
Accepted Manuscript

A new minimum contrast approach for inference in single-index
models

Weiyu Li, Valentin Patilea

PII: S0047-259X(17)30198-7
DOI: http://dx.doi.org/10.1016/j.jmva.2017.03.009
Reference: YJMVA 4237

To appear in: Journal of Multivariate Analysis

Received date: 5 August 2016

Please cite this article as: W. Li, V. Patilea, A new minimum contrast approach for inference in
single-index models, Journal of Multivariate Analysis (2017),
http://dx.doi.org/10.1016/j.jmva.2017.03.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmva.2017.03.009


A new minimum contrast approach for inference in
single-index models

Weiyu Lia,b,∗, Valentin Patileaa,∗∗

aCREST (Ensai), France
bShandong University, China

Abstract

Semiparametric single-index models represent an appealing compromise be-

tween parametric and nonparametric approaches and have been widely inves-

tigated in the literature. The underlying assumption in single-index models is

that the information carried by the vector of covariates could be summarized by

a one-dimensional projection. We propose a new, general inference approach for

such models, based on a quadratic form criterion involving kernel smoothing.

The approach could be applied with general single-index assumptions, in par-

ticular for mean regression models and conditional law models. The covariates

could be unbounded and no trimming is necessary. A resampling method for

building confidence intervals for the index parameter is proposed. Our empirical

experiments reveal that the new method performs well in practice.

Keywords: Conditional law, Kernel smoothing, Semiparametric regression,

Single-index assumption, U -statistics
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1. Introduction

Modeling the relationship between one or several response variables and

a vector of covariates is a common problem in statistics. Usually, one aims
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at modeling the conditional law of responses given the covariates, or at least

some characteristics of this conditional law, such as the mean, the median,5

the higher order moments, etc. In a parametric approach, one specifies a set

indexed by a vector of parameters, i.e., a model to which the conditional law,

or its characteristic of interest, is supposed to belong. Linear regression is

the most prominent example. In a fully nonparametric approach, the model

is specified as broadly as possible, but of course there is a price to pay for10

the model’s complexity which is reflected in the poor accuracy of the resulting

estimators. Therefore, one often looks for semiparametric approaches that strike

a compromise between the accuracy that could be obtained via a parametric

model and the flexibility of nonparametric specifications.

Single-index models are common semiparametric approaches that achieve15

such a compromise. The underlying assumption is that the information on the

quantity of interest (the law of responses or some characteristics of it) carried by

the covariate vector, is the same as the information carried by a one-dimensional

projection of the covariate vector, the so-called index. In other words, one still

considers a nonparametric approach, but only after a dimension reduction step20

which replaces the original covariate vector by some linear combination of its

components. See, e.g., [3, 11–14, 16–18, 20, 21, 23, 27] and references therein.

Despite the extensive literature on single-index models, some technical as-

pects remain unsatisfactorily resolved. For instance, in most contributions, the

covariates are supposed to have a bounded support. Even with bounded sup-25

port covariates, trimming is usually employed to keep density estimates (usually

appearing in the denominators) away from zero. In some papers, it is supposed

that a pilot estimator, with suitable rate, is available. Moreover, in many con-

tributions considering the additive regression setup, the error term is assumed

to be homoscedastic.30

In this paper we introduce a new general inference approach for the index in

conditional models using a single-index assumption. Our approach is based on

kernel smoothing and could be applied to any existing framework, under mild

conditions. It does not require any of the technical conditions mentioned above.

2



We allow discrete and continuous covariates to be unbounded, heteroscedastic35

error terms to appear in the mean regression setup, and no trimming to be

involved in the inference. The approach follows and extends, from a parametric

to a semiparametric framework, the idea of the Smooth Minimum Distance

estimation method of [19].

The paper is organized as follows. The underlying idea of the new approach40

is presented in Section 2. The corresponding estimators are introduced in Sec-

tion 3, where their consistency and asymptotic normality are also derived. In

Section 4 we propose a simple procedure for constructing confidence intervals

for the index coefficients. Some empirical evidence on the performance of our

inference method is provided in Section 5, using both simulated and real data45

examples. The simulation results indicate that our method performs well com-

pared to existing approaches. Some technical aspects are postponed to the

Appendix. Complementary proofs are provided in Supplementary Material.

2. The framework

Assume that the observations are independent copies of (Y ⊤, X⊤)⊤ where

Y ∈ Rd, d ≥ 1, denotes the random response vector and X ∈ Rp, p ≥ 1, stands

for the random column vector of covariates. For mean regression, the single-

index assumption means that exists a column parameter vector β0 ∈ Rp such

that

E(Y | X) = E(Y | X⊤β0). (1)

The scalar product X⊤β0 is the so-called index. The direction β0 and the

nonparametric univariate (i.e., one predictor) regression E(Y | X⊤β0) have to

be estimated. See [6, 8, 12, 13] and references therein for a panorama of the

existing estimation procedures. When applying the single-index paradigm to

conditional laws of Y given X, one assumes

Y ⊥ X | X⊤β0. (2)

In this case, the direction defined by β0 and the conditional law of the response50

Y given the index X⊤β0, have to be estimated. See [5, 7, 10, 29] for various
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estimation approaches. In both situations only the direction given by β0 is iden-

tified, so that a suitable identification condition should accompany the model

assumption.

In order to formulate the problem in a general, unified way, consider {Tu : u ∈
U}, a family of transformations of the response variable Y . The transformations

Tu take values in some finite-dimensional space that could be, for instance, the

space of Y or the real line. The set U is contained in some finite-dimensional

space. Then, the general single-index model (SIM) assumption we consider is

the following:

∃!β0 ∀u∈U E{Tu(Y )|X} = E{Tu(Y ) | X⊤β0}, (3)

where the unique β0 is an unknown index vector which belongs to the parameter

set

B ⊂ {(β1, . . . , βp) : β1 = 1} ⊂ Rp. (4)

In particular, this framework makes it possible to take into account the two55

single-index assumptions presented above. Indeed, if the family of transforma-

tion contains only the identity transformation, i.e., Tu(y) = y for any u ∈ U ,

one recovers Condition (1). In contrast if Tu(y) = 1(y ≤ u) for all u ∈ U = Rp,

then (3) becomes equivalent to Condition (2). (Here and in the following, for

any v1 and v2 vectors of the same dimension, v1 ≤ v2 stands for the component-60

wise inequality between v1 and v2.) For simplicity, hereafter we only consider

Condition (3) for one of these two types of transformations Tu.

Let us assume that for any β ∈ B, the random variable X⊤β has a density

denoted by fβ . To estimate a parameter β0 that satisfies Condition (3), first let

us define, for all z ∈ R, β ∈ B, u ∈ U ,

gu(Y, z;β) = [Tu(Y )− E{Tu(Y ) | X⊤β = z}]fβ(z).

Then, Condition (3) is equivalent to the following:

∀u∈U E{gu(Y,X⊤β;β) | X} = 0 almost surely ⇔ β = β0. (5)
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Next, the idea is to build a contrast function that allows the conditional mo-

ment conditions to be encompassed in one marginal (unconditional) equation.

For this purpose, let (Y ⊤1 , X⊤
1 )⊤ and (Y ⊤2 , X⊤

2 )⊤ be two independent copies of65

(Y ⊤, X⊤)⊤ and let ω be a real-valued integrable function defined over the space

of X . Assume that ω has an integrable, strictly positive Fourier transform. For

instance, one could take ω(x) = exp(−‖x‖2/2), x ∈ Rp. As mentioned in [19],

other examples are products ω(x) = ω(x1, . . . , xp) = ω̃(x1) · · · ω̃(xp) with ω̃ a

triangular, logistic, Student (including Cauchy), or Laplace density.70

Finally, define the real-valued contrast function, for all β ∈ B, by

Q(β) =
∫

U
E{gu(Y1, X

⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)ω(X1 −X2)}dµ(u), (6)

where µ is some probability measure with support U considered with the Borel

σ−field. As will be mentioned in the following, for the case corresponding to

Assumption (2), a convenient choice is µ = FY , where FY denotes the proba-

bility distribution of Y. In applications, FY is unknown and could be replaced

by a given approximation or by the empirical distribution of the sample of Y .75

The following result guarantees that the direction β0 from Condition (5)

could be identified as the unique root of the contrast Q.

Lemma 1. Let B be some parameter set defined as in Eq. (4). Assume that

the Fourier transform of ω is strictly positive and integrable. Then Q(β) ≥ 0

for all β ∈ B. Moreover, Condition (5) holds true if and only if Q(β0) = 0 and80

Q(β) > 0 for all β 6= β0.

The idea of our estimation approach is to build a sample-based approxi-

mation of Q(β) and to minimize it with respect to the parameter β. Let us

point out that, by the definition of the functions gu, the covariates will be al-

lowed to have unbounded support and no trimming will be necessary in the85

approximation of Q(β).

Let us point out that, in general, one could not simply use a least-squares

type contrast instead of Q(β). For illustration, let us consider the case of a

single-index assumption for the mean regression of a real-valued response, i.e.,
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Y = E(Y | X⊤β0) + ε and E(ε | X) = 0. Then one can decompose

E{g2
u(Y,X⊤β;β)} =

E
[{

E(Y | X⊤β0)− E(Y | X⊤β)
}2
f2

β(X⊤β)
]

+ E{ε2f2
β(X⊤β)}],

and thus it becomes clear that β0 cannot be the minimum of E{g2
u(Y,X⊤β;β)}.

Our contrast Q(β), inspired by the Smooth Minimum Distance estimation me-

thod introduced in [19], avoids the identification problem for β0, provided that

Condition (5) holds true.90

Finally, let us point out that the definition of the criterion Q(β), and hence

the estimation approach that will be described in the following, could be ex-

tended to the case of a multiple index assumption. It suffices to replace the

index X⊤β by a multiple index X⊤B, where B is a p × q−matrix, 1 ≤ q < p,

and to reconsider the construction above. For simplicity, we focus herein on95

single-index assumptions.

3. The estimation method

Let (Y ⊤1 , X⊤
1 )⊤, . . . , (Y ⊤n , X⊤

n )⊤ be a random sample from (Y ⊤, X⊤)⊤. Our

estimator of β0 is

β̂ = argmin
β∈B

Q̂n(β),

where, for each β ∈ B,

Q̂n(β) =
∫

U





1
n2

n∑

i,j=1

ĝu(Yi, X
⊤
i β;β)⊤ĝu(Yj , X

⊤
j β;β)ωij



 dµn(u), (7)

ĝu is an estimate of gu, ωij = ω(Xi −Xj) and µn is some probability measure

that may depend on the sample. For a simpler presentation, in the theoretical

results we will assume that µn is the empirical distribution of the response Y100

and µ is equal to FY , the marginal distribution of Y . For estimating gu we use
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kernel smoothing and define

ĝu(y, z;β) = Tu(y)f̂β(z)− ̂E{Tu(Y ) | X⊤β = z}f̂β(z)

=
1
nh

∑

k=1

{Tu(y)− Tu(Yk)}K{(X⊤
k β − z)/h},

where K is a univariate kernel and h is the bandwidth. The choice of µn

matters only in some cases, as for instance, in the case of the single-index in

the distributional assumption (2). More precisely, under Assumption (2) we

propose

Q̂n(β) =
1
n

n∑

l=1

1
n2

n∑

i,j=1

ĝYℓ
(Yi, X

⊤
i β;β)ĝYℓ

(Yj , X
⊤
j β;β)ωij ,

where

ĝYℓ
(Yi, X

⊤
i β;β) =

1
nh

n∑

k=1

{1(Yi ≤ Yℓ)− 1(Yk ≤ Yℓ)}K{(Xk −Xi)⊤β/h}.

In the case of Assumption (1), we propose the criterion

Q̂n(β) =
1
n2

n∑

i,j=1

ĝ(Yi, X
⊤
i β;β)⊤ĝ(Yj , X

⊤
j β;β)ωij ,

where

ĝ(Yi, X
⊤
i β;β) =

1
nh

n∑

k=1

(Yi − Yk)K{(Xk −Xi)⊤β/h}.

Let us comment on a common feature of the single-index estimation meth-

ods. By the nature of the model, a nonparametric estimation is involved in

any semiparametric single-index estimation approach. In general, this requires105

controlling of small values of the nonparametric density estimators appearing in

the denominators. A common practice is to suppose that the density of X⊤β

is uniformly bounded away from zero, for all β ∈ B. Such a condition is quite

unrealistic, even when X has a bounded support and a density bounded away

from zero. Indeed, one may easily build a counterexample considering a bidi-110

mensional X = (X(1), X(2))⊤ with two independent uniform random variables

on [0, 1] and B = {(1, β2)⊤ : |β2| ≤ b}, for some arbitrary b > 0. Then, except

for β2 = 0, the random variable X(1) + β2X(2) does not have a density bounded
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away from zero. The usual remedy is to trim the criterion used for estimation,

i.e., to remove the observations leading to small estimated values for the density115

of X⊤β. The trimming may be relaxed with the sample size, i.e., the fraction of

removed observations could grow more slowly than the sample size, but one still

has to use complicated arguments for the asymptotics. For both situations we

consider here, single-index in mean and single-index in law, the new approach

we propose allows covariates to be unbounded and does not require trimming.120

To the best of our knowledge, our estimation method is the first to have this

feature.

Let ∇β the differential operator given by the last p − 1 first order partial

derivatives corresponding to the last p − 1 components of β. In the case of

Condition (2), let Σ(β0) = 4E{ψ(Y,X ;β0)ψ(Y,X ;β0)⊤},

J(β0) =
∫

U
E[E{∇βgu(Y1, X

⊤
1 β0;β0) |X1}

× E{∇βgu(Y2, X
⊤
2 β0;β0) |X2}⊤ω(X1 −X2)]dµ(u),

and

ψ(Y1, X1;β0) =
∫

U
E[E{∇βgu(Y,X⊤β0;β0) |X}

× ω(X −X1) |X1]gu(Y1, X
⊤
1 β0;β0)dµ(u).

In the case of a single-index mean regression, gu(y, t;β) does not depend on

u, hence the integrals with respect to µ disappear from the definitions of the

(p − 1) × (p − 1)−matrices J(β0) and ψ(Y,X ;β0) above. The following result125

describes the asymptotic behavior of the semiparametric estimator β̂. Below,

 denotes convergence in law and 0p−1 is the null column vector in Rp−1.

Proposition 2. Let β̂ = argminβ∈B Q̂n(β) for Q̂n(β) defined as in Eq. (7)

with µn the empirical distribution of Y1, . . . , Yn. Suppose that the identification

Condition (5) holds true. Under Assumption 1, β̂ → β0 in probability as n→∞.

If in addition Assumption 2 holds true, then
√
n (β̂−β0) Np(0, V ) as n→∞,
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where

V =


 0 0′p−1

0p−1 Vp−1


 with Vp−1 = J(β0)−1Σ(β0)J(β0)−1,

Let us comment on Proposition 2. As the function ω appears in the asymp-

totic variance, its choice has some influence on the performance of β̂. In [19], the

authors considered the case of a family of functions ω indexed by a bandwidth130

parameter allowed to decrease to zero. In that case, ω no longer appears in the

asymptotic variance of the parametric estimator studied in [19]. However, the

authors report empirical evidence of the influence of that bandwidth parameter

on the mean squared error of their estimator. A detailed investigation of the

influence of the choice of ω is beyond the scope of our contribution.135

The first row and the first column of the matrix V in Proposition 2, are

identically equal to zero. This comes from our identification condition and the

parameter space defined in Eq. (4). In fact, only the subvector built with the

last p − 1 components of β0 is estimated and the asymptotic variance of the

estimator is Vp−1.140

Given that β̂ is
√
n-consistent, one could derive the

√
nh-consistency for the

conditional mean or the conditional distribution function of Y given X. These

type of results are quite standard and straightforward, see, e.g., Section 2.4 in

[13], and hence will be omitted.

4. Confidence intervals145

The asymptotic variance of β̂ has a complicated form. To approximate

the law of β̂ in small and moderate samples, we propose a resampling-based

approach similar to the one used in [19]; see also [15]. The idea is to build a

suitable randomly perturbed version of the criterion Q̂n(β) and to compute its

minimum. Conditionally on the original sample, the law of this minimum is150

shown to be close to the law of β̂. More precisely, the steps of the procedure

are as follows.
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1. Generate a random sample ξ1, . . . , ξn from a distribution with unit mean,

unit variance and finite fourth-order moment.

2. Build the randomly perturbed criterion

Q̂∗n(β) =
∫

U





1
n2

n∑

i,j=1

ĝu(Yi, X
⊤
i β;β)⊤ĝu(Yj , X

⊤
j β;β)ω∗ij



 dµn(u),

where µn is the empirical distribution of the responses and ω∗ij = ξiξjωij .155

3. Define

β̂∗ = arg min
β∈B

Q̂∗n(β).

The following result establishes the asymptotic validity of this procedure.

The arguments for the proof could be obtained by standard modifications of

those for the proof of Proposition 2, and hence will be omitted.

Proposition 3. Under the conditions of Proposition 2 guaranteeing the asymp-

totic normality of
√
n (β̂ − β0), for any w ∈ {0} × Rp−1,

Pr{√n (β̂∗ − β̂) ≤ w | Y1, X1, . . . , Yn, Xn} − Pr{√n (β̂ − β0) ≤ w} → 0,

in probability as n→∞.

In practice, the conditional distribution of
√
n(β̂∗ − β̂), given the original160

data set, can be estimated by repeating B times the steps 1 to 3 above, where

B is some large number. For the jth independent draw of ξ1, . . . , ξn, let β̂∗j

denote the value obtained by minimizing Q̂∗n(β), j = 1, . . . , B. The theoretical

conditional distribution of
√
n(β̂∗ − β̂) can then be approximated by the usual

empirical distribution function based on β̂∗1 , . . . , β̂
∗
B. The conditions on the law165

of the ξi’s are very mild, but the choice of this law may have some influence with

small and moderate samples. Guided by our simulation experience, we suggest

using the unit exponential distribution to generate the ξi’s.

5. Empirical illustrations

We investigated the performance of our new approach to build parameter170

estimates and confidence intervals for single-index models through extensive
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simulation experiments and real data examples. The general conclusion is that

our approach performs well, and sometimes much better, compared to existing

approaches. In all our empirical studies we used a Gaussian kernel K.

5.1. Simulation experiments with single-index in mean models175

First, we consider two setups similar to those considered in [6]: the model

equation is

Y = (X⊤β0)2 + ε, (8)

with a three-dimensional vector of covariatesX = (X(1), X(2), X(3))⊤, where the

independent sample of (X(1), X(2))⊤ is generated from a bivariate normal law

with mean 1, unit standard deviations and correlation equal to 0.2. As for X(3),

it is a Bernoulli random variable with parameter p = 0.4. The true parameter

is β = (β0,1, β0,2, β0,3)⊤ = (1, 0.8, 0.5)⊤. The first setup is a homoscedastic case180

where the error ε has a N (0, 0.52) law. In this case the signal-to-noise ratio,

SSR/SSE, is approximately equal to 76.6. In the second setup we introduce

some heteroscedasticity by considering ε ∼ N [0, (X⊤β)4/25]. The value of the

signal-to-noise ratio is then approximately equal to 13.

Our estimator β̂ depends on the bandwidth h. Here we select h from an185

equidistant grid {0.03, 0.06, . . . , 0.30} such that the loss Q̂(β̂) is minimal. The

simulation results, based on 500 replicates with a sample of size n = 50, are

shown in Table 1. We report the elementary descriptive statistics, mean, median

and standard deviation, and the absolute estimation error (AEE) defined as

|β0,2 − β̂2| + |β0,3 − β̂3|. We also include the results obtained from the EFM190

approach proposed by [6], adjusted by a final Fisher scoring step, as could be

found in the codes kindly provided by the authors. Moreover we report the

benchmark results obtained by the nonlinear least squares method (NLS) in the

homoscedastic case and by the weighted nonlinear least squares method (WNLS)

in the heteroscedastic case. With these parametric estimation approaches, the195

conditional mean and the conditional variance are known up to the parameter

β0. The results show that our method performs well compared to EFM. Its

performance is not quite as satisfactory in the homoscedastic case, but remains

11



Table 1: Single-index in mean. Simulation results for the estimators of β0 obtained

from 500 replicates generated using Model (8).

Homoscedastic case, n = 50 Heteroscedastic case, n = 50

NLS Ours EFM WNLS Ours EFM

β0,2 = 0.8

Median 0.7992 0.8025 0.7994 Median 0.7987 0.8018 0.7965

Mean 0.7991 0.8030 0.7993 Mean 0.7972 0.8096 0.8070

StD 0.0163 0.0607 0.0376 StD 0.0168 0.0935 0.1244

MSE 0.0002 0.0014 0.0036 MSE 0.0003 0.0088 0.0155

β0,3 = 0.5

Median 0.5001 0.4981 0.5000 Median 0.4987 0.4996 0.4995

Mean 0.4996 0.5025 0.4997 Mean 0.4982 0.5057 0.5072

StD 0.0164 0.0477 0.0390 StD 0.0117 0.0712 0.0988

MSE 0.0002 0.0022 0.0008 MSE 0.0001 0.0050 0.0098

AEE1 0.0252 0.0836 0.0532 AEE1 0.0204 0.1251 0.1664

1 AEE stands for the absolute estimation error.

marginally preferable to EFM in the heteroscedastic case. As expected, the

parametric approaches are more accurate.200

Next, we consider a third setup inspired by the empirical study presented in

[21]. The law of the six covariate vector X = (X(1), . . . , X(6))⊤ is constructed

as follows:

1) X(1), X(2), e1 and e2 are independent, standard normal random variables.

2) X(3) = 0.2X(1) +0.2(X(2)+2)2 +0.2e1 and X(4) = 0.1+0.1(X(1)+X(2))+205

0.3(X(1) + 1.5)2 + 0.2e2.

3) Given X(1) and X(2), generate X(5) and X(6) independently as Bernoulli

variables with respective success probabilities exp(X1)/{1+exp(X1)} and

exp(X2)/{1 + exp(X2)}.

Let β0 = (1.3,−1.3, 1,−0.5, 0.5,−0.5)⊤/1.3. The response Y is obtained as

Y = sin(2X⊤β0) + 2 exp(X⊤β0) + ε, (9)

12



Table 2: Single-index in mean. Simulation results for the estimators of β0 obtained

from 500 replicates from the model (9).

Mean StD Median MSE

β2 = −1

WNLS −1 0.004 −1 1.6092 × 10−5

Ours −1.012 0.038 −1.012 0.0016

EFM −3.955 3.723 −4.205 22.5622

β3 ≈ 0.769

WNLS 0.769 0.006 0.769 3.4043 × 10−5

Ours 0.777 0.033 0.776 0.0011

EFM 3.181 3.003 3.196 0.148091

β4 ≈ −0.385

WNLS −0.384 0.003 −0.385 8.0883 × 10−6

Ours −0.380 0.012 −0.380 0.0001

EFM −1.223 2.249 −0.661 5.7518

β5 ≈ 0.385

WNLS 0.385 0.007 0.385 5.0449 × 10−5

Ours 0.390 0.017 0.390 0.0003

EFM 1.193 1.295 1.373 2.3268

β6 ≈ −0.385

WNLS -0.385 0.007 -0.384 5.0710 × 10−5

Ours −0.388 0.015 −0.387 0.0002

EFM −1.355 1.233 −1.455 2.4593

AEE1 WNLS: 0.0213 Ours: 0.0923 EFM: 10.0191

1 AEE stands for the absolute estimation error.

where ε ∼ N [0, ln{2 + (X⊤β0)2}]. Again, we compare our method with EFM210

and WNLS. The results presented in Table 2 are obtained from 500 replicates

with samples of size n = 100. Again, the bandwidth h is chosen by minimizing

the loss Q̂n(β̂) over the grid {0.05, 0.1, 0.15}. The EFM approach produces very

poor results, while our method provides accurate estimates, with performances

close to that of the WNLS estimates. The very good accuracy of the WNLS215

estimators could be explained by the construction of the setup, which yields a

value of the signal-to-noise ratio close to 2700.
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5.2. Simulation experiments with single-index in law models

Three setups with responses having a single-index conditional law are con-

sidered. First,

Y = X⊤β0 + ε, (10)

with X a trivariate normal random vector with mean zeros, standard deviations

equal to 1 and pairwise correlations equal to 0.2, and a Cauchy distribution error

term. Next, following [21], we consider

Y = sin(2X⊤β0) + 2 exp(X⊤β0) + ε (11)

and

Y = sin(2X⊤β0) + 2 exp(X⊤β0) +
√

ln(2 +X⊤β0) ε, (12)

where the error ε has a normal distribution and the vector of covariates X =

(X(1), X(2), X(3))⊤ is generated as follows:220

1) X(1) and e1 are independent standard normal random variables.

2) X(2) = 0.3 + 0.2X(1) + 0.1(X(1) + 1.5)2 − 0.3e21.

3) given X(1), X(3) is a Bernoulli variable with probability exp(X(1))/{1 +

exp(X(1))}.

In Examples (10)–(12), the real parameter value is β0 = (1, 0.8,−0.5)⊤. The225

simulation results are based on 200 replicates with samples of size n = 50 being

reported in Table 3. Our method is compared with the maximum likelihood

estimation (MLE), the method (PLISE) from [5] and the method proposed in

[21] denoted as Eff. The bandwidth h is selected as the minimum of the loss

Q̂(β̂) on the grid {0.01, . . . , 0.05}. In the conditional Cauchy responses cases,230

our method performs much better than PLISE and slightly better than Eff.

The poor behavior of the MLE is probably related to the multiple local maxima

of a Cauchy likelihood, a well known problem in classical statistics; see, e.g.,

[24]. In the conditional Gaussian examples, our method seems to outperform

the semiparametric competitors with respect to almost all the indicators we235

provide (mean, median, standard deviation and absolute estimation error).
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Table 3: Single-index in conditional law. Simulation results from 500 replicates with

Models (10)–(12).

Model (10), conditional Cauchy response, n = 50

MLE PLISE Eff Ours

β2 = 0.8

Median 0.7924 0.8245 0.7956 0.8020

Mean 0.9063 0.9647 0.7971 0.8082

StD 0.5872 0.7635 0.1268 0.1113

MSE 0.3544 0.6072 0.0160 0.0123

β3 = −0.5

Median −0.5169 −0.5351 −0.5426 −0.5405

Mean −0.5621 −0.5801 −0.5414 −0.5452

StD 0.3459 0.3883 0.0807 0.0879

MSE 0.1229 0.1564 0.0082 0.0097

AEE1 0.6119 0.7295 0.1700 0.1585

Model (11), conditional Gaussian, homoscedastic response, n = 50

MLE PLISE Eff Ours

β2 = 0.8

Median 0.8020 0.8156 0.8116 0.7977

Mean 0.8002 0.8193 0.8161 0.7989

StD 0.0231 0.1634 0.1598 0.1158

MSE 0.0005 0.0269 0.0256 0.0133

β3 = −0.5

Median −0.5003 −0.5015 −0.5116 −0.5105

Mean −0.4998 −0.4998 −0.4998 −0.5166

StD 0.0094 0.0713 0.0982 0.0720

MSE 0.00008 0.0050 0.0096 0.0054

AEE1 0.0243 0.1797 0.1944 0.1411

Model (12), conditional Gaussian, heteroscedastic response, n = 50

MLE PLISE Eff Ours

β2 = 0.8

Median 0.8010 0.8131 0.8197 0.7922

Mean 0.8007 0.8203 0.8278 0.7887

StD 0.0250 0.1752 0.2171 0.1072

MSE 0.0006 0.0309 0.0477 0.0115

β3 = −0.5

Median −0.5102 −0.5023 −0.4974 −0.5004

Mean −0.5000 −0.5022 −0.4952 −0.5114

StD 0.0109 0.0734 0.1022 0.0676

MSE 0.0001 0.0053 0.0104 0.0046

AEE1 0.0272 0.1894 0.2229 0.1373

1 AEE stands for the absolute estimation error.
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Table 4: Empirical level and empirical length for the componentwise resampling-based

confidence intervals in Models (8)–(10): sample size n = 50 and 199 samples ξ1, . . . , ξn

generated.

Model (8) with N (0, 0.25) errors

90% resampling CI 95% resampling CI

Length Level Length Level

β2 = 0.8 0.1592 92 0.2054 96.5

β3 = 0.5 0.1785 89 0.2301 96

Model (10) with Cauchy errors

90% resampling CI 95% resampling CI

Length Level Length level

β2 = 0.8 0.2822 89.5 0.3713 96

β3 = −0.5 0.1923 90 0.2538 96

5.3. Confidence intervals

Next, we use the idea described in Section 4 to build confidence intervals

for the components of β in Models (8) and (10). We consider 200 samples of

size n = 50 and for each sample we generated 199 independent random samples240

ξ1, . . . , ξn from a unit exponential distribution and computed the criteria Q̂∗(β).

The 90% and 95% confidence intervals obtained with the optimal values β̂∗,

are presented in Table 4. The level is quite accurate and the intervals have

reasonable length, indicating that our simulation-based procedure for building

confidence intervals is quite effective.245

5.4. Real data applications

The investigation of the finite-sample performance of our semiparametric

approach is completed by two applications using real data.

The first example is the New York air quality data set considered in [4].

It contains the measurements of daily ozone concentration (ozone), wind speed

(wind), daily maximum temperature (temp), and solar radiation level (solar) on

16



Table 5: The estimator β̂ and the componentwise resampling-based confidence

intervals (RCI) (levels 0.9 and 0.95) for New York air quality data: single-index mean

regression model.

Variable Coefficient estimate 0.9 RCI 0.95 RCI

temp −6.0144 (−6.3278,−5.7520) (−6.4813,−5.6591)

wind2 −3.1942 (−3.2430,−2.9008) (−3.2914,−2.8394)

solar2 −1.3832 (−1.5161,−1.1607) (−1.6557,−1.0798)

wind ∗ temp −0.5791 (−0.7472,−0.1098) (−0.8292,−0.0554)

temp ∗ solar 1.5339 (1.3256, 1.7995) (1.2714, 1.8581)

111 successive days from May to September 1973 in the New York metropolitan

area. The response variable is ozone, with empirical mean 42.0991 and empiri-

cal variance 1107.29. [1,17,28] considered a single-index mean regression model

for this data set, while [5] fitted a single-index in law model. Here we consider

the covariate vector X whose components are the variables wind, temp, wind2,

solar2, wind ∗ temp, and temp ∗ solar. We then consider the single-index in

mean assumption. The coefficient of wind is set equal to 1. The single-index

assumption was checked using the test proposed by [22] with bootstrap critical

values and the p-value was 0.403. The estimate of the direction β and the com-

ponentwise confidence intervals are given in Table 5. The plot of the estimated

link function is provided in Figure 1. The mean absolute deviation is

1
111

111∑

i=1

∣∣ozonei − Ê(ozonei|X⊤
i β̂)

∣∣ = 17.9248.

To estimate the parameter β, we select the bandwidth by minimization of the

lossQ(β̂) on a grid {0.01, . . . , 0.09} . Given the estimate β̂, we build the adjusted250

values by univariate smoothing of the response given X⊤
i β̂ with a bandwidth

selected by least-squares cross-validation.

The second real data example illustrates the single-index in law model. We

consider data on the employees’ salaries in the Fifth National Bank of Spring-

field; see [2]. There are 208 observations in the data set and every observation255
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Figure 1: The estimated link function for New York air quality data set.

contains eight variables: Education (a categorical variable with five education

levels), Grade (a categorical variable with six job levels), Year1 (years of work

experience at Fifth National), Age (employee’s current age), Year2 (years of

work experience at another bank prior to working at Fifth National), Gender

(‘female’=1, ‘male’=0), PC Job (a categorical variable depending on whether260

the job is computer related, ‘yes’=1, ‘no’=0), Salary (annual salary, the response

variable).

As in [9], we delete the observations with Age over 60 or working experience

Y ear1 + Y ear2 over 30 and this results in a subsample of 199 observations.

Following [21], we also drop the variable Education, set the coefficient of Grade265

equal to 1 and let Grade take values from 1 to 6.

The single-index assumption for the conditional law was checked using the

test proposed by [22] with asymptotic critical values and the p-value was 0.166.

The estimator β̂ obtained by our approach is reported in Table 6, together with

the resampling-based confidence intervals.270

In contrast with the results reported by [21], we found a significant negative

coefficient for Gender. This could be explained by the negative correlation

between Gender and Grade. For instance, there is no female with Grade = 6

in our working sample. In Figures 2– 4, we show the estimates of the values of

the conditional distribution functions and of the empirical distribution function275
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Table 6: The estimator β̂ and the componentwise resampling-based confidence

intervals (RCI) (levels 0.9 and 0.95) for Fifth National Bank of Springfield salary

data: single-index in law model.

Variable Estimation 0.9 RCI 0.95 RCI

Y ear1 0.5135 ( 0.4853,0.5627 ) (0.4783 ,0.5910 )

Age 0.7271 (0.6894, 0.7530) (0.6754, 0.7755)

Y ear2 0.0862 (0.04879, 0.1038 ) (0.0364 , 0.1140 )

Gender −0.7831 (−0.8395,−0.6578) (−0.8677,−0.6339)

PCJob 0.6899 (0.6751,0.9341 ) (0.6521, 0.9983)

for ten values of the response. The response values were determined as the

empirical deciles of the observed responses. We plot the kernel estimates of the

conditional distribution functions for three different job levels (Grade = 1, 3

and 5, respectively). For each of the three job levels, we compute the estimates

of the conditional distribution given X = x for four different values of x. These280

values x correspond to all the possible outcomes for the variables Gender and

PC Job. The components corresponding to the covariates Year1, Age, Year2,

are set equal to the average values of the subsamples obtained with the given

job level, and with PCJob = 1 or 0, for each gender. For each value of the

conditional distribution function estimated by kernel smoothing, we selected the285

bandwidth by least-squares cross-validation. In most cases, the figures reveal

little difference between the distribution functions for female and male, which

confirms the usual conclusion found in the literature, i.e., there is no evidence in

the Fifth National data set that the female employees are discriminated against;

see, e.g., [9].290

6. Appendix

Assumption 1. The following conditions hold true.
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Figure 2: The conditional distribution function of the Fifth National Bank salary data

set for Grade = 1: Y ear1, Age, Y ear2 take the sample mean value given Grade = 1

and the values of Gender and PC Job
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Figure 3: The same plots as in Figure 2 in the case Grade = 3.
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Figure 4: The same plots as in Figure 2 in the case Grade = 5.
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1. The observations (Y ⊤1 , X⊤
1 )⊤, . . . , (Y ⊤n , X⊤

n )⊤ are independent copies of

(Y ⊤, X⊤)⊤ ∈ Rd × Rp.

2. The parameter set is B = {1} × B′ and B′ ⊂ Rp−1 is a compact set.295

The vector β0 ∈ B satisfying Condition (5) is the unique element B.
For any β ∈ B, the random variable X⊤β has a density fβ such that

supβ∈B supz∈R fβ(z) <∞.

3. We have supu∈U supβ∈B supz∈R |E{Tu(Y ) | X⊤β = z}|fβ(z) <∞ and

lim
δ→0

sup
β∈B

sup
z∈R

|fβ(z + δ)− fβ(z)| = 0,

as well as

limδ→0 supu∈U supβ∈B supz∈R
∣∣[E{Tu(Y ) |X⊤β = ·}fβ](z + δ)

− [E{Tu(Y ) | X⊤β = · }fβ])(z)
∣∣ = 0.

4. The family of transformations {Tu : u ∈ U} is a VC-class (or Euclidean)

for an envelope with finite moment of order 4 + ρ for some ρ > 0.300

5. The value β0 is a well-separated point of minimum for Q(β) defined in

Eq. (6) with ω(x) = exp(−‖x‖2/2) and µ equal to the distribution FY of

the observations Y , i.e., for any ε > 0, infβ∈B,‖β−β0‖≥ε Q(β) > Q(β0).

6. The kernel K is a univariate integrable function with bounded variation.

The bandwidth h satisfies the condition h+ n−1h−2 → 0.305

Let us introduce some notation. Let X̃ ∈ Rp−1 be the (p − 1)-dimensional

vector of the last components of X . Below, (X̃)r (resp. (X̃X̃⊤)rq) denotes the

rth components (resp. the rq−entry) of the vector X̃ (resp. matrix X̃X̃⊤). If

A is a matrix with real entries, ‖A‖ =
√

trace(A⊤A). In the following, ∂z (resp.

∂2
zz ) denotes the first (resp. second) order derivative with respect to z.310

Assumption 2. The following conditions hold true.

1. There exists a > 0 such that E{exp(a‖X‖)} <∞.

2. The subvector β0 built with the last p−1 components belong to the interior

of B′, where B = {1} × B′.
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3. supz∈R E(‖X̃‖4 | X⊤β0 = z)fβ0(z) <∞315

4. For all u ∈ U , the functions z 7→ E{Tu(Y ) | X⊤β0 = z}, z 7→ fβ0(z),

z 7→ E{(X̃)r | X⊤β0 = z}, and z 7→ E{(X̃X̃⊤)rq | X⊤β0 = z} are four

times continuously differentiable and the derivatives up to order four are

bounded. The fourth order derivative are Lipschitz functions. The Lips-

chitz constant is independent of u in the case of the fourth-order derivative320

of E{Tu(Y ) | X⊤β0 = z}.
5. supu∈U supz E{T 2

u(Y ) | X⊤β0 = z} <∞.

6. Let A be the set of values u ∈ U such that

var
[
{X̃ − E(X̃ | X⊤β0)}∂z[E{Tu(Y ) | ·}](X⊤β0)

]
(13)

is positive definite. Then FY (A) > 0.

7. Let z 7→ λβ(z;u) denote any of the four functions at point (4) above,

considered for each β ∈ B, and their derivatives up to the second order.

Then, the family of functions {λβ : β ∈ B, u ∈ U} is a VC-class (or

Euclidean) for an envelope having a finite moment of order 8. Moreover,

for any sequence bn → 0,

sup
‖β−β0‖≤bn

sup
z∈R

sup
z∈R

|λβ(z;u)− λβ0(z;u)| → 0.

8. The kernel K is a symmetric and twice continuously differentiable uni-

variate density with the second order derivative with bounded variation.325

Moreover, for κ = 1, 2,
∫

R |K(κ)(u)|du < ∞, where K(κ) denotes the κth

derivative of K.

9. nh4 → 0 and nh3+a →∞ for some a ∈ (0, 1).

6.1. Proofs

Proof of Lemma 1. Let F [ω](v) =
∫

Rp e
−2πix⊤vω(x)dx, u ∈ Rp, denote the330

Fourier Transform of ω. If F [ω] is integrable, by the Inverse Fourier Transform
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formula and Fubini’s Theorem, we can write

Q(β) =
∫

U
E{ω(X1 −X2)gu(Y1, X

⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)}dµ(u)

=
∫

U
E

{
gu(Y1, X

⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)

∫

Rp

e2πi(X1−X2)⊤vF [ω](v)dv
}
dµ(u)

=
∫

U

∫

Rp

∥∥∥E
[
E

{
gu(Y,X⊤β;β) | X

}
e2πiX⊤v

]∥∥∥
2

F [ω](v)dvdµ(u).

By the fact that F [ω] is positive, one has Q(β) ≥ 0 for all β ∈ B. Using also the

uniqueness of the Fourier Transform, one can deduce that

Q(β) = 0 ⇔ E
{
gu(Y,X⊤β;β) | X

}
= 0 almost surely, for µ−almost all u ∈ U .

The conclusion of the lemma follows from the definition of the functions gu and

the transformation Tu.

335

Proof of Proposition 2. The proof of the asymptotic normality is quite

lengthy and hence will be provided in the Supplementary Material. Concerning

the consistency, by Assumptions 1–5, β0 is a well-separated point of minimum

for Q(β). Thus, it suffices to prove that

sup
β∈B

∣∣Q̂n(β) −Q(β)
∣∣ = oP(1). (14)

See, e.g., Theorem 5.7 in [25]. For this purpose, let us simplify notation and

write ĝu,i(β) instead of ĝu(Yi, X
⊤
i β;β). By Lemma 4,

sup
β∈B

sup
u∈U

∣∣∣∣∣∣
1
n2

n∑

i,j=1

ĝu(Yi, X
⊤
i β;β)⊤ĝu(Yj , X

⊤
j β;β)ωij

− 1
n2

n∑

i,j=1

gu(Yi, X
⊤
i β;β)⊤gu(Yj , X

⊤
j β;β)ωij

∣∣∣∣∣∣
= oP(1).

Next, by the uniform law of large numbers for Glivenko–Cantelli classes of

functions (see, e.g., Theorem 19.4 in [25]), we deduce

sup
β∈B

sup
u∈U

∣∣∣∣∣∣
1
n2

n∑

i,j=1

ĝu(Yi, X
⊤
i β;β)⊤ĝu(Yj , X

⊤
j β;β)ωij

− E{gu(Y1, X
⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)ω12}

∣∣ = oP(1).
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From this, it follows that

sup
β∈B

∣∣∣∣Q̂(β)−
∫

U
E{gu(Y1, X

⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)ω12}dµn(u)

∣∣∣∣ = oP(1).

Next, by the uniform law of large numbers for Glivenko–Cantelli classes of

functions,

sup
β∈B

∣∣∣∣
∫

U
E{gu(Y1, X

⊤
1 β;β)⊤gu(Y2, X

⊤
2 β;β)ω12}dµn(u)−Q(β)

∣∣∣∣ = oP(1).

Gathering facts, we deduce that the uniform convergence in Eq. (14) holds true,

and thus β̂ is consistent in probability.

Lemma 4. Under Assumption 1,

sup
1≤i≤n

sup
u∈U

sup
β∈B

∥∥ĝu(Yi, X
⊤
i β;β)− gu(Yi, X

⊤
i β;β)

∥∥ = oP(1).

Proof of Lemma 4. The result follows from the following two properties:

sup
1≤i≤n

sup
β∈B

∥∥∥ ̂fβ(X⊤
i β)− fβ(X⊤

i β)
∥∥∥ = oP(1)

and

sup
1≤i≤n

sup
u∈U

sup
β∈B

∥∥ ̂E{Tu(Yi) | X⊤
i β}fβ(X⊤

i β)

− E{Tu(Yi) | X⊤
i β}fβ(X⊤

i β)
∥∥ = oP(1). (15)

Since the first property is a particular case of the second, we only provide the

justification for Eq. (15). The latter property is a direct consequence of the

following statements:

sup
z∈R

sup
u∈U

sup
β∈B

∣∣E[Tu(Y )K{(X⊤β − z)/h}]

− E
[
Tu(Y ) | X⊤β = z

]
fβ(z)

∣∣ = o(1) (16)

and

sup
z∈R

sup
u∈U

∣∣∣ 1
nh

n∑

k=1

Tu(Yk)K{(X⊤
k β − z)/h}

− E
[
Tu(Y )K{(X⊤β − z)/h}

]∣∣∣ = oP(1). (17)
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Statement (16) follows by a standard change of variables and Assumptions 1–3.

For the uniform convergence in Eq. (17), it suffices, for instance, to use the

Maximal Inequality; see Theorem 3.1 in [26]. In that result, it suffices to take p340

sufficiently large to ensure that (4p−2)/(p−1) ≤ 4+ρ, with ρ from Assumptions

1–4, and apply the maximal inequality with δ = h1/2. Deduce that

sup
z∈R

sup
u∈U

∣∣∣∣∣
1
nh

n∑

k=1

Tu(Yk)K{(X⊤
k β − z)/h} − E

[
Tu(Y )K{(X⊤β − z)/h}

]
∣∣∣∣∣

= OP(n−1/2h−1/2 ln1/2 n) = oP(1).

Now the proof is complete.
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