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Abstract

In this paper, we suggest the conditional test procedures for testing elliptical symmetry of

multivariate distribution. The conditional tests are exactly valid if the symmetric center and

the shape matrix are given and are asymptotically valid if they are unknowns to be estimated.

The equivalence, in the large sample sense, between the conditional tests and their

unconditional counterparts is established. The power behavior of the tests under global as

well as local alternatives is investigated theoretically. A small simulation study is performed.
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1. Introduction

Let X be a d-dimensional random vector. The distribution of X is said to be

elliptically symmetric with a center mARd and a matrix A if for all orthogonal d � d

matrix H the distributions of HAðX � mÞ are identical. Throughout this paper, we
assume that the covariance matrix S of X is positive definite. In this case, A is equal

to S�1=2: We call S the shape matrix.
In practical use, the elliptically symmetric distribution (the elliptical distribution

for short) has received considerable attention. The elliptical distribution possesses
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many nice properties which are analogous to those of multivariate normal
distribution. Hence, if one has known that the variable is elliptically symmetrically
distributed, some tools for classical multivariate analysis, as Friedman [10] pointed
out, may be still applicable for analyzing the data. Additionally, the dimensional
reduction techniques have quickly been developed in recent years for overcoming the
curse of dimensionality in data analysis. One of them is sliced inverse regression
(SIR) (see [13]). The most important subclass of distributions satisfying the designed
condition of SIR is just the one of the elliptical distributions. Consequently, testing
elliptical symmetry is important and relevant in multivariate analysis. The hypothesis
to be tested is that

H0 : The distribution of X is elliptically symmetric: ð1:1Þ

There are many references concerning this issue in the literature. For example,
among others, [1–3,5,7,9,11,12,16,18]. Most of them are for spherical symmetry, a
special case of the elliptical symmetry, where the symmetric center and the shape
matrix of the random vector X are both known. Li et al. [14] proposed some Q–Q
plots to test for the spherical and elliptical symmetry.

The proposed test statistics often have intractable sampling and limiting null
distributions. Hence how to determine critical values is a crucial issue in this setup.
Zhu et al. [17] suggested a bootstrap test for the spherical symmetry and proved that
the proposed bootstrap test is asymptotically valid. As an alternative, we in the
present paper develop conditional test procedures. The tests are easy to implement
and have some nicer properties than the bootstrap tests. There are the following
three points: (a) the conditional tests are exactly valid for the spherical symmetry;
(b) they are distribution-free under the null hypothesis; (c) the distributions of the
conditional tests approximate to the null distributions of their unconditional
counterparts.

The paper is organized in the following way. Section 2 contains some tests which
handle separately the cases with the known and unknown center and shape matrix
and the asymptotic behavior of the test statistics under null hypothesis and
alternatives. The conditional test procedures are defined in Section 3 and the exact
and asymptotic validities of the tests are also presented in this section. A small
simulation is contained in Section 4. All proofs of the theorems are postponed to
Section 5.

2. Test statistic and asymptotics

As a slight extension of Ghosh and Ruymgaart’s [11] test, we define test statistic as
follows:Z

Sd

Z
I

ð
ffiffiffi
n

p
Pnfsinðta0ÂðX � #mÞÞgÞ2wðtÞ dt dnðaÞ; ð2:1Þ

where Pn is the empirical measure based on the sample points fXl ;y;Xng which are

iid copies of X ; Pnðf Þ stands for ð1=nÞ
Pn

j¼1 f ðXjÞ for each function f ð
Þ; Â ¼ S�1=2
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or= #S�1=2; the sample covariance and #m ¼ m or= %X the sample mean, respectively,
in accordance to the parameters being known or unknown, wð
Þ is a weight

function with a compact support, aASd ¼ fa : jjajj ¼ 1; aARdg; n is the uniform

distribution on Sd and I is a working region. In this paper, I is compact subset
of the real line R: The null hypothesis H0 is rejected for the large values of the test
statistic.

In order to study the asymptotic properties of the test statistic, we define the
empirical process by

Vn ¼ fVnðXn; #m; Â; t; aÞ ¼
ffiffiffi
n

p
Pnfsinðta0ÂðX � #mÞÞg : ðt; aÞAI � Sdg; ð2:2Þ

and the test statistic in (2.1) can be rewritten as

En ¼
Z

Sd

Z
I

fVnðXn; #m; Â; t; aÞg2
dwðtÞ dnðaÞ: ð2:3Þ

The limit behavior, under the null hypothesis, of the empirical processes defined
above is presented in the following theorem and corollary. For simplicity, call a

Gaussian process with index set I � Sd is continuous if its sample paths are bounded

and uniformly continuous with respect to ðt; aÞAI � Sd :

Theorem 2.1. Assume that PfX ¼ mg ¼ 0 and EjjX � mjj4oN: Then under H0

(1) If the center m is given and then #m ¼ m; the process Vn converges in distribution to a

centered continuous Gaussian process V1 ¼ fV1ðt; aÞ : ðt; aÞAI � Sdg with the

covariance kernel:

Efsinðta0AðX � mÞÞ sinðsb0AðX � mÞÞg : for ðt; aÞ; ðs; bÞAI � Sd : ð2:4Þ

(2) Let

kðt; a; xÞ ¼ sinðta0Aðx � mÞÞ � ta0Aðx � mÞEðcosðta0AðX � mÞÞÞ: ð2:5Þ

If the center m is an unknown parameter and then #m ¼ %X; the process Vn con-

verges in distribution to a centered continuous Gaussian process V2 ¼
fV2ðt; aÞ : ðt; aÞAI � Sdg with the covariance kernel: for ðt; aÞ; ðs; bÞAI � Sd ;

Efkðt; a; xÞkðs; b; xÞg: ð2:6Þ

The convergence of the test statistic is a direct consequence of Theorem 2.1.

Corollary 2.2. The test statistic En associated with known and unknown center

converges in distribution to the quadratic functionals
R

Sd

R
I

V 2
1 ðt; aÞ dwðtÞ dnðaÞ andR

Sd

R
I

V 2
2 ðt; aÞ dwðtÞ dnðaÞ; respectively.

We now investigate the behavior of the test under alternatives. For convenience,

let sinðiÞðcÞ be ith derivative of sinð
Þ at point c: If there is a direction aASd such that
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E½sinðta0AðX � mÞÞ
a0 for some tAI ; it is easily derived that from the continuity of
function E½sinðta0AðX � mÞÞ
 w.r.t. ðt; aÞ; the test statistic En converges in
distribution to infinity as in this case the process Vn converges in distribution to
infinity. This means that the tests are consistent against global alternatives. The rest
of this section focuses on the investigation with local alternatives.

Suppose that the iid d-variate vectors Xi ¼ Xin have the expression Zi þ Yi=na;
i ¼ 1;y; n for some a40: The center m ¼ mn ¼ EðZÞ þ EðY Þ=na: When Zi is
independent of Yi; the distribution of Xin is a convolution of two distributions, and
one of them converges to the degenerate distribution at zero with the rate na in
certain sense.

Theorem 2.3. Assume that the following conditions hold:

(1) Both distributions of Z and Y are continuous. In addition, Z is elliptically

symmetric with the center EðZÞ and the shape matrix S:
(2) There is an integer l being the smallest one such that

sup
ðt;aÞAI�Sd

jBlðt; aÞj ¼: sup
ðt;aÞAI�Sd

jEððta0AðY � EðY ÞÞl sinðlÞðta0AðZ � EðZÞÞÞÞja0;

EðjjY jj2lÞoN; and EðjjY jj2ðl�1ÞjjZjj2ÞoN: ð2:7Þ

Then when a ¼ 1=ð2lÞ; if #m ¼ m

En )
Z

Sd

Z
I

ðV1ðt; aÞ þ 1=l!Blðt; aÞÞ2 dwðtÞnðaÞ; ð2:8Þ

and if #m ¼ %X;

En )
Z

Sd

Z
I

ðV2ðt; aÞ þ 1=l!Blðt; aÞÞ2 dwðtÞnðaÞ; ð2:9Þ

where ‘‘)’’ stands for the convergence in distribution, V1 and V2 are the Gaussian

processes defined in Theorem 2.1.

Remark 2.1. Comparing with the limiting variables under the null hypothesis in
Corollary 2.2 and the ones under the alternative in Theorem 2.3, we see that the test

can detect the local alternatives distinct Oðn�1=ð2lÞÞ from the null. In some cases, this
rate can reach a parametric one, that is, l ¼ 1: For example, suppose that Z has the

uniform distribution on Sd and Y ¼ ðZ2
1 � 1;y;Z2

d � 1Þ; we can see easily that, via

a little elementary calculation, supðt;aÞAI�Sd jEðta0AY cosðta0AZÞÞja0: Hence, l ¼ 1:

On the other hand, when Z and Y are independent, lX3; namely, the test can detect,

at most, alternative distinct Oðn�1=6Þ from the null. In fact, it is clear that for l ¼ 1; 2

sup
ðt;aÞAI�Sd

jEððta0AY Þl sinðlÞðta0AZÞÞj ¼ 0:

We also note that the test is Cramer–von Mises type and then is omnibus because of
the absolute and square values in the test statistic, and that therefore the test is
asymptotically unbiased for all shapes of the function Bl :
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3. Conditional test procedures

The basic idea of our method is quite simple and the test procedures are easy to
implement. Consider the known center-shape matrix case first. The conditional test
procedures are based on the following property of elliptical distribution that X is
elliptically symmetric if and only if

AðX � mÞ ¼ vjjAðX � mÞjj; ð3:1Þ

where v ¼ AðX � mÞ=jjAðX � mÞjj is uniformly distributed on Sd and independent of
jjAðX � mÞjj (see, e.g. [6] or [3]). Hence for any u being uniformly distributed on

Sd ; ujjAðX � mÞjj has the same distribution as AðX � mÞ: This leads up to that a
statistic, say TnðAðX1 � mÞ;y;AðXn � mÞÞ based on Xi’s, has the same distribution
as that of Tnðu1jjAðX1 � mÞjj;y; unjjAðXn � mÞjjÞ with ui having the uniform

distribution on Sd ; and, given jjAðXi � mÞjj’s, the conditional distributions of
TnðAðX1 � mÞ;y;AðXn � mÞÞ and Tnðu1jjAðX1 � mÞjj;y; unjjAðXn � mÞjjÞ are also
identical. Note that the unconditional distribution is the expectation of the
conditional distribution over jjAðXi � mÞjj’s. Intuitively, from the LLN, the
conditional distribution of the test statistic based on the generated data
uijjAðXi � mÞjj’s may converge to the unconditional distribution which is also the
unconditional distribution of the test statistic based on the original data as described
above. Hence our approximation can be consistent. We shall prove this later.
Furthermore, comparing with bootstrap methods, our procedure creates new data
having elliptical distributions (each data point, when given jjAðXi � mÞjj; has a

uniform distribution which is itself elliptical on fa : aARd ; jjajj ¼ jjAðXi � mÞjjg; the
conditional hypothetical distributions of the original data, while bootstrap methods
generally create the new data whose distribution is the empirical distribution or its
variants when given data points which relies on the underlying distribution.
Consequently, the conditional distribution and then the critical values determined by
our procedures may not change with the underlying distribution significantly while
the ones determined by the bootstrap methods may do. Actually, we can have the
exact validity of the test. It will be presented in Theorem 3.1 below. For other cases
in which the A and m are the unknowns to be estimated, the distributions of the tests
mentioned above may be identical asymptotically. From these observations, we can
generate ui and then, for given data Xi’s, approximate the conditional distribution of
Tn given jjAðXi � mÞjj’s by the Monte Carlo method. We shall later verify
theoretically the above observations, namely, prove the conditional distribution
based on the generated data given jjAðXi � mÞjj’s to be a consistent approximation
for almost all sequences fX1;y;Xn;yg to the null distribution of Tn:

Furthermore, from the above description, we know that property (3.1) is the key
for constructing the conditional test procedures. It also means that testing elliptical
symmetry cannot be simply reduced to testing uniformity because for other
distribution v is not independent of jjAðX � mÞjj; therefore, we cannot use the above
Monte Carlo method to obtain a conditional distribution which is a good
approximation of the unconditional counterpart.
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A simple algorithm of the conditional test procedure can be performed to
approximate critical values as follows. Assume that both m and S are given. It is
worthwhile to mention that the algorithm can be applied to any test statistic Tn when
the center and the shape matrix are given. But when the center is unknown, we need
some modification for the algorithm. Therefore, we in the following describe the
algorithm for the specific test statistic defined in the paper so that it also can be used
for unknown center case with some modification.

Step 1: Generate by computer iid random vectors, say ui; of size n with uniform

distribution on Sd ; let Un ¼ ðu1;y; unÞ: The new data are uijjAðXi � mÞjj:
Step 2: Accordingly as the empirical process defined in (2.2), we define a

conditional empirical process. For fixed Xn ¼ ðX1;y;XnÞ; let

Vn1ðUnÞ ¼ fVn1ðXn;Un; t; aÞ ¼
ffiffiffi
n

p
Pnfsinðta0ujjAðX � mÞjjÞg : ðt; aÞAI � Sdg;

ð3:2Þ

and calculate the value of the statistic

En1ðUnÞ ¼
Z

Sd

Z
I

fVn1ðXn;Un; t; aÞg2
dwðtÞ dnðaÞ: ð3:3Þ

Step 3: Repeat steps 1 and 2 m times to get m values En1ðUðjÞ
n Þ; j ¼ 1;y;m:

Step 4: Define En1ðU ð0Þ
n Þ as the value of En: Estimate the p-value by p ¼ k=ðm þ 1Þ

where k is the number that En1ðU ðjÞ
n Þ j ¼ 0; 1;y;m are greater than or equal to

En1ðU ð0Þ
n Þ:

The following theorem states the exact validity of the test En1ðUnÞ:

Theorem 3.1. Assume that X1;y;Xn are iid d-variate vectors which are elliptically

symmetric with known center and shape matrix m and S: Let Uð1Þ
n ;y;UðmÞ

n be the

independent copies of Un: Then for any 0oao1;

Gð1Þ
n;mðaÞ ¼ Pfppagp½ma
 þ 1

m þ 1
; ð3:4Þ

where ½z
 stands for the largest integer part of z:

The above algorithm can be extended directly to the case where the center is
known but the shape matrix is unknown. For the unknown center case, the
situation is not so simple. In order to ensure the equivalence between the conditional
empirical process below and its unconditional counterpart, we shall use the following
fact to construct conditional empirical process. It can be derived that uniformly on
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tAI and aASdffiffiffi
n

p
Pnðsinðta0ÂðX � %XÞÞÞ

¼
ffiffiffi
n

p
Pnðsinðta0ÂðX � mÞÞ cosðta0ÂPnðX � mÞÞÞ

�
ffiffiffi
n

p
ðPnððta0ÂðX � mÞÞ sinðta0ÂPnðX � mÞÞÞ

¼
ffiffiffi
n

p
Pnðsinðta0AðX � mÞÞ

�
ffiffiffi
n

p
sinðta0APnðX � mÞÞÞðPnðta0A cosðt0ðX � mÞÞ þ opð1Þ:

We then define a conditional empirical process in Step 2 of the algorithm as

Vn2ðUnÞ ¼ fVn2ðXn;Un; #m; Â; t; aÞ : ðt; aÞAI � Sdg; ð3:5Þ

where

Vn2ðXn;Un; #m; Â; t; aÞ

¼
ffiffiffi
n

p
Pnfsinðta0ujjÂðX � #mÞjjÞg

�
ffiffiffi
n

p
Pnfcosðta0ujjÂðX � #mÞjjÞ sinðta0PnðujjÂðX � #mÞjjÞÞg: ð3:6Þ

The associated conditional statistic is defined as

En2ðUnÞ ¼
Z

Sd

Z
I

fVn2ðXn;Un; #m; Â; t; aÞg2
dwðtÞ dnðaÞ: ð3:7Þ

We in the following theorem present the asymptotic equivalence between the
conditional empirical processes Vn1ðUnÞ and Vn2ðUnÞ and their unconditional
counterparts. The asymptotic validity of En1ðUnÞ and En2ðUnÞ is a direct
consequence.

Theorem 3.2. Assume, in addition to the conditions of Theorem 3.1, that PfX ¼ mg ¼
0: Then the conditional empirical processes Vn1ðUnÞ and Vn2ðUnÞ given Xn in (3.2) and

(3.5) converge, for almost all sequences fX1;y;Xn;yg; in distribution to the Gaussian

process V1 and V2 defined in Theorem 2.1, respectively, which are the limits of the

unconditional counterparts Vn with known and unknown centers. This leads up to that

the conditional statistics En1ðUnÞ and En2ðUnÞ given Xn in (3.3) and (3.7) have almost

surely the same limits as those of the statistics En with known and unknown centers

respectively, E ¼
R
ðVða; tÞÞ2 dwðtÞ dnðaÞ and E1 ¼

R
ðV1ða; tÞÞ2 dwðtÞ dnðaÞ:

Remark 3.1. The optimal choice of the working region I and the weight function
wð
Þ is beyond the scope of this paper. In our simulations, the working region was
½�2; 2
 and wð
Þ was a constant, the uniform distribution density. It is worth
mentioning that in some cases, the choice of working regions is not very important.
We now show an example in which the fact that the imaginary part of the

characteristic function equals zero in a compact subset of Rd such as ½�2; 2
 � Sd is

equivalent to that the imaginary part is zero in whole space Rd : Suppose that the
moment generating function of a multivariate vector, X say, exists in a sphere
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½�b; b
 � Sd ; b40: Then the moment generating function of a0X ; the linear

projector of X on R1; exists in an interval ½�b1; b1
 for any aASd ; where b1 does
not depend on a: If the imaginary part of the characteristic function of X equals zero

in a sphere ½�b2; b2
 � Sd ; so does the one of the characteristic function of a0X in an
interval ½�b3; b3
: It is easy to see that all moments of a0X with odd orders equal zero.
This means that the characteristic function of a0X is real, and then a0X is symmetric
about the origin for any a: This conclusion implies, in turn, that imaginary part of

the characteristic function of X is zero in Rd : Consequently, the choice of working
region is not very important in such a case.

Remark 3.2. It is noted that under the local alternative the distribution of the
conditional test statistic is convergent to that under the null hypothesis. We omit
the detail here, the reader can refer the technical report of the University of
Hong Kong [19].

Remark 3.3. Romano [16] proposed a general method of the randomization tests.
From the idea of permutation test proposed by Hoeffding (1952), the randomization
tests are constructed in terms of the invariance of the distribution for a class Gn of
transformations, [16, p. 151]. The spherically symmetric distribution has such an
invariance property. Similar argument is used in [4,7,8]. For testing spherical
symmetry, our test procedure is similar to Romano’s and Diks and Tong’s.

4. A simulation study

In this section, a small simulation study was performed. In the simulation results
reported in Tables 1 and 2, the sample size n ¼ 20; 50: The dimension of random
vector X ; d ¼ 2; 4; 6: We consider that (1) both m and S are known (testing for
spherical symmetry); (2) m is known, S needs to be estimated; and (3) both m and S
are unknown. The test statistic En was rewritten as Eni; i ¼ 1; 2; 3 in accordance to
these three cases, respectively. For power study, we consider the vector X ¼
Z þ b 
 Y for b ¼ 0:00; 0:25; 0:5; 0:75; 1:00; and 1.25, where Z has the normal

distribution Nðm;SÞ and Y is the random vector with the independent w2
1

components. The hypothetical distribution was normal Nðm;SÞ: That is, b ¼ 0:00
corresponds to the null hypothesis H0: When ba0:00; the distribution will not be
elliptically symmetric. In simulation, we generated data from Nð0; I3Þ and,
accordingly as different setup, regarded the symmetric center and the shape matrix
as the given ones or unknown parameters separately.

In order to get a critical value when given the data fðY1;Z1Þ;y; ðYn;ZnÞg; we
generated 1000 Un pseudo-random vectors of n ¼ 20 and 50 by Monte Carlo
method. The basic experiment was replicated 1000 times for each combination of the
sample sizes and the underlying distributions of the vectors. The nominal level was
0.05. The proportion of times that the values of the statistics exceeded the critical
values were recorded as the empirical power of the tests.
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Looking at Table 1 with n ¼ 20; we see that, under the null hypothesis, that is
b ¼ 0:00; the size of the tests En1 and En2 are close to the nominal one and En3 is
somewhat conservative. But it gets better with increase of the sample size. Under the
alternatives, namely ba0:00; when b is small, it seems that the test with estimated
center and shape matrix would be more sensitive, see the case with b ¼ 0:25; 0:50:
With the increase of b; the power performance is reverse. En1 is the best while En3

gets worse. The situation with n ¼ 50; looking at Table 2, is similar except for higher
power than that with n ¼ 20: Furthermore, the power performance of the tests are
less affected by the dimension of the variable.
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Table 1

Power of the tests with n ¼ 20

b 0.00 0.25 0.50 0.75 1.00 1.25

d ¼ 2 En1 0.048 0.130 0.292 0.579 0.785 0.884
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d ¼ 4 En1 0.052 0.120 0.278 0.573 0.697 0.872

En2 0.045 0.181 0.315 0.577 0.679 0.861

En3 0.040 0.238 0.402 0.579 0.633 0.643

d ¼ 6 En1 0.056 0.142 0.300 0.574 0.685 0.865

En2 0.053 0.195 0.345 0.581 0.667 0.860

En3 0.038 0.251 0.407 0.576 0.616 0.654

Table 2

Power of the tests with n ¼ 50

b 0.00 0.25 0.50 0.75 1.00 1.25

d ¼ 2 En1 0.048 0.250 0.432 0.649 0.880 0.954

En2 0.046 0.261 0.392 0.664 0.874 0.950

En3 0.046 0.283 0.455 0.648 0.797 0.853

d ¼ 4 En1 0.052 0.220 0.378 0.636 0.892 0.952

En2 0.045 0.281 0.385 0.637 0.881 0.957

En3 0.046 0.288 0.462 0.635 0.831 0.850

d ¼ 6 En1 0.056 0.242 0.380 0.638 0.883 0.965

En2 0.053 0.295 0.395 0.640 0.866 0.960

En3 0.043 0.311 0.487 0.641 0.818 0.846
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Appendix A. Proofs of theorems

A.1. Proof of theorems in Section 2

Proof of Theorem 2.1. Ghosh and Ruymgaart [11] has proved that, when the center
and the shape matrix are given, the process Vn converges in distribution to V1 with
the covariance kernel in (2.4). When the shape matrix is replaced by sample

covariance matrix #S; applying the triangle identity; we haveffiffiffi
n

p
Pnðsinðta0ÂðX � mÞÞÞ ¼

ffiffiffi
n

p
Pnðsinðta0AðX � mÞÞÞ cosðta0ðÂ � AÞðX � mÞÞÞ

þ
ffiffiffi
n

p
ðPnðcosðta0AðX � mÞÞÞ sinðta0ðÂ � AÞðX � mÞÞÞ

¼: In1ðt; aÞ þ In2ðt; aÞ:

It is well-known that by the conditions
ffiffiffi
n

p
ðÂA�1 � IdÞ ¼ Opð1Þ;max1pjpn jjXj � mjj=

n1=4-0; a:s: and EðAðX � mÞ cosðta0AðX � mÞÞÞ ¼ 0 which is implied by the
spherical symmetry of AðX � mÞ; we then easily derive that, uniformly over

ðt; aÞAI � Sd ;

In1ðt; aÞ ¼
ffiffiffi
n

p
Pnðsinðta0AðX � mÞÞÞ þ Opð1=

ffiffiffi
n

p
Þ;

In2ðt; aÞ ¼ ta0 ffiffiffi
n

p
ðÂA�1 � IdÞðPnðAðX � mÞ cosðta0AðX � mÞÞÞ ¼ opð1Þ:

This implies that Vn with the sample covariance matrix #S is asymptotically
equivalent to that with S: Conclusion (1) is proved. For conclusion (2), the argument
is analogous since we can derive thatffiffiffi

n
p

Pnðsinðta0ÂðX � #mÞÞÞ ¼
ffiffiffi
n

p
Pnðsinðta0ÂðX � mÞÞÞ cosðta0Âð #m� mÞÞÞ

�
ffiffiffi
n

p
ðPnðcosðta0ÂðX � mÞÞÞ sinðta0Âð #m� mÞÞÞ

¼
ffiffiffi
n

p
Pnðsinðta0ÂðX � mÞÞÞ

�
ffiffiffi
n

p
ta0Âð #m� mÞÞEðcosðta0ÂðX � mÞÞÞ þ opð1Þ:

The proof of Theorem 2.1 is completed. &

Proof of Theorem 2.3. Consider the case of #m ¼ m first. Assume no loss of generality

that the center m ¼ 0 and the covariance matrix of Xin is Sn ¼ ðAnÞ�2: Note that Sn

converges to the covariance matrix of the variable Z;S say. Applying the Taylor
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expansion to sine function, for any ðt; aÞAI � Sd ;

ffiffiffi
n

p
Pnfsinðta0AnðZ þ Y=n1=ð2lÞÞÞg

¼
ffiffiffi
n

p
Pnfsinðta0AnZÞg þ

Xl�1

i¼1

ð1=i!Þn�i=ð2lÞ ffiffiffi
n

p
Pnfðta0AnY Þi sinðiÞðta0AnZÞg

þð1=l!Þn�1
Xn

j¼1

fðta0AnYjÞl sinðlÞðta0AnðZj þ ðt0YjÞn=n1=ð2lÞÞÞÞ � sinlðta0AnZjÞÞg

þ ð1=l!ÞPnfðta0AnYÞl sinðlÞðta0AnZÞg; ðA:1Þ

where ðta0AnYjÞn is a value between 0 and ta0AnYj: We need to show that the

second and third summands in RHS of (A.1) tend to zero in probability as n-N;

and the fourth summand converges in probability to Efðta0AY ÞlÞ sinðlÞðta0AZÞg:
The convergence of the fourth term is obvious. Noticing that

Efðta0AY ÞiÞ sinðiÞðta0AZÞg ¼ 0 for 1pipl � 1; and similar argument used in the
proof of Theorem 2.1 can be applied. The proof for Vn with the known center and
then for En is finished.

For Vn with the estimated covariance matrix, we note that

max1pjpn jjYjjj=n1=ð2lÞ-0; a:s:;
ffiffiffi
n

p
ðÂn � AnÞ ¼ Opð1Þ and An � A ¼ oð1Þ: Further-

more,

sup
ðt;aÞAI�Sd

jPnðsinðta0ÂnðZ � EðZÞÞ þ ðY � EðYÞ=n1=ð2lÞÞÞ � sinðta0ÂnðZ � EðZÞÞÞÞj

pcPnjjÂnðY � EðYÞÞjj=n1=ð2lÞ ¼ Oðn�1=ð2lÞÞ a:s:;

and

sup
ðt;aÞAI�Sd

j1 � cosðta0PnðÂnðZ � EðZÞÞ þ ÂnðY � EðYÞ=n1=ð2lÞÞÞÞj

pcðjjPnÂnðZ � EðZÞÞjj2 þ jjPnÂnðY � EðYÞÞjj2=n1=lÞ ¼ Opðn�1Þ:

Similar argument used in the proof of Theorem 2.1 can be applied again. Omit the
details. From the convergence of Vn we immediately derive the convergence of En

in (2.8).

For the case of #m ¼ %X; we further note that

sup
ðt;aÞAI�Sd

j
ffiffiffi
n

p
ðsinðta0PnÂnððZ � EðZÞÞ þ ðY � EðYÞ=n1=ð2lÞÞÞÞ

� sinðta0PnÂnðZ � EðZÞÞÞÞj

pc
ffiffiffi
n

p
jjÂnðPnY � EðYÞÞjj=n1=ð2lÞ ¼ Opðn�1=ð2lÞÞ:
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Based on the above inequalities and the triangle identity, it is easy to see thatffiffiffi
n

p
Pnðsinðta0ÂnðZ þ Y=n1=ð2lÞ � ð %Z þ %Y=n1=ð2lÞÞÞÞÞ

¼
ffiffiffi
n

p
Pnðsinðta0AnðZ þ Y=n1=ð2lÞ � ðEðZÞ þ EðY Þ=n1=ð2lÞÞÞÞÞ

�
ffiffiffi
n

p
Pnðcosðta0AnðZ � EðZÞÞÞ sinðta0PnAnðZ � EðZÞÞÞ þ Opðn�1=ð2lÞÞ

¼
ffiffiffi
n

p
Pnðsinðta0AðZ � EðZÞÞÞÞ þ ð1=l!ÞEfðta0AðY � EðY ÞÞÞl sinðlÞðta0AðZ � EðZÞÞÞg

�
ffiffiffi
n

p
sinðta0PnAðZ � EðZÞÞÞEðcosðta0AðZ � EðZÞÞÞ þ opð1Þ

) V2ðt; aÞ þ ð1=l!ÞBlðt; aÞ: ðA:2Þ

It implies the convergence of En in (2.9). The proof is completed. &

A.2. Proof of theorems in Section 3

Proof of Theorem 3.1. As m and S are known, we assume without loss of generality
that m ¼ 0 and S ¼ Id ; the identity matrix. Hence AðX � mÞ ¼ X write jjXnjj ¼
ðjjX1jj;y; jjXnjjÞ and U0

n ¼ ðv1;y; vnÞ: Note that X ¼ vjjX jj and U0
n has the same

distribution as that of UðjÞ
n ’s. Then given jjXnjj;En1 can be written as En1ðU0

nÞ and

En1ðUðjÞ
n Þ j ¼ 0; 1;y;m are m þ 1 iid variables, which implies that

PfppajjjXnjjgp
½ma
 þ 1

m þ 1
:

The proof is concluded from integrating out over jjXnjj: &

Proof of Theorem 3.2. We only need to show the convergence of the processes,
which implies the convergence of the test statistics. First we show that

fVn1ðUn;Xn; t; aÞ : ðt; aÞAI � Sdg given Xn converges almost surely to the process

fV1ðtÞ : ðt; aÞAI � Sdg which is the limit of Vn with the known center. The argument
of the proof will be applicable for showing the convergence of the process Vn2ðUnÞ:

For the simplicity of notation, write Xj for AðXj � mÞ: Define sets

D1 ¼ lim
n-N

1

n

Xn

j¼1

jjXjjj2 ¼ EjjX jj2
( )

;

D2 ¼ lim
n-N

sup
ðt;aÞ;ðs;bÞ

1

n

Xn

j¼1

ðsinðta0XjÞ sinðsb0XjÞÞ � Eððsinðta0XÞ sinðsb0XÞÞ
�����

����� ¼ 0

( )

and D ¼ D1-D2: By the Lipschitz continuity of the sine function and Glivenko–
Cantelli theorem for the general class of functions (e.g. [15, Theorem II 24, p. 25]), it
is clear that D is a subset of sample space with probability measure one.

We assume without further mentioning that the given fX1;y;Xn;ygAD in the
following.
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For the convergence of the empirical process defined in the theorem, all we need
to do is to prove Fidis convergence and Uniform tightness. The proof of the
fidis convergence is standard, so we only describe an outline. For any integer

k; ðt1; a1Þyðtk; akÞAI � Sd : Let

V ðkÞ ¼ ðcovðsinðtia
0
ixÞ; sinðtla

0
lxÞÞÞ1pi;lpk

it needs to show that

V
ðkÞ
n1 ¼ fVn1ðUn;Xn; ti; aiÞ : i ¼ 1;y; kg ) Nð0;V ðkÞÞ:

It suffices to show that for any unit k-dimensional vector g

g0V ðkÞ
n1 ) Nð0; g0V ðkÞgÞ: ðA:3Þ

Note that the variance of LHS in (A.3), as follows, converges in probability to

g0V ðkÞg

g0ðdCovCovi;lÞ1pi;lpkg;

with dCovCovi;l ¼ 1
n

Pn
j¼1 Eðsinðtia

0
iujjXj jjÞ sinðtla

0
lujjXjjjÞÞ where the expectation is taken

over u: Hence if g0V ðkÞg ¼ 0; (A.3) is trivial. Assume g0V ðkÞg40: Invoking the
boundedness of the sine function and the Lindeberg condition,

g0V ðkÞ
n1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0V ðkÞg

q
-Nð0; 1Þ:

That is (A.3) holds, the fidis convergence is then proved.
We now turn to prove Uniform tightness of the process. All we need to do is to

show that for any Z40 and e40; there exists an d40 for which

lim sup
n-N

P sup
½d


jVn1ðUn;Xn; t; aÞ � Vn1ðUn;Xn; s; bÞj42ZjjjXnjj
( )

oe; ðA:4Þ

where ½d
 ¼ fððt; aÞ; ðs; bÞÞ : jjta � sbjjpdg: Since the limiting properties are investi-
gated with n-N; n is always considered to be large enough below which simplifies
some arguments of the proof.

It is easy to show that if a d-variate vector u is uniformly distributed on Sd ; then u

can be expressed as e 
 un where e ¼ 71 with probability one half, un has the same

distribution as u and e and un are independent. From which, the LHS of (A.4) can be
written as

P sup
½s


ffiffiffi
n

p
jPnðsinðta0e 
 unjjX jjÞ � sinðsb0e 
 unjjX jjÞÞj4ZjjjXnjj

( )

¼ P sup
½s


ffiffiffi
n

p
jPn1ðsinðta0unjjX jjÞ � sinðsb0unjjX jjÞÞj4ZjjjXnjj

( )
; ðA:5Þ

where Pn1 is the signed measure that places mass ei=n at uijjXijj; which is analogous
to that in [15, p. 14].
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We now consider conditional probability given Un

n ¼ ðun
1 ;y; un

nÞ and jjXnjj:
Combining (A.5) with that jsinðta0unjjX jjÞ � sinðsb0unjjX jjÞjpjjta � sbjjjjX jj; the
Hoeffding inequality implies that

Pf
ffiffiffi
n

p
jðPn1ðsinðta0unjjX jjÞ � sinðsb0unjjX jjÞ4Zcjjta � sbjj jjjXnjj;Un

ng

p2 expð�Z2=32Þ:

In order to apply the chaining lemma (e.g. [15, p. 144]), we need to check, together
with the above inequality, the covering integral

J2ðd; jj 
 jj; I � SdÞ ¼
Z d

0

f2 logfðN2ðu; jj 
 jj; I � SdÞÞ2=ugg1=2
du ðA:6Þ

is finite for small d40; where jj 
 jj is the Euclidean norm in Rd and the covering

number N2ðu; jj 
 jj; I � SdÞ is the smallest l for which there exist l points t1;y; tl

with min1pipl jjta � tiaijjpu for every ðt; aÞAI � Sd : It is clear that

N2ðu=c; jj 
 jj; I � SdÞpcu�d :

Consequently, for small d40;

J2ðd; jj 
 jj; I � SdÞpc

Z d

0

ðlogð1=uÞÞ1=2 dupcd logð1=dÞpcd1=2:

(A.6) holds. Applying now the chaining lemma, there exists a countable dense subset

½d
n of ½d
 such that

P sup
½d
n

ffiffiffi
n

p
jðPn1ðsinðta0unjjX jjÞ � sinðsb0unjjX jjÞÞj426cJ2ðd; jj 
 jj; I � SdÞjjjXnjj;Un

n

( )
p2cd:

The countable dense subset ½d
n can be replaced by ½d
 itself becauseffiffiffi
n

p
Pn1fsinðta0ujjX jjÞ � sinðsb0ujjX jjÞg is a continuous function with respect to ta

and sb for each fixed jjXnjj: Hence, choosing properly small d; and integrating out

over Un

n ; the uniform tightness in (A.4) is proved. Therefore, the convergence of the

process is proved. Then the convergence of En1ðUnÞ follows. The convergence of
the process Vn2ðUnÞ can be proved by following the above argument and noticing

Â � A ¼ Opð1=
ffiffiffi
n

p
Þ and #m� m ¼ Opð1=

ffiffiffi
n

p
Þ: The limit of Vn2ðUnÞ is V2; the limit of

its unconditional counterparts. The asymptotic validity of En2 then follows. The
proof of Theorem 3.2 is finished. &
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