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Our aim in this work is to give a global test of hypothesis concerning the 
smoothing spline estimate of a regression function. For this, we prove a central 
limit theorem for integrated squares of such estimates. That leads to a test whose 
confidence sets are either continuous or discrete L*-balls. We consider the case of 
nonperiodic splines and the periodic splines for which we get explicit expressions of 
the constants involved in such a test. 0 1992 Academic Press, Inc. 

I. IN~~DucTI~N 

The aim of this work is to investigate further probabilistic properties of 
spline regression estimates in the model 

Yi=dtl)+Ei* (I.11 

In the following, ti, . . . . t, denote the observation points belonging to the 
compact interval [0, 11, .si . . . E, is an i.i.d. centered sequence, and g is the 
unknown function. Define the functional 

(I.2) 

where A is the smoothing parameter and depends on n; however, the 
subscript will be often omitted. 

We shall consider the Sobolev space Wl;l of real valued functions on 
[0, l] with an absolutely continuous (m - 1)th derivative and square 
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integrable m-th derivative and the subspace KY of W;l satisfying the 
periodic boundary conditions 

IL;“= {fE W~,f’“‘(0)=f’p’(l),~=O, . . . . m- 1). 

Knowing the observations y, . ..y., and the fact that g belongs to WT, we 
consider the penalized mean squares estimate g,,, minimizing J,,(f) on Wl;t 
(resp. on KY if g is known to be periodic). 

This method of estimation was introduced by Wahba (see [6, 13, 181, 
for instance), and the estimate is known to be a smoothing spline of degree 
2m-1. 

We are interested here in giving asymptotic statistical tests on g for the 
whole range of the variable t. 

Several authors give local asymptotic statistical tests on the value g(t) for 
a fixed value of t (see [9] or [lS]). For this, they use the Bayesian inter- 
pretation of the spline estimate (see [13]); the test follows from classical 
Bayesian computation of the posterior variance. As usual, for non 
parametric estimation, no functional result can hold because of a defect of 
tightness; indeed, it may be shown (see [ 11)) that (g,,i(t) - Eg,,(t)) 
Par gn,AW1’2 is asymptotically a white noise. We give here a central 
limit theorem for the centered mean squares and integrated squares of 
errors, with the normalisation ,J,1’(4m). The optimal regularization 
parameter 1 is covered by the result. This result leads to a global test of 
hypothesis, provided that the constants appearing in the development are 
attainable. We only know one earlier result giving such a global test proved 
in Eubank and Spiegelman [lo] for cubic splines and Gaussian errors. 
This kind of result is similar to those obtained by Hall [ 111 concerning 
kernel estimates and by Doukhan and Leon [8] concerning projection 
estimates. 

The paper is organised as follows: in the first section, we recall the linear 
form of the estimate g,,, and formulate the main results, the central limit 
theorem and the asymptotic form of the constants in the periodic case, 
leading to the construction of asymptotic global tests for g. The proofs are 
developed in the last section. 

II. THE CENTRAL LIMIT THEOREM 

We now define the sum of squares 

4,~ =; ,$ kn,dti) -At,))‘. 
Z-l 

(11.1) 
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The asymptotic behaviour of its expectation is known to be ER,,I = 
O(A + (nn 1’(2m))-1) in the nonperiodic case, and ER,,A = O(I’+ (r13,“‘~“))-‘) 
in the periodic case. 

The same result holds for the integrated square errors. The optimization 
of the order of convergence leads to the classical minimax bound 
O(n- 2m/(2rn + 1) ), according to Bretagnolle and Huber [Z] and Speckman 
[16] in the nonperiodic case, and O(n- 4m/(4m + ‘I) in the periodic case. An 
optimal choice of the sequence of 1 is here, respectively, A= cO. n -2mi(2m + I) 
and A = cl . n-2ml(4m+1). Let 

S,, = nA”(4”‘(R,,A - ER,J, (11.2) 

and Z,,, is the analogous centered expression for the integrated squares: 

(11.3) 

We now give the main results in the different following situations. 

II. 1. Nonperiodic Case 

We assume classically that the empirical distribution function, F,,, of the 
observation points ti converges to the distribution F, that F is absolutely 
continuous with respect to the Lebesgue measure, and that f = dF/dr is 
bounded above and below: 

O<a<f(t)<b<co. 

We shall assume 

Denoting by d,, d,, = supI /F,(t) - F(t)j, we assume that 

d,.A,“‘“=O(l), 

d,.i1;12m-+m. 

WI 

(L) 

We shall moreover assume that EEL = 0, E&T = rs*, and E&y < 00 in the 
following. 

THEOREM 1. Under 
~=o(n-2m/(2m+1)), 

the assumptions (H), (K), (L) and for 

S,,Jb, converges in law IO the standard Gaussian distribution, 
where 0: = var(S,.A). 
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THEOREM 2. Under the assumptions (H), (K), (L) and for 
A= O(n-2”/‘2” + I’), 

ZJts,, converges in law to the standard Gaussian distribution. 

This result leads to a tractable test as soon as the constants an and ER,, 
are evaluated. In the periodic case, a precise evaluation is possible, thanks 
to the circulant form of the corresponding influence matrix; see Section 11.2 
below. However, here, general arguments given in Silverman [14, Sect. 51 
show that these expansions do not generalize in the nonperiodic case due 
to boundary effects. 

The expression of asymptotic variance satisfies (see Section III for the 
calculations) 

liminfaz>S=2a4. 
n 

j-f’“2”‘(x)dxj-(l+s2m)-4ds; 

thus replacing af by S leads to a conservative test at a fixed level. 
The following suboptimal result is straightforward; if A= o(n -2m’(2m + ’ ‘) 

then nl ‘/(4m)S,,l - A1’(4m)a2 Tr A2 converges to the centered Gaussian law 
with variance 2a4. 

i 
of” dx .{ (1 + sZm) -4ds. This result involves no 

functional of the un nown function g, but of course is not available for the 
optimal speed of convergence. 

Note that a2 can be estimated as recalled by Eubank and Spiegelman 
[lo, Sect. 3.21. 

Using a part of the available data, it is possible to estimate non-linear 
parameters as Sobolev norms with procedures given, for intance, by Bickel 
and Ritov [ 11; they give a central limit theorem for such estimates (under 
the assumption g E Wf, for some p > 2m + a). Thus, combining both tests 
gives rise to a valid explicit test. 

11.2. Periodic Case 

For the periodic estimation, we assume that the knots ti are equally 
spaced in the interval [0, 11: ti = l/n. In this case, all the matrices that 
appear in the calculations are circulant; thus the constants involved in the 
central limit theorem can be precisely evaluated. 

THEOREM 3. If g possesses 3m derivatives, nA’/(4m). (((g,, - gllz - 
Ellg,,l -g/1:)/a,, converges in law to the standard Gaussian distribution and 

dy 
(1+y2m)4 (1 + o(n”2m)) 

+a2nA2+1/2mt I)g’2’“‘J12(1 +0(1+rl-2n1-2”)) (11.4) 



QUADRATIC DEVIATION OF SPLINE ESTIMATES 93 

nll/4mEllg~,l-g(l*=~-L;4m~~, 4 
R 0 (1+y2m)2 

(1 + o(n”4m)) 

+nA 2 + 1l4m _ ~~~~~‘2m)~/2(1+0(n-1+(b”)-1)). (11.5) 

III. Proofs of the Theorems 

The existence and the linear form of g,,, are widely known (see, for 
example, [4] or [6]); as soon as n 2 m, 

g,,,(t) =i ,$ G,(t, ti). yi. 
1-l 

Let us denote by A the influence matrix (for the sake of simplicity A is not 
indexed by n though it varies with n) Ai,j= (l/n) G,(ti, tj). Here Ai,j 
denotes the (i, j)th element of the matrix A. The matrix A has a different 
expression in the periodic and non periodic case, so that we study its 
properties and their consequences in two subsections. 

111.1. The Non Periodic Case 

We follow a result of Silverman to investigate further asymptotic proper- 
ties of the influence matrix. 

Silverman [ 14, Proposition 2 and Remark 41 shows that there exists 
C > 0 only depending on f with 

vs E [O, 1-J Vt E [O, l-J, 

h(t) f(t) W, t) - K (z)l GC[h(l)+&+41)]9 

where h(t) = (l/f ( t )) ‘/(*“‘), e(t)=exp[-(t A (l-r)/h(r)>)], and 
function with Fourier transform l/( 1 + Use). 

LEMMA 1. Under the assumptions (H) and (K), 

T n = f. $ JG,(s, ti)l = O(l), uniformly over s in [0, 11. 
r-l 

Use Silverman’s result to write T,, = T., 1 + T,,2 + 0( 1 + d, . A-““‘): 

(111.1) 

K is the 

(111.2) 

T&+- K ‘s 
I( )I h(ti) , 

$d,,.ll”2”“+~o ho ‘f(t) K s-t dt 
I (-)I 40 ’ 
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Set U(S - t) .A- ‘/@m): 

T&p2~‘+;.j (K(u~f(s-ul~ ‘iQm)))l du = U( 1 ), 

I 
I 

. e( ti) < d, A - uZrn) + e(t)f(f)dt 
0 h(t) ’ 

Now, decompose the integral for t in [O, i] and t in [a, 11, in the second 
one change 1 - t in t, and use the same variable change as for T,, 1 ; then 
T,,* appears as a 0( 1) in the same way. 

LEMMA 2. Under the assumptions (H), (K), and (L), d;2,13/(2m)-+ 00, 

11/m 1 
-i$, (A2)fi=o(1). (111.3) 

Prooj 
f(t)-1/f2m): 

(A’)ii = cj”= 1 Ai. For simplicity, note p = A1/(2m) and 4(t) = 

(A2)ii=$.CGf(ti, tj)+$*xR2(ti, tj)+$.CGi(t,, tj).R(ti, tj) 
j i i 

with 

First 

set 

s - t 4(s) ~2b4w~(s - 4s))) U=m=n s (f4’h - 4s)) d” 
=f(s)l’@+ 1pq:/n1”‘2”‘(1 + o(1)). 

Now (l/n’) . ci R’(s, ti) = 0(1/n + dz/np4) = o(l/nA”@“‘) under the 
assumption on 1. We then have 

(A2)ii=f(ti)‘@+’ IIKII :/n2’(2m)( 1 + o( 1)) 

7 W)i= If(t) l’m-‘dt. ~~ZC~~;/nP’m(l + o(l)) 

and the lemma follows. 
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LEMMA 3. Under the assumptions (H), (K), and (L), 

Tr(A2)=R- 1’(2m)dz . (1 + o( 1)). (111.4) 

Proof: 

Tr(A2)= i (A2)ii=~-1’c2m)~~~l~:.~,~ f(ti)1’c2m~-1(1 +0(l)) 
i=l I-1 

and (l/n)~f(ti)“‘2”‘-‘=j(f(t))“(2”‘dt(1+o(1)). 

LEMMA 4. Under the assumptions (H), (K), and (L), 

Tr( A4) = A - l/W) . I(1 +s2”)-4dsjf(u) 1’(2m)du( 1 + o(l)), (111.5) 

Tr(A*) = O(1-‘/(2”)). (111.6) 

Proof: We shall give the proof concerning the result for Tr(A4); the 
result for Tr(A*) using similar arguments will be omitted: 

Tr(A4) = c (A’)$ 
i, j 

+ remainder term Q. 

Using the fact that F,, converges to F and the fact that the kernel K is con- 
tinuous and bounded it is easy to see that the first term can be expressed 
as 

s dF(u) dF(u) 

P44’(4 d’(v) f2(4 f2(4 
.[,“(~)K(~)dF(l)li(l+o(l)). 

Using the variable changes s = (u - t)//&u), and then w = (u - u)/P~(u), 
this term appears to be equivalent to 

K(s) K(s + w) ds 

683/41/l-7 
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Using the fact that K is symmetric and using the Parseval identity, this last 
expression equals 

s 1 A-1’(2m” (1 +S2m)4 d+-b4 l’(zm)du.(l +o(l)). 

The lemma follows when it is noted that the remainder term Q is 
o(l- 1/(2m)), which follows from the fact that 

and calculations similar to those developed for Lemma 1-3. 

We now have the elements to prove Theorems 1 and 2. 
The following development is straightforward, 

Sn,A = J,1’(4m) 
[. 

,il (A’)ii(&f - a’) + 2 i C AjjAjlEjEl+ 2 C (as)i&i] 
i=l jil i 

with B=(A--Zd)X, X=(g(t,)),=,.,.~. Moreover the variance of S,,A is 

c(A2)?. +2a4Tr(A4)+4a2C(AB# . (111.7) ,,) 1 
Using Lemma 2, Lemma 4, the fact that A has all its eigenvalues between 
0 and 1, and usual asymptotic bounds for the bias (see, for instance, 
[6, Lemma 4]), we can straightfully remark that 0 < lim inf,, ai < 
lim sup,, cr: = 0( 1) as soon as 1= O(K~““~” + ‘I), which is the case for the 
optimal choice of 1 that leads to the optimal speed of convergence 
for ERn,I. 

Proof of Theorem 2. Let W, = r~1”‘~“‘) j (g,, - g)2 (dF,( t) - dF( 1)). 
Following Cox [S] there exists a constant C such that ) W,( < 
C . d,J g,, - glj : . ~zA”(~~), where 11.11, denotes the usual norm in the Sobolev 
space of order p. Then El W,,) = d,, L - ‘@‘O(l + n - ‘A- */(2m)) nl’/(4m), W,, 
converges to 0 in probability under the assumptions of the theorem, and 
the asymptotic result of Theorem 2 is then a consequence of Theorem 1. 

Proof of Theorem 1. We shall make use of a theorem in Hall and 
Heyde [12, p. 581: Let Xn=CyE, X,” be a martingale; Vz=cJ’=i Ej-,Xjf”, 
where Ek designates the expectation with respect to the o-field generated by 
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x ,,..., X,. If ai=EVi-rr2, V2/ais 1, ~;=lEj-,X~,~O, then X, 
converges in law to the centered Gaussian distribution with variance 22. 

We shah verify the conditions of this theorem for the sequence 

Xj,n=i1’(4m) (A’)a(Ej-02)+(AB)j&j+2 C (A’)j)&j&, 
[ 

. 
1 -cj 1 

X, is then obviously a martingale: 

p4 C (A2)i+ a2 C (AB): + 40’ C (A2)jk(A2)j1.5,~, 
/ j kcj,l<j 

with p4 = E(E’ - a2)2. 
Now we also have EVf/ai = 1 and we calculate 

v2-a~=k1’(2m) da2 c c (A2);(&f-a2)+4a2 c (A2)jk(A2)j[&,&k n 
[ j l-zj kcj,lcj 

k#I 

+4a2x(AB), c (A2),,e, =A,,+B,$C,. 
i l-cj 1 

Calculation shows that 

EA: = d”“O(Tr A*) = o( 1) 

and 

using Lemma 4. EC;= ~1/“O(IjAB((2(1 +0(x, (A2):)) +Tr A8)= o(l) 
using Lemmas 4 and 2 and the fact that (I ABI(’ = O(nA). Then Vt - ai + 0 
in probability, and Vz/af tends to 1 in probability because ai is bounded 
and always larger than a positive number. 

Now xi Ej- i X;,, is the sum of different terms, 

D, = R’l” 7 (A2); ‘5: (AB); + c (AB),2(A2); , 
.i 1 
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J,=L”” c (AB); c (AZ)jIq , 
i l<j 1 

K,, = 1”“’ c ((AR); + (A’);) 
j 

and now xj(A2)$=o(l), using Lemma2. Note that I(AB),( <max,lBkl. 
Ck IAjkl. But A, = l/n. G(tj, fk), and thus Lemma 1 applied to s = tj shows 
that Ck IA,1 ,<const. On the other hand if g is in Wi then g is bounded, 
and thus lBil < const by the same trick and cj (A@; < const .& (All); = 
0(nd). Now xj (AZ?),? (A*); 6 const . xi (A*); = o(l) by Lemma 2 and 
D, = o(l). E(Hi) is the product of A21m, terms in which appear moments of 
E up to order 8 and sums with the form 

(f(zj(A2q) < (Tr A*)* = U(U”*). 

NOW, (cjC,<j (A2)$)2 < (xi (C/<j(A2)j:)2)2 = O(A-“m) SO that H,, tends 
to 0 in probability. 

The same result holds for Z,, J,, and K,, using similar calculations. 

Remark. We could have used the central limit theorem for generalized 
quadratic forms proved by De Jong [7] as suggested in the conclusion of 
[lo]; however, there is no real gain with respect to assumptions as well as 
calculations that are similar. 

111.2. Periodic Case 

In the periodic case, and with equally spaced knots ti, the influence 
matrix A is circulant (see [18] for the details). A=Z-nilM-‘(Z-P), 
where P is the matrix with 1 everywhere, and A4 = H + nil; the eigenvalues 
of H are 

+CX 1 
VjTn=n. 

*-SC-m (2?vzk-j)Zm 

O<cj<c, for j= 1, . . . . n-t, (111.8) 

and v~,~ = n. 

The proof of the central limit theorem follows arguments similar to those 
for Theorem 1 and will be omitted. The important result is here to exact 
computation of the asymptotic development of the variance and of the 
expectation terms. 
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LEMMA 5. 

Tr(AP) = 1 + A-1/2m. 
1 

du + O(1) + O((M”)‘-P. A-l’2m), 
0 rc(1 + y*“)p 

ProoJ: 

Using (15), RI = O(l/in*“- ‘): 

LEMMA 6. 

CBi2=n3L21.11g(*m)ll*(1+0(,-1+~-’n-2m)) 

C (AB)~=nl* 4. I)g’2”‘112(1 + O(A+n’-2mA-2)). 

Proof. C (AB)j=n*A’.xj”Z: IIgj,,l12.(n2v~,/(nn+vi4n)) and 2 (Bj)* = n. 
A* cj”S: IIgj,,l12.(n/(~i.,+na2)2) with g/,, = (l/n).Cz=r g(k/n).exp(2injk/n). 
We shall develop the computations for C (AB),Z and omit those for C B;, 
which are similar. It is easy to see that 

n-1 
C (AS)j = n12. 1 llgjnl12. (2W)4” 

(1 + n(27cjp74 
+ o(n’-*V2). 

j=l 

Denote by gj the jth Fourier coefficient of g : 

gj = s d g(t) exp( - 2izjt) dt. 

TO evaluate II gjnll 2 - II Sjll*, use Taylor developments, the fact that g is 
periodic (so 1 g (p) = 0 for p > 0), and induction reasoning to show 

llgjnl12- II~jl12=0((j/n)m). 
Then 

n-1 

C (Al?); = nA2. i?I llgjl12e (2x’)41”2m 4+O(n1-2”~-2)+O(n1-*“1--1) 
(1-t WV) ) 
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and 

n-1 
c gg4*. (2nA4” = i (I g(*m)[l* + (1 g(3*‘(( * O(l + l/n’“). 

j=l (1 + A(27rj)2m)4 2 

The theorem is deduced now from (15) and the fact that 
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