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1. Introduction

Let X4, ..., X, be a sequence of independent d-dimensional random vectors for some fixed integer d > 1. The aim of this
work is to study, both theoretically and empirically, nonparametric tests for the detection of a change-point in the sequence
X1, ..., Xy. The corresponding null hypothesis is

Hp : 3Py such that Xy, ..., X, have law P. (1)
As frequently done, the behavior of the derived tests will be investigated under the alternative hypothesis of a single change-
point:
H; : 3distinct Py and P, and k* € {1,...,n — 1} such that
Xi,..., X havelawP; and Xyxyq, ..., X, have law P,. (2)

There exists an abundant literature on nonparametric tests for change-point detection. We shall not review here
procedures designed for serially dependent observations. The approaches proposed for sequences of independent
observations differ, on one hand, according to the test statistic, and on the other hand, according to the resampling
technique used to compute an approximate p-value for the test statistic. In terms of the test statistic, two frequently
encountered classes of approaches are those based on U-statistics (see e.g. [3,6,8,9]) and those based on empirical c.d.f.s (see
e.g. [7,10]). As far as the resampling technique is concerned, one finds approaches based on permutations of the original
sequence (see e.g. [1,9,10]) and approaches that use a weighted bootstrap based on multiplier central limit theorems (see
e.g.[7,8]). For a broader presentation of the field of change-point analysis, we refer the reader to the monographs by [2,4].
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In this paper, we revisit and extend the approach proposed by Gombay and Horvath [7] based on the test statistic
k(n — k)

p— _ *
Tnv = 151‘]{1583(_] n3/2 f;'@ |Fk(X) F"_k(X)| ’
where
k n
1 . 1 g
F()=-Y 1X<x and F_(x)=—" 10X <x), xeRY
k & n—k. 4
i=1 i=k+1
are the empirical c.d.f.s computed from X1, . .., Xy and Xy 1, . . . , X, respectively (see also [4, Section 2.6]). From a theoretical

perspective, we work in the framework of the theory of empirical processes as presented for instance in [17,12]. To obtain
results that are valid for many different classes of functions (in the sense of empirical process theory — see Section 2.1), we
first extend the multiplier central limit theorem (see e.g. [12, Theorem 10.1 and Corollary 10.3]) to the sequential setting.
This allows us to obtain interesting generalizations of Theorems 2.1-2.3 of [7]. In particular, we propose a slightly different
multiplier process that appears to lead to better behaved tests in the case of moderate sample size. From a more practical
perspective, we consider a large number of candidate test statistics based on processes indexed by lower-left orthants and
by half-spaces, and we study the finite-sample performance of the corresponding tests through extensive Monte Carlo
experiments involving univariate, bivariate and trivariate data sets. As we shall see, in the multivariate case, the tests based
on processes indexed by half-spaces appear to be substantially more powerful than more classical tests based on multivariate
empirical c.d.f.s (i.e., based on processes indexed by lower-left orthants).

The paper is organized as follows. In Section 2, we state the theoretical results at the root of the studied class of tests
in the broad setting of empirical process theory. Section 3 is devoted to an application of the theorems of Section 2 to
the derivation of nonparametric tests for change-point detection for two classes of functions which are the collection of
indicator functions of lower-left orthants and the collection of indicator functions of half-spaces. The results of large-scale
Monte-Carlo experiments comparing the finite-sample behavior of the tests are partially reported in Section 4. Section 5
contains practical recommendations and presents an application of the studied tests to trivariate hydrological data. All the
proofs are relegated to the appendices.

Note finally that the code of all the tests studied in this work will be documented and released as an R package whose
tentative name is npcp.

2. Theoretical results for change-point detection

2.1. Notation and setting

All the random variables used in this work are defined with respect to the underlying probability space (§2, 4, P) and
the outer probability measure corresponding to P is denoted by P*.

Let Xi, ..., X, be i.i.d. d-dimensional random vectors with law P, and let # be a class of measurable functions from R?
to R. The empirical measure is defined to be P, = n™! ZLI 8x., where 8, is the measure that assigns a mass of 1 at x and
zero elsewhere. For f € ¥, P,f denotes the expectation of f under P,, and Pf the expectation under P, i.e.,

P.f = %Xn:f(xi) and Pf:ffdP.
i=1

The empirical process evaluated at f is then defined as G,f = /n(P.f — Pf).

Saying that F is P-Donsker means that the sequence of processes {G,f : f € ¥} converges weakly to a P-Brownian
bridge {Gpf : f € F} in the space £°°(F) of bounded functions from # to R equipped with the uniform metric in the
sense of Definition 1.3.3 of [17]. Following usual notational conventions, this weak convergence will simply be denoted by
Gn ~ Gp in £°(F). Furthermore, we say that F, : RY — R is an envelope for F if F, is measurable and [f (x)| < F.(x) for
everyf € ¥ and x € RY.

The advantage of working in this general framework is that the forthcoming results remain valid for many P-Donsker
classes #. By taking F to be the class of indicator functions of lower-left orthants in R%, i.e, F = {y —~ 1(y <x) : x € @d}
with R = RU {—o00, 00}, one recovers the setting studied in [4, Section 2.6] and based on empirical cumulative distribution
functions (c.d.f.s). Although this is a natural choice for ¥, many other choices might be of interest in practice such as the class
of indicator functions of closed balls, rectangles or half-spaces (see [13] for a related discussion regarding the choice of ).

2.2. A multiplier central limit theorem for the sequential empirical process

The sequential empirical process is defined as
1 Lns]
I =7 D V&) =P = Vr@ECuf, sel0.1L.f € 7,
i=1

where A, (s) = |ns]/n and with the convention that Pof = Oforallf € .
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According to Theorem 2.12.1 of [17], # being P-DonsKer is equivalent to Z,, ~+ Zp in £°°([0, 1] x F), where Zp is a tight
centered mean-zero Gaussian process with covariance function

coviZp(s, f). Ze(t, g)} = (s A ) (Pfg — PfPg)

known as a P-Kiefer-Miiller process.
Given i.i.d. random variables &1, . . ., &, with mean 0 and variance 1, satisfying fOOO{P(|{-‘1| > x)}2dx < oo, and inde-
pendent of the random sample X, . .., X;,, we define the following multiplier version of Z,:

- 1 Lns)
Tus.f) = —= DG —Pf}, sel0,1.feF
i=1

Notice that the empirical process in depends on the unknown map f + Pf and therefore cannot be computed. With appli-
cations in mind, we define two versions of Z, (depending on how f > Pf is estimated) that can be fully computed. For any
se[0,1],f € F,let

| ns] |ns]
Zn(s,f) = Za{m — P} = IZ@’ Elns ) (X0,

where £, = |ns] ™' Y1) & and & = 0 by convention, and let

. 1o
s =~ D EIF () — Paf).
i=1

The following result is then a partial extension of the multiplier central limit theorem (see e.g. [12, Theorem 10.1 and
Corollary 10.3]) to the sequential setting.

Theorem 1. Let ¥ be a P-Donsker class with measurable envelope F, such that PFe2 < oo. Then, (Zy, Z,, in, Zn) ~ (Zp, Zp,
Zp, Zp) in {€°°([0, 1] x F)}*, where Z,, is an independent copy of Zp.

Theorem 1 suggests the following interpretation: when n is large, Z can be regarded as “almost” an independent copy
of Z,, while Zn and Z, can be regarded as computable copies of Z,. As we shall see, this interpretation is at the root of the
resampling technique considered in Section 3.

Although each of Z, and Z, could be regarded as “almost” an independent copy of Zy, their behavior for moderate n
might differ quite substantially. In Section 4, we empirically investigate which of Z, or Z, leads to tests for change-point
detection with the best finite-sample properties.

2.3. Application to change-point detection

Recall that the null and alternative hypotheses under consideration are given in (1) and (2), respectively.
Let F be a class of measurable functions. In order to test the aforementioned hypotheses, we extend the approach studied

in detail by Csorgo and Horvath [4, Section 2.6] and compare, forallk € {1,...,n — 1},
1< .
Bf =) fX) and By f = Z fX), ferF.
i=1 1 k+1

Analogous to [4, Section 2.6], we define the process
]D)H(S,f) = \/ﬁkn(s) {1 - )Vn(s)} (P\_nsjf - P;_[nsjf) , SE€ [0: 1]»f €EF,

where An(s) = [ns]/n and with the convention that Pof = 0 and Pgf = 0 forall f € #. Notice that, under the null
hypothesis, for any s € [0, 1] and f € ¥, we have

Dn(s, f) = {1 = ()} Zn(S, ) = AaHZn (1, f) — Zn(S, )} = Zn (5, f) — n($)Zn(1, f). 3)

With resampling in mind, we define two multiplier versions of D, based on the multiplier versions of Z, defined in the
previous subsection. For any s € [0, 1]and f € £, let

Hv))n(svf) ={1- )\n(s)}zn(S,f) - )\n(s){zn“’f) - Zn(svf)} = Zn(-("vf) - )\n(S)Zn(l,f),
and, following [7], let

Du(s, f) = (1= 2a(8)}Za(5, f) — Aa($)Z4(S, f), (4)
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where

B ) o L S (g _ N L L
ZyGs.f) = ﬁl_:gﬂ(sl St ) X)Wt &}y = — i:%f” 5)

and §5 = 0 by convention. Notice that the process Z*, defined above is, up to a small error term vanishing as n — oo, the
version of the process (s, f) — in(l — s, f) computed from the “reversed” sequence (&, X;)), (n—1, Xn—1), ..., (&1, X1).

The following two results extend Theorems 2.1-2.3 of [7] and suggest, for large n and under the null hypothe51s to
interpret each of ]D)n and D, as an “almost” independent copy of Dy,.

Theorem 2. Assume that Hy holds and that F is Py-Donsker with measurable envelope F, such that POFe2 < oc. Then, (D,
Dy, Dy) ~ (Dp,s ]D);,O,]D);,O) in {€°([0, 1] x F)}3, where Dpy (s, f) = Zpy (s, f) — sZp,(1,f),s € [0, 1], f € ¥, and D},O is an
independent copy of Dp,.

As we continue, foranyJ : # — R, supy. ¢ |[f| will be denoted by [|/|| . Also, for any sequence of maps Y1, Yz, ..., each
from £2 to R, we say that the sequence Y, is bounded in outer probability if, for any & > 0, there exists M > 0 such that
SUppey P* (1Yn| > M) < &.

Theorem 3. Assume that Hy holds with k* = |nt] for somet € (0, 1) and that ¥ is P, and P,-Donsker with measurable
envelope F, such that P\F? < oo and P,F? < oc. Then,

. p*

(i) supsero, ) In2Dy(s, ) — Ke(s. f)llw — O, where K (s, f) = (Pf — Pof)(s AD{1 — (s V 1)},
(ii) supseqo.1) IDn (s, )|l # is bounded in outer probability,
(iii) D, converges weakly in £°([0, 1] x F).

The previous result will be used in the next section to show that various tests for change-point detection based on D,
will tend to reject Hy under Hy as n increases.

3. Tests for change-point detection a la Gombay and Horvath

The aim of this section is to use the results of the previous section to derive tests for change-point detection in the
spirit of those proposed by Gombay and Horvath [7]. Among the many possible choices for &, we consider the following
two:

(C1) the collection O of indicator functions of lower-left orthants in RY, where

O={fy) =10 <9 :xeE');
(€2) the collection # of indicator functions of half-spaces in R¢, where
H=1{fas(y) =1@'y <b) :a € $4,b € R}
and 4, is the subset of RY composed of vectors with Euclidean norm one.

It is well-known that lower-left orthants and half-spaces are Vapnik-Chervonenkis classes of sets. Consequently, @ and
are P-Donsker for any law P (see e.g. [17,12]). .

As we continue, in the case of choice (C1), for any s € [0, 1] and fy € O, Dy(s, fx), Da(s, fx) and Dy (s, f) will simply
be denoted by Dy(s, x), JD (s, x) and Dy (s, X), respectively. Similarly, in the case of choice (€C2), for any s € [0, 1] and
fap € H,Dn(S, fap), ]D)n(s fap) and Dn (s, fa») will be denoted by D, (s, a, b), ]D),,(s a, b) and D, (s, a, b), respectively.

In the framework under consideration, a change in the sequence Xj, ..., X, can occur at any pointk € {1,...,n — 1}.
A test for change-point detection could therefore be obtained by first deﬁning a test statistic for any possible change—point
k € {1,...,n — 1}, and then by combining the resulting n — 1 statistics into a global statistic using some function from
¥R R

In the case of choice (€1), two natural possibilities for the n — 1 change-point statistics are respectively

s [ Ao (5 ) arw = 25 o (5 x)) ) keq 1
n,k_Ad{ n(nvx)] n(x)_n;{ n(n7 l)} ’ e{ seee, T — }s

where F,(x) = Ppfy, x € Ed, is the empirical c.d.f. computed from X, . . ., X;, and

(2
Dyl =, x)| =
n

Tn,k = sup
xeRrd

, kef{l,...,n—1}.
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Two natural choices for the function v are the maximum and the arithmetic mean which leads to the following four global
statistics:

Spv = Max S,y = sup / {Dn (5, 0)}* dF, (%),
]Rd

1<k<n—1 se€[0,1]
Tov = max Tpx= sup sup|D,(s,x),
1=k=n—1 5€[0,1] xeRrd

1 n—1 1
Sue =23 = [ [ om0 drcous
L 0o Jrd

1 n—1 1
Ty == Toy= / sup |Dy (s, X)| ds.
n k=1 0

xeRd

Note that T,y is the global statistic used in [7].
In the case of choice (€2), forany k € {1, ..., n — 1}, we first define

k 2 1< ko -\
Un,sz / Dy (=, ab dFa,n(b)da:/ =Y D (=.a.a'X )t da,
55 Jr n Er e n

where 5; = {a € 83 : a; > 0} and, foranya € 5;, Fq n is the (univariate) empirical c.d.f. computed from the projected
samplea'Xy, ..., a'X,, and
k
Dy (*, a, aTXi)’ .
n

As in the case of choice (€1), this leads to four global statistics depending on whether the change-point statistics are
combined using the maximum or the arithmetic mean, i.e.,

Vnx = sup sup
065; beR

k
Dy (f,a, b)‘ = sup max
n

<i<
aes} I=izn

Un,v = max Un.k = Ssup / [ {]DH (S, a, b)}z dFa,n(b)da=
1<k<n-—1 sef0,11J 5] Jr
Vn,\/ — max Vn,k = Sup sup sup |]D)n (5» a, b)| s

Isk=n—1 s€l0.1] gegf beR

1 n—1 1
Ups ==Y Uni= f f / {Dn (s, a, b)}? dFy n(b)dads,
ni= o JsfJr
k=1 d

1 n—1 1
- Z Vo = / sup sup |D, (s, a, b)| ds.
n k=1 0

065; beR

Vn,+

In our Monte Carlo experiments, the integral and the supremum overa € 5; in the definitions of U, x and V, i, respectively,
were approximated numerically based on a uniform discretization of 5; into m points. The implementation of the tests
based on Uy x and V,, i is discussed in more detail in Appendix B. Notice finally that the change-point statistics S, x and Uy, x
(resp. T and V, ) coincide when d = 1 since /31+ = {1}.

Let us now explain how approximate p-values for these statistics can be computed using the multiplier processes D, and
D,. For the sake of brevity, we present the approach and state the key results only for Sn,v as the cases of the other seven
global statistics are similar.

Let N be a large integer and let Si(i), ie{l,...,n},je{1,...,N}, bei.id. random variables with mean 0 and variance
1satisfying [;°{P(1£”| > x)}/%dx < oo, and independent of Xi, . .., X,. Also, for any j € {1,..., N}, let DY’ (resp. DY)
denote the version ofﬁn (resp. D, ) computed from 51(’), e ,1(’). Moreover, for anyj € {1, ..., N}, let

, . , » . 5
SV, = sup / DY (s,x)} dF,(x) and $9, = sup / DY (s, %)} dF, (x).
se[0,1] Jrd s€[0,1] Jrd

The following result is then essentially a corollary of Theorem 2.

Proposition 1. Under Hy,

-~

(Snvs S oo S0, SN) o (Su, SO, L s S L s

»2n,ve On v
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Table 1
Percentage of rejection of Hp in the univariate case computed from 1000 random samples of size n generated under Hy
defined in (1) where Fy is the c.d.f. of the standard normal distribution.

n §1.V gn.v S:,v §n.+ §n.+ 5:.4_ ?n.v 7v"n,v Tr)lk,v ﬁl.-%— Trl,-# Tn*,+
50 7.2 5.7 5.7 7.7 5.1 5.9 6.7 5.8 5.7 8.4 52 43

100 6.5 5.5 6.2 6.0 4.9 6.1 7.1 6.6 6.5 8.1 6.2 6.2

200 59 4.8 4.3 59 4.6 55 5.4 4.5 4.5 7.5 5.4 43

1[0, 00) N+ where

S, = sup / (Dr, (5, 0 dFo(x)
]Rd

se[0,1]

.., s

is the weak limit of S, v, Fo is the c.d.f. corresponding to P, and S“) . are independent copies of S,.

The previous proposition suggests interpreting the /S\,E{)v (resp. the E,E’:)v) under the null hypothesis as N “almost”
independent copies of S, ., and thus computing an approximate p-value for Sy \, as

N N
0 1 »
; ( 0, >, v) or as N;I(S’S{L > s,w). (6)

Proposition 2. Assume that Hy holds with k* = |nt| for somet € (0, 1). Then, S, v L o0 while, foranyj € {1, ..., N},/S\,(l’:)v

and S,S’ v are bounded in outer probability.

A consequence of the previous proposition is that, under H;, the approximate p-values for S,. will tend to
zero in outer probability. As mentioned earlier, results analogous to Propositions 1 and 2 can be obtained for
Sn+> Tovs Tnts Unpv, Un 4, Vi and Vi o

4. Monte Carlo experiments

Large-scale Monte Carlo experiments were carried out in order to study the finite-sample performance of the tests
defined in the previous section. Let Q, be one of S, v, Sy, 4> Tnvs n 4+, Unv, Uny, Vo and V, .. In the rest of the paper,
the test based on Q,, will be referred to as the test based on Qn (resp. Qn) when its approximate p-value is computed using the
multiplier processes Dﬁ’) (resp. ]D),({) ).

To compare the power of the aforementioned tests, several univariate and multivariate scenarios were considered and
1000 samples of size n were generated under each scenario for n € {50, 100, 200}. Recall that the c.d.f. corresponding to
Py in Hg defined in (1) is denoted by Fo. Similarly, the distinct c.d.f.s corresponding to P; and P, in H; defined in (2) will be
denoted by F; and F,, respectively, as we continue. In all scenarios, the multipliers appearing in the ﬁ,({) and ]Iv),(qn were taken
from the standard normal distribution. All approximate p-values were computed from N = 1000 multiplier realizations
and the tests were carried out at the 5% level of significance.

From the previous section, it is easy to verify that, in the univariate case, the change-point statistics Uy x (resp. Vy k)
coincide with the S, x (resp. Ty k) since 51+ = {1}, and that the S, x and the T,y are solely based on ranks. From the latter
fact, it follows that, under Hy and the assumption of continuity of Fy, independent realizations of each of the four global
statistics based on the S,  or the T, ; can be obtained by computing these global statistics from independent samples of size
n generated from the standard uniform distribution. A natural way of computing an approximate p-value for each of the
four global statistics then consists of proceeding analogously to (6) using N independent realizations. As we continue, the
resulting four univariate tests will be referred to as the tests based on S*,, S* and Tj |

Table 1 gives rejection percentages of Hp in dimension one for all IEhve a?o-;ementloned versions of the tests when data
are generated under Hy. As can be seen, the tests whose approximate p-value is computed using the processes ﬁ,ﬁ” seem
to be too liberal (at least for n € {50, 100}), and more liberal than their version computed from the 15),(1’). Nevertheless, as
expected, the empirical levels of the multiplier tests improve as n increases in the sense that they become closer to the 5%
nominal level. Note that the tests based on Sy , S;‘ +» Ty, and Ty, provide a sort of benchmark as, by construction, they
should hold their level well for any n provided N is tal(en sufﬁc1ently large.

Rejection percentages of Hy in the univariate case when data are generated under H; are reported in Table 2. Three
scenarios are considered: F; and F, are the c.d.f.s of the N(0, 1) and the N(0.5, 1) distributions, respectively; F; and F, are
the c.d.f.s of the N(0, 1) and the N(0, 2) distributions, respectively; and F; and F, are the c.d.f.s of the exponential E(1) and
E(0.5) distributions, respectively. Notice that the parameter t taking its values in {0.1, 0. 25 0.5} determines the position
of the change-point in H; as k* = |nt]. As one can see, the tests based on the processes ]D)n are consistently slightly more

powerful than those based on the ]D,({), while the rejections rates of the latter are, overall, comparable to those of the tests
based on simulation from the standard uniform distribution. This merely appears to be due to the fact that the tests based
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Table 2
Percentage of rejection of Hy in the univariate case computed from 1000 samples of size n generated under H; defined in (2), where k* = |nt |, and F; and
F, are the c.d.f.s of the distributions given in the first two columns.

~ <

Fl F2 n t Sn,\/ -§n,v SrT,v Sn.+ Sn,+ S:,+ Tn.\/ 7v"n,v T,T'\/ Tn.+ Tﬂ,+ T:_+

N(,1) N(0.5,1) 50 0.10 9.1 7.1 6.8 10.1 7.1 8.2 9.0 7.3 6.9 14.2 8.3 8.6
N(,1) N(0.5,1) 50 0.25 18.4 15.9 134 19.1 14.4 14.4 17.0 136 8.9 23.0 13.6 12.0
N(,1) N(0.5,1) 50 0.50 34.0 30.5 316 34.1 29.0 32.1 32.6 29.5 25.6 35.4 26.9 24.9
N(0,1) N(0.5,1) 100 0.10 9.7 8.2 6.5 10.1 8.5 7.3 9.7 8.7 6.7 116 9.4 7.3
N(0,1) N(0.5,1) 100 0.25 36.9 340 338 36.2 333 317 30.4 28.6 25.1 37.2 314 29.3
N(0,1) N(0.5,1) 100 0.50 58.7 55.9 54.1 56.7 539 56.0 52.1 48.6 421 53.6 49.3 455
N(0,1) N(0.5,1) 200 0.10 15.9 15.1 14.0 18.6 17.3 16.8 153 14.6 111 22.1 195 18.0
N(,1) N(0.5,1) 200 0.25 65.2 64.1 63.9 65.8 64.3 62.5 56.7 55.5 54.8 61.6 57.2 52.2
N(0,1) N(0.5,1) 200 0.50 87.1 86.4 86.8 86.1 85.3 85.0 81.2 80.6 79.1 81.2 79.5 76.2

N(©,1) N(0,2) 50 0.10 6.8 5.6 5.9 8.1 5.4 4.9 8.1 6.0 5.1 119 7.0 6.3
N(,1) N(0,2) 50 0.25 8.9 6.4 7.1 117 9.4 6.9 113 10.0 8.1 17.0 10.9 8.4
N(,1) N(0,2) 50 0.50 129 10.3 9.9 18.8 135 14.1 19.6 16.6 12.6 27.8 18.4 17.4

N(©0,1)  N(0,2) 100 0.10 7.1 6.4 6.6 8.1 6.8 6.3 8.6 7.7 60 107 8.0 6.0
N@©,1)  N(0,2) 100 025 88 75 81 175 143 154 142 132 121 253 192 188
N@©,1)  N(0,2) 100 050 231 208 249 384 342 391 345 319 275 466 389 377
N(©O,1) N(0,2) 200 0.10 6.4 59 59 9.1 82 6.9 9.0 8.7 67 145 122 8.6
N©,1) N@©0,2) 200 025 210 196 212 502 478 413 336 326 325 547 493 438
N©,1) N(©,2) 200 050 648 640 651 828 817 823 721 710 657 837 825  79.1
E(1) E(0.5) 50 0.10 8.1 6.8 6.0 9.3 72 73 8.9 74 58 145 8.7 7.8

E(1) E(0.5) 50 0.25 28.0 253 22.1 30.7 255 226 255 22.4 19.6 338 24.2 22.3
E(1) E(0.5) 50 0.50 50.5 46.2 46.3 49.6 438 48.8 45.0 40.8 40.7 48.6 40.7 429
E(1) E(0.5) 100 0.10 127 11.0 7.9 143 117 114 12.8 116 111 16.7 13.1 10.9
E(1) E(0.5) 100 0.25 519 50.0 50.8 52.2 48.4 47.4 452 429 413 49.9 44.9 453
E(1) E(0.5) 100 0.50 77.4 76.1 74.6 77.3 74.8 72.9 72.4 70.4 70.7 738 69.4 67.9
E(1) E(0.5) 200 0.10 19.9 19.3 20.2 249 232 238 16.8 16.3 13.9 254 233 19.4
E(1) E(0.5) 200 0.25 87.0 86.2 85.5 84.4 83.1 814 79.0 78.0 76.2 80.8 773 77.9
E(1) E(0.5) 200 0.50 96.6 96.3 95.7 95.4 94.9 95.7 94.9 95.0 94.7 93.2 92.7 91.7

on the processes ﬁ,({) are slightly too liberal for the sample sizes under consideration. Notice that the differences in power
decrease as n increases, as expected. Among the tests based on the ]]3),(1’), the one based on §n’v seems, overall, to be the best
choice for detecting changes in mean, while the test based on T,H seems, overall, to be the best choice for detecting changes
in variance. The former seems also to be the best choice, overall, when data are generated under the third scenario involving
exponential distributions. If one is willing to make continuity assumptions on the underlying distributions, the tests based
onS;, and T are equivalently good candidates. Clearly, there exists more powerful test for change-point detection if it is
assumed that only a change in mean or variance can occur (see e.g. [2,4]).

In dimensions two and three, we considered multivariate distributions constructed from [15]’s representation theorem.
The latter result states that any multivariate c.d.f. F : RY — [0, 1] whose marginal c.d.f.s F'l, ..., Fl4 are continuous can
be expressed in terms of a unique d-dimensional copula C as

F(x) = C{F"(xy), ..., F9xp)}, xeR%

Table 3 reports rejection percentages under Hy when Fy is a bivariate c.d.f. with Clayton or Gumbel-Hougaard copula
and standard exponential or standard normal margins. The parameter of the copula is chosen so that the theoretical value
of Kendall's tau is equal to T € {0, 0.25, 0.5, 0.75}. Note that T = 0 corresponds to independence while t = 0.5 entails
moderate dependence between the two components. Note also that the parameter m used in to discretize uniformly 52+
was set to 8 (see Appendix B for more details). The settings m = 6 and m = 10 were also considered but this did not
seem to affect the results much. As the tests whose approximate p-value is computed using the processes ﬁ,({) appeared
systematically too liberal for the sample sizes under consideration, we only report the results of the tests based on thev]ﬁ),({)
in Table 3. As can be seen, the latter tests seem to hold their level reasonably well except perhaps the tests based on V,
and er which might be slightly too liberal for t = 0.75 and the sample sizes under consideration. Similar results were
obtained in dimension three.

Estimated rejection rates when both distributions in H; have the same copula (Clayton or Gumbel-Hougaard) but differ
in one margin are given in Table 4. To be precise, the bivariate distributions F; and F, only differ in the first margin which
is standard exponential for F; and exponential with rate 0.5 for F,, while the second margin of both F; and F; is standard
exponential. As one can see, the tests based on half-spaces are substantially more powerful than the tests based on lower-
left orthants. The test based on U, is the most powerful, overall, when v = 0, while, when t = 0.5, it is the test based on
\7n,+ that has, overall, the highest rejection rates.

Table 5 reports rejection percentages when the change in distribution is only due to a change in the dependence structure:
both F; and F, have standard exponential margins but the copula of F; is the Clayton (resp. Gumbel-Hougaard) copula with
a Kendall’s tau of 0.1, while that of F; is the Clayton (resp. Gumbel-Hougaard) copula with a Kendall’s tau of T € {0.3, 0.7}.
As one can see from the overall low rejection percentages, this problem appears to be more difficult than the previous one.



Table 3

M. Holmes et al. / Journal of Multivariate Analysis 115 (2013) 16-32

23

Percentage of rejection of Hy computed from 1000 random samples of size n generated under Hy defined in (1), where Fy is a bivariate c.d.f. whose
univariate margins Fé” and Fézl are either both standard normal (N) or both standard exponential (E), and whose copula is either the Clayton (Cl) or
the Gumbel-Hougaard (GH) with a Kendall’s tau of t. The parameter m used to uniformly discretize 52* was set to 8 (see Appendix B for more details).

Cl GH
' n T Sov S+ Tav Tax Unv Uns Vav  Var  Sav See Tav Tax Unv Ungr Vau Vi
N 50 0.00 3.8 3.7 47 48 5.5 4.4 5.9 5.9 42 3.8 5.4 4.0 47 35 5.8 5.7
N 50 0.25 3.2 2.6 4.8 4.0 5.5 4.1 6.3 5.7 4.9 4.4 4.5 4.2 5.2 4.4 6.2 5.4
N 50 0.50 5.3 49 6.3 6.2 49 4.4 5.1 54 47 4.4 5.8 5.3 49 43 53 5.2
N 50 0.75 5.0 47 5.0 4.6 49 45 6.4 5.7 4.4 3.9 45 4.1 4.2 3.8 4.6 45
N 100 0.00 49 49 5.5 6.2 5.6 4.7 6.5 6.6 4.0 4.5 5.2 4.7 3.5 34 4.0 4.2
N 100 0.25 5.4 49 5.6 5.1 47 43 5.6 5.6 6.0 49 5.9 6.3 5.3 4.4 6.5 6.1
N 100 0.50 5.1 42 5.1 49 41 45 6.0 6.3 47 42 43 3.9 3.8 42 5.7 5.4
N 100 0.75 49 5.4 5.5 5.7 5.1 5.3 6.5 7.4 5.1 4.7 4.5 3.6 5.5 4.2 5.3 5.1
N 200 0.00 5.5 5.4 5.5 6.0 5.1 6.0 5.7 7.4 4.8 4.2 5.6 4.6 4.0 3.7 5.3 4.7
N 200 0.25 5.4 5.2 5.9 6.4 49 44 6.0 6.3 52 4.1 53 5.2 49 43 5.7 4.8
N 200 0.50 5.8 48 49 41 5.2 4.4 49 49 5.1 6.0 5.5 6.0 6.0 6.0 5.8 7.1
N 200 0.75 6.7 5.5 7.3 6.0 6.7 6.1 7.1 6.3 4.9 4.5 5.4 4.7 5.8 4.6 5.6 5.6
E 50 0.00 43 4.8 6.0 6.0 4.0 3.9 6.1 6.1 3.8 3.9 3.8 3.6 3.6 3.2 5.8 5.7
E 50 0.25 3.7 34 5.3 4.0 47 3.6 5.8 4.4 6.6 5.6 6.9 5.9 5.2 42 6.7 5.8
E 50 0.50 3.7 3.4 4.8 5.0 33 3.4 6.5 6.2 4.8 4.7 5.9 5.1 4.7 3.6 6.9 5.4
E 50 0.75 5.4 49 6.0 5.4 5.2 4.2 5.9 6.4 5.9 5.2 6.0 5.2 6.0 5.2 7.6 6.2
E 100 0.00 49 4.6 5.3 46 46 48 47 5.1 5.3 45 5.2 4.6 5.5 46 55 5.7
E 100 0.25 5.1 49 49 47 5.9 4.8 5.7 6.1 35 3.6 4.4 4.6 4.1 4.6 5.6 6.5
E 100 0.50 5.4 4.6 5.3 45 53 4.4 6.3 5.1 5.2 4.4 4.0 3.8 4.9 3.8 5.5 5.9
E 100 0.75 55 5.8 55 5.6 5.1 5.0 53 5.6 6.1 6.5 7.2 7.1 6.6 6.0 6.9 6.8
E 200 0.00 49 4.4 5.0 49 5.2 4.6 5.1 54 5.1 4.4 4.6 49 4.5 4.7 5.5 5.6
E 200 0.25 5.6 5.6 5.4 53 5.6 5.3 6.6 6.4 4.5 4.6 5.5 5.0 4.6 4.9 4.7 5.7
E 200 0.50 5.5 4.8 6.4 53 5.1 48 5.8 5.5 6.7 6.2 6.3 6.0 6.1 6.2 5.6 6.5
E 200 0.75 49 43 49 5.0 47 4.6 6.2 6.3 6.8 5.6 5.8 55 6.7 5.9 7.4 6.7

Table 4

Percentage of rejection of Hy computed from 1000 samples of size n generated under H; defined in (2), where k* = |nt], F; and F, are bivariate c.d.f.s that
only differ in their first margin which is standard exponential for F; and exponential with rate 0.5 for F,. The common copula C of F; and F; is either the
Clayton (Cl) or the Gumbel-Hougaard (GH) with a Kendall’s tau of t. The second margin of both F; and F, is standard exponential. The parameter m used

to uniformly discretize 4, was set to 8.

Cl GH
n T t Sn,v 5n.+ Tn,v Tn.+ Un,v Un.+ Vn,v Vn.+ Sn,v Sn.+ Tn,v Tn.+ Un,v Un,+ Vn,v Vn,+
50 00 0.10 53 5.1 5.7 5.4 6.1 6.8 7.4 9.0 5.6 5.6 6.5 7.2 6.8 7.2 7.9 9.0
50 00 025 124 124 123 138 196 191 166 184 106 11.0 128 134 194 195 17.4 19.1
50 00 050 213 199 238 222 412 367 350 352 246 234 252 235 434 395 35.2 354
50 05 0.10 4.3 3.9 4.8 4.8 43 4.8 6.4 8.4 5.0 5.2 59 5.5 73 7.7 9.3 10.6
50 05 025 8.3 79 116 121 195 208 263 302 8.7 87 118 118 216 252 30.0 329
50 05 050 175 153 261 229 492 50.1 595 568 186 182 269 239 485 487 63.1 58.1
100 00 0.10 7.9 83 7.9 9.7 9.8 10.4 99 119 7.3 7.0 8.7 9.3 10.1 10.6 9.1 11.6
100 00 025 250 239 237 26.1 445 427 335 359 259 259 275 306 473 453 34.6 40.0
100 00 050 441 431 499 477 721 686 638 616 458 446 535 498 742 700 63.8 62.3
100 05 0.10 59 5.5 6.4 7.3 8.9 9.7 116 164 6.6 6.6 6.9 8.4 93 111 10.8 18.4
100 05 025 147 156 224 245 508 537 575 603 179 173 281 280 598 616 70.1 70.5
100 05 050 282 302 490 487 847 8.8 892 876 342 343 514 486 877 888 94.2 92.6
200 00 010 112 115 105 144 157 191 116 193 112 120 103 139 174 197 12.8 19.4
200 00 025 496 484 569 571 812 775 675 686 526 515 586 584 814 79.0 67.0 71.0
200 00 050 80.1 785 874 849 970 958 926 916 773 759 859 819 972 96.2 92.1 90.4
200 05 0.10 7.0 7.8 99 146 163 229 211 302 8.0 8.4 87 123 186 243 222 352
200 05 025 258 283 536 542 877 887 901 904 304 328 556 547 950 946 97.7 95.9
200 05 050 529 570 839 823 994 993 994 995 675 669 867 847 999 998 1000 100.0

The tests have hardly any power for t = 0.3.For T = 0.7, the tests based on Vn,v and \7,,,+ are the most powerful, overall, al-
though one should be cautious as they might be slightly too liberal in the case of strongly dependent data according to Table 3.

The setting used to obtain Table 5 was finally extended to dimension three (results not reported). The conclusions are
very similar to those obtained in dimension two with the difference that all the rejection rates are higher. Hence, as could

have been expected, detecting a change in the dependence becomes easier as the dimension increases.

5. Practical recommendations and illustration

From the results of the Monte Carlo experiments partially reported in the previous section, the tests based on §n,v and
Tn,+ seem good choices in the univariate case, while the test based on V;, ; seems to be a good one in the multivariate case.
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Table 5

Percentage of rejection of Hy computed from 1000 samples of size n generated under H; defined in (2), where k* = |nt |, F; and F, are bivariate c.d.f.s with
standard exponential margins and copula from the same family (Clayton (Cl) or Gumbel-Hougaard (GH)) but with different parameter values. The copula
of Fy has a Kendall's tau of 0.1, while that of F, has a Kendall’s tau of . The parameter m used to uniformly discretize 85 was set to 8.

50 03 0.10 55 5.9 5.2 5.1 4.3 3.8 52 6.0 4.7 52 5.1 5.1 5.8 49 6.8 5.8
50 03 025 59 5.1 6.8 53 5.4 4.7 6.2 6.5 5.6 5.1 6.0 5.6 5.9 4.2 7.2 6.2
50 03 050 4.4 4.5 6.8 4.6 3.9 2.9 6.2 4.9 6.1 6.1 6.3 6.3 4.7 4.7 6.8 6.7
50 07 0.10 5.7 57 6.3 6.2 5.1 4.9 6.4 6.4 5.4 5.6 5.8 5.6 3.8 4.2 6.3 6.6
50 07 025 7.5 8.0 6.8 8.1 4.4 3.8 6.9 9.3 7.3 9.5 9.1 8.9 5.8 55 8.0 9.8
50 07 050 134 137 139 143 7.1 83 139 148 128 131 126 118 6.1 69 133 140
100 03 0.10 4.6 4.8 5.9 58 4.4 4.5 6.5 6.4 5.0 52 5.9 6.4 6.4 5.7 8.0 7.6
100 03 025 4.8 5.1 5.4 53 4.7 4.4 52 5.8 53 5.6 6.4 7.2 4.8 4.3 54 6.4
100 03 050 7.6 7.4 7.2 6.5 5.3 4.4 6.2 6.1 7.0 6.8 7.0 7.0 4.4 4.5 58 6.9
100 0.7 0.10 7.1 6.5 7.2 6.8 5.6 4.8 58 8.7 5.1 5.8 5.9 58 3.8 5.0 5.4 7.0
100 07 025 129 134 130 134 6.9 85 120 186 139 157 127 136 5.8 77 135 212
100 07 050 254 267 238 250 114 150 325 360 271 271 250 257 127 166 342 394
200 03 0.10 6.0 59 5.0 52 5.6 4.5 5.4 4.6 4.5 4.4 4.9 53 4.9 4.9 6.0 6.2
200 03 025 6.2 7.1 5.9 6.9 4.7 5.6 57 7.1 6.0 6.2 5.8 55 4.7 53 6.2 6.8
200 03 050 7.9 8.4 7.4 7.4 5.9 55 6.9 72 108 106 93 104 7.2 7.2 8.6 9.3
200 0.7 0.10 89 112 91 115 6.5 7.1 80 108 8.9 9.6 87 111 5.1 6.7 8.1 118
200 07 025 260 281 253 253 11.0 150 251 296 286 300 259 283 143 204 301 430
200 07 050 435 448 437 444 226 304 568 614 480 459 452 445 352 517 798 852

Table 6

Approximate p-values of the tests based on the processes DY for the trivariate hydrological
data considered in Section 5. The trivariate (resp. bivariate) tests based on half-spaces were
run with m = 32 (resp. m = 8). The approximate p-values were computed from N = 10,000
multiplier realizations.

Variables E,W §n.+ Tv'n,v Tn,+ Un_\/ Un,+ Vn,v Vn.+
(LQV) 0.114 0.120 0.015 0.028 0.010 0.010 0.004 0.006
L 0.479 0.314 0.510 0.236

(QV) 0.024 0.028 0.012 0.012 0.015 0.014  0.004 0.007

As an illustration, we applied the tests based on the processes ]E,S’) to the trivariate hydrological data collected at the
Ceppo Morelli dam, Italy, studied in [ 14]. The data consist of annual maxima for 49 years (in the range 1937-1994) of three
variables: L (dam reservoir water level in m), Q (peak flow in m® - s~!) and V (peak volume in 10® m?). For a detailed
description of the data, we refer the reader to Section 2 of [14].

We first tested for a change in the distribution of (L, Q, V). The approximate p-values of the eight tests based on the

processes Iﬁ),({) are given in the first line of Table 6. Since there are both physical and statistical reasons to believe that L
is independent of (Q, V) as explained in [14], as a second step, we tested for a change in the distribution of L and in the
distribution of (Q, V) separately. The obtained approximate p-values are reported in the second and third lines of Table 6.
As can be seen from the results of the test based on V,, -, there is strong evidence of a change in the distributions of (L, Q, V)
and (Q, V). From the second line of Table 6, we see that, on the contrary, there is no evidence of a change in the distribution
of L. The latter finding is completely consistent with the fact that the variability of L is mainly due to the management policy
of the reservoir which is constant over time. Indeed, as explained in [14], the target of the dam manager is to keep a high
water level in order to maximize electricity production.

As classically done in the literature, under the hypothesis of a single break in a distribution, the change-point can
be estimated by one of arg maxj<x<n—1 Sn k. arg Maxi<k<n—1 Ink, alg MaXq<k<n—1 Up k OF arg maxj<x<n—1 Vo x depending on
which test one wants to consider. For instance, the last estimator gives 31 for both (L, Q, V) and (Q, V), which corresponds
to a change after the year 1976.

Finally, let us mention that the approach based on multivariate empirical c.d.f.s considered in [4, Section 2.6] and in [7]
has been extended by Inoue [11] to serially dependent observations, although the latter work is not aware of the former
ones. A future research direction would be to study generalizations as such proposed in this work in the setting considered
by Inoue [11].
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Appendix A. Proofs

A.1. Proof of Theorem 1
To prove Theorem 1, we first show a lemma.

Lemma 1. Let ¥ be a P-Donsker class of functions with measurable envelope F, such that PF2 < oo. Then,

sup [|Zn(s, f) — Zn(s, 7 =5 0.
se[0,1]

Proof. Foranys € [0, 1] and f € F, we have

- R 1 [ns]
Zn(s.f) = Zns.f) = <ﬁ > sf) (Pingyf — PF).
i=1

Now, let Y, = ||Pf — Pfll#,k € {1,...,n}. Note that Y, need not be measurable, but, by the assumption that
supses If(X)| < Fe(x) forallx € RY, we have that

IPxf — Pfll¢ < PyFe + PF. < 00,

where PyF, 4 PF, is measurable. Thus, for each k, there exists a smallest random variable Y, < oo such that Yy(w) < Y (w)
for every w (see [17, Lemma 1.2.1]).
To prove the claim, it suffices to show that

3<k<n

1T <, as
Ap = max Y] x —Zs,»—w,
VI

where the variables are all measurable. Now, for any n > 3, let a, = n~/?(loglog n)'/2. Then,

Y* (12k ék Y* _ gk
A, = max ko e 2 < max * xn 1/2loglogn>< max —,
3<ksn @, nY2 @ T 3<ksn q 3<k=n @y

where & = k™! Zf-‘ﬂ £.

Since ¥ is P-Donsker with measurable envelope function F, satisfying PFe2 < 00, we know from the law of the iterated
logarithm for empirical processes [5], [12, p. 31] that limsupY;"/a, < oo almost surely, which implies that maxs;<x<,
Y{/ar < supys3 Yy /ar < ooalmost surely. Similarly, from the law of the iterated logarithm for the mean of an i.i.d. sequence
with expectation 0 and variance 1, we have maxs<x<n §k [k < SUPy>3 §k /ax < oo almost surely. The desired result finally
follows from the fact that n=/?loglogn — 0. O

Proof of Theorem 1. The proof of the weak convergence of the finite-dimensional marginal distributions of (Z,, Zn) to
those of (Zp, Zp) is a more complicated version of the corresponding result for convergence of the rescaled random walk
increments to Brownian motion. It is omitted here for the sake of brevity. N

To obtain that (Zy, Zn) ~ (Zp, Zp) in {£2°([0, 1] x #)}?, it remains to show that (Z,, Z,) is asymptotically tight (see e.g.
[16, Section 18.3]), which holds if both Z, and Zn converge weakly to tight random elements.

From Theorem 2.12.1 of [17], we have that Z,, ~ Zp in £°°([0, 1] x F). Now, let

P U N
G, = \/ﬁ;a(ax,. P)

be a multiplier version of G,. The class & being P-Donsker, from the functional unconditional multiplier central limit
theorem (see e.g. [17,12]), we have that G, ~ G, in £>°(F), where G}, is an independent copy of the P-Brownian bridge
Gp, which implies that G/, is asymptotically tight. To show that Ty ~ Zp, where Zj, is an independent copy of Zp, one
can use the asymptotic tightness of G and proceed as in the proof of Theorem 2.12.1 of [17]. Note that the proof can
be further simplified if the process in is symmetric in the sense of Chapter A.1 of [17], which happens if &1, ..., &, are
symmetrically distributed around zero. In that case, Ottaviani’s inequality can be replaced by Lévy’s inequality (see e.g.
[17, Proposition A.1.2]), which shortens the argument.

Hence, we have that (Z,, Zn) ~ (Zp, Zp) in {£>°([0, 1] x F)}2. The fact that Zy, is independent of Zp comes via that the
finite-dimensional distributions, which are multivariate normal, and the fact that Z,, and zn are uncorrelated.

Next, notice that

sup [1Zn(s, f) = Zn(s, /)l 7 = IPof — Pfll5 X S[l(l)P]
s€(0,

Lns]
se€[0,1]

1
]ﬁ;&
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converges in outer probability to zero because supse[oj] [n—1/2 Z}flj &;| converges weakly to the supremum of the absolute

value of Brownian motion and ||]P’,1f Pf|l# —> 0.
From the continuous mapping theorem, we have that (Z,, Tons T, Z,.,) ~ (Zp, Zp, T, Zp) in {£€°([0, 1] x F)}*. The
desired result finally follows from the previous remark and Lemma 1. O

A.2. Proof of Theorem 2

Proof. Foranys € [0, 1]and f € ¥, let
Dn(s. ) = {1 = AV Zn(5, ) = k(N Zn (1, f) = Zn(5, )} = Zn(s. ) = dn($)Zin(1, ).
Then, from Theorem 1, (3), the definitions of ]133,1 and Dy, and the continuous mapping theorem, we obtain that

(]D)Ih ﬁ)nv bn) > (DPO’ ]D)PO’ ]D) )

in {£°([0, 1] x ¥)}3. To obtain the desired result, it remains to show that 15,1 —ﬁn L 0in £°°([0, 1] x F).From the definitions
of D, and D,,, we have that

Dn(s.f) — Du(s. ), < Sup 1= 2a(5)} sup |Zn(s, ) = Zn(s. )|

sup |D
s€[0,1

+ sup An(s) sup !I{Z (L) = Zns. )} = Zys. 0

se[0,1] sg(o0,

where Z; is defined in (5). The second supremum over s on the right of the previous inequality converges outer almost
surely to zero according to Lemma 1. Furthermore, it can be verified that the last supremum over s (written for instance as
a maximum over 1 < |ns| < n) is nothing else than the version of the second supremum computed from the “reversed”
sequence (&, Xp), (§,-1, Xn_1), - .., (£1, X1). As the latter sequence and the original sequence have the same distribution,
Lemma 1 implies that the last supremum converges in outer probability to zero. O

A.3. Proof of Theorem 3
To prove Theorem 3, we first prove a lemma.

Lemma 2. Let &4, ..., &, be iid. random variables with mean 0, variance 1 and satisfying fOOO{P(|§1| > x)}V2dx < oo, let
X1, ..., X, be iid. random variables with law P independent of &1, ..., &,, and let ¥ be a P-Donsker class with measurable
envelope function F, such that PF, < oco. Then, forevery0 <ty <t; < 1 and every € > 0, there exists M > 0 such that

Lns]

ZSJ(X, >M> <e

Proof. Using the triangle inequality and the envelope F,, for any s € [0, 1] and f € ¥, we have

| ns] |ns] |ns]
“ ZEJ(X,

sup P* ( sup

neN s€(ty,ta]

Zs,wx, — Pf} Zs,Pf

+

LnSJ

Z& -

Let0 < t; < t; < 1.Since in ~ Zp in £°([0, 1] x F), we have that sups, .1 ||Z,(s,f)||¢ is asymptotically tight. Let
& > 0. Then, there exists M’ > 0 such that

IA

[t 1)+ PFe x

limsupP*( sup || Zns, N> M) < g/4.

n—00 s€lty,t]
It follows that, for n > n,,
supP*( sup ”Z (s, f)”r > M) <&/2.
n>ng selty,t2]

Since Supge(t, 1y ||Zn (s, f)|l# is bounded by an almost surely finite random variable for any n < n,, there exists M" > M’
such that

supP*( sup ”Zn(s f)HT M”) < ¢g/2.

neN se(ty,ta]
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Similarly, s — n~ 2"/ & converges weakly to Brownian motion in £>°([0, 1]), and therefore SUPseyr, 1) 1N/
Z}fﬂ &;| is uniformly tight. Proceeding as above, there exists M"" > 0 such that

Lns]

1
ﬁ;a

We get the desired result withM = M” + PF, x M. O

neN selty,t]

supP( sup > M”/> <¢g/2.

Proof of Theorem 3 (i). First, notice that, foranys € [0, 1]and any f € ¥

ko [P = SUPLS + (1= DPyf) ifs <t,
(S I)= N ipif + (s — OPSf — s{Pof + (1 — OPSf)  ifs > t.

Let Ky ¢(5) = IAn(s) {1 — An($)} (Pins)f — P s f) — Ke (s, )+ Clearly,

sup Kp(s) = max{ sup K, ((s), sup Kn,t(s)} .
se[0,1] sel0,t] se(t,1]

Furthermore, for any s € [0, 1]and f € F,
)Ln(s) {1 - )Ln(s)} (PLnsjf - P;_[nsjf) = )\n(s) (PLnsjf - Pnf) .

Hence,

sgp]Knt(s) < suwp [ An ()P sy f — sPlf\|f+ sup A ()Paf — S{tP1f + (1 — O)Pof | 5 - ™
se t

The first term on the right of the previous inequality is smaller than
1

sup || An(s) (Pinssf — Pif) |, + Sup [{An(s) = s}Piflly = —= sup [1Za(s, f)llz + Sup [An(s) = s| x IPAfll &

se[0,t] fse[o t] selo,

and therefore converges in outer probability to zero because supsc(g ¢ I1Za (s, f)|l 7 converges in distribution. The second
supremum on the right of (7) is smaller than

sup [An(s) = s| X IPafll & + [IPaf — {tPf + (1 — OPf &

s€[0,1]

and therefore converges in outer probability to zero because,  being P; and P,-Donsker, P,,f converges in outer probability
to tP1f + (1 — t)P,f uniformlyinf € &

Similarly,
sup Kp(s) < sup. IIA ($)Pns)f — tPif — (s — OPf | . + sup [[An($)Bf — s{tP+f + (1 — O)Pof} 5 .
se(t,1] se(t s€[0,1]

We already know that the second supremum on the right converges to zero in outer probability. Using the fact that, for
s € (6 1], A(OPlas) = An(OPne) + (An(8) — An(OYPLI  where PLU = (Lns] — [nt))=' 1, 8x,. the first
supremum is smaller than

*, [ ns)
[n(® (st = Pif Y+ s [a(5) = 20 {2 S = P}
P = {1l + IPf 7} + 5D [ha(6) =] x 125

and converges to zero in outer probability because \/ﬁ||kn(t){IP’Lme — Pif}Hlg = 11Za(t, f)|l# and ﬁsupse([_]] H{An(s) —

)L,,(t)}{IE’)[;IE'}iJ unyf — Paf } & converge in distribution. O

Proof of Theorem 3 (ii). Let us first show that supyg 1 ||Z1 (s, f)|l# is bounded in outer probability. Since
sup (20 = max { sup |20, sup |20l .
se[0,1] se[0,t] se(t, 1]

it is sufficient to verify the claim for each of the suprema in the maximum. From the definition of Z,,, under Hy, the first
supremum converges weakly from the continuous mapping theorem and is therefore bounded in outer probability. For the
second supremum, we write
~ (k
Zn ) f
n

sup |Zu(s, H|, = max <Ay + By + Cy + Dy,

se(t,1] |nt|<k<n

F
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where
Lnt]

Z Ef (%)
| o
Gy = max 7 <; Ef) Zf X; )

s B, =

Z Ef (%)

i=|nt|+1

3

and

o g, | (58) 3, 3 o

=|nt]+1

F
The quantity A, is clearly bounded in outer probability by Lemma 2 with t; = t, = t. For B,, we can write

Lns]

k
1
B, = max i Xi < sup i X;
n 1<k<n-|nt] \/» ;Sw[mjf( 1+[ntJ) ? = 01 . \/» ;§I+Lntjf( l+[ntj) },
1 [n(1-0)] 1
t—| Y G Kisie) |+ —=1EalFe(Xn)
Vil S I

where the two last terms on the right come from the fact that 0 < n — [nt] — [n(1 — t)] < 1. The first two terms on the
right are bounded in outer probability by Lemma 2, and so is the third one because it converges almost surely to zero. It
follows that B, is bounded in outer probability. Now, C, is bounded above by

k k [ﬂfJ
& max = &i| x Fe(X;)
; |nt|<k<n ﬁ ; Z
Lnt]

k
1
i| X max - Fo(Xi) < I,
;5" nt | <k=<n kj:Zl e < hn

L”tJ

Zf( ]>

IA

max {—
|nt] <k<n { Jn

1
< max —
T |nt)]<k<n ﬁ

where
[ns] 1 k
I, = su X max — Fo(X).
" o | VA Zgl 1<k<n k ; %)

Similarly, we have that D, < I,. To show that G, and D, are bounded in outer probability, we will show that I, is bounded
in probability.

Since n~! Z i1 Fe(X;) converges to tPiF. + (1 — t)P,F, < oo almost surely, we have that sup, .y n -1 1 Fe(X)) is an
almost surely ﬁmte random variable. The fact that I,, is bounded in probability then follows from the weak convergence of
s> n~12 3" & to Brownian motion in £°°([0, 1]), which implies that SUPgeqo.1y I~ 12 S &1 is uniformly tight.

Thus, Ap, By, Gy, and D, are all bounded in outer probability, which implies that supc, 1 ||in (s, )|l is bounded in outer
probability, and therefore that sup;¢(o 1 ||Zn (s, f)|l# is bounded in outer probability.

The analogous result for the process Z* follows from the fact that supsp, 1 ||Z*(s )& (written for instance as a
maximum over 1 < [ns] < n) is nothing else than the version of supsg 1 ||Zn(s,f)||f computed from the sequence
n, Xn), En—1,Xn-1), - - ., (£1, X1) which has the same distribution as the original sequence. The desired result is finally an
immediate consequence of (4). O

Proof of Theorem 3 (iii). Forany s € [0, t] and f € ¥, we can write

Lns] Lns]

Zn(s, f) = L E{f (X) — Pif} — {Pof — Pif} X s,,
vn
i=1

while, for any s € [t, 1] and f € F, we have

Lnt| |nt|

D EIF ) — Pif} — {Pof — Pif} x Z 3

Zn(svf) = ﬁ
i=1

Lns] Lns]

1
+—= E{f (Xi) — Pof } — {Pnf — Pof } x —= §i. (8)
ﬁ i=[n2tj:+l \/>l LnXtJ:—H
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Now, let us show that

NEA Vi &

in {¢*°([0, t] x F)}?, where B; is Brownian motion and is independent of Zp,. Using the multivariate central limit theorem,
it can be verified that we have weak convergence of the finite-dimensional distributions. Joint asymptotic tightness
follows from the weak convergence of s > n~'/? Z}E & to By in £°°([0, 1]), and the weak convergence of Z, to Zp, in
£°([0, t] x F). Since the two component processes on the left of (9) are uncorrelated, their weak limits are independent.

Similarly, we have that

1 |ns] 1 |ns] )
(s./)) > — U X)) — Pof }, (5, ) > —= &
< \/ﬁ i=§+l \/ﬁ i:§+1

~ () = Zpy(s = £, ), (5, f) = Ba(s — 1)) (10)

in {£>([t, 1] x #)}?, where B, is Brownian motion independent of Z,, and (Zp, , B,) is independent of (Zp,, By).

Combining the fact that P,f converges in outer probability to tP;f 4+ (1 — t)P,f uniformly in f € F with (9), we
obtain from the continuous mapping theorem that, in £%°([0, t] x ¥), Z, converges weakly to (s, f) Wp, (s, f) =
Zp, (s, f) — (1 — t)(Pof — P1f)B1(s). Using (10) similarly, it can be verified that, in £°([t, 1] x F),

1 Lns] 1 Lns]
<<s,f> = = D& = Pif) 6. e Za) ~ (2, (5.f) > B1(5)) 9)
i=1 i=1

[ ns] Lns]
— §{f (X)) — Pof } — {Pof — Pof } X —= &
Vn i=§+l Vn i=§+l
converges weakly to (s, f) = Wp, (s, f) = Zp,(s — t, f) — t(Pof — P1f)By(s — t). By independence of first two terms in (8)
with the last two terms, we then obtain that, in £°([t, 1] x ¥), Z, converges weakly to (s, f) Wp, (¢, f) + Wp, (s, f),

which implies that Zy converges weakly in £°([0, 1] x ). The desired result finally follows from the fact that D, (s, f) =
Zn(S, f) — A (8)Z,(1, f) and the continuous mapping theorem. 0O

s.f)

A.4. Proofs of Propositions 1 and 2

We state a lemma before giving the proofs of the propositions.
Let A be the space of bounded Borel measurable functions on RY and let B be the space of c.d.f.s of Borel probability

measures on R% The spaces A and B are subsets of Zw(ﬁd) and the topologies on A and B are the ones induced by uniform
convergence. The following result (the help of Johan Segers is gratefully acknowledged) will allow us to apply the continuous
mapping theorem in the proof of Proposition 1.

Lemma 3. Let ¢ : A x B — R be defined by ¢(a, b) = fRd adb. The map ¢ is continuous at each (a, b) € A x B such that a is
continuous on RY,

Proof. Let (a,, b,) be asequence in A x B such that sup,cpd |a, (x) —a(x)| — 0and sup,gd |bs(x) —b(x)| — 0.Itis sufficient
to show that [,q a, db, — [, adb. By the triangle inequality,

/andbn—f adb /andbn—/ adb, /adbn—/ adb‘.
Rd Rd Rd RA Rd Rd

For the first term on the right of this inequality, we have

/andbn—f adb, /lan—aldbn
RA RA RA

sup |, (x) — G(X)|/ db, = sup |a,(x) —a(x)| — 0.
R4

xeRd xeRrd

< +

IA

IA

For the second term, since sup,.gd |bs(x) — b(x)] — 0, we have that b,(x) — b(x) for every x € RY, which, by the
Portmanteau lemma and the continuity of the function a implies that .4 adb, — [.sadb. O

Proof of Proposition 1. A consequence of Theorem 2 and the fact that, under Hy, F,, converges almost surely to Fy (the
c.d.f. of Py) uniformly in x € R? is that

~1 —~ ~q ~ 1 N 1 N
(Dn, B, ..., B, DD, ..., BM, F,) ~ (]D)po,]D)I(,O), ..., DY, ...,D;O),PO)
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in {£°([0, 1] x R))}@N+2_Using the map ¢ defined in Lemma 3, it is easy to see that Snv = SUPscro.1] PU{Dn (s, )}2, Fyl, that

§,§’)V = SUPye(o.1 S[{DY (s, )}, F,] and that §,(,{)v = SUPse(o.1) SUDY (s, )% Fal,j € {1, ..., N}. Furthermore, the limiting
process Dp, is continuous almost surely. The result then follows from Lemma 3 and the continuous mapping theorem. O

Proof of Proposition 2. From Theorem 3, we have that
Dy (s, %)
NG

where K; (s, X) = {F1(x) —F,(X)}(sAt){1—(sV )}, ie, Dn/ﬁi K in £°°([0, 1] x @d). Also, under Hq, F, converges almost
surely to F; = tF; + (1 — t)F, uniformly in x € R% Then,

{Dy(s, 0))?
R4 n

sup sup L 0,

s€(0,1] xerd

— K (s, x)

sup
s€l0,1]

< Ay + B, (11)

dFy(x) — / {Ke (s, x) Y dF (x)
Rrd

where

A, = sup
se[0,1]

2
/ Pus O 4 ) — f {Ke (s, 0)}*dFa ()
Rd n w

and

B, = sup
se[0,1]

We have

/ {Ke (s, )Y dFa (x) — / {Ke (s, ) Y*dF: (x)
Rd Rd

An < sup sup — {Ke(s, 0| >0

{Dn(s, 0}
s€[0,1] xerd n

by the continuous mapping theorem, and, with the notation gy = {K; (s, -)}?, s € [0, 1],

B, = S[UP] ‘)\n(t)P[n[jgs + {1 - )\n(t)}ngtnths - tplgs - (1 - t)Png|
s€l0,1

IA

An(t) sup |(Piney — PD)E| + {1 — An(D} sup [(B_ ) — P2)gs| + 2[n(t) — £
s€[0,1] s€[0,1]
because supse(o 1) IP1gs| < 1and sups¢(g 1y [P28s| < 1. Now,

p*
sup |(Ppne) — P1&| < |(@pne) — PD(Fr — B2)*| >0
s€[0,1]
and

ko ke P*
sup |(Pr_ ) — P& | < |(Ph_ ) — P)(F1 — F2)*| >0
se|0,

by the law of large numbers, which implies that B, E; 0. It follows from (11) that

Dy (s, X)) *
> / Man(x) LIPYIN / (K, (s, %) }2dF; (%)
Rrd n RY
in £°([0, 1]), from which, using the continuous mapping theorem, we obtain that
Suv/nSs sup / {K: (s, %) }2dF, ().
se[0,1] JRrd
Since F; and F, are distinct and K, (s, x) = {F; (x) — F,(X)}(s At){1— (s V )}, we have that supc(g 1] [ra{K: (s, X)}*dF; (x) > 0,

. . . P*
which implies that S, , — +o0. ‘
Now, letj € {1, ..., N}. The claim for/S\,f,’,)v follows from the inequality

30, = sup [ (BY(s, 0 dF0) < sup sup(DY (s, )Y f dFa0) < (T9, 12,
se[0,1] Jrd s€[0,1] yerd R4

and the fact that /T\n(’)v is bounded in outer probability from Theorem 3. It remains finally to prove the claim for §§’)v A

consequence of Theorem 3 is that (]]3),?), F,) converges weakly in {£°° ([0, 1] x Kd)}z, which, combined with the fact that
Sé’)v = SUDscp0.1] ¢[{]]3>,(1’) (s, )}?, F,] and Lemma 3, implies that §,§{)v converges in distribution, and hence, that it is bounded
in outer probability. O
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Appendix B. Implementation of the tests based on U,  and V,, j

Let m > 2 be an integer and let a4, ..., a, be elements of 5;’ uniformly spaced over /S;r. Fork € {1,...,n — 1}, the
following numerical approximations are then considered:

2
Ui ~ Z Z {ID)H ( ana xq>}
k(n—k)zm nof1 & 1 & ’
T T T
- ;Z EZHa,X,fa,Xq)—ﬂ‘_Z 1a X <a'X)y
q=1 i=1 i=k+1
and
k
Vik & max max |D, ,a, q X
1<l<m 1<q<n n
k(n — k) T T
= — 1a X < a' X —_— 1(a X; <
o g s 3 <)

Next, recall that, for any j € {1,...,N}, ﬁ,(f) (resp. ]IVD,({)) is the version of ﬁn (resp. D,) computed from 510), e T?).
Proceeding as above, for anyj € {1, ..., N}, the multiplier versions of Uy \ and V, x based on the process ﬁ,({) are computed
respectively as

s 1 n koo 2
U~ =Y > =0 " —EM1a X < a/X) —k Z &P —E 1@ X <a/ X)) ¢ .
mn* = = i=1 i=k+1
and
P k . e n . —
v~ R max max (1= k) Y6~ EN6 X < alXp) —k 30 €~ E) 1@ X < gl X
=="== i= i=k+1
Similarly, foranyj € {1, ..., N}, the multiplier versions of U, ; and V; x based on the process @,@ are computed respectively
as
- 1 &K
U~ —2> > [ (=K Zé“’{l(afx, < a Xg) — Fan(a Xp)}
=1 g=1 i=1
a 2
—k > &P X < ] X) — Fan(a/ X} |
i=k+1
and
k .
Vn ¢, ~ n~>? max max |(n— k) Zéim{l(aITX, < @) Xg) — Fopn(a) Xg)}
1<l<m1<q<n P
n -
— k> V(1@ X < ] X)) — Fan(a Xp)}
i=k+1
where F, , is the empirical c.d.f. computed from the projected samplea' Xy, ..., a' X,.
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