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The paper presents some permutation test procedures for multivariate location.
The tests are based on projected univariate versions of multivariate data. For
one-sample cases, the tests are affine invariant and strictly distribution-free for the
symmetric null distribution with elliptical direction and their permutation counter-
parts are conditionally distribution-free when the underlying null distribution of the
sample is angularly symmetric. For multi-sample cases, the tests are also affine
invariant and permutation counterparts of the tests are conditionally distribution-
free for any null distribution with certain continuity. Hence all of the tests in this
paper are exactly valid. Furthermore, the equivalence, in the large sample sense,
between the tests and their permutation counterparts are established. The power
behavior of the tests and of their permutation counterparts under local alternative
are investigated. A simulation study shows the tests to perform well compared with
some existing tests in the literature, particularly when the underlying null distribu-
tion is symmetric whether light-tailed or heavy-tailed. For revealing the influence of
data sparseness on the effect of the test, some simulations with different dimensions
are also performed. � 1999 Academic Press
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1. INTRODUCTION

Several methods have been proposed to develop test statistics which are
multivariate affine invariant analogs of univariate sign and rank tests in the
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one-sample as well as in the multi-sample cases. For one-sample case,
Randles (1989) proposed an affine invariant one-sample sign test which is
strictly distribution free over a broad class of distributions with elliptical
directions. This class includes all elliptical distributions and also some
skewed distributions. Liu (1990) suggested a test based on simplicial depth
of the data and investigated the limiting behavior of the test. Peters and
Randles (1990) constructed a modified version of that in Randles (1989).
Hettmansperger et al. (1994) introduced an affine invariant sign test which
is conditionally distribution-free if the underlying distribution of variable,
say x, is reflectedly (or diagonally) symmetric about a center point, say %,
that is, x&% has the same distribution as &(x&%). For two-sample case,
Liu and Singh (1993) suggested affine invariant two-sample rank tests
bases on the notions of data depths. When the underlying distributions, say
F and G, of two samples are both not completely known, they derived,
among others, some asymptotic properties of the tests. Piterbarg and
Tyurin (1993) adopted a projected Wilcoxon type test which is based on
rankings of all possible univariate data obtainable as projections of the
multivariate samples onto various directions. They studied the behavior,
especially the tail probability, of limiting null distribution of the test
statistic. Hettmansperger and Oja (1994) introduced another sign test
for multi-sample cases which are also based on Oja's multivariate
median. They showed, assuming Oja's multivariate median is unique, that
the test statistic converges in distribution, under the null hypothesis, to a
chi-squared variable. Related works are Blumen (1958), Brown and
Hettmansperger (1987, 1989), Brown et al. (1992), Hettmansperger (1984),
Hodges (1955), Maritz (1981), Oja and Nyblom (1989), Peters and
Randles (1991), Puri and Sen (1971), Randles and Peters (1990) and the
references therein.

In this paper, we maintain our interest in the projection pursuit idea (or
Tukey's depth, 1975) and investigate some affine invariant sign and rank
tests. In one-sample case, the tests are strictly distribution-free over the
class of distributions with elliptical directions. For the broader class of
the distributions, we suggest permutation test procedures for the purpose
of computing the critical values. The permutation counterparts of the tests
are conditionally distribution-free over a broader class of distributions
which includes the angularly symmetric distributions (see Liu and Singh,
1993). In multi-sample case, the tests are also affine invariant and their
permutation counterparts are conditionally distribution-free over the class
consisting of all distributions whose univariate marginals are continuous in
certain sense. This class of distributions includes all absolute continuous
distributions. Hence all tests investigated in this paper are exactly valid.
Furthermore, it will be shown that the tests are asymptotically equivalent
to their conditional counterparts. We shall also show that the proposed
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tests can detect local alternative converging to the null as fast as square
root n, a parametric rate. In order to demonstrate how the tests work,
some simulation experiments are performed. The tests, especially the
integration type tests defined in Section 2, perform well compared with
some existing tests in the literature, particularly for the symmetric null
distribution whether light-tailed or heavy-tailed. Furthermore, some
simulation is also performed to evidence how the data sparseness affects the
performance of the tests.

This paper is organized in the following way: Section 2 contains the test
statistics and associated small sample properties. The limiting behavior of
the tests, including power study, is investigated in Section 3. Section 4 con-
tains some simulation experiments. A concluding remark is put in Section 5
in which we discuss a possible application of the test in the nonparametric
regression setting. Section 6 contains the proofs of the theorems.

2. CONSTRUCTION OF TESTS

We first adopt some definitions of symmetry of a random variable so
that the description of the results is convenient. Let x be a d-variate
variable and & }& mean the L2-norm.

Definition 1. x is elliptically symmetric if there exists a d_d matrix A
and a vector % such that A(x&%)�&A(x&%)& is distributed uniformly on Sd

and is independent of &A(x&%)&.

Definition 2 (Randles, 1989). x is symmetric with elliptical direction if
there exist a d_d matrix A and a vector % such that A(x&%)�&A(x&%)&
is distributed uniformly on Sd.

Definition 3. x is reflectedly symmetric if there exists a vector % such
that (x&%) and &(x&%) have the same distribution.

Definition 4 (Liu and Singh, 1993, p. 253). x is angularly symmetric if
there exist a d_d matrix A and a vector % such that A(x&%)�&A(x&%)&
is reflectedly symmetric.

Note that the variable x satisfying any kind of symmetry defined above
will have the following property which will be the basis of constructing the
tests below: for any projection direction a # S d=[a : &a&=1, a # Rd]

P[a$(x&%)�0]=1�2. (2.1)
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Remark 2.1. From definitions above, it is easy to see the following
relation among the classes of distributions: elliptically symmetric /
symmetric with elliptical direction or reflectedly symmetric / angularly
symmetric.

In the following context of this paper, we assume that A is d_d full-rank
matrix.

2.1. One-sample Case

Let x1 , ..., xm be an iid sample from F. We now want to test

H0 : %=%0 versus H1 : %{%0 (2.2)

for a known point %0 in Rd. Without loss of generality, assume %0=0. For
any projection direction a # Sd=[a : &a&=1, a # Rd], the projected sample
a$x1 , ..., a$xm is a univariate one. Hence a sign test can be applied to test
this location shift hypothesis:

Wm(a)=(1�- m) :
m

i=1

(I(a$xi�0)&1�2). (2.3)

For the hypothesis H0 , the supremum or quadratic functional of Wm(a)
over a # Sd can be used as a test statistic

Wm1=sup
a

|Wm(a)|, (2.4)

or

Wm2=| (Wm(a))2 d+(a), (2.5)

where +( } ) is the uniform distribution of Sd. Clearly, these two test
statistics are both affine invariant. It is known that the sampling null
distribution of a test is crucial, especially in small sample cases, for deter-
mining the critical value of the test. The following proposition shows that
the tests defined above are strictly distribution-free if the underlying
distribution of the variable x is symmetric with elliptical direction.

Proposition 2.1. Assume that the distribution of the variable x is
symmetric with elliptical direction and A is a d_d nonsingular matrix. The
tests defined in (2.4) and (2.5) are then strictly distribution-free.
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Actually, it is easy to see that

Wm(a)=(1�- m) :
m

i=1

I((a$A&1�&a$A&1&) Axi �&Axi &�0)&1�2

=: (1�- m) :
m

i=1

I(b$zi�0)&1�2=: W$m(b), (2.6)

and then

Wm1=sup
b

|W$m(b)| (2.7)

and

Wm2=| (W$m(b))2 d+(b), (2.8)

where b$=a$A&1�&a$A&1& # Sd, and z1 , ..., zm are iid with the common
uniform distribution on S d.

From this proposition, we realize that although the closed form of the
distribution of Wm1(Wm2) has not yet derived, the Monte Carlo
approximation is clearly available because the random variables with a
uniform distribution on S d can be generated by computer. Hence, the dis-
tribution of Wm1(Wm2) can be approximated at - r rate by the empirical
distribution of W (i)

m1 's (W (i)
m2 's) which are calculated basing on iid sets of

simulated data z (i)
1 , ..., z(i)

m , i=1, ..., r. The approximation will be accurate
enough as long as the number of replications r is large enough.

When the variable x is not symmetric with elliptical direction, but
angularly or reflectedly symmetric, the test will no longer be strictly dis-
tribution-free, which causes the difficulty of determining the critical values.
For solving this problem, the permutation tests will be defined in the
following which are conditionally distribution-free.

Let a } b mean that every component of the vector b is multiplied by a
common univariate variable a. Let e1 , ..., em be iid permutation variables,
that is, ei=\1, i=1, ..., m with probability values one half and let
Em=(e1 , ..., em). Define a permutation test statistic by

Wm(Em , a)=(1�- m) :
m

i=1

(I(a$e i } x i�0)&1�2), (2.9)

The resulting tests are then

Wm1(Em)=sup
a

|Wm(Em , a)| (2.10)
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and

Wm2(Em)=| (Wm(Em , a))2 d+(a), (2.11)

Proposition 2.2. Assume that the distribution of the variable x is
angularly symmetric. Let E (1)

m , ..., E (l )
m be iid copies of Em . Then for any

0<:<1, i=1, 2,

P[*[Wmi>Wmi (E ( j)
m )$ s]>l&[l:]]�([l:]+1)�(l+1), (2.12)

where the notation [c] means the largest integer part of c.

This proposition means that the tests are strictly valid in small sample
case.

Remark 2.2. Actually, for a broader class of distributions, Proposition 2.2
still holds. The variable x is said to be projectedly symmetric if there exists
a real function g( } ) on a symmetric subset of Rd, say D, which satisfies that
(1) g(x)>0 for x{0; and (2) g(x)= g(&x) and there exist a d_d matrix
A and a vector % such that A(x&%)�g(A(x&%)) is reflectedly symmetric.
The class of projectedly symmetric distributions contains the one of
angularly symmetric distributions. The class of L: -symmetric distributions
with density function f (�d

j=1 |x( j)|:) 0<:�2 is also a subclass where x( j)'s
are the components of x. As we know, :=2 corresponds to spherical dis-
tribution and :=1 to the distribution which is a multivariate extension of
the Laplace distribution. In this case, g(x)=(�d

j=1 |x( j)|:)1�:.

Remark 2.3. The above conditional tests are not the classical permuta-
tion test procedures. We name them as the permutation tests since in the
spirit, they are similar.

2.2. Two-sample Cases

Following the procedure in the one-sample case, the test statistics for
two samples can be constructed. Let x1 , ..., xm and y1 , ..., yn be two samples
with the distributions F ( } ) and F ( } &2) respectively. Let N=m+n.

Consider two sample problems:

H0 : 2=0 versus H1 : 2{0. (2.13)

For a projection direction a # Sd, two projected samples are

I. a$x1 , ..., a$xm ;

II. a$y1 , ..., a$yn .
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Then a two-sample Wilcoxon-type test statistic which is almost the same
as that defined by Piterbarg and Tyurin (1993) is

VN(a)=- nm�N {(1�mn) :
m

i=1

:
n

j=1

I(a$x i�a$yj)&1�2= . (2.14)

The resulting test statistics are

VN, 1=sup
a

|VN(a)| (2.15)

and

VN, 2=| (VN(a))2 d+(a). (2.16)

Clearly, these two test statistics are both affine invariant.
For the same reason as that in the one-sample case, it is necessary to

calculate (or approximate) the sampling null distribution of the test
statistic. Piterbarg and Tyurin studied the tail probability of the limiting
null distribution of the statistic when assuming the underlying distribution
of the variable does not have heavy tail in certain sense, see Piterbarg and
Tyurin (1993). It is not clear whether the tail probability estimation is
available for determining the critical values in finite sample cases. Taking
into account this question, the permutation technique is here recommended
for small sample cases. We will see that the permutation tests will be
exactly valid. Let R=(r1 , ..., rN) be a random permutation of (1, ..., N).
Denote zi=xi , for 1�i�m; zm+ j= yj , for 1� j�n. Define FR

ma(t)=
(1�m) �m

i=1 I(a$zri
�t) and GR

na(t)=(1�n) �n
j=1 I(a$zrm+j

�t).

VN(R, a)=| FR
ma(t) dGR

na(t)&1�2 (2.17)

The resulting permutation tests are

VN, 1(R)=sup
a

|VN(R, a)|, (2.18)

and

VN, 2(R)=| (VN(R, a))2 d+(a). (2.19)

Parallel to Proposition 2.2, we have
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Proposition 2.3. Assume that P[a$x�t] is continuous with respect to a
and t. Let R(1), ..., R(l ) be iid permutations of (1, ..., N). Then for any :>0,
i=1, 2,

P[*[VN, i>VN, i (R( j))$ s]>l&[l:]]�([l:]+1)�(l+1). (2.20)

2.3. General Cases

Since the conclusions for general cases parallel essentially to those in
two-sample cases, hence we only sketch the development of the test
statistics.

Let [x11 , ..., x1n1
], ..., [xc1 , ..., xcnc

] be c samples which are, respectively,
from F ( } &%&2i), i=1, ..., c. We want to test the hypothesis H0 : 21=
22 } } } =2c , where 21=0. For every pair (i, l ), 1�i<l�c, define

VN, (i, l ), 1=sup
a }- ninl �N {(1�ninl) :

j, m

(I(a$xij�a$xlm)&1�2)=} (2.21)

and

VN, (i, l ), 2=| \- ni nl �N {(1�n inl) :
j, m

(I(a$xij�a$xlm)&1�2)=+
2

d+(a).

(2.22)

The resulting test statistics are

VN, 1=
2

c(c&1)
:
j<l

VN, (i, l ), 1 (2.23)

and

VN, 2=
2

c(c&1)
:
j<l

VN, (i, l ), 2 . (2.24)

In the next section, we will discuss the limit behavior of the test statistics.

3. SOME LIMITING PROPERTIES

In the previous section, some small sample properties of the tests are
investigated. Making use of the permutation technique makes the tests
exactly valid. On the other hand, one of the concerns is whether the tests
and their permutation counterparts are asymptotically equivalent. We shall
give a positive answer to this question below. It is also important to know
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that, in large sample sense, what kind of alternative could be detected by
the tests. We shall present some asymptotic results about this.

For convenience of the representation of the results, a definition of
P-Brownian bridge BP is adopted; for a full account see e.g. Gine and Zinn
(1984, 1986) or Pollard (1984).

Definition 5. A P-Brownian bridge BP is a zero-mean Gaussian
process indexed by F, a class of functions which is contained in L2(P),
with covariance kernel

cov(BP( f ) BP(g))=EP( fg)&EP( f ) EP(g), f, g # F (3.1)

and the process has bounded and dp -uniformly continuous sample paths,
where d 2

p( f, g)=EP( f &g)2&(EP( f &g))2.

In order to investigate the limit behavior of the statistics under the null
hypothesis and local alternatives, we shall describe it in a general
framework. As we know, if under local alternative, the distribution of the
random variables x1 , ..., xm is contiguous to a distribution P say, it will be
dependent on m, the size of the sample. Hence we here assume that the
underlying probability measure of xi is P(m). Under the null hypothesis,
P(m)=P. The following states the asymptotic properties of Wm1 and Wm2 .

Theorem 3.1. Assume that the underlying probability measure of x i ,
P(m) and a probability measure P satisfy the following:

(a) Both P(m)(I(a$x<t)) and P(I(a$x<t)) are jointly continuous
functions of (a, t);

(b) supa, t |P(m)(I(a$x<t))&P(I(a$x<t))| � 0.

Then the empirical process [Wm(a)&- m (P(m)[a$x�0]&1�2) : a # S d]
converges weakly to a P-Brownian bridge [WP(a) : a # S d ] with covariance
kernel

k(a, b)=EP(I(a$x�0) I(b$x�0))&EP[a$x�0] EP[b$x�0]. (3.2)

Hence, under the null hypothesis H0 , - m (P(m)[a$x�0]&1�2)=0 and

Wm1 O sup
a

|WP(a)|, (3.3)

Wm2 O | (WP(a))2 d+(a). (3.4)

Furthermore, under local alternative with - m (P(m)[a$x�0]&1�2) � f (a)
uniformly over a # S d, then f ( } ) is continuous and bounded and
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Wm1 O sup
a

|WP(a)+ f (a)|, (3.5)

Wm2 O | (WP(a)+ f (a))2 d+(a). (3.6)

Remark 3.1. In Theorem 3.1, we assume that every marginal distribution
of P (and of P(m)) at the projection direction a is continuous with respect
to a and t. This assumption is stronger than that P (and P(m)) is con-
tinuous. On the other hand, it is weaker than that P (and P(m)) is absolute
continuous.

As to the permutation empirical process [Wm(Em , a) : a # Sd], we have
the following limiting property. Define the sample probability space
(0, B, P) and for | # 0, write the permutation empirical process as
[Wm(|, Em , a) : a # S d].

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold and
assume further that

sup
a, b

|EP(m)(I(a$x�0)(I(b$x�0)))&EP(I(a$x�0) I(b$x�0))| � 0 (3.7)

Then there exists a measure-one subset of 0, 00 , such that for any | # 00

the permutation empirical process [Wm(|, Em , a) : a # S d] converges weakly
to a P-Brownian bridge [PW(a) : a # Sd ] with covariance kernel

k(a, b)=EP(I(a$x�0)&1�2)(I(b$x�0)&1�2). (3.8)

Consequently, under the null hypothesis H0 , for any | # 00

Wm1(|, Em) O sup
a

|PW(a)|, (3.9)

Wm2(|, Em) O | (PW(a))2 d+(a). (3.10)

Remark 3.2. Comparing Theorem 3.1 with Theorem 3.2, we learn that,
under the null hypothesis, the test statistic Wm1 (and Wm2) and the
associated permutation one have the same limit. The tests can detect, in
the large sample sense, local alternatives converging to the null as fast as
square root n, a parametric rate. Furthermore, the tests can not only be
applied to test the location shift problem, but they can also test whether
P[a$x�0]=1�2 for all a # Sd, a more general hypothesis.

Following the above conclusions, the convergence of quantiles is established
immediately.
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Denote by * (i)
m ( } , Em), * (i)

m and *(i) the 1&: quantiles of the distributions
of Wmi ( } , Em) given Xm=[x1 , ..., xm], Wmi , and Wi i=1, 2 respectively.

Corollary 3.3. Assume that the iid sample [x1 , ..., xm] is from a
continuous distribution F satisfying condition (a) in Theorem 3.1. Then under
the null hypothesis H0 , for any | # 00

* (i)
m (|, Em) � *(:) in Probab. (3.11)

* (i)
m � *(:) in Probab. (3.12)

as m � �.

We now turn to the two-sample case. The following states the convergence
of the empirical process [VN(a) : a # S d] and then of VN, 1 and of VN, 2 .

Let F (m) and G(n) be, respectively, the distributions of x$i s and y$j s and let
F (n)

a be the distribution of a$x$i s and let P(N) be the empirical probability
measure of [x1 , ..., xm , y1 , ..., yn].

Theorem 3.4. Assume that F (m)
a (t), G (n)

a (t) and two distributions Fa(t)
and Ga(t) are continuous with respect to a and t and limm � � m�N= p,
(0<p<1). Assume further that

sup
a, t

|F (m)
a (t)&Fa(t)| � 0,

(3.13)

sup
a, t

|G (n)
a (t)&Ga(t)| � 0

as m, n � �. Then the empirical process [VN(a)&- nm�N (P(N)(a$x<a$y)
&1�2) : a # Sd] converges weakly to a P-Brownian bridge [V(a) : a # S d]
with the covariance kernel

k(a, b)=(1& p) EF (1&Ga(a$x))(1&Gb(a$x))

+ pEG(1&Fa(a$y))(1&Fb(a$y)). (3.14)

Hence, under null hypothesis H0 , - nm�N (P(N)(a$x<a$y)&1�2)=0 and

VN, 1 O sup
a

|V(a)| (3.15)

and

VN, 2 O | (V(a))2 d+(a). (3.16)

Furthermore, under local alternative with - nm�N (P(N)[a$x�a$y]&1�2) �
g(a) uniformly over a # Sd, one has g( } ) is continuous and bounded and
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VN, 1 O sup
a

|V(a)+ g(a)|, (3.17)

VN, 2 O | (V(a)+ g(a))2 d+(a). (3.18)

Remark 3.3. Piterbarg and Tyurin (1993, Theorem 1, p. 149) derived
the limit null distribution of the test statistic when assuming the underlying
continuous density is dominated by c�(1+&x&r) for all x # Rd where r�d,
the dimension of the variable x. We now need not assume this condition
on the underlying distribution of the variable.

The limiting properties of the permutation empirical process
[VN(RN , a) : a # Sd] are stated as follows. Assume with no loss of
generality that the random variables, xi 's and yi 's lie in a common sample
probability space. Without confusion, the sample probability space is still
defined by (0, B, P).

Theorem 3.5. Assume the conditions in Theorem 3.4 hold. Then there
exist a measure-one subset of 0, 00 such that for any | # 00 , the permuta-
tion empirical process [VN(|, RN , a): a # Sd] converges weakly to a
P-Brownian bridge [RV(a)=� BH(a, a$t) dH(t) : a # Sd], where H(t)=
dF+(1&d ) G. Hence, under null hypothesis H0 ,

VN, 1(|, R) O sup
a

|RV(a)|, (3.19)

VN, 2(|, R) O | (RV(a))2 d+(a). (3.20)

Note that under the null hypothesis, the Gaussian processes in
Theorem 3.4 and 3.5 are the same one. Following this conclusion, the
convergence of the quantiles is established.

Denote by * (i)
N ( } , R), * (i)

N and * (i)
V the 1&: quantiles of the distributions

of VN, i ( } , R) given (Xm , Ym), VN, i , and Vi i=1, 2 respectively where Xm=
[x1 , ..., xm] and Yn=[ y1 , ..., yn].

Theorem 3.6. Under the conditions in Theorem 3.4, for any | # 00

* (i)
N (|, R) � * (i)

V (:) in Probab. (3.21)

* (i)
N � * (i)

N (:) in Probab. (3.22)

as n, m � � and m�N � d.
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4. SIMULATIONS AND POWER COMPARISONS OF TESTS

In order to demonstrate the performance of the permutation tests, some
small-sample simulation experiments and comparisons with other existing
tests in the literature were performed. In order that the simulations are
comparable with other tests, we used, in the one-sample cases, six different
trivariate distributions and in the two-sample cases, four other trivariate
distributions, which have been considered by Randles (1989, p. 1048) and
Randles and Peters (1990, p. 4231�4233) already. On the other hand, in
order to take into account the influence of the dimension, we perform some
simulations with different dimensions of the variables. The results will be
presented in the following subsections. There is one word about the
calculating the test statistics. The statistics are all the supremum or the
integration on the unit supersphere surface Sd. For calculating them, we
randomly generate l variables ai , i=1, ..., l distributed uniformly on Sd and
use the maximum or the average of the statistics at every direction ai

instead of the test statistics in the practical use, that is, for instance,
Wm1l=max1�i�l |Wm(ai)| is used instead of Wm1 . In the simulation, we
chosen l=dn2.

4.1. One-sample Cases

In the simulation results reported in the Tables below, the sample size is
n=20, the dimension of random variable, x, di=3, and the following
distributions of the variable are investigated in which the first five
distributions were located at +=(t%, t%, t%)$ for t=0, 1, 2, 3, (see Randles
1989):

Normal I��x has the trivariate standard normal distribution N(0, I3),
%=0.15;

Uniform��x=zu1�3�(z$z)1�2 where ztN(0, I3) and u is independent
and uniform (0, 1), %=0.08;

T��x=z�(S�3)1�2 where ztN(0, Id) and S is independent with a
chi-square distribution with 3 df, %=0.19;

Cauchy��x has the same distribution as a T with 1 df, %=0.21;

Skewed I��x=20z(1+z1(z$z)&1�2) where ztN(0, I3) and z1 is the
first component of z, %=0.8;

Skewed II��the distribution of x is the same as in Skewed I except
that the direction of shift was changed to +=(t%, 0, 0)$, %=4.0.

The basic experiment was performed 1000 times. The nominal level was
0.05. Tables 1 and 2 show the proportion of times out of 1000 that each
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TABLE 1

Simulation Power of Test Wm1 in One-sample Case,
m=20

0 1 2 3

Uniform 0.0430 0.3340 0.7650 0.9560
Normal I 0.0550 0.1030 0.3040 0.5850
Cauchy 0.0480 0.1240 0.3020 0.5480
Student t 0.0540 0.1190 0.3480 0.6580
Skewed I 0.0520 0.0810 0.1750 0.3120
Skewed II 0.0450 0.0900 0.1480 0.2560

procedure rejected H0 as the simulation power. Table 1 shows the simulated
power of the test Wm1 and Table 2 for Wm2 .

For revealing the influence of the dimension of variable, the simulation
with different dimensions was also performed. The underlying distribution
of the variable was Normal I listed above. The dimensions conducted were
from 3 to 8. The sample size was 20. The basic experiment was performed
1000 times. The nominal level was 0.05. The simulation results are pre-
sented in Tables 3 and 4 for the tests Wm1 and Wm2 .

Look at Tables 1 and 2. The first finding is that Wm2 is better than Wm1

in most of the cases we conducted. When the underlying null distribution
is elliptically symmetric, either light-tailed or heavy-tailed, we see that,
comparing with three tests listed in Randles (1989, p. 1048), the perfor-
mance of Wm2 is better than that of them. The performance of Wm1 is not
encouraging except for the uniform case where Wm1 is better than all three
in Randles (1989). On the other hand, when the distribution is skewed, the
performance of the tests in Randles (1989) is better than both tests in this
paper.

TABLE 2

Simulation Power of Test Wm2 in One-sample Case,
m=20

0 1 2 3

Uniform 0.0480 0.5260 0.9120 0.9960
Normal I 0.0460 0.1300 0.4120 0.7340
Cauchy 0.0520 0.1180 0.4120 0.7240
Student t 0.0440 0.1380 0.4920 0.8380
Skewed I 0.0410 0.0940 0.1640 0.2840
Skewed II 0.0580 0.1060 0.3020 0.4480
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TABLE 3

Simulation Power of Test Wm1 in One-sample Case,
m=20

0 1 2 3

dim 3 0.0460 0.1300 0.4210 0.7340
dim 4 0.0160 0.04100 0.2090 0.4950
dim 5 0.0301 0.1020 0.2520 0.5530
dim 6 0.0300 0.0830 0.3230 0.6980
dim 7 0.0410 0.0870 0.4110 0.8170
dim 8 0.0260 0.0940 0.3780 0.7790

From Table 4, it is somewhat surprised that the test Wm2 has higher
power with higher dimension which lies in a moderate region and is able
to hold the level as well. However with getting higher dimension (dimen-
sion is larger than or equal to 7) the test may not continue to maintain in
this status. This is reasonable due to that sample size 20 is too small accord-
ing to the dimension. For Wm1 , the performance is not encouraging, even
in the case of dimension 4, the significance level cannot be held. Hence in
the practical use, the integration type statistic may be better to use.

4.2. Two-sample Cases

The Monte Carlo results presented are based on 1000 pairs of samples,
each of size 15. The permutation procedure is performed 1000 times for
determining the critical values. As before, the simulation power is the
proportion of rejecting he null out of 1000.

The samples are from the following four different distributions which
have been investigated by Randles and Peters (1990) already. The locations

TABLE 4

Simulation Power of Test Wm2 in One-sample Case,
m=20

0 1 2 3

dim 3 0.0550 0.1030 0.3040 0.5850
dim 4 0.0440 0.1420 0.5020 0.8560
dim 5 0.0520 0.1720 0.6060 0.9220
dim 6 0.0520 0.1520 0.6160 0.9580
dim 7 0.0680 0.1820 0.6900 0.9740
dim 8 0.0160 0.1040 0.5800 0.9800
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TABLE 5

Simulation Power of Test WN, 1 in Two-sample Case,
m=n=15

0 1 2 3

Normal II 0.0330 0.2550 0.7510 0.9170
Chauchy 0.0310 0.1000 0.2110 0.2140
Mixed I 0.0400 0.1620 0.7600 0.9610
Mixed II 0.0300 0.0920 0.3940 0.6930

of distributions of x and y are %=(0, 0, 0) and 2=t(a, a, a) for the
Cauchy, mixed I and mixed II below and 2=t(a, a, 0) for the normal II.

Normal II��x has the trivariate normal distribution N(0, V ), where
the element of V, say vij=0.9 for i{ j; =1 for i= j and a=&0.2;

Cauchy��x has the Cauchy distribution listed in one-sample case and
a=0.2;

Mixed I��x has the distribution which is obtained by selecting the
probability 0.9 from a N(0, I3) and with probability 0.1 from N(0, 400_I3)
and a=0.4;

Mixed II��x has the distribution which is obtained by selecting the
probability 0.9 from a N(0, V ) and with probability 0.1 from N(0, 400_V )
where V is the same as in Normal II in subsection 4.1, and a=0.4.

In two-sample cases we conducted, the permutation test WN, 2 can hold
the significance level and it, comparing to the power of the tests
investigated in Randles and Peters (1990), does well whether light-tailed
or heavy-tailed symmetric distribution. For the mixed distributions, the

TABLE 6

Simulation Power of Test WN, 2 in Two-sample Case,
m=n=15

0 1 2 3

Normal II 0.0500 0.2210 0.7180 0.9370
Chauchy 0.0510 0.1160 0.2470 0.2690
Mixed I 0.0380 0.1900 0.7110 0.9480
Mixed II 0.0550 0.1410 0.5130 0.7800
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TABLE 7

Simulation Power of Test WN, 1 in Two-sample
Case, m=n=15

0 1 2 3

dim 3 0.0330 0.2550 0.7510 0.9170
dim 4 0.0420 0.1310 0.4760 0.8660
dim 5 0.0360 0.1240 0.4330 0.8130
dim 6 0.0370 0.1090 0.3630 0.7550
dim 7 0.0300 0.1140 0.3280 0.6810
dim 8 0.0390 0.0820 0.3190 0.5970

permutation ones still do well in the mixed I case, but the power of them
is in the mixed II case lower than those in Randles and Peters (1990). The
performance of WN1 is not so encouraging. The actual percentage of H0

has been rejected is lower than the nominal level. (See Tables 5 and 6.)
We also performed some simulations to evidence how the influence of

the data sparseness on the test effect is. The underlying distribution of the
variable was Normal II listed above. The dimension conducted were from
3 to 8. The sample sizes were still both 15. The replication time and the
nominal level were the same as before. The results are reported in Tables
7 and 8 for the tests WN, 1 and WN, 2 .

Similar to one-sample case, the performance of integration type test
WN, 2 is still encouraging. Even in the case of dimension 8, the test can still
hold the level and have good power although it is getting slowly lower with
increasing the dimension. But WN, 1 will not be able to hold the level.

TABLE 8

Simulation Power of Test WN, 2 in Two-sample
Case, m=n=15

0 1 2 3

dim 3 0.0500 0.2210 0.7180 0.9370
dim 4 0.0560 0.1740 0.6080 0.9050
dim 5 0.0480 0.1280 0.4990 0.8830
dim 6 0.0420 0.1350 0.4720 0.8520
dim 7 0.0490 0.1070 0.3830 0.7520
dim 8 0.0440 0.1360 0.3680 0.7310
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5. A CONCLUDING REMARK

We would like to give a comment on a possible application to testing
problem in regression.

Suppose the underlying model is

Y=( y1 , ..., yN)$=3+T(X )+=, (5.1)

where Y is the N_d data matrix of dependent variables, X is a known full
rank N_p design matrix, T is an unknown smooth function of X,
3=(%, ..., %)$ is a N_d matrix of unknown location parameters and = is an
N_d matrix of random errors. We here assume the rows of = are iid
d-variate random vectors with the distribution F satisfying that the
marginal distribution Fa(t) at the projection direction a is continuous with
respect to a and t. The hypothesis to be tested is H0 : T( } )#0. This is
testing whether the predictor has no effect on a response variable. It is a
multivariate extension of univariate problem investigated, for example,
Manson and Jernigan (1989), Buckley (1991), Barry and Hartigen (1990),
Eubankand Hart (1993), Stute (1997), Stute et al. (1998) and Zhu and
Lam (1994). The following is a test constructed by the procedure in
Section 2. Break Y into two parts Y1=( y1 , ..., y[N�2])$ and Y2=
( y[N�2]+1 , ..., yN)$ and then construct a test similar to that in Section 2. If
the sample size N is even, then let zj ( yj& y[N�2]+ j)

TN, 1=| max
1�i�[N�2] \- 2�N :

i

j=1

(I(a$zj�0)&1�2)+
2

d+(a). (5.2)

If the size N is odd, the test may be constructed as

TN, 2 =| max
1�i�[N�2], 1�l�[N�2]+1

_\1�- N :
i

j=1

:
l

m=1

(I(a$yj�a$y[N�2]+m)&1�2)+
2

d+(a). (5.3)

6. APPENDIX

Proofs of Theorems

Proofs for the Conclusions of Section 2

Proof of Proposition 2.2. Recall the notation ``a } b'' in Section 2.
Without loss of generality, assume that x is reflectedly symmetric, that is,
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x and &x have the same distribution. Note that x=e } (e } x)=: e } x*
where e=\1 with probability value one half. Via some elementary
calculation, the following equivalence holds: that x, e and x* are independent
and x, x* have the same distribution is equivalent to that x is reflectedly
symmetric. Let X*m=(x*1 , ..., x*m), and define Em b E (1)

m =(e1 } e (1)
1 , ..., em } e (1)

m )$.
Then the set [Wmi (Xm)>l&[l:] of Wmi (E ( j)

m , Xm)$s] equals exactly the
set [Wmi (Em , X*m)>l&[l:] of Wmi (Em b E ( j)

m , X*m), j=1, ..., l]. It is easy to
check that [Em , Em b E ( j)

m , j=1, ..., l] are iid m-dimensional variables.
Indeed, for any t and s # E, a set consisting of all n-dimensional variables
of the form (\1, ..., \1), say [t1 , ..., t2m],

P[Em b E (1)
m =t, Em b E (2)

m =s]=
1

2m :
2m

j=1

P[E (1)
m b tj=t, E (2)

m b tj=s]

=
1

2m :
2m

j=1

1
2m

1
2m

=P[Em b E (1)
m =t]P[Em b E (2)

m =s].

The independence between Em and Em b E ( j)
m can be checked in the same

way. Hence, when given X*m , Wmi (Em , X*m) and Wmi (Em b E ( j)
m , X*m), are

l+1 iid variables, which implies that

P[Wmi (Em , X*m)>l&[l:] of Wmi (Em b E ( j)
m , X*m)$ s | X*m]�

[l:]+1
l+1

.

The proof is concluded from integrating X*m .

Proof of Proposition 2.3. Proving this conclusion is a standard
argument (e.g. Bickel, 1969). Hence the detail of the proof is omitted.

Proofs for the Theorems in Section 3

Proof of Theorem 3.1. The conclusion is just a direct consequence of
Corollary 2.7 of Gine and Zinn (1991, p. 771) since the conditions in that
result can be satisfied in our case.

Proof of Theorem 3.2. It is known that (e.g. see Alexander, 1984)

sup
a, b }

1
m

:
m

i=1

(I(a$x i�0)&1�2)(I(b$xi�0)&1�2)

&EP(m)(I(a$xi�0)&1�2)(I(b$xi�0)&1�2) }� 0 a.s.
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as m � �. Combining (3.7), we have

sup
a, b }

1
m

:
m

i=1

(I(a$xi�0)&1�2)(I(b$x i�0)&1�2)

&EP(I(a$x�0)&1�2)(I(b$x�0)&1�2) } � 0 a.s.

Consider the random variable x as a function on the sample space 0. Let

00 ={| : sup
a, b }

1
m

:
m

i=1

(I(a$x i (|)�0)&1�2)(I(b$x i (|)�0)&1�2)

&EP(I(a$x(|)�0)&1�2)(I(b$x(|)�0)&1�2) }� 0= . (6.1)

00 is then a subset of the sample space 0 with probability measure one. In
the following, we always assume without further mentioning that | # 00 for
the given [x1(|), ..., xm(|), ...]. Without confusion, we simply write
[x1 , ..., xm , ...] for [x1(|), ..., xm(|), ...]. We need to prove the fidis con-
vergence and the uniform tightness of the process. The fidis convergence
can be easily achieved by the CLT together with (6.1). So omit the details.
As to the uniform tightness, all we need to do is to show that for any '>0
and =>0, there exists a $>0 for which

lim sup
m � �

P[sup
[$]

|Wm(Em , a)&Wm(Em , b)|>' | Xm]<=, (6.2)

where [$]=[(a, b) : d(a, b)=- E(I(a$x�0)&I(b$x�0))2�$]. Since the
limiting properties are being investigated as m � �, m is always considered
to be large enough below which simplifies some arguments of proof:

Note that Wm(Em , a)=(1�- m) �m
i=1 (I(a$ei } xi�0)&1�2)=(1�- m)

�m
i=1 ei (I(a$x i�0)&1�2). Write P%m for the sighed measure that places

mass ei �m at xi . We then write the LHS of (6.2) in another form:

lim sup
m � �

P[sup
[$]

- m |P%m(I(a$x�0)&I(b$x�0))|>' | Xm]. (6.3)

Let (2$)=[(a, b) : dm(a, b)=- (1�- m) �m
i=1 (I(a$xi�0)&I(b$x i�0))2�

2$]. By the uniform strong law of large numbers, we have

sup
a } 1m :

m

i=1

(I(a$xi�0)&I(b$xi�0))&E(I(a$x�0)&I(b$x�0) }� 0 a.s.

(6.4)
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as m � �. Then

P[[$] # (2$)] � 0 (6.5)

as m � �. Consequently, the value of (6.3) can be bounded by

lim sup
m � �

P[sup
(2$)

- m |P%m(I(a$x�0)&I(b$x�0)|>' | Xm]. (6.6)

Note that the class of functions e(I(a$x�0)&1�2) over Sd is a V-C class.
Following almost the same argument of the equicontinuity lemma (see, e.g.
Pollard 1984, pp. 150�151), (6.2) can be derived. We here omit the details
and complete the proof.

In the following we first prove Theorem 3.5, the argument can be used
to prove Theorem 3.4.

Proof of Theorem 3.5. Let HNa(t)=(m�N) Fma(t)+(n�N) Gna(t)) and
Ha(t)= pFa(t)+(1& p) Ga(t)). Applying Theorem 1 of Praestgaard (1995,
p. 309), for almost all series [x1 , ..., xm , ] and [ y1 , ..., yn]

[- nm�N (F R
ma(t)&GR

na(t)) : a # S d, t # R1]

=[- mN�n (F R
ma(t)&HNa(t)) : a # Sd, t # R1]

O RVH=: [RVH(a, t) : a # Sd, t # R1], (6.7)

where RVH is a P-Brownian bridge where H= pF+(1& p) G. The
convergence is convergence in distribution in l�(F) consisting of all of
bounded, real-valued functions defined on F where F is the class of
indicator functions of half spaces [a$} �t]. As usual, (see, Dudley, 1978,
p. 901 or Gine and Zinn, 1984, 1986), the supremum norm on this space
is considered. Note that all of sample paths of RVH is contained in
C(F, H), a sub-collection consisting of all bounded, uniformly continuous
function under the semimetric defined in (3.1). It is known that C(F, H)
is separable (e.g. see Pollard, 1984, p. 169, ex. 7). Furthermore, any point
in C(F, H) can easily be showed to be completely regular (Pollard, 1984,
p. 67). By the representation theory (e.g. Pollard, 1984, p. 71), we have,
under uniform norm,

[- mN�n (F R
ma(t)&HNa(t)) : a # S d, t # R1]

� [RVH(a, t) : a # Sd, t # R1] a.s. (6.8)
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Consequently, recalling (z1 , ..., zN)=(x1 , ..., xm , y1 , ..., yn) and letting
HN( } )=1�N �N

j=1 I(zj� } ),

- nm�N | F R
ma(t) dGR

na(t)&1�2

=- nm�N | (F R
ma(t)&GR

na(t)) dGR
na(t)+o(1)

=- mN�n | (F R
ma(t)&HNa(t)) dGR

na(t)+o(1)

=- mN�n (N�n) | (F R
ma(t)&HNa(t)) dHNa(t)

&- mN�n (m�n) | (F R
ma(t)&HNa(t)) dF R

ma(t)+o(1)

=- mN�n(N�n) | (F R
ma(t)&HNa(t)) dHNa(t)

(integrating by parts)

&- mN�n (m�n)�2+- mN�n (m�n)

&- mN�n (m�n) | F R
ma(t) dHNa(t)+o(1)

=- mN�n | (F R
ma(t)&HNa(t)) dHNa(t)+o(1)

=| RVH( } , a, t) dHNa(t)+op(1)

=| RVH( } , a, a$s) dHN(s)+op(1). (6.9)

For each | # 0, RVH(|, a, a$s) is continuous on Sd_Rd and uniformly
bounded. Let supa, s |RVH(|, a, a$s)|=: c. Since sups |HN(s)&H(s)| � 0
a.s. as N � �, then for any cube $ # Rd, |� (I(z # $)) dHN&EH(I(z # $))|
� 0 a.s. Denote 2k=[&k, k]d and 2c

k its complement set in Rd. For any
=>0, there exists a constant k such that
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sup
a } | I(s # 2c

k) RVH(|, a, a$s) d(HN(s)&H(s))}
�c | I(s # 2c

k) d(HN(s)&H(s))|�=. (6.10)

Since RVH(|, a, a$s) is uniformly continuous on S d_2k , there exist then
a partition of 2k , say, B small cubes $1 , ..., $B such that for s l* # $ l ,
l=1, ...B

sup
s # $j

sup
a # Sd

|RVH(|, a, a$sj*)&RVH(|, a, a$s)| �=. (6.11)

Hence for any | # 00

sup
a } | I(s # 2) RVH(|, a, a$s) d(HN(s)&H(s))}

� :
B

l=1

sup
a } | (I(s # $l) RVH(|, a, a$s) d(HN(s)&H(s))

&I(s # $l) RVH(|, a, a$sl*) d(HN(s)&H(s))}
+c :

B

l=1
} | (I(s # $l)) dHN&EH(I(s # $l))}

� :
B

l=1

sup
a } | (I(s # $l) RVH(|, a, a$s) d(HN(s)&H(s))

&I(s # $l) RVH(|, a, a$sl*) d(HN(s)&H(s))} +op(1)

�=+op(1). (6.12)

The proof is concluded from combining (6.9).

Proof of Theorem 3.4. Applying Corollary 2.7 of Gine and Zinn (1991,
p. 771), it is easy to see that [- m (Fma(t)&F (m)

a ) : a # S d, t # R1] and
[- n (Gna(t)&G (n)

a ) : a # S d, t # R1] converge weakly, respectively, to the
P-Brownian bridges BF and BG . Following the argument in proof of
Theorem 3.5, we have
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- nm�N {| Fma(t) dGna(t)&| F (m)
a (t) dG (n)

a (t)=
=- nm�N | (Fma(t)&F (m)

a (t)) dGna(t)

&- nm�N | (Gna(t)&G (n)
a (t)) dF (m)

a (t)+o(1)

=- 1& p | (BF (a, t)) dGna(t))

&- p | (BG(a, t)) dF (m)
a (t)+o(1)

=- 1& p | (BF (a, t)) dGa(t))

&- p | (BG(a, t)) dFa(t)+o(1). (6.13)

The proof is completed.
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