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In this paper we consider the classical problem of testing whether two samples of
observations are from the same distribution. Since in many situations the data are
multivariate or even of functional type, classical methodology is not applicable. In
our approach we conceive a difference in distribution as the occurrence of a change-
point problem, where the change-point is known in advance. This point of view
enables us to construct new tests which are distribution-free under the null
hypothesis for general sample spaces. The power function of the tests is studied
under local and global alternatives. Finally some optimality results are provided.
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0. INTRODUCTION

Let !1 , ..., !m and '1 , ..., 'l be two samples of independent random
variables with distribution &1 and &2 , respectively. The classical two-sample
problem then consists of testing the hypothesis H0 : &1=&2 versus the alter-
native H1 : &1 {&2 , where &1 and &2 are unknown. For real-valued observa-
tions many procedures are available and discussed in detail in monographs
on nonparametric inference. To mention only a few we refer to Ha� jek and
S8 ida� k (1967), Hollander and Wolfe (1973), and Lehmann (1975). A com-
mon feature of most tests is that for real data the underlying test statistic
is invariant under continuous monotone transformations, resulting in tests
which are distribution-free under Ho, c : &1=&2 continuous. These tests
include the Kolmogorov�Smirnov (KS) and Crame� r�von Mises (CvM)
test as well as the broad class of tests based on linear rank statistics. The
situation becomes completely different for multivariate rather than
univariate data. Since there is no natural order on Rd for d�2 it is not
possible to carry over, for example, rank-procedures to the present setting.
This may explain why the multivariate case has been treated in far less
detail. For recent work on the multivariate two-sample problem see, for
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example, Ahmad and Cerrito (1993), Bahr (1996), Einmahl and
Khmaladze (1998), Epps and Singleton (1986), Henze (1988), and Henze
and Voigt (1992). A review on multivariate rank like tests is given in
Hettmansperger and McKean (1998).

In many practical situations the observations are not only finite dimen-
sional vectors but also functions. For instance longitudinal studies in con-
tinuous time provide such data. The recent interesting monograph by
Ramsay and Silverman (1997) reports on many statistical experiments in
various scientific fields where functional data appear. Among others the
measurements may be the force exerted on a meter during a brief pinch by
the thumb and forefinger, the angles formed by the hip and knee over a
child's gait cycle, or the temperatures over one year for several Canadian
weather stations.

Although there has been an increasing interest in functional data, no
methodology for testing &1=&2 in this general context seems to exist. In the
present paper we propose and study in detail tests for equality in distribu-
tion when the sample space, X, is arbitrary. In particular, our results apply
to multivariate observations and functional data. For real-valued observa-
tions, we shall also compare the power of the new tests with that of the
tests known from the literature.

In what follows let !1 , ..., !m , '1 , ..., ' l be independent random variables
with values in a sample space X. Consider the pooled sample

Xi :={!i ,
'i&m ,

1�i�m
m<i�n

, (0.1)

where n=m+l. If the alternative H1 : &1 {&2 holds, then

L(X1)= } } } =L(Xm){L(Xm+1)= } } } =L(Xn), (0.2)

where L(X) denotes the distribution of a random variable X. In other
words, (0.2) means that the distribution of the Xi changes from &1 to &2 at
i=m. Thus the two-sample model is closely related to the so-called
change-point model. Here one observes independent X-valued random
variables, Y1 , ..., Yn say, such that for some % # [0, 1]

L(Y1)= } } } =L(Y[n%]){L(Y[n%]+1)= } } } =L(Yn), (0.3)

with [a] denoting the integer part of a # [0, �). The parameter % is called
the change-point of the sequence (Yi). Clearly, % # [0, 1] corresponds to
Y1 , ..., Yn which are i.i.d. Usually, % is the unknown parameter of interest
and the problem, for example, may be one of estimating %. Obviously the
pooled sample (0.1) may be viewed as a sequence with change-point %= m

n

provided the alternative H1 : &1 {&2 holds, while the hypothesis H0 : &1=&2
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corresponds to % # [0, 1]. The intrinsic difference between (0.2) and (0.3)
lies in the fact that in (0.2) the possible position m of a change is precisely
known in advance, while in (0.3) the most important question is to deter-
mine the unknown point [n%].

In recent years many estimators for % have been proposed and proved to
be consistent as long as 0<%<1. See, for example, Hinkley (1970),
Bhattacharya and Brockwell (1976), Darkhovski (1976, 1994), Carlstein
(1988), Du� mbgen (1991), and Yao et al. (1994). In addition to the case of
an actual change (0<%<1) Gombay and Horva� th (1993), Lombard and
Hart (1994), Ferger (1995), and Hus� kova� (1996) also studied their
estimators under the hypothesis of no change (% # [0, 1]) and showed con-
vergence in distribution to a nondegenerate limit variable.

Now, let %n denote a change-point estimator, which is consistent in the
case of 0<%<1 and convergent in law if % # [0, 1]. The idea of our
approach is to apply %n to the pooled sample (Xi). As we have already
mentioned, under the alternative H1 , the sequence (Xi) has a known
change-point %= m

n . Therefore the consistency of %n entails small values of
the distance |%n& m

n | under H1 , whereas under the hypothesis H0 it should
be large. Thus the following decision rule suggests itself: Reject the
hypothesis H0 , if the distance |%n& m

n | between the change-point estimator %n

pertaining to the pooled sample (Xi) and the possible change-point %= m
n is

too small.
This paper is organized as follows. In Section 1 we present a precise for-

mulation of our tests. Section 2 is devoted to a comprehensive study of the
power. Our test statistics depend on a score function (called kernel), which
has to be specified by the statistician in advance. The first part of Section 3
shows how one has to determine suitable kernels when the alternative to
H0 is specified. Two general methods of construction are presented and
applied to many examples. In the second part of this section we introduce
our notion of optimality. It uses the concept of maximizing the local power
of the test. The optimal kernel is the minimizer of a certain functional. It
is explicitly known and surprisingly simple. This enables us to determine it
in many examples. In Section 4 special emphasis is given to functional data.
In Section 5, a simulation study is reported on which confirms our theoreti-
cal findings. Finally, the proofs are given in the final section.

1. A NEW TWO-SAMPLE TEST

To properly formulate our results we let the subsample size m=mn and
l=ln tend to infinity as n tends to infinity. In addition it is assumed that
the fraction %� n=mn n&1 of the first subsample converges to a limit fraction
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% # (0, 1). More precisely let (!in : 1�i�mn , n # N) and ('jn : 1� j�ln ,
n # N) be two double-indexed schemes such that for all n # N,

!1n , ..., !mn n , '1n , ..., 'ln n

are independent X-valued random variables on a common probability
space (0, A, P) with distributions

L(!in)=P b !&1
in =&1 , 1�i�mn

and

L('jn)=P b '&1
jn =&2 , 1� j�ln ,

where &1 and &2 are unknown. Recall that for each n # N the pooled sample

Xin={!in ,
'i&mn , n ,

1�i�mn

mn<i�n

is a sequence with change-point %� n=mn �n provided H1 holds. The test we
propose requires a suitable change-point estimator %n . Ferger (1995)
suggests

%n=
1
n

argmax
1�k�n&1

w \k
n+ } :

n

i=k+1

:
k

j=1

K(Xin , Xjn)} (1.1)

with a one-sided version

%+
n =

1
n

argmax
1�k�n&1

w \k
n+ :

n

i=k+1

:
k

j=1

K(Xin , Xjn).

Here the so-called kernel

K: X2 � R

is assumed to be antisymmetric, that is K(x, y)=&K( y, x) for all x, y # X.
The weight-function w: (0, 1) � (0, �) is assumed to be of the type

w(t)=t&a(1&t)&b, 0<t<1, 0�a, b<1�2. (1.2)

The weight-function w=1 plays a particular role. We will see that in this
case it is advantageous to work with the following modification of %+

n :

%� +
n =

1
n

argmax
0�k�n&1

:
n

i=k+1

:
k

j=1

K(Xin , Xjn). (1.3)
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The estimator % (+)
n for general weights w has been studied in detail, under

a second-moment condition in K, in Ferger (1995), where among other
things it was shown that

% (+)
n &%=O(n&1) almost surely, if 0<%<1. (1.4)

Here and in the rest of the paper the superscripts in brackets can be used
optionally.

For the change-point problem weight-functions have been introduced to
make the estimator more sensitive if % is close to zero or one. Similarly for
the two-sample problem weight-functions are recommended to compensate
a loss of power, which usually occurs, if one sample is much larger than the
other one. Even more important is the choice of the kernel K. This will be
discussed in Section 3.

As pointed out in the Introduction, the consistency (1.4) of (%n)
motivates the following two-sample test:

8 (+)
n =1[ |% n

(+)&m�n| �c (+)] . (1.5)

In order to determine the critical value c(+) appropriately we make use of
Theorem 3.1 of Ferger (1995), which states that under H0 ,

% (+)
n w�

L { (+)
w , n � �. (1.6)

Here

{w=argmax
0<t<1

w(t) |B0(t)| and {+
w =argmax

0<t<1

w(t) B0(t),

where B0 is a Brownian Bridge. Note that by Corollary 1.2, p. 189, of
Cso� rgo� and Horva� th (1993) the random variables {w and {+

w are well-
defined. Let : # (0, 1) denote the given significance level. Because of (1.6),

c(+)=c (+)
: is the :-quantile of |{ (+)

w &%|. (1.7)

The values of c (+)
: depending on w and : are easy to obtain by a Monte

Carlo approximation.
When the subsample sizes m and l are of the same order of magnitude,

weight-functions are not needed. That is, one can use w=1. In this case the
distribution functions of {1 and {+

1 are analytically known. See Proposi-
tion 3.2 of Ferger (1995). Especially L({+

1 ) is the uniform distribution on
the unit interval (0, 1), so that by (1.6), under H0 , the sequence (%+

n )
asymptotically is uniformly distributed on (0, 1). Clearly this is also true
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for the minor modification %� +
n . But surprisingly even the finite sample

distribution of %� +
n under H0 is known, namely

PH0
(n%� +

n =k)=
1
n

for all integers 0�k�n&1. (1.8)

In view of (1.8), we also introduce the exact test

8� +
n

=1[ |%� n+&m�n|�cm, l]

with critical value

0, 0<:<n&1

cm, l={[ 1
2(n:&1)] n&1, n&1�:�(2l&1) n&1, (1.9)

[n:&l] n&1, (2l&1) n&1<:<1

where w.l.o.g. m�l.

2. POWER INVESTIGATIONS

Our first result ensures that 8n and 8+
n are asymptotic level-: tests.

Proposition 2.1. Suppose &1=&2=& and K is a kernel such that for
some p>2,

| |K| p d&�&<� (2.1)

and

_2=| _| K(x, y) &(dy)&
2

&(dx)>0. (2.2)

Then we have

lim
n � �

P(8 (+)
n rejects H0)=:.

Note that (2.1) is only a weak condition. Especially it is fulfilled for all
bounded kernels K no matter how the distribution & looks like. As to the
second condition (2.2) observe that most frequently K is of the type
K(x, y)=a(x)&a( y) with some mapping a: X � R. Then (2.2) excludes
the degenerate case that K(Xi , Xj)=0 for all 1�i, j�n P-almost surely.
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For the one-sided test 8� +
n we are actually able to give the exact prob-

ability of the Type I error when the sample sizes m and l are finite.

Proposition 2.2. Let m�l. Suppose &1=&2 and K is a kernel such that

P \ :
n

i=k+1

:
k

j=1

K(X i , Xj)=0+=0 for all 1�k�n&1. (2.3)

Then

n&1, :<
1
n

P(8� +
n rejects H0)={\2 _1

2
(n:&1)&+1+ n&1, n&1�:�(2l&1) n&1.

([n:&1]+l ) n&1, :>(2l&1) n&1

We see that in Proposition 2.2 the validity of the moment conditions
(2.1) and (2.2) is not required. Condition (2.3) obviously is satisfied for all
n # N when K(x, y)=a(x)&a( y) and a(X1) is a continuous random
variable.

Next we investigate the behavior of our tests under the alternative. A suf-
ficient condition for consistency is given in the following proposition.

Proposition 2.3. Suppose &1 {&2 with

| K2 d&1 �&2<�. (2.4)

By (2.4) we can define

*=*(K)=| K d&2 �&1 .

If *{0, then

lim
n � �

P(8n rejects H0)=1. (2.5)

If *>0, then

lim
n � �

P(8+
n rejects H0)=1. (2.6)
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Under an additional (and very regular) assumption on &1 {&2 the condi-
tion *{0 or *>0, respectively, is not only sufficient but also necessary for
the consistency of (8n) or (8+

n ), respectively.

Proposition 2.4. Let w=1 and suppose &1 {&2 with (2.4) also meets
the requirement

| _| K(x, y) &1(dy)&
_| K(x, y) &2(dy)& &j (dy)={2 # (0, �) for j=1, 2. (2.7)

Then the sequence of tests (8n) is consistent if and only if *{0:

lim
n � �

P(8n rejects H0)=1 � *{0. (2.8)

Similarly, if :
2<%<1& :

2, then the sequence of one-sided tests (8+
n ) is con-

sistent if and only if *>0:

lim
n � �

P(8+
n rejects H0)=1 � *>0. (2.9)

Since (8+
n ) and (8� +

n ) are asymptotically not distinguishable the equiv-
alence in (2.9) also holds for (8� +

n ). Propositions 2.3 and 2.4 reveal the
importance of the quantity *. The part of the alternative H1 where (8n)
and (8+

n ) are consistent is uniquely determined through the sign of *. The
interesting question of what happens on the rest of the alternative remains.
More precisely, how do the tests behave in case of *=0? The answer to
this question is given in the following proposition.

Proposition 2.5. Let w=1 and suppose &1 {&2 with (2.4) and (2.7) are
such that *=0. Then for all : # (0, 1)

lim
n � �

P(8 (+)
n rejects H0)=:.

Note that for kernels K of the type K(x, y)=a(x)&a( y) the pertaining *
is equal to the difference E(a('1))&E(a(!1)) of the first moments. Thus, for
example, *=0 means that the first moments coincide. Similarly, condition
(2.7) is satisfied if Var(a(!1))=Var(a('1)).

By construction the test 8 (+)
n =8 (+)

n (K) depends on the kernel K. Accord-
ing to Propositions 2.3�2.5 the statistician has to choose K such that the
corresponding *(K) does not vanish (or is strictly positive for the one-sided
test). Looking at * and K in this way we see that a kernel K with *(K){0
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(*(K)>0) is able to distinguish between the underlying distributions &1

and &2 . In Section 3 it is shown that to each pair &1 {&2 one can construct
explicitly kernels K with *(K){0. On the other hand, if &1 {&2 but
*(K)=0 this means that K is unable to detect the difference between &1 and
&2 . Indeed, from Proposition 2.5 we know that in this case the test behaves
as if &1 and &2 were equal. Finally, if actually &1=&2 then *(K)=0 for each
kernel K. This is a consequence of Fubini's theorem and the antisymmetry
of K. Of course for K fixed *=*(K, &1 , &2) can be interpreted as a distance
between &1 and &2 . However, as far as consistency is concerned, it is not the
absolute value of * which is decisive but merely the sign of *. This also
becomes clear when observing that *(:K)=:*(K) for all : # R but

8 (+)
n (:K)=8 (+)

n (K) for all :{0(:>0). (2.10)

Thus one can arbitrarily enlarge |*|=|*(K)| by replacing K through :K
but the test always remains the same. The following result, where rates of
convergence for the probability of the Type II error are established, sheds
more light on the role of *.

Proposition 2.6. Assume &1 {&2 and K is a kernel with *{0 (*>0)
and

Mp=| |K| p d&1 �&2<� for some p�2.

Then an upper bound for the probability of the Type II error is given by

P(8 (+)
n does not reject H0)�Cp Mp |*|&p {n&1 log n,

n&p�2,
if p=2
if p>2

, (2.11)

where Cp=Cp(w, %) is a positive constant. If K is bounded ( p=�), then we
obtain an exponential rate

P(8 (+)
n does not reject H0)�A0 n exp(&A1 *2n),

where A0 is an absolute positive constant and A1=A1(w, %, &K&)>0 with
&K& denoting the sup-norm of K.

Notice that by (2.11) the power of 8 (+)
n is controlled by the ratio

2p=2p(K)=
|*| p

Mp
=

|� K d&1 �&2 | p

� |K| p d&1 �&2
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rather than by * alone. Jensen's inequality ensures that 0<2p�1.
Moreover 2p is invariant w.r.t. scalar multiplication, i.e., 2(:K)=2(K),
which is not surprising in view of (2.10).

So far our test has been studied only under fixed alternatives &1 {&2 .
Next we consider local alternatives which approach the hypothesis in some
specified sense. Two types of local alternatives are distinguished. As to the
first we assume that

L(!in)=P b !&1
in =&1n , 1�i�mn

(2.12)
L('jn)=P b '&1

jn =&2n , 1� j�ln ,

where &1n and &2n are probability distributions with the corresponding
``distances''

*n=| K d&2n �&1n

converging to zero such that

*nn1�2 � # # R� as n � �. (2.13)

Note that the quantity # depends on the kernel K and on the underlying
local alternatives &(1)=(&1n)n�1 and &(2)=(&2n)n�1 :

#=#(K, &(1), &(2)).

For the sake of illustration consider the following example.

Example 2.7 (Location-Model). Let X=R and suppose that &1n and
&2n have Lebesgue-densities f and f ( } &dn), respectively, where f is a
smooth density on R and dn=rn&1�2, r{0. Then #=r � � K(x, y) f (x)
f $( y) dx dy. For example, if K(x, y)=x& y then we obtain #=r.

The limit value limn � � P(8 (+)
n =1) of the power function of 8 (+)

n in the
case of local alternatives (2.12) satisfying (2.13) is called local power of
8(+)

n . In the next propositions we investigate the local power of 8 (+)
n in

dependence on the quantity #.

Proposition 2.8. Let K be a kernel such that (2.12) and (2.13) hold.
Assume also that

mp=sup
n�1 | |K| p d&1n �&2n<�, p>2.
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If |#|=� (#=�), then

lim
n � �

P(8 (+)
n rejects H0)=1. (2.14)

If 0<|#|<� (0<#<�), then

lim inf
n � �

P(8 (+)
n rejects H0)�1&Cp mp |#|&p (2.15)

with Cp as in Proposition 2.6.

In order to determine the exact local power of 8 (+)
n we need the follow-

ing assumption, which is the asymptotic counterpart of (2.7),

| _| K(x, y) &1, n(dy)&
_| K(x, y) &2n(dy)& &jn(dx) � {2 # (0, �) for j=1, 2 (2.16)

as n tends to infinity. Similarly to (2.7), in the case of K(x, y)=a(x)&a( y),
condition (2.16) implies that the variances Var(a(!1n)) and Var(a('1n)) are
asympotically equal and not degenerated. Observe that {2 does not depend
on j, but on K, &(1) and &(2) as it is the case for #:

{2={2(K, &(1), &(2)).

Example 2.9. Let the sample space X be endowed with a topology and
the induced Borel-_-algebra. If K is bounded, then by the Portmanteau
theorem the convergence of (&1n) and (&2n) in the weak topology to a com-
mon limit & ensures the validity of (2.16) with

{2=| _| K(x, y) &(dy)&
2

&(dx).

In the next proposition we compute the exact local power of 8 (+)
n . It

involves the maximizer of a weighted Brownian bridge with a certain trend
function.

Proposition 2.10. Suppose that the conditions of Proposition 2.8 are
satisfied and that (2.16) holds. Additionally let w be truncated, that is, w is
constant outside an interval [$0 , $1] for some arbitrary small numbers
$0 , $1 # (0, 1

2). Then for all # # R (#�0),

lim
n � �

P(8(+)
n rejects H0)=P( |T (+)&%|�c(+)), (2.17)
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where

T=argmax
0<t<1

w(t) |{B0(t)+# 2(t)|,

T +=argmax
0<t<1

w(t)({B0(t)+# 2(t))

and

2(t)={(1&%) t,
%(1&t),

0<t�%
%<t<1

.

Especially, if #=0 then

lim
n � �

P(8 (+)
n rejects H0)=:. (2.18)

The local power (2.17) is easy to approximate by a Monte Carlo simula-
tion. From (2.14)�(2.18) we can infer that n&1�2 is the exact rate at which
the alternatives can approach the hypothesis in order to obtain a non-
degenerate local power. What happens if the rate is slower or faster than
n&1�2 is reflected in (2.14) and (2.18). The formula (2.17) will serve as a
means to characterize optimal kernels. See the next section.

As already mentioned there is a second type of contiguous alternatives.
Here we consider real-valued observations. Assume (2.12) holds with &1n

and &2n having distribution functions Fn and F, respectively, such that Fn

is absolutely continuous with respect to F. The densities dFn �dF are defined
by

dFn

dF
(F&1(u))=1+

1

- n
gn(u), 0<u<1, (2.19)

where gn # L2[0, 1], � gn(u) du=0 and for some g # L2[0, 1]

gn � g, n � �, almost everywhere.

For F continuous and strictly monotone (2.19) equivalently can be
rewritten as

Fn(x)=F(x)+
1

- n |
F(x)

0
gn(u) du, x # R.

If the Lebesgue density f of F exists, then Fn has a Lebesgue density fn as
well, which is given by

fn(x)= f (x)+
1

- n
gn(F(x)) f (x), x # R. (2.20)
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Thus (2.19) is equivalent to a one-term expansion of order n&1�2 of Fn(x)
or fn(x) at F(x) or f (x), respectively. The counterpart of Proposition 2.10
is provided by the following result.

Proposition 2.11. Let X=R and let w be a weight-function of the type
(1.2). If K is a kernel with

| |K| p dF�F<�, p>2

and

{*=| _| K(x, y) F(dy)&
2

F(dx)>0,

then under (2.19),

lim
n � �

P(8(+)
n rejects H0)=P( |U (+)&%|�c(+)), (2.21)

where

U=argmax
0<t<1

w(t) |{*B0(t)+#* 2(t)|,

U+=argmax
0<t<1

w(t)({*B0(t)+#* 2(t)),

and

#*=&|
1

0
g(u) | K(x, F&1(u)) F(dx) du.

Example 2.7 (Continuation). Clearly the location-model can also be
described by means of (2.19). Using (2.20) and the Mean Value Theorem
we obtain

g(u)=&r
f $(F&1(u))
f (F&1(u))

, u # (0, 1),

and thus

#*=r | | K(x, u) f (x) f $(u) dx du=#.

Consequently the random variables T (+) and U (+) coincide, so that
Proposition 2.11 is consistent with its counterpart Proposition 2.10.
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3. CONSTRUCTION AND OPTIMALITY OF KERNELS

Recall that the test 8(+)
n =8 (+)

n (K) involves an antisymmetric kernel K
which has to satisfy the separation property

*=*(K)=| K d&2 �&1 {0. (3.1)

For the one-sided test 8+
n (K) one has to require

*(K)>0. (3.2)

This leads to the following questions: Is it always possible to find kernels
K with the separation property? What do these kernels look like? Do
optimal kernels exist and how is the notion of optimality to be understood?

As to the second question many examples are given in Ferger (1994b,
1995), if some additional information about the underlying distribution is
available. The next proposition gives a complete answer to the first and the
second questions.

Proposition 3.1. Let &1 {&2 be dominated by some _-finite measure +
with Radon�Nikodym derivatives fi=d&i �d+, i=1, 2.

(1) Put for some fixed p # (0, 1)

h=
f2& f1

pf1+(1& p) f2

and define

K(x, y)=h(x)&h( y), x, y # X. (3.3)

(2) Assume that [ f1=0]=[ f2=0] and that the Kulback�Leibler
Informationnumbers of &1 and &2 are finite. Set

K(x, y)=l(x)&l( y), x, y # X. (3.4)

with l(x)=log( f2(x)�f1(x)).

Then the kernel K in both (3.3) and (3.4) is &1 �&2 -integrable with
*(K)>0. Moreover K is invariant with respect to +, that is passing to
another dominating _-finite measure does not change K.

Observe that + :=&1+&2 dominates &1 and &2 and is _-finite. Thus
Proposition 3.1 simultaneously provides the existence and the construction
of an appropriate kernel, which not only has the separation property (3.1)
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but even meets the stronger requirement (3.2), so that the one-sided test
8+

n (K) can be used. As to the parameter p in (3.3) we recommend p=%
since the pertaining change-point estimator %n=%n(K) has the minimal
asymptotic mean-squared error among all admissible kernels (cf. Ferger,
1997).

Of course the kernels in Proposition 3.1, depending on the densities f1

and f2 , are typically not known to the statistician. In a complete non-
parametric framework one has to replace f1 and f2 by their estimators, for
which a rich literature is available. In parametric models very often the
estimation even can be dropped.

Example 3.2 (Exponential Family). Suppose

fi (x)=exp { :
k

j=1

Qj (#i) Tj (x)+Q0(# i)+T0(x)= , x # X, i=1, 2,

where #1 {#2 belong to some parameter space 1 and Qj : 1 � R and
Tj : X � R are certain mappings. Then Proposition 3.1 (2) yields

K(x, y)= :
k

j=1

(Qj (#2)&Qj (#1))(Tj (x)&Tj ( y)).

Example 3.2 is the source of many other examples; cf. Ferger (1998). Next,
we treat the third question concerning the optimal choice of a kernel. First
the notion of optimality has to be made precise. Here we use the concept
of maximizing the local power (2.17) and (2.21), respectively. As to the
first, in the nondegenerate case 0<|#|<�, the basic random variable T
can be rewritten as

T=argmax
0<t<1

w(t) }{# B0(t)+2(t)} .
One can prove (see (4.24) in Ferger, 1995) that if the ratio {�# tends to zero
then T � % almost surely and therefore P( |T&%|�c) � 1. This means, the
smaller the ratio |{�#|, the larger is the corresponding local power (2.17).
Recall that {2={2(K, &(1), &(2)) and #=#(K, &(1), &(2)) depend on the kernel
K and on the underlying local alternatives &(1)=(&1n) and &(2)=(&2n). This
motivates the following definition.

Definition 3.3 (Optimality). Let &(1)=(&1n) and &(2)=(&2n) be local
alternatives and assume the set

K=K(&(1), &(2))=[K{0 : 0<{2(K, &(1), &(2))<�, 0{#(K, &(1), &(2)) # R]
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of admissible kernels is nonempty. Then

Kopt=Kopt(&(1), &2))=argmin {{2(K, &(1), &(2))
#2(K, &(1), &(2))

: K # K(&(1), &(2))=
is called and optimal kernel with respect to the local alternatives &(1) and
&(2) (provided the minimizer exists).

Note that the ratio

\(K)=\(K, &(1), &(2))=
{2(K, &(1), &(2))
#2(K, &(1), &(2))

satisfies

\(:K)=\(K) for all :{0, (3.5)

whence :Kopt is also an optimal kernel for all :{0. This is in accordance
with property (2.10). The determiniation of Kopt=argmin[\(K) : K # K] is
possible in a very general setting. Let &in= f in d+, i=1, 2, for some measure
+ on X. Assume that f1n � f and n1�2( f1n& f2n) � g, n � �, +-a.e. By the
antisymmetry of K it is

- n *n=| | K(x, y) f2n(x) - n( f1n( y)& f2n( y)) +(dx) +(dy).

So under an integrability assumption which ensures the application of, for
example, the Dominated Convergence Theorem we can infer that

\(K)=
� [� K(x, y) f (x) +(dx)]2 f ( y) +(dy)
(� � K(x, y) f (x) g( y) +(dx) +(dy))2 . (3.6)

In our next result we present a minimizer of the functional \ on the set K

where only minimal requirements are needed.

Proposition 3.4. Assume + is an arbitrary measure and g and g2�f are
+-integrable. If +(g{0)>0 and +(g{df )>0 \d{0, then the set of
admissible kernels

K={K{0 : 0<| _| K(x, y) f (x) +(dx)&
2

f ( y) +(dy)<�,

0{| | K(x, y) f (x) g( y) +(dx) +(dy) # R=
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is nonempty and the optimal kernel is given by

Kopt(x, y)=aopt(x)&aopt( y), x, y # X,

where

aopt(x)=&
g(x)
f (x)

, x # X.

Furthermore

\(Kopt)=\| g2

f
d+&\| g d++

2

+
&1

, (3.7)

where

|
g2

f
d+&\| g d++

2

>0. (3.8)

By (3.5) any affine transformation :aopt+; of :opt with :{0 and ; # R
also yields an optimal kernel. The functional \ is well-defined, since then a
division by zero in (3.6) is excluded. Observe that the optimal kernel Kopt

has a very simple shape. This enables us to compute it in many situations,
which are of practical relevance. Consider the following example and in
particular the next section on functional data.

Example 3.5 (Multivariate Location-Scale Model). Let f be a smooth
density on Rk. We assume that each vector ' of the second sample results
from an affine transformation of a vector ! of the first sample. More
precisely

f1n(x)= f (x) and f2n(x)=
f (A&1

n (x&dn))
|det(An)|

,

where An=I+rn&1�2A, dn=rn&1�2d, r{0, A is a k_k-matrix, I is the
identity matrix, and d # Rk, where A{0 or d{0. A Taylor expansion
shows that in this case

g(x)=r(trace(A) f (x)+(Ax+d, {f (x)) )

so that by (3.5),

aopt(x)=&
(Ax+d, {f (x))

f (x)
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and

\(Kopt)=r&2 _| (trace(A) f (x)+(Ax+d, {f (x)) )2

f (x)
dx&

&1

.

Here ( , ) denotes the usual inner product on Rk and {f (x) is the gradient
of f.

In the location model (A=0, d{0) and in the scale model (A{0, d=0)
the optimal kernel simplifies accordingly. In particular in the univariate
case (k=1) one obtains

aopt(x)=&
f $(x)
f (x)

with \(Kopt)=r&2I( f )&1

and

aopt(x)=&x
f $(x)
f (x)

with \(Kopt)=r&2I1( f )&1,

respectively. Here I( f ) and I1( f ) denote the corresponding Fisher informa-
tions. Notice the close relationship between aopt and the .-functions of
Ha� jek and S8 ida� k (1967), which bring forth the optimal scores of the
rank-test.

Beside of maximizing the local power (2.17) with respect to K one can
also try to maximize the local power (2.21). The same arguments which led
to Definition 3.3 now lead to

Definition and Proposition 3.6. Let X=R and assume the local alter-
natives satisfy (2.19). Define

K*={K{0 : 0<| _| K(x, y) F(dy)&
2

F(dx)<�,

0{|
1

0
g(u) | K(x, F&1(u)) F(dx) du<�= .

If F is continuous then the minimizer

K*opt=argmin[\*(K) : K # K*]

with

\*(K)=
� [� K(x, y) F(dy)]2 F(dx)

(�1
0 g(u) � K(x, F&1(u)) F(dx) du)2
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exists and is given by

K*opt(x, y)= g(F(x))& g(F( y)), x, y # R.

Moreover,

\*(K*opt)=_|
1

0
g2(u) du&\|

1

0
g(u) du+

2

&
&1

.

Example 3.7 (Cauchy Distribution). Let

f (x)=
1
?

1
1+x2 and fn(x)=

1
?

1
1+(x&+n)2 , x # R,

be the Lebesgue densities of F and Fn , respectively, where (+n)�R con-
verges to zero such that n1�2+n � 1. Then

K*opt(x, y)=
x

1+x2&
y

1+ y2 and \*(K*opt)=\?
2

&1&(log 2)2+
&1

.

Example 3.8 (Laplace Distribution). Let

f (x)=
1
2

exp(&|x| ) and fn(x)=
1

2*n
exp \&

|x&+n |
*n + , x # R.

If (*n)=1 and n1�2+n � 1, then

K*opt(x, y)=sign(x)&sign( y) and \*(K*opt)=1.

If (+n)=0 and n1�2(1&*n) � 1, then

K*opt(x, y)=|x|& | y| and \*(K*opt)=1.

For the local alternatives of the last two examples also Proposition 3.4 is
applicable. As required we obtain that Kopt and K*opt coincide.

4. APPLICATIONS TO FUNCTIONAL DATA

As was already pointed out at the beginning of this article, in many
statistical applications the experimenter observes random functions. For
this reason we now consider the sample space X=L2[0, 1], which denotes
the collection of all real measurable functions g on [0, 1] satisfying
� g2(t) dt<�. Recall that L2=L2[0, 1] endowed with the usual inner
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product ( f, g) =� f (t) g(t) dt, f, g # L2 and the induced norm & f &=
- ( f, f ) is a Hilbert space.

Let !1 , ..., !m be independent copies of a process !=[!(t) : 0�t�1]
with trajectories in L2 and let '1 , ..., 'l be independent copies of ', where

' =
L !+: 2, 0{: # R, (4.1)

and 0{2 # L2 is a deterministic drift function. Throughout this section we
assume

! is a nontrivial zero-mean Gaussian process with covariance
function C satisfying � C(t, t) dt<�;

(4.2)

the eigenfunctions[ fj : j�1] of C are an orthonormal basis
of L2 ;

(4.3)

C(s, t)= :
j�1

*j f j (s) fj (t) \0�s, t�1, where * j is the

eigenvalue associated with the eigenfunction fj , j�1.
(4.4)

We mention that (4.2)�(4.4) are automatically fulfilled whenever C is con-
tinuous and positive definite; cf. Shorack and Wellner (1986, p. 207). Recall
that for the construction and optimality of kernels we need densities of
&1=L(!) and &2=L(') w.r.t. a common dominating measure +. The
following lemma is due to Grenander (1952).

Lemma 4.1. Suppose (4.1)�(4.4) holds and

:
i�1

(2, fi) 2

*i
<�. (4.5)

Then

.:(x)=exp {&
:2

2
:

i�1

(2, fi) 2

*i
+: :

i�1

(2, fi)
*i

(x, f i)= , x # L2 ,

is a &1-density of &2 : .:=d&2 �d&1 .

Note that by Kolmogorov's series theorem .: is well-defined &1 -a.e.
Grenander's lemma makes it possible for us to apply the general results of
the last section with X=L2 , +=&1 , f1=1 and f2=.: . It is not difficult to
check the conditions of Proposition 3.1, whence we obtain
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Corollary 4.2. If (4.1)�(4.5) hold, then

K0(x, y)=h(x)&h( y), x, y # L2

with

h(x)=
1&.:(x)

%+(1&%) .:(x)
, x # L2 ,

and

K1(x, y)=l(x)&l( y)

with

l(x)= :
i�1

(2, fi)
*i

(x, f i) , x # L2 ,

entail strictly positive *(K0) and *(K1).

Next we specify the optimal kernel Kopt of Proposition 3.4 for the follow-
ing local alternatives:

' =
L !+rn&1�2 2, r{0, n # N. (4.6)

So with +=&1 , f1n=1, f2n=.: , :=rn&1�2 an easy computation shows that

n1�2( f1n& f2n) � g=&rl, n � �, &1&a.e.

Again it is not hard to verify the conditions of Proposition 3.4. Thus we get

Corollary 4.3. If (4.2)�(4.6) hold, then

Kopt(x, y)=K1(x, y)=l(x)&l( y)

and

\(Kopt)=
1
r2 \ :

i�1

(2, fi) 2

*i +
&1

# (0, �). (4.7)

Formula (4.7) precisely shows the manner in which the Fourier coefficients
(2, fi) of 2 have an effect on the local power of 8n(Kopt). The squares
of the coefficients can be regarded as weights of the summands 1�*i

which tend to infinity as i � �. Especially high-frequency functions 2 are
detected rather than smooth ones. As a simple example consider 2= fk ,
where \(Kopt)=r&2*k which tends to zero as k � �.
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Example 4.4 (Brownian Motion with Linear Drift). Let ! be a
standard Brownian motion B on [0, 1]. Then the eigenfunctions and asso-
ciated eigenvalues of C(s, t)=min(s, t) are given by (cf., e.g., Todorovic,
1992, p. 143)

fj (t)=- 2 sin \j&
1
2+ ?t and * j=

1
?2( j&1�2)2 , j�1.

If 2(t)=t, then straightforward calculations show that (2, fi) =
- 2 (&1) i&1 *i , i�1, whence (4.5) holds and l(x)=�i�1 (x, fi) f i (1)=
x(1) for all x # L0 , where

L0 :=[x # L2 : x(0)=0, x(1&)=x(1)].

Here, the last equality can be proved with Fe� jer's theorem. Since
&1(L0)=P(! # L0)=1, the optimal kernel admits the representation

Kopt(x, y)=x(1)& y(1), x, y # L2 .

Moreover,

\(Kopt)=
1
r2 . (4.8)

Our example is an extreme case, where the optimal kernel only uses the
value at the endpoint one per observed function. At first sight this might
be surprising, but obviously this is due to the drift-function : 2 being the
straight line starting at the origin with slope :=rn&1�2. Formula (4.8)
reflects the large sample performance of the optimal test in dependence on
the amount of the ``slope'' r of the underlying drift rn&1�2t. However, note
that in general as can be seen from the shape of aopt=l the optimal test
processes the whole information of each single observation point x # L2 via
the inner products (x, fi) , i�1, in l(x). For instance consider

Example 4.5 (Brownian Motion with Sinusoidal Drift). Let !=B and
2= fk the kth eigenfunction of B. Then

aopt(x)=|
1

0
x(t) sin \j&

1
2+ ?t dt

and \(Kopt)=
1
r2 *k=

1
r2

4
?2(2k&1)2 .

The Brownian motion is a well-known and very important stochastic
process. Its well-developed theory allows a nice simplification of the
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analytical expressions of Kopt and \(Kopt). The key to this improvement is
the following counterpart to Grenander's Lemma 4.1.

Lemma 4.6. Suppose ! is a Brownian motion B on [0, 1], and 2 is twice
continuously differentiable on [0, 1] with 2${0. If (4.1) holds, then

.:(x)=exp {&
:2

2 |
1

0
(2$(t))2 dt

+: \x(1) 2$(1)&|
1

0
x(t) 2"(t) dt+= , x # C [0, 1]

is a density of ' w.r.t. the Wiener measure on C [0, 1].

Lemma 4.6 is a consequence of the Corollary to Theorem 7.1 of Liptser
and Shiryayev (1977). Analogously to the derivation of the Corollaries 4.2
and 4.3 we obtain

Corollary 4.7. Suppose !=B and 2 # C (2)[0, 1] with 2${0. If (4.1)
holds, then K0 and K1 of Corollary 4.2 induce strictly positive *(K0) and
*(K1). Especially, the mapping l which determines K1 is given by

l(x)=x(1) 2$(1)&|
1

0
x(t) 2"(t) dt, x # C [0, 1].

If (4.6) holds then Kopt=K1 and

\(Kopt)=
1
r2 \|

1

0
(2$(t))2 dt+

&1

. (4.9)

In order to deduce the equality (4.9) from the general formula (3.7) note
that g=&rl, whence

\(Kopt)=
1
r2

1
Var(l(B))

.

Since by Itô's formula (cf. Theorem 3.6 in Karatzas and Shreve (1988))

l(B)=|
1

0
2$(t) B(dt),

(4.9) follows from the elementary properties of stochastic integrals (cf.
Karatzas and Shreve, 1988, p. 137). Formula (4.9) describes how the local
power of the optimal test is influenced by the non-smoothness of the drift 2.
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If for example the graph of 2 is very wiggly, then the Type II error is very
small.

Finally we consider a model which extends the situation of Example 4.4
in many respects. Let W=[W(t) : 0�t�T] be the stochastic process with

W(t)=B(t)+Y(t&{)+, 0�t�T,

where B is a standard Brownian motion on [0, T], T>0 is a finite time
horizon, and Y and { are random variables such that B, Y and { are inde-
pendent. Moreover, Y is normally distributed with expectation + # R and
variance _2 # [0, �), whereas { is any nonnegative random variable with
distribution L({)=\ and support [0, T]. This means that up to the ran-
dom point { the process W(t) is a standard Brownian motion and after the
time { a linear drift-function with random slope Y is added. Before { the
process W(t) is regarded as to be ``under control'' and after { as to be ``out
of control.'' Beibel (1997) investigates the process W in a sequential
framework. He proves the following lemma.

Lemma 4.8. Suppose ! is a standard Brownian motion on [0, T], T>0,
and ' =

L W. If _2>0, then

�(x)=
1
_

e&+2�2_2 |
T

0

1

- T&s+_&2

_exp {(x(T )&x(s)++_&2)2

2(T&s+_&2) = \(ds), x # C [0, T]

is a density of ' =
L W with respect to the Wiener measure &1=L(B).

In the limit case _2=0, i.e., Y=+ almost surely, the density is given by

�(x)=|
T

0
exp[& 1

2(T&s) +2++(x(T )&x(s))] \(ds), x # C [0, T].

(4.10)

The above lemma can be used in the same fashion for the construction of
suitable and optimal kernels as its counterparts Lemmas 4.1 and 4.6.

Example 4.9. Let T=1 and {=0. If +=0 and _2=1, then

�(x)=
1

- 2
exp \x(1)2

4 + , L(B)-a.e.,
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which coincides with formula (7.11) in Liptser and Shiryayev (1977). If
+=: and _2=0, then

�(x)=exp {&
:2

2
+:x(1)= , L(B)-a.e.,

which could also be deduced from Lemma 4.1 or Lemma 4.6.

In conclusion we consider the following contiguous alternatives:

' =
L [B(t)+rn&1�2(t&{)+, 0�t�T], r{0, n # N. (4.11)

With f1n=1 and f2n equal to � in (4.10) with +=rn&1�2 it follows from
Lemma 4.8 that

n1�2( f1n& f2n) � g as n � �,

where

g(x)=&r _x(T )&|
T

0
x(s) \(ds)& , x # C [0, T].

If { is absolutely continuous, Itô's formula implies that

g(B)=&r |
T

0
R(s) B(ds),

where R is the distribution function of {. Thus by Proposition 3.4 the
optimal kernel Kopt is determined by

aopt(x)=x(T )&|
T

0
x(s) \(ds), x # C [0, T]

and

\(Kopt)=r&2 \|
T

0
R2(s) ds+

&1

.

If T=1 and {=0 almost surely this is consistent with Example 4.4.

5. SIMULATIONS

In this section we report on the results of a small simulation study. The
power of our test is computed on certain parametrized parts of the alter-
native H1 for several kernels K. This is done for functional data (X=L2)
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as well as for vector-valued observations (X=R4). In both cases the
optimal kernel is compared with ad hoc kernels.

First, we consider

!1 , ..., !m and '1 , ..., 'l , (5.1)

where !1 , ..., !l are independent copies of a Brownian motion B on [0, 1]
and the '1 , ..., 'l are independent copies of

' =
L B+r 2, r�0,

with 2 specified below. Fix m=l=50 and :=0.05 (level of significance).
Let Ki (x, y)=ai (x)&ai ( y), i=1, 2, 3, be the kernels defined by a1=aopt ,

a2(x)=(x, 1) =|
1

0
x(t) dt and a3(x)=(x, x)=|

1

0
x2(t) dt

and let

pi (r) :=Pr(8+
n (Ki) rejects H0), r�0,

denote the power function of 8+
n (Ki), i=1, 2, 3. Tables I and II contain

Monte Carlo approximations of the power pi (r). Each single value has
been obtained from 10,000 replicates.

We see that the optimal test outperforms the ad hoc procedures. Also
note that in all cases the actual probability of the type I error is very close
to the given level of significance :=0.05.

TABLE I

2(t)=- 2 sin 5
2 ?t

r p1 (r) p2 (r) p3 (r)

0.0 0.0483 0.0477 0.0498
0.1 0.5356 0.0583 0.0515
0.2 0.8780 0.0697 0.0739
0.3 0.9766 0.0860 0.1229
0.4 0.9971 0.1035 0.1914
0.5 0.9999 0.1205 0.3083
0.6 1.0000 0.1330 0.4470
0.7 1.0000 0.1534 0.6039
0.8 1.0000 0.1691 0.7545
0.9 1.0000 0.1945 0.8464
1.0 1.0000 0.2099 0.9115
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TABLE II

2(t)=(t&{)+, L({)=U(0, 1)

r p1 (r) p2 (r) p3 (r)

0.0 0.0498 0.0482 0.0505
0.2 0.0976 0.0697 0.0921
0.4 0.1668 0.0981 0.0976
0.6 0.2371 0.1200 0.0981
0.8 0.3154 0.1578 0.0988
1.0 0.3888 0.1860 0.0967
1.2 0.4732 0.2325 0.0980
1.4 0.5530 0.2657 0.0950
1.6 0.6043 0.3046 0.0932
1.8 0.6640 0.3454 0.1037
2.0 0.7124 0.3664 0.0959

Second, we considered (5.1) where !1 , ..., !m are independent copies of
the normal vector

!=_
1
0
1
0

&1
2
4
0

0
1

&6
1

3
&4

0
0 &_

N1

N2

N3

N4
&

and N1 , ..., N4 are i.i.d. standard normal random variables. The variables
'1 , ..., ' l of the second sample are independent copies of

' =
L !+r(2, &3, &5, 7)$, r�0.

According to Example 3.5 the optimal kernel is given by

Kopt(x, y)=d $S &1(x& y), x, y # R4,

where d=(2, &3, &5, 7)$ is the shift-vector and S&1 is the inverse of the
covariance matrix S of !. As a competing kernel we took

K(x, y)=d $(x& y), x, y # R4.

Table III lists the power of the pertaining tests 8+
n (Kopt) and 8+

n (K). We
approximated each single value by 100,000 Monte Carlo replicates.

Note the considerable difference of the two power functions. This all the
more is remarkable since K uses the true shift vector d as part of the infor-
mation.
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TABLE III

m=40, l=60, :=0.05

r Kopt K

0.00 0.05078 0.04962
0.01 0.13716 0.05597
0.02 0.26344 0.06257
0.03 0.40385 0.06913
0.04 0.53076 0.07746
0.05 0.64381 0.08393
0.06 0.73343 0.09268
0.07 0.80377 0.09925
0.08 0.85837 0.10676
0.09 0.89868 0.11595
0.10 0.92867 0.12811
0.11 0.95042 0.13696
0.12 0.96483 0.14608
0.13 0.97614 0.15554
0.14 0.98430 0.16828
0.15 0.98896 0.18033

Finally, we compared our test with the Kolmogorov�Smirnov test. For
that purpose we generated samples (5.1) of !'s and ''s with ! is uniformly
distributed on (&1�2, 1�2) and either ' =L !+d (location model) or
' =

L
(1+d ) ! (scale model), where d�0. Tables IV and V show the power

of the KS-test and of 8+
n (K), where the ad hoc kernels K(x, y)=x& y

(location model) and K(x, y)=x2& y2 (scale model) have been used.

TABLE IV

Uniform Location Model

d KS 8+
n

0.00 0.0381 0.0494
0.01 0.0409 0.0610
0.02 0.0456 0.0757
0.03 0.0526 0.0902
0.04 0.0641 0.1064
0.05 0.0789 0.1227
0.06 0.0939 0.1425
0.07 0.1168 0.1631
0.08 0.1400 0.1866
0.09 0.1702 0.2067
0.10 0.2037 0.2287
0.20 0.7138 0.4692
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TABLE V

Uniform Scale Model

d KS 8+
n

0.00 0.0381 0.0462
0.04 0.0401 0.0773
0.08 0.0418 0.1154
0.12 0.0449 0.1626
0.16 0.0504 0.2143
0.20 0.0581 0.2627
0.24 0.0675 0.3124
0.28 0.0826 0.3550
0.32 0.0985 0.3981
0.36 0.1208 0.4362
0.40 0.1487 0.4721
0.80 0.5935 0.6715

Furthermore we specified: :=0.05, m=l=50 and 10,000 Monte Carlo
replicates per single value.

Tables VI and VII show the corresponding power values in case of
standard normal !'s.

In the scale model the 8+-test is uniformly better than the KS-test. In
the location model this also holds but only for small deviations d>0 from
the hypothesis d=0. For larger shifts d the performance of the KS-test is
superior.

TABLE VI

Normal Location Model

d KS 8+
n

0.00 0.0373 0.0472
0.02 0.0380 0.0539
0.04 0.0398 0.0616
0.06 0.0432 0.0689
0.08 0.0471 0.0767
0.10 0.0536 0.0851
0.20 0.1093 0.1352
0.26 0.1643 0.1720
0.30 0.2129 0.1983
0.34 0.2673 0.2268
0.38 0.3300 0.2536
0.40 0.3646 0.2681
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TABLE VII

Normal Scale Model

d KS 8+
n

0.00 0.0373 0.0514
0.04 0.0374 0.0698
0.08 0.0387 0.0920
0.12 0.0415 0.1134
0.16 0.0440 0.1386
0.20 0.0481 0.1651
0.40 0.0891 0.2881
0.52 0.1311 0.3507
0.60 0.1607 0.3880
0.72 0.2135 0.4329
0.80 0.2562 0.4550

6. PROOFS

Proof of Propositon 2.1. By Proposition 3.1 of Ferger (1995) we know
that %(+)

n w�
L { (+)

w as n � �. Since

P(8 (+)
n rejects H0)=P \}% (+)

n &
m
n }�c(+)+

the assertion follows from (1.7) upon noticing that { (+)
w is a continuous

random variable. K

Proof of Proposition 2.2. By Proposition 3.7 of Ferger (1995) %� +
n is

uniformly distributed on the grid [k�n : 0�k�n&1], which proves the
theorem. K

Proof of Proposition 2.3. By Proposition 2.1 of Ferger (1995) % (+)
n � %,

n � �, P-stochastically. Recall that m�n � % as n � �, which implies (2.5)
and (2.6), respectively. K

Proof of Proposition 2.4. According to Proposition 2.3 the condition
*{0(*>0) is sufficient for the consistency of 8n (8+

n ). By Proposition 2.5,
*{0 is also neccessary for the consistency of 8n . This shows (2.8). It
remains to prove the if-part of (2.9). For this assume that

lim
n � �

P(8+
n rejects H0)=1, (6.1)
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but *�0. In case of *=0 Proposition 2.5 yield the desired contradiction.
If *<0, then

lim
n � �

P(%+
n � [=, 1&=])=1 for all =>0. (6.2)

To see this we first introduce the stochastic process

rn(t)=n&2 :
n

i=[nt]+1

:
[nt]

j=1

K(Xi , Xj), 0�t�1.

Then with the function 2 defined in Proposition 2.10 the following
inclusion holds for all =>0:

{ max
0�t�1

|rn(t)&* 2(t)|�&
*
2

min(%, 1&%) ==�[%+
n � [=, 1&=]].

Since *<0, Lemma 2.1 of Ferger (1995) immediately yields (6.2). By
assumption % # ( :

2 , 1& :
2) so that by (1.7) c+=:�2, whence =* :=

1
2(min(%, 1&%)& :

2) is strictly positive. Thus with (6.1) and (6.2) we obtain
that

1= lim
n � �

P \}%+
n &

m
n }�c++�lim P(%+

n # [=*, 1&=*])=0,

which is a contradiction. K

Proof of Proposition 2.5. If we put

1n(t) :=n1�2rn(t), 0�t�1,

then by Theorem 1.1 of Ferger (1994a),

1n w�
L {B0 , n � �,

where w�
L

denotes convergence in distribution in the Skorokhod space
D=D[0, 1]. Bhattacharya and Brockwell (1976) proved that the argmax-
functional is continuous on the set C� of continuous functions on [0, 1]
with unique maximizer. Since B0 # C� and |B0 | # C� with probability one (as
shown in the proof of Theorem 3.1 of Ferger, 1995), the assertion follows
with the Continuous Mapping Theorem. K

Proof of Proposition 2.6. Observe that

P(8 (+)
n does not reject H0)=P \n }% (+)

n &
m
n }>nc(+)+ .
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From the continuity of { (+)
w we can conclude that c(+) is strictly positive,

whence the assertion follows from the tail-inequalities for the change-point
estimator given in Proposition 2.1 of Ferger (1995). K

Proof of Proposition 2.8. Apply Proposition 2.1 of Ferger (1995) as in
the above proof. K

Proof of Proposition 2.10. Let D=D[0, 1] be the Skorokhod space
and put

M[ f ] := sup
0�u�1

f (u), f # D,

and

S[ f ] :=[0�u�1 : f (u)=M[ f ] or f (u&)=M[ f ]].

By Lemma 5.5 of Ferger (1995) S[ f ] is a nonempty closed subset of
[0, 1]. Therefore the mapping �: D � [0, 1] defined by

�[ f ] :=min S[ f ]

is well-defined. The mapping �n : D � [0, 1] defined by

�n[ f ] :=argmax
t # Gn

f (t), f # D,

where Gn :=[kn&1 : 1�k�n&1] entails the representation

%n=�n[w |1n |]. (6.3)

The mean functions 1� n(t) :=E1n(t), 0�t�1, converge uniformly on
[0, 1] to # 2(t). An application of Theorem 1.1 of Ferger (1994a) and a
Crame� r�Slutsky argument yields

1n w�
L {B0+# 2, n � �.

For truncated w this implies

w|1n | w�
L B*=w |{B0+# 2|, n � �, (6.4)

where B* # C� with probability one. In view of (6.3) and (6.4) the next step
is to check whether the extended Continuous Mapping Theorem 5.5 in
Billingsley (1968) is applicable. For that purpose we consider

E :=[ f # D : _( fn)�D, fn �s f, �n[ fn] �% �[ f ]],
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where �s denotes convergence in the Skorokhod topology. According to
Lemma 5.5 of Ferger (1995),

C� �D"E.

But as already mentioned P(B* # C� )=1. Thus we can infer that

%n w�
L �[B*]=T.

Since T is a continuous random variable, (2.17) follows for the two-sided
test. The proof of (2.17) for the one-sided test 8+

n is completely
analoguous. K

Proof of Proposition 2.11. Since

w1n w�
L w({*B0+#* 2)

by Theorem 3.4 of Szyszkowicz (1991) we can proceed as in the previous
proof. K

Proof of Proposition 3.1. Since

| |K| d&1 �&2�| |h| d&1+| |h| d&2�\ 1
p

+
1

1& p+ | | f1& f2 | d+,

it follows, that K in (3.3) is (&1 �&2)-integrable. Consequently *(K) exists
and is given by

*(K)=|
( f1& f2)2

pf1+(1& p) f2

d+,

which is strictly positive, because &1 {&2 . As to the invariance of K=K+

with respect to +, we first assume that +<<+~ , where +~ is _-finite. Then by
the chain rule

fi
d+
d+~

=
d&i

d+~
, i=1, 2,

and thus K+~ =K+ , since the factor d+�d+~ cancels. For the same reason
K{~ =K{ , if {<<{~ and {~ is _-finite. Especially for +~ ={~ :=++{ we obtain
that K+=K+~ =K{~ =K{ . This completes the proof of the first part. The
second part is proved similarly. K

The proofs of Propositions 3.4 and 3.6 are given in Ferger (1997).
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