean. This yields
Divec YNY)=(n—1)n"'(vec Z)}(vec ) + (n—1)> n~'M,{(x)
+n—1)n "M+ KNE®Z)—(n—1)> (vec Z)(vec X
=—(n—1)°n YvecE)vec L) +(n—1)*n "My(x)
+(n—1)n "I+ K)N(Z®2)
and finally

D(/nvec S,,)=n(n—1)"2 D(vec Y'NY)
=M(x)+ (=1 U+ KNE®ZE)— (vec X)(vec X).

APPENDIX II: SoMr USEFUL MATRIX DEFINITIONS AND PROPERTIES

In the main text we used most of the following definitions and
properties:
1. The ith unit vector e, (i=1,.., p), ie. the ith column of the
identity matrix /,;
2. The p x| summation vector 1=37_,e;=(1---1);
3. The pxgq unit matrix E,=e,e; (i=1,.., p; j=1,..,q);
4. The Kronecker product A® B=[a;B], where A=/[a;]; the

Hadamard (or Schur) product A x B=[a;b;]. In the first definition B has
arbitrary order, in the second definition B and 4 are compatible.

5. The vec operator, with property vec ABC=(C'® A) vec B.

6. The commutation matrix K=3% ,(E;®E}), with properties
Kvec C=vec C' and K(A® B) K= B® A for square matrices 4, B, and C
of equal order.

7. The p*>xp matrix J=(vec E,, .., vecE,,), where the unit
matrices are square of order p, with property J'J=1,. Further Ji=vec[,.
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8. The px p diagonal matrix A, with diagonal elements a,,, ..., a
of the p x p matrix A. Clearly J' vec A = A41.

9. The pxp matrix Ky=Y,(E;® E;). Clearly Ky4=JJ".

Remember that K, is the diagonal matrix obtained from the commutation
matrix K.

10. J'(A® B)J=Ax B for compatible square matrices A and B.
1. K,(A® B)J=(A® B)J for compatible diagonal matrices 4 and B.
12.  The diagonal matrix 4(w), implicitly defined by A(w):=w. It has

the useful property (w' ® A)J = A4(w) for compatible w, 4, and J (with p
elements).

re
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