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a b s t r a c t

In this paper, we are interested in an estimation problem concerning the mean parameter
of a random matrix whose distribution is elliptically contoured. We derive two general
formulas for the bias and risk functions of a class of multidimensional shrinkage-type
estimators. As a by product, we generalize some recent identities established in Gaussian
sample cases for which the shrinking random part is a single Kronecker-product. Here, the
variance–covariance matrix of the shrinking random part is the sum of two Kronecker-
products.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Over the years, a very rich literature has evolved onmodeling diverse phenomena by using a class of distributions which
is more robust and more realistic than the Gaussian distribution. In particular, as discussed for example in [1], elliptically
contoured distributions are a useful alternative to the multivariate Gaussian paradigm, not only in statistics, but in several
areas of applications such as actuarial science (see [7,11]), economics and finance (see [5]). Also, as explained in [18], many
test statistics and optimality properties associated with the Gaussian distribution case remain unchanged for elliptically
contoured distributions. For recent references about the advantages of elliptically contoured distributions, we quote [13]
and the references therein.

In this paper, we study an estimation problem of the mean parameter matrix of the random q × k-matrix whose distri-
bution is elliptically contoured. In particular, we consider the case where the target parameter θ represents the mean of the
random q×k-matrixX whose distribution is elliptically contouredwith a known covariance–variance. Further, we study the
case where some imprecise knowledge about the target parameter is available. By combining the sample information and
uncertain prior knowledge, we propose a class of shrinkage-type estimators for the parameter θ. Also, we establish the bias
and risk functions of the proposed class of estimators. Let X ∼ Eq×k (θ, Λ⊗Ω; g) be a matrix random variate elliptically
contoured distributions with mean θ and covariance–varianceΛ⊗Ω, whereΛ andΩ are known positive definite matrices
of rank q and k respectively, A ⊗ B denote the Kronecker-product of the matrices A and B, and g is the probability density
function (pdf) generator.

Without further assumption, the problem considered is (to our best knowledge) insoluble. To this end, we concentrate
our study to the subclass of scale mixtures of normals. The subclass under consideration includes for example multivariate
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Table 1
Examples of pdf with the respective weighting functions.

Distribution pdf ‘‘fU (x)’’ The function ‘‘ω(t)’’

Gaussian (2π)−qk/2
|Λ|

−
k
2 |Ω|

−
q
2 exp


−

1
2 g0(x)


δ(t − 1)

Pearson type VII κ (m, qk, q0) [1 + g0(x)/q0]−m ,m > qk/2 tm−qk/2−1 exp(−q0 t/2)
(q0/2)qk/2−mΓ (m−qk/2)

, t > 0

t with q0 d.f. κ


q0+qk
2 , qk, q0


[1 + g0(x)/q0]−

q0+qk
2


q0 t
2

 q0
2 e−

q0 t
2

t Γ (
q0
2 )

, t > 0

Gaussian, t , Pearson type II and VII as well as Kotz. Formally, as in [6], the pdf of U = Vec(X) is assumed to be written as

fU(x) =


∞

0
fN (Vec(θ), z−1Λ⊗Ω)(x)ω(z)dz, (1.1)

where fN (µ,Σ) denotes the pdf of a random vector which follows a normal distribution with mean µ and variance–
covarianceΣ, with ω(.) a weighting function as defined for example in [6] and the references therein. For the convenience
of the reader, we present in Table 1 examples of pdfs which satisfy the condition in (1.1) along with their corresponding
weighting function ω(.). To introduce some notations used in Table 1, let δ(.) and Γ (.) denote the Dirac delta function and
the gamma function respectively i.e.

∞

0
δ(z)dz = 1 and


∞

−∞

f (z)δ(z)dz = f (0) for every Borel measurable function f (.),

Γ (α) =


∞

0
tα−1 exp(−t)dt, α > 0.

Also, let

g0(x) = trace

Λ−1(x − θ)Ω−1(x − θ)′


, κ (m, qk, q0) =

|Λ|
−

k
2 |Ω|

−
q
2 Γ (m)

(q0π)qk/2 Γ

m −

qk
2

 .

It should be noticed that the proposed statistical model, for which the random sample satisfies the condition in (1.1), is
more general than that in [15] for which the matrix X is assumed to be Gaussian. Also, we generalize some identities which
are given in [10, Theorems 1 and 2], as well as their extension given in [15]. In particular, the derived results are useful in
computing the bias and the risk functions of the proposed class of shrinkage-type estimators.

Before presenting the class of estimators under consideration, let us point out that, in the absence of restrictions on the
parameter, X is the least squares estimator as well as themaximum likelihood estimator provided that similar conditions as
for example in [3] hold. However, when the parameter matrix satisfies some linear constraints, the unrestricted maximum
likelihood estimator (UMLE) is dominated by the restricted maximum likelihood estimator (RMLE). In intermediate
situations of uncertain constraints, the above estimators may perform poorly. More specifically, for the case where X is
a q-column random vector, it has been shown that if q > 3, the James–Stein estimator dominates in mean-square sense the
UMLE X . In these scenarios, shrinkage estimators dominate the UMLE over the whole parameter space. Further, as wemove
away from the hypothesized restriction, shrinkage estimators also dominate the RMLE.

More specifically, consider the estimation problem of the parameter matrix θ when the parameter may satisfy the
following restriction:

L1θ = d1, θL2 = d2 (1.2)

with L1d2 = d1L2, where L1 and L2 are respectively p × q and k × m-known full rank matrices with p < q and m 6 k,
and di, i = 1, 2, are known, respectively p × k and q × m-matrices. Note that the relation L1d2 = d1L2 is not an additional
restriction since this follows directly from (1.2); thus, this is the unavoidable consequence of the two previous constraints.
Accordingly, the constraint in (1.2) is more general than that given in [8, p. 168] in the context of multivariate linear models.
Following the interpretation given in the quotedwork, the constraint in (1.2) may correspond for example to the case where
the population treatment mean profiles are parallel or rather identical. Below we give an example of application context
and two explicit motivating examples on the multivariate regression model for which the above constraint is useful.

1.1. Application context and motivating example

1.1.1. Application context
Consider the following multivariate regression Y = Xβ + ϵ where Y is the response n × m-matrix, X is a known (non-

random) n×kmatrix, and ϵ is an unobserved noise n×m-randommatrixwhich is assumed to follow an elliptically contoured
distribution with mean 0. Several authors studied the inference problem concerning the parameter matrix β (see [12,13,17]
among others). As an illustrative application of the proposed methodology, we consider the estimation problem of β when
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this may or may not satisfy the restriction

L∗

1β = d∗

1 , βL∗

2 = d∗

2 (1.3)

where L∗

1 , L
∗

2 , d
∗

1 , d
∗

2 are similar to L1, L2, d1, d2 given in the constraint in (1.2). In this context, as explained in [17], the
constraint in (1.3) can be interpreted by viewing the first relation L∗

1β = d∗

1 as a constraint which sets p independent linear
combinations of the rows of β. Statistically, this restriction takes into account the correlation among the k explanatory
variables. In a similar way, the second relation βL∗

2 = d∗

2 can be viewed as a restriction which defines q independent linear
combinations of the columns of β, and this takes care of the correlation among them dependent variables.

As far as the estimation problem in (1.3) is concerned, [17] proposed some shrinkage estimators which dominate the
unrestricted estimator. The estimators proposed by the quoted authors are members of the class of estimators given here
in the context of elliptically contoured distribution. Further, the asymptotic distributional risk and bias given in the quoted
paper can be derived by applying the results given in this paper. For our paper to be self-contained, we recall below the
estimators of β which are given in [17]. To this end, let β and β denote, respectively, the unrestricted and the restricted
estimators. Further, let βS

and βS+
denote, respectively the shrinkage and positive-part shrinkage estimators. Briefly, we

have (for more details, see [17]),β =

X ′X

−1 X ′Y , β =

β − J∗L∗

1
β + J∗d∗

1

 
Im − L∗

2P
∗

+ d∗

2P
∗,

where J∗ =

X ′X

−1 L∗
′

1


L∗

1


X ′X

−1 L∗
′

1

−1
and P∗

=


L∗

′

2 L∗

2

−1
L∗

′

2 . Further, we have

βs
= β + {1 − (pm − 2)ϕ∗−1

n }(β −β), βs+
= β + max{0, 1 − (pm − 2)ϕ∗−1

n }(β −β),

where

ϕ∗
n = ntrace

β −β′

L∗
′

1


L∗

1 (X
′X)−1L∗

′

1

−1
L∗

1

β −β 
Y − Xβ′ 

Y − Xβ−1


. In the normal sample case, the

mean-square error (MSE) of the estimators of β correspond to the asymptotic distributional risk given in [17]. Further, by
using the functions given in Examples 3.2–3.3 (see Section 3), one can get the MSE of the estimatorsβ,β,βs

,βs+
. To save

the space of this paper, these expressions are omitted.

1.1.2. Motivating examples
In this subsection, we present two motivating examples which show the interest of the constraint (1.2) in the context of

multivariate regression model. The first motivating example is given in [17] where a similar constraint is studied. Also, the
secondmotivating example is described and analyzed in the above quoted paper. In order to save the space of this paper, we
do not report the analysis of the data set of these examples. Nevertheless, for more details and analysis of these motivating
examples, the reader is referred to [17].

1.1.2.1. The first motivating example. We consider the data set described in [9] which consists of measurements made on
specimens of the birds Martes Americana. Briefly, they consist of 4 (i.e. k = 4) explanatory variables and 2 (i.e. m = 2)
dependent variables.

Namely, the explanatory variables are:
X1: length of humerus; X2: width of humerus; X3: length of femur; X4: width of femur. The explanatory variables in this

example are considered to be fixed (i.e. non-random).
Further, the response variables are weight (Y1) and volume (Y2) and, these variables are assumed to be standardized in

order to be unit free.
By using a principal component analysis of the logarithms of the Xs, [9] established that X2 varied as the power 1.5 of

X1, so that log(X2) = a1 + 1.5 log(X1), and that X3, X4 were both proportional to X1, so that log(X3) = a2 + log(X1) and
log(X4) = a3+log(X1). Here, a1, a2, a3 are taken as themeans of log(X2)−1.5 log(X1), log(X3)−log(X1) and log(X4)−log(X1)
respectively.

Thus, if the logarithms of theXi are used as the explanatory variables, then the joint prediction of Y1 and Y2 can bemodeled
by using the abovemultivariate regressionmodelwithm = 2 and k = 4. Also, to reflect the relationships between theXi, one
considers that the rows of L∗

1 may be taken as (1, −1.5, 0, 0), (1, 0, −1, 0) and (1, 0, 0, −1)with d∗

1 = (1, 1)⊗(a1, a2, a3)′.
Further, to reflect the high positive correlation that is expected between Y1 and Y2, one can set L∗

2 = (1, −1)′ and d∗

2 = 0.

1.1.2.2. The second motivating example. The second motivating example is based on a data set which is given in
[4, pp. 357–360], and described in [8, pp. 193] as well as in [17]. The data consists of 8 measurements on each of the four
response variates taken on 13 different types of root-stocks of apple trees. The 4 response variables are trunk girth in mm
(Y1); extension growth (cm) (Y2) at 4 years after planting; trunk girth (mm) (Y3) at 15 years after planting; andweight (lb) of
tree above ground (Y4) at 15 years after planting. As described for example [8,17], the explanatory variables are categorical
so that the design matrix X = I13 ⊗ e8 where en denotes an n-column vector with all entries equal to 1. Further, as justified
in [17], the first restriction of the interest is L∗

1 β = 0with L∗

1 = (I12, −e12), and to incorporate the prior information about
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the Y s, we use the fact that Y1 and Y2 are expected to be highly correlated, and Y3 is expected to be highly correlated with
Y4. To this end, we set βL∗

2 = 0where L∗

2 =

(1, −1, 0, 0)′ , (0, 1, 0, 0)′ , (0, 0, 1, −1)′

′.

1.2. The class of shrinkage estimators and some notations

In this subsection, we define some notations used throughout the paper and we present the restricted estimator of the
parameter matrix θ along with a class of shrinkage-type estimators for which the bias and risk functions are established.

Let J = ΛL′

1


L1ΛL′

1

−1 and let P =

L′

2ΩL2
−1 L′

2Ω. As given in Proposition A.1 in the Appendix, under the constraint
in (1.2), the RMLE is given byθ = (X − JL1X + Jd1) (Ik − L2P) + d2P . (1.4)

Following the notations in [15], let A be a matrix and let ∥A∥
2
Ξ1,Ξ2

= trace

A′Ξ1AΞ2


whereΞ1,Ξ2 are known nonneg-

ative definite matrices. Further, let h be a known Borel measurable and real-valued integrable function, and let us consider
the following class of estimators:

θ(h) =θ + h
X −θ2

Ξ1,Ξ2

 
X −θ . (1.5)

With respect to the family of the distributions of the estimatorθ(h) in (1.5), note that the family in [15] is based on a Gaus-
sian family which is a special case of that considered here. Also, the uncertain constraint in (1.2) is less restrictive and thus
more versatile than that given in [15]. Indeed, if the constraint in (1.2) holds, then L1θL2 = d where d = (L1d2 + d1L2) /2.
Further, note that the restricted and unrestricted estimators are members of the class of estimators in (1.5). Indeed, the
restricted and the unrestricted estimators can be obtained by taking h ≡ 0 and h ≡ 1 respectively. Finally, Stein-type es-
timators are members of the class of estimators in (1.5). Indeed, set h(x) = (1 − a/x), x > 0 for some constant a > 0.

The estimator in (1.5) becomes θs = θ +


1 − a/ trace


Ξ2


X −θ′

Ξ1


X −θ 

X −θ which is a well known

shrinkage estimator for θ. Further, taking h(x) = max(0, 1 − a/x), x > 0 for some constant a > 0, we getθs+ = θ +

max

0, 1 − a/ trace


Ξ2


X −θ′

Ξ1


X −θ 

X −θ which is well known as a positive-part shrinkage estimator

for θ. Also, the class in (1.5) includes the preliminary test estimators as studied for example in [14] and the references
therein. Briefly, the above class of the estimators combines both sample information and imprecise prior knowledge from
the uncertain constraint in (1.2). Thus, the proposed class of estimators can be seen as a shrinkage-type estimator of θ.

As a common practice in point estimation, the bias and risk functions are needed in order to evaluate the performance of
the proposed class of estimators. For the statistical model studied here, the derivation of these quantities is mathematically
complex. The major difficulty consists in the fact that the distribution of the shrinking random part X −θ is not Gaussian.
In addition, the covariance–variance matrix of the shrinking random part is a sum of two Kronecker-products.

In the sequel, let B
θ, θ denote the bias function ofθ, and let R

θ, θ;W
denote the risk function ofθ with W a

nonnegative definite matrix. Recall that

B
θ, θ = E

θ − θ


.

For computing the risk function R
θ, θ;W

, we use the following quadratic loss function L
θ, θ;W

= trace
θ − θ

′

Wθ − θ


. Thus, we have

R
θ, θ;W

= E

trace

θ − θ
′

W
θ − θ


.

The remainder of this paper is organized as follows. Section 2 presents the mathematical background of this paper.
Namely, it gives three theorems which are used in deriving the bias and risk functions of the proposed class of estimators.
Section 3 gives the risk and bias function formulas, that is the second main contribution of this paper. Section 4 gives
concluding remarks. Finally, the proofs of themain identities given in Section 3 and related details are given in the Appendix.

2. Some useful identities and their extension

In this section, we present the results which constitute the first contribution of this paper. In particular, we derive some
mathematical results which generalize the identities given in literature for the Gaussian random matrix case. More specif-
ically, our identities generalize those of [15] which in turn are also extensions of Theorems 1 and 2 in [10]. The established
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identities play an important role in deriving the bias and risk functions which constitute the second contribution of this
paper.

Let G am(α, β; λ) denote a random variable which follows noncentral gamma distribution with parameters α, β with
noncentrality parameterλ. Letω(.) denote theweighting function as introduced in (1.1), and let hi denote the ith-power of h,
for some inonnegative integer i.e.h0

= 1 andhi(x) = h(x) × h(x) × · · · × h(x)  
i terms

, i ∈ {1, 2, 3, . . .}. Further, for i = 0, 1, 2, . . . ,

n = 1, 2, 3, . . . , let

ψ
(1)
i,n (x, y) =


∞

0
E


hi


G am


n
2
,
2y
t

;
tx
y


ω(t)dt, (2.1)

ψ
(2)
i,n (x, y) = y


∞

0
t−1E


hi


G am


n
2
,
2y
t

;
tx
y


ω(t)dt, x > 0, y > 0.

Theorem 2.1. Let Λi andΥi, i = 1, 2, be respectively q×q and k×k positive semi-definitematrices, with rank(Λ1) = q1 6 q and
rank(Υ1) = p 6 k. Let X ∼ Eq×k


M,

2
i=1 (Υ i ⊗ Λi) ; g


, and let Ξ3 and Ξ4 be symmetric and positive definite matrices such

that Ξ
1
2
3 Υ1Ξ

1
2
3 , Ξ

1
2
3 Υ2Ξ

1
2
3 and Ξ

1
2
4 Λ1Ξ

1
2
4 are idempotent matrices and Ξ3Υ1Ξ3M = Ξ3M. Then, for any h Borel measurable

and real-valued integrable function, we have

E

h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


X


= ψ

(1)
1,pq1+2


trace


Ξ4M ′Ξ3M


, 1


M,

where ψ(1)
1,pq1+2(., .) is defined in (2.1). �

The proof of the theorem is given in the Appendix.

Remark 2.1. For the Gaussian matrix variate case, the quantities ψ(1)
i,n and ψ(2)

i,n become

ψ
(1)
i,n (x, 1) = ψ

(2)
i,n (x, 1) = E


hi χ2

n (x)


, x > 0. (2.2)

Thus, Theorem 2.1 generalizes Theorem 2.1 in [15] for which only a single Kronecker-product is considered for a Gaussian
random sample.

By using Theorem 2.1, we deduce the following theorem that is useful in deriving R
θ, θ;W

.

Theorem 2.2. Let Λ1i and let Υ 1i, i = 1, 2, be respectively q×q and k×k nonnegative definitematriceswith rank(Λ11) = q1 6 q,
rank(Υ 11) = p 6 k. Further, let Ξ3 and Ξ4 be respectively k × k and q × q symmetric and positive definite matrices such that

Ξ
1
2
3 Υ11Ξ

1
2
3 , Ξ

1
2
3 Υ12Ξ

1
2
3 and Ξ

1
2
4 Λ11Ξ

1
2
4 are idempotent matrices and Ξ3Υ 11Ξ3M1 = Ξ3M1. Also, let Υ 2i,Λ2i, i = 1, 2, . . . ,m,

be nonnegative definite matrices and let

X ′, Y ′

′
∼ E2q×k


(M1,M2) ,

2
i=1 (Υ 1i ⊗ Λ1i) 0

0
m

j=1


Υ 2j ⊗ Λ2j

 ; g

. Then, for any

h Borel measurable and real-valued integrable function, and any positive semi-definite matrix A, we have

E

h

trace


Ξ4X ′Ξ3Υ 11Ξ3X


Y ′AX


= ψ

(1)
1,pq1+2


trace


Ξ4M ′

1Ξ3M1

, 1


M ′

2AM1,

where ψ(1)
1,pq1+2(., .) is defined in (2.1). �

Proof. Since h is a real-valued function, we have

E

h

trace


Ξ4X ′Ξ3Υ 11Ξ3X


Y ′AX


= E{(E (Y |X))′ A h


trace


Ξ4X ′Ξ3Υ 11Ξ3X


X},

= M ′

2AE

h

trace


Ξ4X ′Ξ3Υ 11Ξ3X


X


,

and then, the proof is completed by applying the above Theorem 2.1. �

Further, in establishing the risk function R
θ, θ;W

we use the following theorem.

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 hold and let A be a nonnegative definite matrix. Then, for any h
Borel measurable and real-valued integrable function, we have

E

h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


trace


X ′AX


= ψ

(2)
1,pq1+2


trace


Ξ4M ′Ξ3M


, 1


×trace (AΥ 1) trace


Ξ−1

4


+ ψ

(1)
1,pq1+4


trace


Ξ4M ′Ξ3M


, 1


trace


M ′AM


+ψ

(2)
0,p1q

(0, 1)ψ(1)
1,pq1


trace


Ξ4M ′Ξ3M


, 1


trace


A


Ξ−1

3 − Υ 1


trace (Λ2) . �
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The proof is given in the Appendix. Note that for the special case where the random sample is Gaussian with Λ2 = 0,
Theorem 2.3 gives Theorem 1.2 in [15] which was an extension of Theorem 2 given in [10]. Indeed, this last result can be
deduced from Theorem 2.3 by taking k = 1, Υ 1 = Ξ = 1,Λ1 = Iq.

Using Theorems 2.2 and 2.3, we establish in the next section the bias and risk functions of the estimatorθ(h) as given
in (1.5). As intermediate result, we present below a proposition which gives the joint distribution of the unrestricted and
restricted estimators.

Proposition 2.1. We have
X ′

− θ′, X ′
−θ′

′

∼ E2q×k


0, −δ′

′
,


Λ⊗Ω Ω22
Ω22 Ω22


; g


, and

X ′
−θ′

, θ′

− θ′

′

∼ E2q×k


−δ′, δ′

′
,


Ω22 0
0 Υ 22


; g


,

where Ω22 = Υ ∗
⊗ Ω − Υ ∗

⊗ ΩL2P + Λ ⊗ ΩL2P , Υ ∗
= JL1Λ, Υ 22 = Λ ⊗ Ω − Ω22, δ = −Jδ1 − Jδ1L2P − δ2P , with

δ1 = L1θ − d1 and δ2 = θL2 − d2. �

The proof follows directly from the properties of elliptically contoured distributions (see for example [2]) along with some
algebraic computations. To simplify the notation, let ρ = X − θ, ξ = X −θ, and let ζ =θ − θ whereθ is the RE as defined
in (1.4). Also, let ∆ = trace


Ξ4δ

′Ξ3δ

.

3. The bias and risk functions

In this section, we give another contribution of this paper. In particular, we apply Theorems 2.1–2.3 in order to derive
the bias and the risk functions of the proposed class of estimators. More specifically, the bias and risk functions of the class
of estimators in (1.5) for which the matricesΞ1 andΞ2 are respectively taken asΞ3Υ

∗Ξ3 andΞ4 for all symmetric positive

definite matricesΞ3 andΞ4 such thatΞ
1
2
3 Υ

∗Ξ
1
2
3 ,Ξ

1
2
3 (Λ− Υ ∗)Ξ

1
2
3 andΞ

1
2
4 (Ω−ΩL2P)Ξ

1
2
4 are idempotent. As an example,

note that Ξ3 = Λ−1 and Ξ4 = Ω−1 satisfy the conditions.

Theorem 3.1. If the conditions of Proposition 2.1 hold, then the bias of θ(h) is
B
θ(h), θ = −δ+ ψ

(1)
1,pk+2 (∆, 1) δ. �

Proof. We have B
θ(h), θ = E


η+ h


∥ξ∥2

Ξ1,Ξ2


ξ


= −δ+ E

h

∥ξ∥2

Ξ1,Ξ2


ξ


with Ξ1 = Ξ3Υ
∗Ξ3 and Ξ2 = Ξ4. Therefore, using Theorem 2.1, we get

E

h

∥ξ∥2

Ξ1,Ξ2


ξ


= −ψ
(1)
1,pk+2 (∆, 1) δ, which completes the proof. �

Theorem 3.2. If the conditions of Proposition 2.1 hold, then the risk of θ(h) is
R

θ(h), θ;W
= ψ

(2)
0,pk (0, 1) trace


W


Λ− Υ ∗


trace (Ω−ΩL2P) + trace


δ′Wδ


− 2ψ(1)

1,pk+2

× (∆, 1) trace

δ′Wδ


+ ψ

(2)
2,pk+2 (∆, 1) trace


WΥ ∗


trace


Ξ−1

4


+ ψ

(1)
2,pk+4

× (∆, 1) trace

δ′Wδ


+ ψ

(2)
0,pk(0, 1)ψ(1)

2,pk (∆, 1) trace (ΩL2P) trace

W


Ξ−1

3 − Υ ∗


. �

Proof. Since h is a real-valued function, we get

R
θ, θ;W

= E

trace


ζ′Wζ


+ 2E


h

∥ξ∥2

Ξ1,Ξ2


trace


ξ′Wζ


+ E


h2 

∥ξ∥2
Ξ1,Ξ2


trace


ξ′W ξ


.

Further, by using Proposition 2.1, we have

E

trace


ζ′Wζ


= ψ

(2)
0,pk (0, 1) trace


W


Λ− Υ ∗


trace (Ω−ΩL2P) + trace


δ′Wδ


.

Also, using Theorem 2.2 with Υ 11 = Υ ∗,Λ11 = Ω, Υ 12 = Λ− Υ ∗, andΛ12 = ΩL2P , we get

E

h

∥ξ∥2

Ξ1,Ξ2


trace


ξ′Wζ


= −ψ

(1)
1,pk+2 (∆, 1) trace


δ′Wδ


,

and applying Theorem 2.3, we get

E

h2 

∥ξ∥2
Ξ1,Ξ2


trace


ξ′W ξ


= ψ

(2)
2,pk+2 (∆, 1) trace


WΥ ∗


trace


Ξ−1

4


+ ψ

(1)
2,pk+4 (∆, 1) trace


δ′Wδ


+ψ

(2)
0,pk(0, 1)ψ(1)

2,pk (∆, 1) trace (ΩL2P) trace

W


Ξ−1

3 − Υ ∗


.

This completes the proof. �



196 S. Nkurunziza, F. Chen / Journal of Multivariate Analysis 122 (2013) 190–201

3.1. Application of Theorems 3.1–3.2 to some distributions

Example 3.1. As mentioned in Section 1.2 the ULSE and RLSE can be viewed as special cases of the estimator in (1.5) for
which h(x) = 1 and h(x) = 0 respectively. Thus, by using Theorem 3.1, we get B (X, θ) = B

θ(1), θ = 0, B
θ, θ =

B
θ(0), θ = −δ. Further, by taking h(x) = 1 and h(x) = 0 respectively, Theorem 3.2 gives, as expected, the risk ofθ

andθ respectively. We have, R
θ, θ;W

= R
θ(0), θ;W

and R
θ, θ;W

= R
θ(1), θ;W

, and with some algebraic
computations, we get

R
θ, θ;W

= ψ
(2)
0,pk (0, 1) trace


W


Λ− Υ ∗


trace (Ω−ΩL2P) + trace


δ′Wδ


,

R
θ, θ;W

= ψ
(2)
0,pk (0, 1) trace (WΛ) trace (Ω) .

Example 3.2. Letϕ = trace

Ξ2


X −θ′

Ξ1


X −θ

and set h(x) = (1 − a/x), x > 0 for some a > 0.With this function,

the estimator in (1.5) isθs = θ + (1 − a/ϕ)

X −θ which is known as the shrinkage estimator. By taking the above h

and applying Theorems 3.1–3.2 with appropriate ω(.), one gets the bias and risk functions for the shrinkage estimator. In
particular, for the Gaussian sample cases, the bias and risk functions are given by

B
θS, θ = −δ a E


χ−2
pk+2(∆)


,

R
θs, θ;W

= R (X, θ;W ) + a trace

δ∗

′Wδ∗

(pk + 2) E


χ−4
pk+4(∆)


− a trace (ΩL2P) trace


WΛ∗

 
2E


χ−2
pk+2 (∆)


− (pk − 2)E


χ−4
pk+2 (∆)


+


1 − 2aE


χ−2
pk (∆)


+ a2E


χ−4
pk (∆)


trace (ΩL2P) trace


W


Ξ−1

3 − Υ ∗


.

Further, for the Pearson type VII sample cases, let ∆∗
= q0/(q0 + ∆) and let B−(s, q1) denote a negative binomial random

variable with parameters s = m − qk/2 > 1, 0 < q1 < 1 (where q1 is the probability of success). We have

B
θs+, θ


= −δ+


1 −

2a s
q0

E


1
pk + 2B−(s + 1, ∆∗)


δ.

Similarly, one applies Theorem3.2 in order to derive the risk function R
θs, θ;W

. To this end, some algebraic computations

giveψ(2)
0,pk(0, 1) = q0/(2(s−1)), and the functionsψ(1)

1,pk+2 (∆, 1),ψ(1)
2,pk+4 (∆, 1),ψ(1)

2,pk (∆, 1),ψ(2)
2,pk+2 (∆, 1) are replaced

by

ψ
(1)
1,pk+2 (∆, 1) = 1 −

2as
q0

E


1
pk + 2B−(s + 1, ∆∗)


,

ψ
(1)
2,pk+4 (∆, 1) = 1 −

4a s
q0

E


1
pk + 2 + 2B−(s + 1, ∆∗)


−

2s(s + 1)a2

q20
E


1

pk + 2 + 2B−(s + 2, ∆∗)


+

2s(s + 1)a2

q20
E


1

pk + 2B−(s + 2, ∆∗)


,

ψ
(1)
2,pk (∆, 1) = 1 −

4a s
q0

E


1
pk − 2 + 2B−(s + 1, ∆∗)


−

2s(s + 1)a2

q20
E


1

pk − 2 + 2B−(s + 2, ∆∗)


+

2s(s + 1)a2

q20
E


1

pk − 2 + 2B−(s + 2, ∆∗)


,

ψ
(2)
2,pk+2 (∆, 1) =

q0
2(s − 1)

− a E


1
pk + 2B−(s, ∆∗)


−

s a2

q0
E


1

pk + 2B−(s + 1, ∆∗)


+

s a2

q0
E


1

pk − 2 + 2B−(s + 1, ∆∗)


.

In order to save the space,wedonotwrite the risk andbias functions for the Student’t sample cases. However, these functions
follow from the above functions by taking s = q0/2 with q0 > 2.
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Example 3.3. Let h(x) = max (0, (1 − a/x)), x > 0 for some a > 0. Using the relation in (1.5), we get the well known
positive-part shrinkage estimatorθs+ = θ + max (0, (1 − a/ϕ))


X −θ. Let Hν(x ; ∆) = P{χ2

ν(∆) ≤ x}, x ∈ R+ where

χ2
ν(∆) denotes a chi-square random variate with ν degrees of freedom and the noncentrality parameter ∆. By applying

Theorems 3.1–3.2, we get the bias and risk ofθs+ by replacing in (2.1) the function h(x) with max (0, (1 − a/x)), x > 0, for
some a > 0. In particular, in the case of a Gaussian sample, the bias and risk functions are given by

B
θs+, θ


= −δ


Hpk+2(a; ∆) + aE


χ−2
pk+2(∆)I

χ2pk+2(∆)>a


,

R
θs+, θ;W


= R

θs, θ;W
+ a trace (ΩL2P) trace


WΛ∗

 
2E


χ−2
pk+2(∆)I

χ2pk+2(∆)≤a


− aE

χ−4
pk+2(∆)I

χ2pk+2(∆)≤a


− trace (ΩL2P) trace (WΛ)Hpk+2(a; ∆) + trace

δ∗

′Wδ∗


×

2Hpk+2(a; ∆) − Hpk+4(a; ∆)


−


Hpk(a; ∆) − 2aE


χ−2
pk (∆)I

χ2pk(∆)≤a


trace (ΩL2P)

× trace

W


Ξ−1

3 − Υ ∗


− a2E

χ−4
pk (∆)I

χ2pk(∆)≤a
 trace (ΩL2P)

× trace

W


Ξ−1

3 − Υ ∗


− a trace

δ∗

′Wδ∗
 

2E

χ−2
pk+2(∆)I

χ2pk+2(∆)≤a


− 2 E

χ−2
pk+4(∆)I

χ2pk+4(∆)≤a
 + a E


χ−4
pk+4(∆)I

χ2pk+4(∆)≤a


.

Further, for the Pearson type VII sample cases, the application of Theorem 3.1 gives

B
θs+, θ


= −

a s
q0

E


2
pk + 2B−(s + 1, ∆∗)


δ

− E

E


Hpk+2+2B−(s, ∆∗)


G am


s + B−(s, ∆∗),

2a∆∗

q0


; 0

 B−(s, ∆∗)


δ

+
a s
q0

E

E


Hpk+2B−(s+1, ∆∗)


G am


s + B−(s + 1, ∆∗),

2a∆∗

q0


; 0

 B−(s + 1, ∆∗)


δ.

Also, in the similar way as in Example 3.2, the risk function R
θs, θ;W

is obtained by applying Theorem 3.2 with the

functions ψ(1)
1,pk+2 (∆), ψ(1)

2,pk+4 (∆), ψ(1)
2,pk (∆, 1), ψ(2)

2,pk+2 (∆) replaced by

ψ
(1)
1,pk+2 (∆, 1) = 1 − E


E


Hpk+2+2B−(s, ∆∗)


G am


s + B−(s, ∆∗),

2a∆∗

q0


; 0

 B−(s, ∆∗)


+

a s
q0

E

E


Hpk+2B−(s+1, ∆∗)


G am


s + B−(s + 1, ∆∗),

2a∆∗

q0


; 0

 B−(s + 1, ∆∗)


−

a s
q0

E


2
pk + 2B−(s + 1, ∆∗)


,

ψ
(1)
2,pk+4 (∆) = 1 − E


E


Hpk+4+2B−(s, ∆∗)


G am


s + B−(s, ∆∗),

2a∆∗

q0


; 0

 B−(s, ∆∗)


+

a s
q0

E

E


Hpk+2+2B−(s+1, ∆∗)


G am


s + 1 + B−(s + 1, ∆∗),

2a∆∗

q0


; 0

 B−(s + 1, ∆∗)


−

4a2 s(s + 1)
q20

E

E


Hpk+2B−(s+2, ∆∗)


G am


s + 2 + B−(s + 2, ∆∗),

2a∆∗

q0


; 0

 B−(s + 2, ∆∗)


−

4a
q0

E


s
pk + 2 + 2B−(s + 1, ∆∗)


−

2 a2

q20
E


s(s + 1)

pk + 2 + 2B−(s + 2, ∆∗)


+

2 a2

q20
E


s(s + 1)

pk + 2B−(s + 2, ∆∗)


,
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ψ
(1)
2,pk (∆) = 1 − E


E


Hpk+2B−(s, ∆∗)


G am


s + B−(s, ∆∗),

2a∆∗

q0


; 0

 B−(s, ∆∗)


+

a s
q0

E

E


Hpk−2+2B−(s+1, ∆∗)


G am


s + 1 + B−(s + 1, ∆∗),

2a∆∗

q0


; 0

 B−(s + 1, ∆∗)


−

4a2 s(s + 1)
q20

E

E


Hpk−4+2B−(s+2, ∆∗)


G am


s + 2 + B−(s + 2, ∆∗),

2a∆∗

q0


; 0

 B−(s + 2, ∆∗)


−

4 a
q0

E


s
pk − 2 + 2B−(s + 1, ∆∗)


−

2 a2

q20
E


s(s + 1)

pk − 2 + 2B−(s + 2, ∆∗)


+

2 a2

q20
E


s(s + 1)

pk − 4 + 2B−(s + 2, ∆∗)


,

ψ
(2)
2,pk+2 (∆) =

q0
2(s − 1)

+ a E

E


Hpk+2B−(s, ∆∗)


G am


s + B−(s, ∆∗),

2a∆∗

q0


; 0

 B−(s, ∆∗)


−

q0
2(s − 1)

E

E


Hpk+2+2B−(s−1, ∆∗)


G am


s − 1 + B−(s − 1, ∆∗),

2a∆∗

q0


; 0

 B−(s − 1, ∆∗)


−

a2 s
2q0

E

E


Hpk−2+2B−(s+1, ∆∗)


G am


s + 1 + B−(s + 1, ∆∗),

2a∆∗

q0


; 0

 B−(s + 1, ∆∗)


− a E


2

pk + 2B−(s, ∆∗)


−

a2

q0
E


s

pk + 2B−(s + 1, ∆∗)


+

a2

q0
E


s

pk − 2 + 2B−(s + 1, ∆∗)


.

Once again, in order to save the space, the risk and bias functions for the Student’t sample cases are omitted. Indeed as
justified in Example 3.2, the results from the above functions by taking s = q0/2 with q0 > 2.

Following the results given in Examples 3.2–3.3, note that, in general, the bias and the risk functions of the estimatorsθS andθS+ do not have a closed form. However, by using similar techniques as used in the Gaussian sample case, (see
for example the technique used for the Proof of Corollary 2.1 in [16]), one can establish, for an appropriate choice of W ,
the dominance of the shrinkage estimator over the unrestricted estimator. In particular, for W = Λ−1, one can verify that
R

θs, θ;Λ−1


< R
θ, θ;Λ−1


, for all ∆ > 0. Further, one can establish that R

θs+, θ;W


6 R
θs, θ;W

, for all ∆ > 0.

4. Conclusion

In this paper, we provided two general formulas for the bias and risk functions of a class of shrinkage-type estimators for
the mean of matrix-valued, elliptically contoured random variate. To this end, we extended some recent identities which
are only applicable in the Gaussian sample cases in which the shrinking random part is a single Kronecker-product. Also,
the established identities are applicable to the case in which the variance–covariance matrix of the shrinking random part
is the sum of two Kronecker-products. Another interesting feature of this paper is that the matrices involved in the two
Kronecker-products do not need to be invertible.
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Appendix. Derivation of technical results

In this section, we present some technical details that are used in establishing the main result. We start by a proposition
which gives the RMLE. Let W ∼ Nn (µ, Σ) stand for an n-column random vector normally distributed with mean µ and
covariance–variance matrix Σ .

Proposition A.1. If the constraint in (1.2) holds, then the RMLE is given by

θ = (X − JL1X + Jd1) (Ik − L2P) + d2P . � (A.1)
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Proof. The restricted estimator of θ is the solution of the minimization problem minθ

trace


Ω−1 (X − θ)′ Λ−1 (X − θ)


subjected to L1θ = d1, θL2 = d2. To this end, let λ1 and λ2 be p × k and q × m-Lagrangian matrices respectively, and thus,
let Lλ1,λ2(θ) denote a Lagrangian function. We have

Lλ1,λ2(θ) = trace

Ω−1 (X − θ)′ Λ−1 (X − θ)


+ trace


(L1θ − d1)λ

′

1


+ trace


(θL2 − d2)λ

′

2


.

Then, by applying Theorem A.95 in [19, p. 522], one differentiates Lλ1,λ2(θ) with respect to θ, λ1 and λ2. Hence, equating
to zero the obtained derivatives, one gets a system of equations in θ, λ1 and λ2, and then, solving the obtained system of
equations, one gets the result stated in the proposition. �

Below, we give two lemmas which correspond to Theorems 1 and 2 of [10] for the case of a random vector which follows
an elliptically contoured distribution. The two lemmas are useful in deriving Theorems 2.1 and 2.3 given in Section 2.

Lemma A.1. Let U ∼ En(µ, σ2In; g), σ > 0. Then, for all h, Borel measurable and real-valued integrable functions, E

h(U ′U)U


= ψ

(1)
1,n+2


µ′µ, σ2


µ, where ψ(1)

i,n+2(., .) is defined in (2.1). �

Proof. From the pdf’s representation of an elliptically contoured variate (see for example, [6]), we have

E

h(U ′U)U


=


∞

0
Ez


h(W ′W )W


ω(z)dz, (A.2)

whereW denotes an n-column random vector normally distributed with meanµ and covariance–variance matrix z−1σ2In,
0 < z < ∞, σ > 0. Further,

Ez

h(W ′W )W


= (σ/

√
z) × Ez


h(z σ−2W ′Wσ2z−1)

√
z
σ

W


, (A.3)

and then, using Theorem 1 in [10], we have

Ez


h(z σ−2W ′Wσ2z−1)

√
z
σ

W


= E

h(z−1σ2χ2

n+2(zσ
−2µ′µ))

 √
z
σ
µ, (A.4)

and then, combining relations (A.2)–(A.4), we get

E

h(U ′U)U


=


∞

0
E


h


G am

n + 2
2

,
2σ2

z
;
zµ′µ

σ2


ω(z)dz


µ;

this completes the proof. �

Lemma A.2. Let U ∼ En(µ, σ2In; g), σ >, and let A be an n × n-nonnegative definite matrix. Then, for all h, Borel measurable
and real-valued integrable functions,

E

h(U ′U)U ′AU


= trace(A)ψ

(2)
1,n+2


µ′µ, σ2

+ µ′Aµψ(1)
1,n+4


µ′µ, σ2 ,

where ψ(1)
i,n+2(., .) and ψ(2)

i,n+2(., .) are defined in (2.1). �

Proof. As in the Proof of Lemma A.1, we have

E

h(U ′U)U ′AU


=


∞

0
Ez


h(W ′W )U ′AU


ω(z)dz, (A.5)

whereW denotes an n-column random vector normally distributed with meanµ and covariance–variance matrix z−1σ2In,
0 < z < ∞. Further,

Ez

h(W ′W )WAW


=


σ2

z


× Ez


h


z
σ2

W ′W
σ2

z

 √
z
σ

W
′

A
√

z
σ

W


, (A.6)

and then, using Theorem 2 in [10], we have

Ez


h


z
σ2

W ′W
σ2

z

 √
z
σ

W
′

A
√

z
σ

W


= trace(A)E

h

σ2

z
χ2
n+2

 z
σ2
µ′µ



+
z
σ2
µ′AµE


h

σ2

z
χ2
n+4

 z
σ2
µ′µ


. (A.7)
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Therefore, using relations (A.5)–(A.7) along with some algebraic computations, we get

E

h(U ′U)U ′AU


= trace(A)


σ2


∞

0
z−1E


h


G am

n + 2
2

,
2σ2

z
;
zµ′µ

σ2


ω(z)dz


+µ′Aµ


∞

0
E


h


G am

n + 4
2

,
2σ2

z
;
zµ′µ

σ2


ω(z)dz


;

this completes the proof. �

Proof of Theorem 2.1. SinceΞ
1
2
3 Υ 1Ξ

1
2
3 andΞ

1
2
4 Λ2Ξ

1
2
4 are symmetric idempotent matrices, there exist orthogonal matrices

Q1 and Q2 such that

Q1Ξ
1
2
3 Υ 1Ξ

1
2
3 Q

′

1 =


Ip1 0
0 0


and Q2Ξ

1
2
4 Λ2Ξ

1
2
4 Q

′

2 =


Iq1 0
0 0


, (A.8)

with q1 the rank ofΛ2. Moreover, let V = Q1Ξ
1
2
3 XΞ

1
2
4 Q

′

2; then,

Vec (V ) =


Q1Ξ

1
2
3 ⊗ Q2Ξ

1
2
4


Vec (X) and hence,

Vec (V ) =


V1
V2


∼ Eq×k


µ1
0


, Σv; g


, (A.9)

with

µ1 =

Ip1q, 0


E (Vec (V )) =


Ip1 , 0


⊗ Iq

 
Q1Ξ

1
2
3 ⊗ Q2Ξ

1
2
4


Vec (M)

Σv =


Ip1q 0
0 0


+


0 0
0 Ik−p1


⊗


Iq1 0
0 0


. (A.10)

Then, using the relation in (A.9), we have

trace

Ξ4X ′Ξ3Υ 1Ξ3X


= trace


V ′Q1Ξ

1
2
3 Υ 1Ξ

1
2
3 Q

′

1V


= V ′

1V1,

and then,

Vec

E


h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


X


=


Ξ

−
1
2

3 Q ′

1 ⊗ Ξ
−

1
2

4 Q ′

2

 
E


h

V ′

1V
′

1


V1


, E


h

V ′

1V1

V ′

2

′
. (A.11)

Combining (A.9) and (A.10), we get E

h

V ′

1V1

V2


= 0, and by using Lemma A.1, we have

E

h

V ′

1V1

V1


= µ1ψ

(1)
1,p1q+2


µ′

1µ1, 1

, (A.12)

where µ1 is given by (A.10). Further, combining (A.11) and (A.12), we have

Vec

E


h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


X


= Vec


ψ

(1)
1,p1q+2


µ′

1µ1, 1

M


.

Further, using (A.8)–(A.10) and following similar steps as in [15], we have

µ′

1µ1 = trace

M ′Ξ3Υ 1Ξ3MΞ4


= trace


M ′Ξ3MΞ4


, (A.13)

which completes the proof. �

Remark A.1. For the particular case where the randommatrix is Gaussian withΛ2 = 0, Theorem 2.1 leads to Theorem A.1
established in [15]. Thus, the above theorem extends also Theorem 1 in [10] for the Gaussian distribution case with k = 1,
Υ 1 = Ξ = 1,Λ1 = Iq.

Proof of Theorem 2.3. As established in the Proof of Theorem 2.1, we have

h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


= h


V ′

1V1

,

where V1 is given by (A.9). Further, we have V = Q1Ξ
1
2
3 XΞ

1
2
4 Q

′

2 where Q1 and Q2 are the same as in (A.8). Also, as in [15], let
Q1Ξ

−
1
2

3 AΞ
−

1
2

3 Q ′

1 ⊗ Q2Ξ
−1
4 Q ′

2


= G =


G11 G12
G21 G22


. (A.14)
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After some algebra, we get

E

h

trace


Ξ4X ′Ξ3Υ 1Ξ3X


trace


X ′AX


= E


h

V ′

1V1

V ′

1G11V1

+ E


h

V ′

1V1


E

V ′

2G22V2

. (A.15)

Also, from (A.9), we have

E

V ′

2G22V2


= ψ
(2)
0,p1q

(0, 1) trace

G22


0, Ik−p1


⊗ Iq


Σv


0

Ik−p1


⊗ Iq


, (A.16)

whereΣv is given in (A.10), and by combining (A.8) and (A.16) along with the fact that
G22 =


0, Ikq−p1q


G


0, Ikq−p1q

′, we get

E

h

V ′

1V1


E

V ′

2G22V2


= E

h

V ′

1V1

ψ

(2)
0,p1q

(0, 1) trace

G


0 0
0 Ik−p1


⊗ Iq


= ψ

(2)
0,p1q

(0, 1)ψ(1)
1,p1q


trace


M ′Ξ3MΞ4


, 1


trace


A


Ξ−1

3 − Υ 1


trace (Λ2) . (A.17)

Further, as in [15], using Lemma A.2, we have

E

h

V ′

1V1

V ′

1G11V1


= ψ
(2)
1,p1q+2


µ′

1µ1, 1

trace (G11) + ψ

(1)
1,p1q+4


µ′

1µ1, 1
 
µ′

1G11µ1

, (A.18)

with µ′

1µ1 given in (A.13), and

µ′

1G11µ1 = trace

M ′AM


, trace (G11) = trace (AΥ 1) trace


Ξ−1

4


. (A.19)

The proof is completed by combining the relations in (A.15)–(A.19). �
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