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In the univariate setup the Lomax distribution is being widely used for stochastic
modelling of decreasing failure rate life components. It also serves as a useful
model in the study of labour turnover, queueing theory, and biological analysis.
A bivariate extension of the Lomax distribution given in Lindley and Singpurwalla
(1986) fails to cover the case of independence. Our present attempt is to obtain the
unique determination of a bivariate Lomax distribution through characterization
results. In this process we also obtain bivariate extensions of the exponential and
a finite range distributions. The bivariate Lomax distribution thus obtained is a
member of the Arnold (1990) flexible family of Pareto distributions and the
bivariate exponential distribution derived here is identical with that of Gumbel
(1960). Various properties of the proposed extensions are presented. � 1996

Academic Press, Inc.

1. INTRODUCTION

For a stochastic description of the life of a decreasing failure rate (DFR)
component or a system the Lomax distribution with survival function
S(x)=(1+x�a)&q, a>0, q>0 has been widely used by practitioners. It
also works as a suitable model for describing completed length of service
(CLS) and is known as Silcock's distribution or Pearsonian Type XI
distribution (Bartholomew (1982)). Following Muth (1977) it can be easily
shown that the Lomax distribution has constant negative memory. The
other two distributions which have constant memories are the exponential
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distribution with zero memory and a finite range beta type distribution (to
be referred to as FR distribution) with positive memory. Survival functions
of the FR distribution is S(x)=(1&x�a)q, 0�x�a, q>0, a>0. These
three distributions are in many ways interrelated as may be seen from the
characterization results in Ferguson (1967), Wang and Srivastava (1980),
and Mukherjee and Roy (1986).

A multivariate generalization of the Lomax distribution has been
proposed in Lindley and Singpurwalla (1986) and has been studied in
detail by Nayak (1987). It has a built-in structure of dependency. As a
result, for no choice of the parameters can one obtain the situation where
component lives are independently distributed. In fact, in this model, there
is no scope of examining the hypothesis that the component lives are
independent. This is a major limitation when used for stochastic modelling.

Arnold (1990) has used multivariate geometric minima of univariate
Pareto random variables to generate a standard multivariate Pareto
distribution and proposed therefrom a flexible family of multivariate
Pareto distributions. His family of distributions includes the case of
independent marginals, the Mardia (1962) family and the Durling�Owen�
Drane (1970) family as special cases. Arnold (1990) has also examined
related properties and estimation issues of his class in two dimension case.
Our problem then arises in selecting a particular model from amongst the
members of Arnold's (1990) flexible class so that the chosen model can
retain interrelationships with a bivariate exponential and a bivariate FR
distribution.

To solve this problem we consider a bivariate generalization of a
univariate characterizing property that links up Lomax distribution with
exponential and FR distributions. We next try to identify the bivariate
Lomax distribution for which this generalization is a unique property. The
characterization result we present also provides answers to the problem of
bivariate generalizations of the exponential and the FR distributions. The
bivariate Lomax distribution thus obtained is a particular member of the
Arnold (1990) class with suitable reparametrization. A bivariate exponen-
tial distribution due to Gumbel (1960) happens to be identical with what
we have obtained here. We also examine the suitability of our proposed
distributions in respect of other properties including constant memory.

2. SOME BASIC CONCEPTS

In the univariate case it has been observed in Mukherjee and Roy (1986)
that for absolutely continuous life distributions with C(u) as the coefficient
of variation of the residual life after an elapsed time u, C(u)=k, a constant,
characterizes the exponential distribution for k=1, the Lomax distribution
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for k>1 and the FR distribution for k<1. To generalize this property in
the bivariate set up we consider nonnegative vector variable X=(X1 , X2)
with survival function S(x1 , x2), hazard function R(x1 , x2) and hazard
rates ri (xl , x2), i=1, 2, where

R(x1 , x2)=&log S(x1 , x2), ri (x1 , x2)=
�

�xi
R(x1 , x2). (2.1)

Corresponding means, variances and coefficient of variations of the residual
lives after an elapsed time (xl , x2) be denoted by Mi (xl , x2), Vi (x1 , x2) and
Ci (x1 , x2), i=1, 2, respectively, where

Mi (x1 , x2=E(Xi&xi | X1>x1 , X2>x2)

Vi (x1 , x2)=Var(Xi&xi | X1>x1 , X2>x2) (2.2)

Ci (x1 , x2)=[Vi (x1 , x2)]1�2�Mi (x1 , x2).

Then the condition C(u)=k, \u�0 of the univariate set up may be
generalized as

Ci (x1 , x2)=ki , i=1, 2, \x1�0, \x2�0. (2.3)

Now considering (2.3) as a bivariate characterizing property we look for
unique determination of the survival function under various choices of
(k1 , k2). Obviously, to obtain the bivariate extension of the exponential
distribution we need to choose k1=k2=1, that of the Lomax distribution
we need to choose k1>1, k2>1, and that of the FR distribution we need
to choose k1<1, k2<1. It will be observed in Lemma 2.4 that k1 {k2 will
lead to independence of X1 and X2 , and hence to make (2.3) meaningful we
need to consider k1=k2 . As a result other combinations of (k1 , k2) are not
of much interest. For example, if k1>1 and k2<1 then X1 and X2 are
necessarily independent and hence from the univariate characterization
result we get the Lomax distribution for X1 , and the FR distribution for X2 .

We next present a few results which will be used in the characterization
theorem to be presented subsequently.

Lemma 2.1. When hazard rates are continuous, two alternative expres-
sions for the survival function are

S(x1 , x2)=exp _&|
x 1

0
r1(u, 0) du&|

x 2

0
r2(x1 , v) dv&

S(x1 , x2)=exp _&|
x 1

0
r1(u, x2) du&|

x 2

0
r2(0, v) dv& .

Lemma 2.2. When hazard rates exist

ri (x1 , x2)=_1+
�

�xi
Mi (x1 , x2)&<Mi (x1 , x2), i=1, 2. (2.4)
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Lemma 2.3. When the hazard rates are continuous and Vi (x1 , x2) exist
the condition (2.3) is equivalent to the condition

�
�xi

Mi (x1 , x2)=
k2

i &1
k2

i +1
, i=1, 2. (2.5)

Proof. It follows from (2.2) and usual integration by parts

V1(x1 , x2)=2[S(x1 , x2)]&1 |
�

0
(x1+t) S(x1+t, x2) dt

&[M1(x1 , x2)]2&2x1M1(x1 , x2)

V2(x1 , x2)=2[S(x1 , x2)]&1 |
�

0
(x2+t) S(x1 , x2+t) dt

&[M2(x1 , x2)]2&2x2M2(x1 , x2).

Under condition (2.3), after simplification we get

(k2
1+1) S(x1 , x2) M 2

1(x1 , x2)=2 |
�

x1

uS(u, x2) du&2x1S(x1 , x2) M1(x1 , x2)

(2.6)

(k2
2+1) S(x1 , x2) M 2

2(x1 , x2)=2 |
�

x2

uS(x1 , u) du&2x2S(x1 , x2) M(x1 , x2).

(2.7)

Differentiating (2.6) with respect to x1 and (2.7) with respect to x2 and
simplifying the resultant expressions using Lemma 2.2 we get (2.5). The
converse will be ensured once Theorem 3.1 is proved. K

Lemma 2.4. If hazard rates are continuous, condition (2.3) implies inde-
pendence of X1 and X2 whenever k1 {k2 .

Proof. Under condition (2.3) we get from Lemma 2.3 that

Mi (x1 , x2)=
k2

i &1
k2

i +1
xi+a$i (x3&i), i=1, 2, (2.8)
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where a$i ( } ) is a constant of integration with respect to xi and may be a
function of x3&i . Simplification of (2.8) using lemma 2.2 results in

ri (x1 , x2)={
2k2

i

k2
i &1

1
xi+ai (x3&i)

1
a$i (x3&i)

when ki {1

when ki=1
(2.9)

for i=1, 2, where ai (x3&i)=a$i (x3&i)(k2
i +1)�(k2

i &1).

Case 1. k1=1, k2 {1. Using (2.9) in Lemm 2.l we obtain two alter-
native expressions for S(x1 , x2) as

S(x1 , x2)=exp _&
x1

a$1(0)
&q log

x2+a2(x1)
a2(x1) & , \x1 , x2�0

S(x1 , x2)=exp _&
x1

a$1(x2)
&q log

x2+a2(0)
a2(0) & , \x1 , x2�0,

where q=2k2
2 �(k2

2&1). Comparing them we get the identity

x1

a$1(0)
+q log

x2+a2(x1)
a2(x1)

=
x1

a$1(x2)
+q log

x2+a2(0)
a2(0)

\x1 , x2�0. (2.10)

The right-hand side of (2.10) being linear in x1 the left-hand side of it must
be linear in x1 and hence

log
x2+a2(x1)

a2(x1)
=:(x2)+;(x2) x1 , say.

This implies that

a2(x1)=[exp[:(1)+;(1) x1]&1]&1

and hence

log[x2 exp[:(1)+;(1) x1]+(1&x2)]

must be linear in x1 for all choices of x2�0. Differentiating the same twice
with respect to x1 and equating the resultant expression with zero for all
choices of x2�0 we get ;(1)=0, i.e., a2(x1) is independent of x1 . This
implies independence of X1 and X2 .

Case 2. k1 {1, k2=1. This can be similarly proved.
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Case 3. k1 {k2 {1. Using (2.9) in Lemma 2.1 we get two alternative
expressions for S(x1 , x2), as

S(x1 , x2)=_x1+a1(0)
a1(0) &

&q 1

_x2+a2(x1)
a2(x1) &

&q2

\x1 , x2�0 (2.11)

S(x1 , x2)=_x1+a1(x2)
a1(x2) &

&q1

_x2+a2(0)
a2(0) &

&q2

\x2 , x2�0 (2.12)

where q1=2k2
1 �(k2

1&1) and q2=2k2
2 �(k2

2&1).
Since k1 {k2 we note that q1 �q2 {1. Now, comparing (2.11) and (2.12)

we obtain the identity

_x1+a1(0)
a1(0) &_x2+a2(x1)

a2(x1) &
q2�q 1

=_x1+a1(x2)
a1(x2) &_x2+a2(0)

a2(0) &
q2�q1

; \x1 , x2�0. (2.13)

The right-hand side of (2.13) being linear in x1 , the left-hand side of it must
be linear in x1 , say, #(x2)+$(x2) x1 . This implies for a choice of x2=1

a2(x1)=_{\ a1(0)
x1+a1(0)+ (#(1)+$(1) x1)=

q1�q 2

&1&
&1

.

Substituting the same in the left-hand side-of (2.13) we have, after
necessary simplification,

_(1&x2) {x1+a1(0)
a1(0) =

q1�q2

+x2[#(1)+$(1) x1]q1�q 2&
q2�q1

must be linear in x1 for all choices of x2�0.
Differentiating the same twice with respect to x1 and equating the resul-

tant expression with zero for all choices of x2�0 we get

$(1)�#(1)=1�a1(0)

which in turn implies independence of x1 and x2 . This completes the proof
of the lemma. K

Thus for obtaining nontrivial extensions of the Lomax distribution and
the FR distribution we have to necessarily confine ourselves in the domain
of k1=k2>1 and k1=k2<1, respectively.
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3. MAIN RESULTS

We are now in a position to present a characterization result and
provide with unique determinations of a bivariate exponential distribution,
a bivariate Lomax distribution and a bivariate FR distribution.

Theorem 3.1. For a nonnegative vector variable X=(X1 , X2) with
continuous hazard rates let the condition (2.3) be true. Then

(i) k1=k2=1 if and only if X follows bivariate exponential distribution
due to Gumbel (BVED-G) with survival function

S(x1 , x2)=exp(&_1x1&_2x2&_3x1 x2), (3.1)

where _1>0, _2>0, 0�_3�_1_2 .

(ii) k1=k2>1 if and only if X follows a bivariate Lomax distribution
(BVLD) with survival function

S(x1 , x2)=(1+*1x1+*2x2+*3x1 x2)&q, (3.2)

where *1>0, *2>0, 0�*3�*1*2(1+q), q=2k2
1 �(k2

1&1).

(iii) 1�- 3�k1=k2<1 if and only if X follows bivariate FR distribution
(BVFRD) with survival function

S(x1 , x2)=(1&%1x1&%2x2&%3x1x2) p, (3.3)

where %1>0, %2>0, p&1�%3 �(%1 %2)�&1, p=2k2
1 �(1&k2

1)

0�x1�%&1
1 ; 0�x2�(1&%1x1)�(%2+%3x1).

(iv) 0<k1=k2<1�- 3 if and only if X1 and X2 are independently
distributed having survival function as in (3.3) with %3=&%1 %2 .

(v) k1 {k2 if and only if X1 and X2 are independently distributed with
marginal distributions determined from the univariate characterization result
(Mukherjee and Roy (1986)) from amongst the class of exponential, Lomax
and FR distributions.

Proof. (i) Under the given condition we obtain via Lemmas 2.2 and 2.3

ri (x1 , x2)=1�a$i (x3&i), i=1, 2. (3.4)

Thus hazard rates are locally constant. Hence from Johnson and Kotz
(1975) we note that X follows BVED-G (1960). The converse is easy to
establish.

28 ROY AND GUPTA



File: 683J 162408 . By:BV . Date:26:09:96 . Time:10:23 LOP8M. V8.0. Page 01:01
Codes: 2926 Signs: 1810 . Length: 45 pic 0 pts, 190 mm

(ii) Under the given condition k1=k2>1 we obtain via Lemma 2.2
and 2.1

ri (x1 , x2)=q�[xi+ai (x3&i)], i=1, 2, (3.5)

where q=2k2
1 �(k2

1&1)>2.
Using (3.5) in Lemma 2.1 we get two alternative expressions for

S(x1 , x2),

S(x1 , x2)=_{x1+a1(0)
a1(0) ={x2+a2(x1)

a2(x1) =&
&q

\x1 , x2�0 (3.6)

S(x1 , x2)=_{x1+a1(x2)
a1(x2) ={x2+a2(0)

a2(0) =&
&q

\x1 , x2�0. (3.7)

Comparing (3.6) and (3.7) we get, as in the proof of Lemma 2.4,

x1+a1(0)
a2(x1)

=_+�x1 , (3.8)

where _ and � are constants independent of x1 and x2 . Combining (3.8)
with (3.6) we get

S(x1 , x2)=[1+(1�a1(0)) x1+(_�a1(0)) x2+(��a1(0)) x1x2]&q,

which is of the form (3.2). It is easy to verify from the properties of survival
function that *1>0, *2>0 since q>0. Further S(x, x), being the survival
function of Min(X1 , X2), implies that *3�0 from the properties of survival
function. Finally from the nonnegativity condition of the joint density one
has *3�*1*2(1+q). These conditions are sufficient also to make (3.2) a
survival function.

To prove the converse we note from (3.2) that the conditional distribu-
tions [Xi | X3&i>x3&i], i=1, 2, are of Lomax form with identical shape
parameter as q. Hence from the univariate properties of the Lomax
distribution we get C 2

i (x1 , x2)=q�(q&2), i=1, 2.

(iii) Proof is similar to that of (ii) except for the fact that
q=2k2

1 �(k2
1&1)�&1. Writing p=&q(�1) we get as in the earlier case

S(x1 , x2)=[1+(1�a1(0)) x1+(_�a1(0)) x2+(��a1(0)) x1x2] p. (3.9)

As p>1, we get from the properties of survival function that 1�a1 (0)<0,
_�a1(0)<0. Writing &1�a1 (0)=%1 , &_�a1(0)=%2 , and &��a1(0)=%3 we
have (3.3), where %1>0, %2>0. This implies that 0<x1<%&1

1 , 0�x2�
(1&%1 x1)�(%2+%3 x1). Further nonnegativity of the probability density
function implies &1�%3 �(%1%2)�p&1. These conditions, taken together,
are also sufficient to define (3.3) as a survival function.
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To prove the converse we proceed as in the case (ii) of above.

(iv) Proof is as in (iii) except for the fact that 0<p<1. This
condition implies that %3=&%1%2 because otherwise the probability
density function may become negative. Now %3=&%1 %2 in (3.3) implies
independence of X1 and X2 . The converse follows from the univariate result
because of the independence of X1 and X2 .

(v) From Lemma 2.4 we have independence of X1 and X2 and hence
univariate characterization results apply. K

The above characterization result provides bivariate extensions of
exponential, Lomax, and FR distributions. As noted earlier, bivariate
exponential distribution due to Gumbel is identical with what we have
obtained under coefficient of variations of residual lives as unity. No other
bivariate exponential distribution proposed in the literature so far
(Marshall and Olkin (1967), Block (1977), Sarker (1987)) can have this
property, as our determination is unique. Also, from Lemma 2.3 we can
obtain uniquely the BVED-G from the local constancy of the mean
residual lives (Zahedi (1985)).

The bivariate Lomax distribution obtained by us is a member of the
Arnold (1990) class and is interesting from both stochastic modelling and
characterization points of view. In general for the BVLD we consider (3.2)
as its survival function with q>0. This admits Lomax marginals in general
and independent Lomax marginals for *3=*1*2 . Conditional distribution
of Xi given [X3&i>x3&i] is again of Lomax form for i=1, 2. The follow-
ing are some important properties of BVLD:

(P1) BVLD is a member of the bivariate decreasing hazard (failure)
rate class of life distributions (Roy (1994)). This is consistent with the DFR
property of the univariate Lomax distribution.

(P2) Hazard rates are locally harmonic.

(P3) In case q>1, bivariate mean residual lives exist and are locally
linear and increasing.

(P4) It has a constant negative bivariate memory defined in the
following sense (Muth (1977)):

1&r1(x1 , x2) M1(x1 , x2)=1&r2(x1 , x2) M2(x1 , x2)=&1�(q&1)<0.

(P5) If the hazard function of a dependent system of two
components following BVED-G is scaled up (or down) by an environmen-
tal factor, following gamma distribution, then the resultant mixture
distribution follows BVLD. Thus, it is a member of the dependent EMk

class envisaged in Roy and Mukherjee (1988).
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(P6) If q � �, such that q*i � _i , a constant, for i=1, 2, 3, the
BVLD reduces to BVED-G with survival function (3.1).

The proposed bivariate FR distribution is the same as that obtained at
(3.3) with p>1. In the univariate case FR distribution is a special case of
beta distribution. From our proposed BVFRD one can obtain Dirichlet's
form for %3=0. BVFRD admits marginal FR distributions in general and
independent FR marginals for %3=&%1%2 . Conditional distribution of Xi

given [X3&i>x3&i] is again of FR form for i=1, 2. The following are
some important properties of BVFRD:

(P1)$ BVFRD is a member of bivariate increasing hazard (failure)
rate class of life distributions (Roy (1994)). This is consistent with IFR
property of the univariate FR distribution.

(P2)$ Hazard rates are locally harmonic in the support of X.

(P3)$ Bivariate mean residual lives are locally linear and decreasing.

(P4)$ It has a constant positive bivariate memory in the following
sense:

1&r1(x1 , x2) M1(x1 , x2)=1&r2(x1 , x2) M2(x1 , x2)=1�( p+1)>0.

The following theorem is a general version of the characterizing properties
mentioned in (P4) and (P4)$. The proof follows from the fact that condition
(3.10) presented below can be simplified to (2.5) via (2.4) of Lemma 2.2
and an application of Theorem 3.1.

Theorem 3.2. For a nonnegative bivariate random variable X=(X1 , X2)$
with continuous hazard rates let the condition

1&ri (x1 , x2) Mi (x1 , x2)=ki , i=1, 2 (3.10)

be true. Then

(i) k1=k2=0 if and only if X follows BVED-G;

(ii) k1=k2<0 if and only if X follows BVLD;

(iii) 0<k1=k2�1�2 if and only if X follows .BVFRD;

(iv) 1
2<k1=k2<1 if and only if X1 , X2 have independent FR distribu-

tions;

(v) k1 {k2 if and only if X1 , X2 have independent distributions
characterized by the univariate result (Theorem 4.2 of Mukherjee and Roy
(1986)).
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Remarks. Multivariate generalizations of BVLD and BVFRD are
straightforward. The condition (2.3) can be generalized as

Ci (x1 , x2 , ..., xp)=ki , i=1, 2, ..., p.

The only combinations which will be of interest to us are

k1=k2= } } } kp=1, k1=k2= } } } =kp>1, and k1=k2= } } } =kp<1.

The first combination will lead to multivariate exponential distribution due
to Gumbel (1960) (MVEDG), the second combination will determine a
multivariate Lomax distribution (MVLD), and the third combination will
determine a multivariate FR distribution (MVFRD).
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