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Abstract

In this paper, we suggest the conditional test procedures for testing elliptical symmetry of
multivariate distribution. The conditional tests are exactly valid if the symmetric center and
the shape matrix are given and are asymptotically valid if they are unknowns to be estimated.
The equivalence, in the large sample sense, between the conditional tests and their
unconditional counterparts is established. The power behavior of the tests under global as
well as local alternatives is investigated theoretically. A small simulation study is performed.
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1. Introduction

Let X be a d-dimensional random vector. The distribution of X is said to be
elliptically symmetric with a center e R and a matrix A if for all orthogonal d x d
matrix H the distributions of HA(X — p) are identical. Throughout this paper, we
assume that the covariance matrix 2 of X is positive definite. In this case, 4 is equal
to 2~'/2. We call X the shape matrix.

In practical use, the elliptically symmetric distribution (the elliptical distribution
for short) has received considerable attention. The elliptical distribution possesses
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many nice properties which are analogous to those of multivariate normal
distribution. Hence, if one has known that the variable is elliptically symmetrically
distributed, some tools for classical multivariate analysis, as Friedman [10] pointed
out, may be still applicable for analyzing the data. Additionally, the dimensional
reduction techniques have quickly been developed in recent years for overcoming the
curse of dimensionality in data analysis. One of them is sliced inverse regression
(SIR) (see [13]). The most important subclass of distributions satisfying the designed
condition of SIR is just the one of the elliptical distributions. Consequently, testing
elliptical symmetry is important and relevant in multivariate analysis. The hypothesis
to be tested is that

Hy : The distribution of X is elliptically symmetric. (1.1)

There are many references concerning this issue in the literature. For example,
among others, [1-3,5,7,9,11,12,16,18]. Most of them are for spherical symmetry, a
special case of the elliptical symmetry, where the symmetric center and the shape
matrix of the random vector X are both known. Li et al. [14] proposed some Q—Q
plots to test for the spherical and elliptical symmetry.

The proposed test statistics often have intractable sampling and limiting null
distributions. Hence how to determine critical values is a crucial issue in this setup.
Zhu et al. [17] suggested a bootstrap test for the spherical symmetry and proved that
the proposed bootstrap test is asymptotically valid. As an alternative, we in the
present paper develop conditional test procedures. The tests are easy to implement
and have some nicer properties than the bootstrap tests. There are the following
three points: (a) the conditional tests are exactly valid for the spherical symmetry;
(b) they are distribution-free under the null hypothesis; (c) the distributions of the
conditional tests approximate to the null distributions of their unconditional
counterparts.

The paper is organized in the following way. Section 2 contains some tests which
handle separately the cases with the known and unknown center and shape matrix
and the asymptotic behavior of the test statistics under null hypothesis and
alternatives. The conditional test procedures are defined in Section 3 and the exact
and asymptotic validities of the tests are also presented in this section. A small
simulation is contained in Section 4. All proofs of the theorems are postponed to
Section 5.

2. Test statistic and asymptotics

As a slight extension of Ghosh and Ruymgaart’s [11] test, we define test statistic as
follows:

/Sd/l(\/ﬁPn{sin(ta’/f(X—ﬂ))})zw(z‘) dt dv(a), (2.1)

where P, is the empirical measure based on the sample points {X7, ..., X,} which are
iid copies of X, P,(f) stands for (1/n) 377, f(X;) for each function f(-), 4 = X~/2



286 L.-X. Zhu, G. Neuhaus | Journal of Multivariate Analysis 84 (2003) 284-298

or=23"12 the sample covariance and /i = u or=X the sample mean, respectively,
in accordance to the parameters being known or unknown, w(:) is a weight
function with a compact support, aeS? = {a:||a|| = 1,ae R?},v is the uniform
distribution on S and I is a working region. In this paper, I is compact subset
of the real line R. The null hypothesis Hy is rejected for the large values of the test
statistic.

In order to study the asymptotic properties of the test statistic, we define the
empirical process by

V= {Vu(Xo, i, A, 1,a) = /nP,{sin(td A(X — 4))}: (t,a)el x §}, (2.2)

and the test statistic in (2.1) can be rewritten as
E, = / /{VH(X,,,,[LA, t,a)}* dw(t) dv(a). (2.3)
s Jr

The limit behavior, under the null hypothesis, of the empirical processes defined
above is presented in the following theorem and corollary. For simplicity, call a
Gaussian process with index set 7 x S? is continuous if its sample paths are bounded
and uniformly continuous with respect to (¢,a)el x S¢.

Theorem 2.1. Assume that P{X = u} = 0 and E||X — u||* < co. Then under H

(1) If the center u is given and then i = p, the process V,, converges in distribution to a
centered continuous Gaussian process Vi = {Vi(t,a): (t,a)el x S} with the
covariance kernel:

E{sin(td’ A(X — p)) sin(sb’ A(X — p))} :for (t,a),(s,b)el x 9. (2.4)

(2) Let
k(t,a,x) = sin(td A(x — ) — ta' A(x — p)E(cos(td’ A(X — p))). (2.5)
If the center u is an unknown parameter and then [i = X, the process V, con-
verges in distribution to a centered continuous Gaussian process V, =
{Va(t,a): (t,a)el x S} with the covariance kernel: for (t,a), (s,b)el x S¢,
E{k(t,a,x)k(s,b,x)}. (2.6)

The convergence of the test statistic is a direct consequence of Theorem 2.1.

Corollary 2.2. The test statistic E, associated with known and unknown center
converges in distribution to the quadratic functionals [g, [, Vi(t,a) dw(t) dv(a) and
[si [; V3(t,a) dw(t) dv(a), respectively.

We now investigate the behavior of the test under alternatives. For convenience,
let sin'” (¢) be ith derivative of sin(-) at point ¢. If there is a direction a€ S such that
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Efsin(td’ A(X — u))] #0 for some z€1, it is easily derived that from the continuity of
function E[sin(td’A(X — p))] w.rt. (t,a), the test statistic E, converges in
distribution to infinity as in this case the process V), converges in distribution to
infinity. This means that the tests are consistent against global alternatives. The rest
of this section focuses on the investigation with local alternatives.

Suppose that the iid d-variate vectors X; = Xj, have the expression Z; + Y;/n”,
i=1,...,n for some a>0. The center u=pu,=E(Z)+ E(Y)/n*. When Z; is
independent of Y;, the distribution of X, is a convolution of two distributions, and
one of them converges to the degenerate distribution at zero with the rate n* in
certain sense.

Theorem 2.3. Assume that the following conditions hold:

(1) Both distributions of Z and Y are continuous. In addition, Z is elliptically
symmetric with the center E(Z) and the shape matrix X.
(2) There is an integer | being the smallest one such that

sup  |Bi(1,a)| = sup |E((td A(Y — E(Y)) sin”)(td 4(Z — E(Z))))| #0,
(t,a)eIxS? (ta)eIxS4
2/ 2(1—-1 2
E(|Y|Y<ow, and E(||Y|P""V)Z|P) < . (2.7)

Then when o= 1/(2]), if i = u

E, = / /(Vl(t, a) + 1/11B,(t,a))* dw(1)v(a), (2.8)
st )1
and if i = X,
E, = /Sd /I(Vz(l‘, a) + 1/1'By(t,a))* dw(1)v(a), (2.9)

where ‘=" stands for the convergence in distribution, V| and V, are the Gaussian
processes defined in Theorem 2.1.

Remark 2.1. Comparing with the limiting variables under the null hypothesis in
Corollary 2.2 and the ones under the alternative in Theorem 2.3, we see that the test
can detect the local alternatives distinct O(n~/(*)) from the null. In some cases, this
rate can reach a parametric one, that is, / = 1. For example, suppose that Z has the
uniform distribution on §¢ and Y = (Z? — 1, ..., Z2 — 1), we can see easily that, via
a little elementary calculation, sup, ;¢ si|E(td'AY cos(ta’AZ))|#0. Hence, / = 1.
On the other hand, when Z and Y are independent, />3, namely, the test can detect,
at most, alternative distinct O(n~'/®) from the null. In fact, it is clear that for / = 1,2

sup |E((tdAY) sin!)(td 4Z))| = 0.
(t,a)eIxS4

We also note that the test is Cramer—von Mises type and then is omnibus because of
the absolute and square values in the test statistic, and that therefore the test is
asymptotically unbiased for all shapes of the function B;.
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3. Conditional test procedures

The basic idea of our method is quite simple and the test procedures are easy to
implement. Consider the known center-shape matrix case first. The conditional test
procedures are based on the following property of elliptical distribution that X is
elliptically symmetric if and only if

AX = ) = ol|A(X = )], (3.1)

where v = A(X — u)/||A(X — p)|| is uniformly distributed on S and independent of
[|A(X — w)|| (see, e.g. [6] or [3]). Hence for any u being uniformly distributed on
S u||A(X — w)|| has the same distribution as A(X — u). This leads up to that a
statistic, say T,(A(X, — u), ..., A(X, — u)) based on X;’s, has the same distribution
as that of T,(u||A(X1 — )|, .., un||A(X, — w)||) with u; having the uniform
distribution on S? and, given ||A(X;— p)||’s, the conditional distributions of
T,(A(Xy — ), ..., A(Xy — u)) and Tn(u1||A(X1 - ﬂ)”ﬂ '~~7un||A(Xn —wl|) are also
identical. Note that the unconditional distribution is the expectation of the
conditional distribution over ||4(X; — u)|/’s. Intuitively, from the LLN, the
conditional distribution of the test statistic based on the generated data
ui||A(X; — 1)||’s may converge to the unconditional distribution which is also the
unconditional distribution of the test statistic based on the original data as described
above. Hence our approximation can be consistent. We shall prove this later.
Furthermore, comparing with bootstrap methods, our procedure creates new data
having elliptical distributions (each data point, when given ||A(X; — p)||, has a
uniform distribution which is itself elliptical on {a:ae R, ||a|| = ||A(X; — u)||}, the
conditional hypothetical distributions of the original data, while bootstrap methods
generally create the new data whose distribution is the empirical distribution or its
variants when given data points which relies on the underlying distribution.
Consequently, the conditional distribution and then the critical values determined by
our procedures may not change with the underlying distribution significantly while
the ones determined by the bootstrap methods may do. Actually, we can have the
exact validity of the test. It will be presented in Theorem 3.1 below. For other cases
in which the 4 and u are the unknowns to be estimated, the distributions of the tests
mentioned above may be identical asymptotically. From these observations, we can
generate u; and then, for given data X;’s, approximate the conditional distribution of
T, given ||A(X;— w)||’s by the Monte Carlo method. We shall later verify
theoretically the above observations, namely, prove the conditional distribution
based on the generated data given ||4(X; — u)||’s to be a consistent approximation
for almost all sequences {X1, ..., X, ...} to the null distribution of 7.

Furthermore, from the above description, we know that property (3.1) is the key
for constructing the conditional test procedures. It also means that testing elliptical
symmetry cannot be simply reduced to testing uniformity because for other
distribution v is not independent of ||A(X — u)||, therefore, we cannot use the above
Monte Carlo method to obtain a conditional distribution which is a good
approximation of the unconditional counterpart.
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A simple algorithm of the conditional test procedure can be performed to
approximate critical values as follows. Assume that both p and X are given. It is
worthwhile to mention that the algorithm can be applied to any test statistic 7,, when
the center and the shape matrix are given. But when the center is unknown, we need
some modification for the algorithm. Therefore, we in the following describe the
algorithm for the specific test statistic defined in the paper so that it also can be used
for unknown center case with some modification.

Step 1: Generate by computer iid random vectors, say u;, of size n with uniform
distribution on §9, let U, = (u1, ..., u,). The new data are u;||4(X; — w)||.

Step 2: Accordingly as the empirical process defined in (2.2), we define a
conditional empirical process. For fixed X, = (X1, ..., X;), let

Vit (Up) = { Vit (X, Up, 1, @) = VaPo{sin(ta'ul|A(X — w)|)}: (t,a) el x S},
(3.2)

and calculate the value of the statistic
En(U,) :/ /{V,,l(X,,,Un,t,a)}2 dw(t) dv(a). (3.3)
seJr

Step 3: Repeat steps 1 and 2 m times to get m values E,; (U,@), j=1,...,m.

Step 4: Define E,; (U,(,())) as the value of E,. Estimate the p-value by p = k/(m + 1)
where k is the number that Enl(U,Y)) j=0,1,...,m are greater than or equal to
En(UY).

The following theorem states the exact validity of the test E,;(U,).

Theorem 3.1. Assume that X\, ..., X, are iid d-variate vectors which are elliptically
symmetric with known center and shape matrix p and X. Let Uf,l), ...,Uf,'”) be the
independent copies of U,. Then for any 0<a<1,

[mo] + 1

G\ = P{p<a}l <
() = Plpa <AL

(3.4)

where [z| stands for the largest integer part of z.

The above algorithm can be extended directly to the case where the center is
known but the shape matrix is unknown. For the unknown center case, the
situation is not so simple. In order to ensure the equivalence between the conditional
empirical process below and its unconditional counterpart, we shall use the following
fact to construct conditional empirical process. It can be derived that uniformly on
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tel and aeS?
VnP,(sin(td' A(X — X)))
= /nP,(sin(td A(X — p)) cos(td' AP,(X — p)))
— VA(PA((td ACX — ) sin(id AP,(X — )
— AP, (sin(td A(X — )
— Vnsin(td' AP,(X — w)))(Py(td A cos(' (X — p)) + 0,(1).

We then define a conditional empirical process in Step 2 of the algorithm as
Vio(Up) = {Vio (X, Un, i, 4, t,a) < (t,a) eI x S, (3.5)
where
Vir(Xn, Up, i, 4, 1, 0)
— VP, {sin(tdull A(X — )|])}
— VP, {cos(taul A(X — @)]]) sin(td P, (ull AX — )|1))}- (3.6)

The associated conditional statistic is defined as
mmm://wm&nmﬁmmwwwwy (3.7)
s¢Jr

We in the following theorem present the asymptotic equivalence between the
conditional empirical processes V,(U,) and V,»(U,) and their unconditional
counterparts. The asymptotic validity of E, (U,) and E,(U,) is a direct
consequence.

Theorem 3.2. Assume, in addition to the conditions of Theorem 3.1, that P{X = u} =
0. Then the conditional empirical processes V,1(U,) and V,n(U,) given X,, in (3.2) and
(3.5) converge, for almost all sequences {X\, ..., Xy, ... }, in distribution to the Gaussian
process Vi and V, defined in Theorem 2.1, respectively, which are the limits of the
unconditional counterparts V, with known and unknown centers. This leads up to that
the conditional statistics E,(U,) and E,»(U,) given X,, in (3.3) and (3.7) have almost
surely the same limits as those of the statistics E, with known and unknown centers

respectively, E = [(V(a,1))* dw(t) dv(a) and E\ = [(Vi(a,))* dw(z) dv(a).

Remark 3.1. The optimal choice of the working region 7/ and the weight function
w(-) is beyond the scope of this paper. In our simulations, the working region was
[-2,2] and w(-) was a constant, the uniform distribution density. It is worth
mentioning that in some cases, the choice of working regions is not very important.
We now show an example in which the fact that the imaginary part of the
characteristic function equals zero in a compact subset of R? such as [-2,2] x S9 is
equivalent to that the imaginary part is zero in whole space R?. Suppose that the
moment generating function of a multivariate vector, X say, exists in a sphere
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[~b,b] x S, b>0. Then the moment generating function of &'X, the linear
projector of X on R!, exists in an interval [—by, 5] for any ae S?, where b; does
not depend on «. If the imaginary part of the characteristic function of X equals zero
in a sphere [—b,, by] x S, so does the one of the characteristic function of @’ X in an
interval [—b3, b3]. It is easy to see that all moments of ¢’ X with odd orders equal zero.
This means that the characteristic function of ¢’ X is real, and then &' X is symmetric
about the origin for any a. This conclusion implies, in turn, that imaginary part of
the characteristic function of X is zero in R?. Consequently, the choice of working
region is not very important in such a case.

Remark 3.2. It is noted that under the local alternative the distribution of the
conditional test statistic is convergent to that under the null hypothesis. We omit
the detail here, the reader can refer the technical report of the University of
Hong Kong [19].

Remark 3.3. Romano [16] proposed a general method of the randomization tests.
From the idea of permutation test proposed by Hoeffding (1952), the randomization
tests are constructed in terms of the invariance of the distribution for a class G, of
transformations, [16, p. 151]. The spherically symmetric distribution has such an
invariance property. Similar argument is used in [4,7,8]. For testing spherical
symmetry, our test procedure is similar to Romano’s and Diks and Tong’s.

4. A simulation study

In this section, a small simulation study was performed. In the simulation results
reported in Tables 1 and 2, the sample size n = 20, 50. The dimension of random
vector X, d =2,4,6. We consider that (1) both u and X are known (testing for
spherical symmetry); (2) u is known, X needs to be estimated; and (3) both p and X
are unknown. The test statistic £, was rewritten as E,;, i = 1,2,3 in accordance to
these three cases, respectively. For power study, we consider the vector X =
Z+b-Y for b=0.00,0.25,0.5,0.75,1.00, and 1.25, where Z has the normal
distribution N(u,X) and Y is the random vector with the independent 3
components. The hypothetical distribution was normal N(y,2). That is, b = 0.00
corresponds to the null hypothesis Hy. When b50.00, the distribution will not be
elliptically symmetric. In simulation, we generated data from N(0,75) and,
accordingly as different setup, regarded the symmetric center and the shape matrix
as the given ones or unknown parameters separately.

In order to get a critical value when given the data {(Y1,2Z),...,(Yu, Z,)}, we
generated 1000 U, pseudo-random vectors of n =20 and 50 by Monte Carlo
method. The basic experiment was replicated 1000 times for each combination of the
sample sizes and the underlying distributions of the vectors. The nominal level was
0.05. The proportion of times that the values of the statistics exceeded the critical
values were recorded as the empirical power of the tests.
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Table 1

Power of the tests with n = 20
b 0.00 0.25 0.50 0.75 1.00 1.25

d=2 E, 0.048 0.130 0.292 0.579 0.785 0.884
Ep 0.046 0.201 0.332 0.584 0.776 0.870
E,; 0.043 0.223 0.391 0.578 0.630 0.663

d=4 E, 0.052 0.120 0.278 0.573 0.697 0.872
En 0.045 0.181 0.315 0.577 0.679 0.861
E,; 0.040 0.238 0.402 0.579 0.633 0.643

d==6 E, 0.056 0.142 0.300 0.574 0.685 0.865
En 0.053 0.195 0.345 0.581 0.667 0.860
E.; 0.038 0.251 0.407 0.576 0.616 0.654

Table 2

Power of the tests with n = 50
b 0.00 0.25 0.50 0.75 1.00 1.25

d=2 E, 0.048 0.250 0.432 0.649 0.880 0.954
En, 0.046 0.261 0.392 0.664 0.874 0.950
E.; 0.046 0.283 0.455 0.648 0.797 0.853

d=14 E, 0.052 0.220 0.378 0.636 0.892 0.952
En 0.045 0.281 0.385 0.637 0.881 0.957
E. 0.046 0.288 0.462 0.635 0.831 0.850

d=6 E, 0.056 0.242 0.380 0.638 0.883 0.965
E» 0.053 0.295 0.395 0.640 0.866 0.960
E. 0.043 0.311 0.487 0.641 0.818 0.846

Looking at Table 1 with n = 20, we see that, under the null hypothesis, that is
b = 0.00, the size of the tests E,; and E,, are close to the nominal one and E,;3 is
somewhat conservative. But it gets better with increase of the sample size. Under the
alternatives, namely »#0.00, when b is small, it seems that the test with estimated
center and shape matrix would be more sensitive, see the case with b = 0.25,0.50.
With the increase of b, the power performance is reverse. E,; is the best while E,3
gets worse. The situation with n = 50, looking at Table 2, is similar except for higher
power than that with n = 20. Furthermore, the power performance of the tests are
less affected by the dimension of the variable.
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Appendix A. Proofs of theorems
A.1. Proof of theorems in Section 2

Proof of Theorem 2.1. Ghosh and Ruymgaart [11] has proved that, when the center
and the shape matrix are given, the process V, converges in distribution to V| with
the covariance kernel in (2.4). When the shape matrix is replaced by sample

covariance matrix X, applying the triangle identity; we have

VP, (sin(td' A(X — p))) =/nP,(sin(td' A(X — p))) cos(ta' (A — A)(X — p)))

+V/n(Py(cos(td A(X — p))) sin(td' (A — A)(X — p)))
=:Iy(t,a) + Ix(t,a).

It is well-known that by the conditions v/n(44~" — I,;) = O,(1),max;<j<n || X; — p|/
n'/* -0, as. and E(A(X — u)cos(td A(X —pn))) =0 which is implied by the
spherical symmetry of A(X —pu), we then easily derive that, uniformly over
(t,a)el x S,

In(t,a) = /nPy(sin(td A(X — ) + Op(1/v/n),

Lo(t,a) = td'/n(AA™" — 1) (Py(A(X — p) cos(td' A(X — p))) = op(1).
This implies that ¥, with the sample covariance matrix X is asymptotically

equivalent to that with ~. Conclusion (1) is proved. For conclusion (2), the argument
is analogous since we can derive that

VAP, (sin(td A(X — i) = VAP, (sin(td A(X — ))) cos(td'A(fi - p)))

"A(X
— Va(Pu(cos(td A(X — ) sin(ta (i — )
— VAP,(sin(td A(X — p)))
— ntd A(ji — ) E(cos(ta' A(X — p))) + 0,(1).

The proof of Theorem 2.1 is completed. [

Proof of Theorem 2.3. Consider the case of g = u first. Assume no loss of generality

that the center u = 0 and the covariance matrix of Xj, is 2, = (An)fz. Note that X,
converges to the covariance matrix of the variable Z, 2 say. Applying the Taylor
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expansion to sine function, for any (¢,a)el x S,

VP, {sin(td 4,(Z + Y /n'/®)))}
= \/nP,{sin(td 4,2)} + /ZI: (1/iNn D\ /nP{(td 4, Y) sin? (td' 4,Z)}
+(1/Mn! Zn:{@a’An Y)) sin) (16 4,(Z; + (1 V)" 0"/ @0))) = sin' (1d' 4, Z))) }
+(1 /ZI)Pnj{_(lla’An Y) sin”)(1d' 4,2)}, (A.1)

where (ta’Aan)* is a value between 0 and rd'4,Y;. We need to show that the
second and third summands in RHS of (A.1) tend to zero in probability as n— o,

and the fourth summand converges in probability to E{(td’AY)")sin") (td 4Z)}.
The convergence of the fourth term is obvious. Noticing that
E{(td AY)")sin"(td AZ)} = 0 for 1<i<l/—1, and similar argument used in the
proof of Theorem 2.1 can be applied. The proof for V, with the known center and
then for E, is finished.

For V, with the estimated covariance matrix, we note that

max; <<, || Y;||/n"/?) -0, as., a(d, — A,) = 0,(1) and 4, — A = o(1). Further-
more,

sup | P,(sin(td A,(Z — E(Z)) + (Y — E(Y)/n"/®))) —sin(td 4,(Z — E(Z))))|
(ta)eIxS9

<cP||A4,(Y — E(Y))||/n"/®) = 0(n=V/D) as.,
and
sup |1 — cos(td' Py(A,(Z — E(Z)) + A, (Y — E(Y)/n'/DY))]

(t,a)eIxS4
<c(||Pydn(Z = E@Z)IP + ||Padn(Y = E(Y))| ) = Op(n”").

Similar argument used in the proof of Theorem 2.1 can be applied again. Omit the
details. From the convergence of V, we immediately derive the convergence of E,
in (2.8).

For the case of ji = X, we further note that

sup  |va(sin(td Py A,((Z — E(Z)) + (Y — E(Y)/n'/@D)))
(t,a)eIxS4

—sin(td P,Au(Z — E(Z))))|
<cevnl|Au(P,Y — E(Y))||/n/®) = 0,(n~ /).
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Based on the above inequalities and the triangle identity, it is easy to see that
VP, (sin(td A,(Z + Y /n"/®) —(Z 4 ¥/n'/CDY)))
= V/nP,(sin(td 4,(Z + Y /n"/®) — (E(Z) + E(Y)/n"/®)))))
— \/nP,(cos(td' A,(Z — E(Z))) sin(td P,A,(Z — E(Z))) + 0, (n~ /)
= VnP,(sin(td A(Z — E(Z)))) + (1/I)E{(td A(Y — E(Y)))" sin) (td' A(Z — E(2)))}
— Vnsin(td'P,A(Z — E(Z)))E(cos(td A(Z — E(Z))) + 0,(1)
= Va(t,a) + (1/1')B(t, a). (A.2)

It implies the convergence of E, in (2.9). The proof is completed. [I

A.2. Proof of theorems in Section 3

Proof of Theorem 3.1. As u and 2 are known, we assume without loss of generality
that 4 =0 and X = I;, the identity matrix. Hence A(X — u) = X write ||X,|| =
(1X1]], ..., [|Xu||) and U = (vy, ..., v,). Note that X = v||X]|| and U has the same
distribution as that of UYs. Then given ||X,||, E, can be written as E, (U%) and
Enl(U,(])) j=0,1,...,m are m + 1 iid variables, which implies that

[ma] + 1
Pip<o|||Xu||} <——
<Xl <t
The proof is concluded from integrating out over ||X,||. O

Proof of Theorem 3.2. We only need to show the convergence of the processes,

which implies the convergence of the test statistics. First we show that

{Vu (U, X, t,a) : (t,a) el x S} given X,, converges almost surely to the process

{V1(£): (t,a) el x S} which is the limit of ¥, with the known center. The argument

of the proof will be applicable for showing the convergence of the process V,»(U,).
For the simplicity of notation, write X; for 4(X; — u). Define sets

B 1 2 2
Dy - {JL%,_Z"XJ" = x| }

n

%Z (sin(zd'X;) sin(sb'X;)) — E((sin(td' X) sin(sb’X))’ = 0}

D, = { lim sup

n— o0 (t,a),(s,b)

and D = D;nD,. By the Lipschitz continuity of the sine function and Glivenko—
Cantelli theorem for the general class of functions (e.g. [15, Theorem II 24, p. 25]), it
is clear that D is a subset of sample space with probability measure one.

We assume without further mentioning that the given {Xj, ..., X,, ...} €D in the
following.
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For the convergence of the empirical process defined in the theorem, all we need
to do is to prove Fidis convergence and Uniform tightness. The proof of the
fidis convergence is standard, so we only describe an outline. For any integer
k,(ti,a)...(tx,ar) el x S9. Let

yk) — (cov(sin(#;d}x), sin(t,a;x)))lgiKk
it needs to show that

VO — (v (U, X tiya) s =1, ...k} = N0, V1),
It suffices to show that for any unit k-dimensional vector y

YV = N0,y V). (A3)
Note that the variance of LHS in (A.3), as follows, converges in probability to
,y/ V<k)'))

Y(Covir)<iy<i?s

with Cov;y = 152" | E(sin(tiajul| X;||) sin(1jajul|X;||)) where the expectation is taken
over u. Hence if yV®y =0, (A.3) is trivial. Assume 7' V*)y>0. Invoking the
boundedness of the sine function and the Lindeberg condition,

YV VR N(0,1).
That is (A.3) holds, the fidis convergence is then proved.
We now turn to prove Uniform tightness of the process. All we need to do is to
show that for any #>0 and ¢>0, there exists an >0 for which

lim sup P{sup|V,,1(U,,,Xn, t,a) — V,,l(U,,,X,,,s,b)|>2n||X,,||} <g, (A4)

n— oo [5]

where [0] = {((¢,a), (s,b)): ||ta — sb||<J}. Since the limiting properties are investi-
gated with n— oo, n is always considered to be large enough below which simplifies
some arguments of the proof.

It is easy to show that if a d-variate vector u is uniformly distributed on S¢, then u
can be expressed as e - u* where e = +1 with probability one half, »* has the same
distribution as # and e and u* are independent. From which, the LHS of (A.4) can be
written as

P{Sup Vn|Py(sin(td'e - u*|| X[[) — sin(sb'e - u*|| X1]))] >'I|||Xn|}
o

- P{sup Vil P, (sin(tal || X[) — sin(sbu*|| X)) >n|||xn||}, (A.S5)
(o]

where P,° is the signed measure that places mass e;/n at u;||.X;||, which is analogous
to that in [15, p. 14].
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We now consider conditional probability given U} = (uf,...,u*) and |X,]|.

Combining (A.5) with that |sin(za'vu™*||X||) — sin(sb'v*|| X|])|<||ta — sb]||| X]|, the
Hoeffding inequality implies that

P{V/n|(Py°(sin(ta'u*[| X][) — sin(sb'u*[| X |[) > nel|ta — sb||[|[Xal], Uy}
<2exp(—n?/32).

In order to apply the chaining lemma (e.g. [15, p. 144]), we need to check, together
with the above inequality, the covering integral

B
L0, 1| - |1, 1 x 87 :/ {21og{(Na(u, || - [, x $%))* /u}}'"? du (A.6)

0
is finite for small 6>0, where || - || is the Euclidean norm in RY and the covering
number Na(u, || - ||, 1 x S¢) is the smallest / for which there exist / points 7, ...,

with min, <;<[|ta — tias||<u for every (1,a)el x §7. It is clear that
No(u/e,|| ||, 1 x S <eu™.

Consequently, for small 6 >0,
o
D6, || 11, % Sd)éc/ (log(1/u))"* du< c5 log(1/5) <5,
0

(A.6) holds. Applying now the chaining lemma, there exists a countable dense subset
[0]* of [6] such that

P{Sup V| (P, (sin(ta'u*|| X ]) — sin(sb'u*|| X |]))] >26¢/2(3, || - ||, 1 x S‘])IIXnHva}
o]
<2¢6.

The countable dense subset [§]¥ can be replaced by [6] itself because
VP, {sin(td'u|| X||) — sin(sd'u||X]|)} is a continuous function with respect to ta
and sb for each fixed ||X,||. Hence, choosing properly small ¢, and integrating out
over UZ, the uniform tightness in (A.4) is proved. Therefore, the convergence of the
process is proved. Then the convergence of E, (U,) follows. The convergence of
the process V,2(U,) can be proved by following the above argument and noticing
A—4=0,1/yn) and i —p = 0,(1/+/n). The limit of ¥,,(U,) is V3, the limit of
its unconditional counterparts. The asymptotic validity of E,, then follows. The
proof of Theorem 3.2 is finished. O
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