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Abstract

Microarray experiments generate large datasets with expression values for thousands of

genes, but not more than a few dozens of samples. A challenging task with these data is to

reveal groups of genes which act together and whose collective expression is strongly

associated with an outcome variable of interest. To find these groups, we suggest the use of

supervised algorithms: these are procedures which use external information about the response

variable for grouping the genes. We present Pelora, an algorithm based on penalized logistic

regression analysis, that combines gene selection, gene grouping and sample classification in a

supervised, simultaneous way. With an empirical study on six different microarray datasets,

we show that Pelora identifies gene groups whose expression centroids have very good

predictive potential and yield results that can keep up with state-of-the-art classification

methods based on single genes. Thus, our gene groups can be beneficial in medical diagnostics

and prognostics, but they may also provide more biological insights into gene function and

regulation.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Large-scale monitoring of gene expression by microarrays is considered to be one
of the most promising techniques to improve medical diagnostics and functional
genomics. Given efficient statistical methods for exploiting large gene expression
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datasets, accurate classification of tumor subtypes may become reality, allowing for
specific treatment that maximizes efficacy and minimizes toxicity. Moreover, gene
expression data are an important resource to reconstruct gene regulatory sub-
networks, or more globally, to enhance understanding how the genome works.
An important task is to reveal groups of genes which act together, for example in

pathways, and whose collective expression is optimally predictive for a certain
response variable y: Our goal is to find rules such as: ‘‘if the centroid of gene 534,
gene 837 and gene 235 is high, as well as the centroid of gene 2194, gene 1438, gene
931 and gene 694 is low, this is indicative of cancer subtype A’’. Such gene groups
and their centroids can be understood as molecular signatures, which are of potential
interest to accurately predict the phenotypes of new individuals in medical
diagnostics, and to gain insights into biological and gene regulatory processes.
However, finding the groups is difficult: we are facing computational problems due
to the sheer amount of predictor variables (genes), and statistical difficulties due to
the ‘‘small sample size n; large predictor dimension p’’-phenomenon.
To tackle the search for groups of co-regulated genes, unsupervised clustering

algorithms are widely applied in microarray analysis: mostly hierarchical clustering,
but also k-means clustering, self-organizing maps and principal components, among
other tools, are used. All these methods cluster genes according to unsupervised
similarity measures computed from the gene expressions, but without regarding the
variation of the y-values. Our approach differs from these popular clustering
techniques, as its primary goal is to reveal gene groups that are strongly predictive
for the response y; rather than to find homogeneous clusters made up of co-
expressed genes. Hence, we suggest supervised algorithms that group genes by
incorporating information from the y-values.
Previous work in this field encompasses partial least squares [17], a tool from

chemometrics, constructing weighted linear combinations of genes that have
maximal covariance with the outcome. The drawback is that every fitted component
involves all (usually thousands of) genes, rather than a few genes in a group.
Moreover, partial least squares for every component yields a linear combination of
gene expressions which completely lacks the biological interpretation of having a
group of genes acting similarly in the same pathway. Another supervised approach
that improves these drawbacks is tree harvesting [13], a two-step method: first, it
generates numerous candidate groups by unsupervised hierarchical clustering, and
then, all group centroids are considered as potential predictor variables in a
supervised response model. The gene groups that are most predictive for tissue
discrimination are selected, but the initial partition remains fixed and unsupervised.
A more direct approach is to combine supervised gene selection and gene grouping in
one single step. We proposed such a procedure under the heading ‘‘Supervised
clustering of genes’’ in [6]. Another single-step approach based on Rissanen’s
minimum description length principle was pursued by Jörnsten and Yu [16].
Here, we formulate a generic strategy for supervised grouping approaches: it

combines gene selection and gene grouping in a single step, and is based on
sequentially improving an empirical objective function that measures the groups’
strength for explaining the outcome y: We briefly review our first implementation
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from [6], which is calledWilma, since its grouping criterion is based on theWilcoxon
and margin statistics. Then, we present Pelora, a novel approach to supervised
grouping of genes, using an objective function based on penalized logistic regression
analysis. It improves upon Wilma in many ways. It allows for overlapping groups of
genes, as motivated from biology, since some genes operate in multiple pathways;
furthermore, Pelora yields better interaction between the gene groups, it is more
robust, it allows for including additional clinical covariates to refine the grouping, it
can be easily adapted to continuous response problems and it encompasses a built-in
classifier. But the improvements are not just on the theoretical and methodological
side: our new implementation Pelora also yields very good empirical prediction
results, especially when the discrimination between tissue types is difficult.

2. Some motivation for supervised grouping of genes

2.1. Gene expression data

Our stochastic notion of a microarray experiment is given by a random pair ðx; yÞ;
where xARp is the gene expression profile, monitoring up to several thousands of
genes. yAf0; 1g is a dichotomous response, extensions to polytomous or continuous
response are discussed in Section 3.4.3. The data are assumed to be independent and
identically distributed realizations of such random pairs,

ðx1; y1Þ; ðx2; y2Þ;y; ðxn; ynÞ;

where the number of experiments n is typically between 10 and 100. The predictor
variables are stored in a ðn � pÞ-matrix ðxigÞ; where rows xi correspond to

experiments and are printed in bold face, whereas columns xg correspond to

genes and are printed in normal font. For our supervised grouping methodology,
the expression profile x can be either from Affymetrix oligonucleotide chips or
two-color cDNA arrays, but we assume it to be thoroughly preprocessed and
log-transformed.

2.2. Two-population models

Our approach for grouping genes is very different from popular clustering based
on similarity measures such as correlation (between genes or cluster centroids). For
understanding supervised grouping of genes, it is instructive to consider first a simple
model: we have two populations, encoded by 0 and 1; according to the value of the
binary response y ¼ 0 or y ¼ 1; respectively. For notational simplicity, we order the
data samples such that the first n0 ¼

Pn
i¼1 ð1� yiÞ observations belong to population

0 and the last n1 ¼
Pn

i¼1 yi to population 1: The model is then

x1;y; xn0 i:i:d: with c:d:f : Fð	 � mð0ÞÞ in population 0;

xn0þ1;y; xn i:i:d: with c:d:f : Fð	 � mð1ÞÞ in population 1; ð1Þ
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where Fð	Þ is a p-dimensional cumulative distribution function with expectation
equal to the zero vector. Thus, the populations differ only in their mean vectors
which is one of the simplest models of this class. Model (1) becomes a simple two-
population group model if

mð0Þ ¼ ðmð0ÞG1
;y; mð0ÞG1

; mð0ÞG2
;y; mð0ÞG2

;y; mð0ÞGq
;y; mð0ÞGq

Þ;

mð1Þ ¼ ðmð1ÞG1
;y; mð1ÞG1

; mð1ÞG2
;y; mð1ÞG2

;y; mð1ÞGq
;y; mð1ÞGq

Þ; ð2Þ

where we have q groups G1;yGq that form a partition of the gene index set

f1;y; pg:Within each gene group G; all genes have the same expectation mð0ÞG or mð1ÞG ;

respectively; for notational simplicity, we have reordered the genes such that the first
group G1 consists of the first genes 1; 2;y; jG1j; and the last group consists of the
last genes p � jGqj þ 1;y; p:

The magnitude of the difference jmð0ÞG � mð1ÞG j for a certain gene group G heavily

influences the ability to recover such a structure from data. We simulated genes from
one group of size jGj ¼ 10 according to model (1), with the cumulative distribution
function Fð	Þ chosen as the N10ð0; IÞ-distribution. Fig. 1 shows the scatterplot of
two genes from this group G with mð0ÞG ¼ �3; and mð1ÞG ¼ 3; which exhibits a large
difference compared to the noise level and in turn, implies a large sample correlation

of 0.91 between the two genes in Fig. 1. Thus, if the difference jmð0ÞG � mð1ÞG j is large, it
is quite likely that such a group of genes can be detected by clustering methods based
on the correlation similarity measure.

When taking the same setup but with smaller jmð0ÞG � mð1ÞG j ¼ 2; the empirical
correlation between two genes from group G drops down to 0.53 and there is no clear
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Fig. 1. Scatterplot of two genes from a group G with mð0ÞG ¼ �3; mð1ÞG ¼ 3:
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separation between the populations, as evident from the left panel in Fig. 2. The
correlation of 0.53, which is low in the context of microarray gene expression data, is
an indication that correlation based clustering will have difficulties in recovering the
group G from data.
However, we can actively make use of the information which samples belong to

population group 0 and 1 by plotting gene group averages

exx ¼ exxG ¼ 1

jGj
X
gAG

xg

and check how well the group average exx separates the two population groups. This is
demonstrated in the right panel of Fig. 2 for a true group of size jGj ¼ 10 and with
the ‘‘difficult’’ structure having small differences between the population group

means jmð0ÞG � mð1ÞG j ¼ 2:
The key observation why the approach illustrated in the right panel of Fig. 2

works, is that the group average exx has smaller variability than single genes. In
particular, exxi for a true group G is an estimate of both mð0ÞG and mð1ÞG ; depending

whether the sample index i belongs to yi ¼ 0 or yi ¼ 1; respectively. Moreover, if the
true group size jGj is sufficiently large, we will obtain a perfect separation of the
populations with exx; i.e.

max
i;yi¼0

exxio min
i;yi¼1

exxi or min
i;yi¼0

exxi4max
i;yi¼1

exxi: ð3Þ

Hence, we ‘‘only’’ need to check - and we can do this because we are working in a
supervised context—how well the candidate group average exx separates the two
populations as in the right panel of Fig. 2. In summary, if the true group size jGj is
large relative to the magnitude of the population mean differences jmð0ÞG � mð1ÞG j; we
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will have a good chance to discover G from data. This can be quantified, since under
reasonable conditions on the correlation between the genes,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðexxjyÞp
BCy=

ffiffiffiffiffiffiffi
jGj

p
for some constant Cy40 as jGj-N;

which will be small relative to jmð0ÞG � mð1ÞG j if jGj is large.

2.3. Beyond the two-population group model

The two-population group model in (2) seems somewhat unrealistic. First, for
both populations, the genes within group G may have different mean values instead

of being all exactly equal to some mðyÞG : More importantly, when going through the

arguments above, we can achieve a separation rule as in (3) if

j %mð0ÞG � %m
ð1Þ
G j is large relative to max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðexxjy ¼ 0Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðexxjy ¼ 1Þ

p� �
;

where %m
ðyÞ
G ¼ 1

jGj
P

gAGm
ðyÞ
g ðyAf0; 1gÞ: Requiring the maximum of the conditional

standard deviations may be a bit too stringent, but certainly sufficient.
Thus, a gene group G pays off, if every gene gAG has: (a) a large expected

differential expression jmð0Þg � mð1Þg j; as well as the same signðmð0Þg � mð1Þg Þ; and: (b) the
pairwise conditional correlations Covðxg; xg0 jyÞ are low for all genes g; g0AG; yielding

small conditional variances VarðexxjyÞ:
Clearly, this involves a trade-off between expected differential expression and

variance: if a gene g� has the largest expected differential expression, the absolute

difference j %mð0ÞG � %m
ð1Þ
G j will be smaller (which is worse) for any superset group G*g�;

while the conditional variances VarðexxjyÞ will decrease.
In addition, we want to construct multiple gene groups, each of which exhibiting a

good trade-off between expected differential expression and conditional variance of
the group mean as discussed above. The reason is that for a two-population model,
the response y can typically be more accurately predicted with multiple group
averages exx1;y; exxq; at least as long as these q group representatives are not too

strongly conditionally dependent given the binary response yAf0; 1g:

2.4. Structure of supervised gene groups

In summary, our methods for supervised grouping of genes, as described in
Sections 3.3 and 3.4, aim to identify multiple class separating groups G1;y;Gq; such

that each group exhibits a good trade-off between expected differential expression
and conditional variance of the group mean, and such that the q groups together
contribute most in predicting the response y: These gene groups are not necessarily
‘‘homogeneous’’ gene clusters, and they will typically not reflect ‘‘co-expression’’ in
the classical sense that all genes in a group would be very tightly over- or under
expressed, respectively. However, we do get gene groups whose representativesexx1;y; exxq can be interpreted as a gene signature that is strongly differentially

expressed and carries substantial information about predicting y:
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3. Methods

3.1. Probabilistic model

To account for the fact that not all p genes on the chip, but rather a few functional
gene subsets determine nearly all of the outcome variation, we model the conditional
probability by

P½ y ¼ 1jx� ¼ f ðexxÞ with exx ¼ ðexx1; exx2;y; exxqÞ; ð4Þ
where f ð	Þ is an unknown non-linear function and exxj are ‘representative’ values for

q5p unknown gene groups G1;y;Gq: Similarly as in Section 2, we use the centroid

exxj ¼
1

jGj j
X
gAGj

agxg with agAf�1; 1g

as the representative group value. The unknown discrete parameter ag is used to

allow for over- and underexpressed genes in the same group. These sign-flips can be
regarded as an optional feature in our method and software.

3.2. Supervised grouping: a generic strategy

The combinatorial complexity for grouping gene expression data is huge. As a toy

example, consider a dataset of 5000 genes: there are more than 2� 1030 possibilities
for obtaining one single group of 10 genes. Because the partition of thousands of
genes into a few signature components that virtually determine the probability
structure as in (4) is by far more complex than our toy example, it is impossible to
use an exhaustive search to reveal the optimal partition among all possible solutions.
Thus, we suggest a computationally intensive grouping heuristic that turns out to
yield good empirical results.
Our approach is based on a strategy which proceeds in a ‘‘cautious’’ forward way.

We start from scratch and rely on growing the groups incrementally by adding one
gene after the other. Regularly recurring cleaning steps help us to remove spurious
genes that were incorrectly added to the groups at earlier stages. We repeat growth
and pruning of a single group until it stabilizes and cannot be improved any further.
Once a group is found to be terminated, a new group is started and the composition
of the former groups is left unchanged, while they can still have an effect on the
construction of the new group. All these grouping operations are based on an
empirical objective function S; which measures the strength of the gene groups for
explaining the response y: Its choice is discussed in Sections 3.3 and 3.4.

3.3. Wilma—a first implementation

Our first supervised algorithm for gene grouping is called Wilma and follows the
generic strategy described above. It was published under the heading ‘‘Supervised
clustering of genes’’ [6]. The name Wilma is an acronym for the Wilcoxon and
margin criteria which are used for the objective function S: The procedure yields
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convincing empirical results in terms of the predictive potential, the stability and the
relevance of its groups. However, it suffers from a few limitations. First, the groups
need to be disjoint, and hence Wilma cannot capture genes that operate in
multiple pathways. Next, each group is (up to the disjointness to the former groups)
built independently of all the others. So, it may happen that each group tries to
optimally predict the response y on its own, instead of finding an ensemble of
interacting groups. Then, the grouping criterion S is non-penalized, which might
lead to overfitting. Moreover, it is non-robust and may result in very hard
supervision. Wilma has been successful in ‘‘easy’’ classification problems, but some
milder form of supervision (less influence of the response) leads to better
empirical results in difficult, inhomogeneous classification problems with substantial
Bayes risk.

3.4. Pelora

We present now a new supervised grouping algorithm called Pelora. It still follows
the generic strategy described in Section 3.2, but addresses all the limitations of
Wilma. It mainly differs in the supervised grouping criterion S: We employ the c2-
penalized negative log-likelihood function

S ¼ �
Xn

i¼1
ðyi log pyðexxiÞ þ ð1� yiÞ logð1� pyðexxiÞÞÞ þ n

l
2
yT Py; ð5Þ

based on estimated conditional class probabilities pyðexxÞ ¼ Py½y ¼ 1jexx� from
penalized logistic regression analysis, hence the name Pelora. Note that y is the
parameter vector, l is a tuning parameter that controls the penalization and P is a
penalty matrix, for further details we refer to Section 3.4.1. The binomial log-
likelihood is an attractive choice as a grouping criterion, since it is the ‘natural’
goodness-of-fit measure for dichotomous problems. Another advantage is that with
multiple groups, it allows to judge the discriminatory power of the ðq þ 1Þ-
dimensional predictor exx ¼ ð1; exx1;y; exxqÞ; whereas the Wilcoxon and margin criteria
in Wilma only work with one-dimensional input. By computing the grouping
criterion directly from multiple groups instead of single groups only, we obtain
better interacting gene groups that explain the response y as an ensemble. Technical
issues concerning penalized logistic regression and full details about the grouping
procedure are given in the next two sections.

3.4.1. Penalized logistic regression analysis

Penalized logistic regression analysis [5] has been used as a stand-alone for
classification of microarray gene expression data with single genes. Eilers et al. [10] as
well as Zhu and Hastie [22] focus on computational issues that arise from the
‘‘small n; large p’’ dimensionality phenomenon and report improved results
compared to non-penalized logistic regression. Since we use the penalized version
as an estimator in conjunction with our qon groups, we avoid such difficulties
and can apply computationally simple methodology. The classical logistic model is

ARTICLE IN PRESS
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then defined as

log
pyðexxiÞ

1� pyðexxiÞ

� 	
¼

Xq

j¼0
yjexxij ¼ exxiy; for observations i ¼ 1;y; n;

with parameter vector yT ¼ ðy0; y1;y; yqÞ and xi0 ¼ 1: The idea of penalized logistic
regression is to estimate y by a c2-penalized maximum likelihood principle. We
minimize

SðyÞ ¼ �
Xn

i¼1
ðyi log pyðexxiÞ þ ð1� yiÞ logð1� pyðexxiÞÞÞ þ n

l
2
yT Py ð6Þ

for fixed exxi with respect to y: Note that (5) and (6) are identical, but the goal in (6) is
to estimate the parameter vector y by minimizing S for fixed predictors, whereas for
supervised grouping, we try to find the (possibly overlapping) partition whose
centroid-predictors optimize S in (5) with optimal parameter y from (6). P is the
penalty matrix, defined as

P ¼

0 0 y 0 0

0 Varðexx1Þ y 0 0

^ ^ & ^ ^

0 0 y Varðexxðq�1ÞÞ 0

0 0 y 0 VarðexxqÞ

0
BBBBBB@

1
CCCCCCA ð7Þ

a matrix which has the predictors’ variance in the diagonal and zeros elsewhere. The
reason to use this non-unit penalty matrix is that, in contrast to common practice in
penalized regression, we do not standardize the predictors, i.e. the group
representatives exxj; to unit variance. By using P as defined above, we obtain the

same solution as when using the standard unit matrix as a penalty in conjunction
with standardized predictors. The proof is given in Appendix. To get to the solution
of the minimization problem in (6), we take derivatives with respect to y;

@S

@y
¼ eXX T ðy � pyÞ � nlPy¼! 0ARqþ1;

where eXX ¼ ð1; exxi1;y; exxiqÞi¼1;y;n is the design matrix containing the group centroids

and py ¼ ð pyðexx1Þ;y; pyðexxnÞÞT is the conditional probability vector for all n

observations. This yields ðq þ 1Þ non-linear equations, whose solution needs to be
approximated. We do this iteratively by Newton–Raphson stepping and obtain the

new estimate ynew from

ynew ¼ y� @2S

@y@yT

� 	�1
@S

@y
:

For an explicit computation of the step length, we use the second derivative

@2S

@y@yT
¼ �ð eXX T Wy eXX Þ � nlPARðqþ1Þ�ðqþ1Þ;

ARTICLE IN PRESS
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where the matrix Wy is a diagonal weight matrix, defined as

Wy ¼ diagðð pyðexxiÞð1� pyðexxiÞÞÞi¼1;y;nÞ:

Then, we plug in and with

ynew ¼ ð eXX T Wy eXX þ nlPÞ�1ð eXX T ðy � pyÞ þ ð eXX T Wy eXXÞyÞ;
we obtain an iterative procedure for estimation of the parameter vector y: The initial
values for y are chosen as

yð0Þ0 ¼ log %y

1� %y

� 	
and yð0Þj ¼ 0 for all j ¼ 1;y; q;

where %y ¼ 1
n

P
yi: This means that pyð0Þ ðexxiÞ ¼ %y; that is, the initial probabilities reflect

the class proportions in the training data. If these are not representative and a priori
probabilities are known, the initial parameter values should be chosen appropriately.
The Newton–Raphson algorithm in general converges rapidly and not more than 5–
10 iterations are necessary until the solution stabilizes. For our grouping algorithm,
we do not iterate until convergence, but restrict to two full rounds, meaning that

yð0Þ*yð1Þ*yð2Þ ¼ y

is our final estimate in the penalized logistic regression model. The reason is to save
computing time: every iteration requires solving a linear equation system, which is by
far the most time consuming operation in our supervised algorithm; note that
we will run such 2-step Newton–Raphson very many times. The first iteration yields
the least squares ridge-type linear regression solution. This is already a consistent
estimator, if l is chosen appropriately. The second Newton–Raphson iteration
typically yields asymptotic efficiency, see [4]. Thus, this guarantees from a theoretical
viewpoint, that our procedure is precise enough. From an empirical viewpoint, we
observed that the probability ‘‘pattern’’ over the n observations did not change much
after 2 iterations. Thus, the grouping did hardly ever change at all if more than 2
iterations were done.

3.4.2. The Pelora algorithm

First, we give the details about 2 initial steps for our supervised grouping
procedure. Start with the entire ðn � pÞ gene expression matrix ðxigÞ:

1. Standardize the expression values xig ¼ ðx1g;y; xngÞ of every gene g to zero

mean and unit variance:

xig’
xig � aveðxgÞ

sdevðxgÞ
; for i ¼ 1;y; n:

With this standardization, we follow a widely adopted practice in gene
clustering and in penalty-based methods. It can, however, be regarded as an
optional step in our algorithm and software. Note that the rescaling to unit
variance, but not the mean centering, affects the outcome of Pelora.

2. The algorithm can be started from scratch or with initial groups G1;y;Gðq�1Þ
that reflect previous knowledge, for example about biochemical pathways.
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Compute the centroids of the initial groups,

exxj ¼
1

jGj j
X

gAGj
agxg for j ¼ 1;y; ðq � 1Þ and agAf�1; 1g;

where jGj j is the number of genes in group Gj : The optional parameter ag allows

one to have genes with different polarity, that is, one with low expression for
class 0 and the other one with low expression for class 1, in the same group. It
prevents their expressions from canceling out in the group centroid. In the next
step, we detail how to identify the starting gene for a new group.

3(a) IF no groups are given, we start from scratch with predictor exx ¼ ð1Þ: The goal
is to find the starting gene of group Gq with q ¼ 1:

3(b) IF an initial structure of ðq � 1Þ groups is given or already found, and the
current predictor is exx ¼ ð1; exx1;y; exxðq�1ÞÞ; the goal is to find the starting gene
for group Gq:

3(c) Fit penalized logistic regression with predictor exxþg ¼ ðexx; 1 	 xgÞ for every gene g

with ag ¼ 1 to obtain an estimated parameter vector yþg and conditional class

probabilities pyþgðexxþgÞ: Use them to compute the penalized negative log-

likelihood Sþg as in (5). Determine the winning gene g� ¼ arg ming Sþg and set

the initial centroid of the qth group to exxq ¼ xg� :

For the remainder of the algorithm, we assume without loss of generality
that q groups with centroids exx1;y; exxq are given. Group Gq is non-terminated and we

try to add another gene. Assume that the current value of the objective function

is Sold:

4. FOR each gene g ¼ 1;y; p repeat: Leave groups G1;y;Gðq�1Þ unchanged,

build temporary candidate groups Gþg
q and G�g

q by augmenting Gq with gene g

and polarity parameter agAf�1;þ1g: The group centroid is updated as

exxþg
q ¼ jGqj 	 exxq þ 1 	 xg

jGqj þ 1
and exx�g

q ¼ jGqj 	 exxq þ ð�1Þ 	 xg

jGqj þ 1
:

Fit penalized logistic regression with predictors exxþg ¼ ð1; exx1;y; exxþg
q Þ andexx�g ¼ ð1; exx1;y; exx�g

q Þ to obtain the parameter vectors yþg and y�g; as well as

conditional probabilities pyþgðexxþgÞ and py�gðexx�gÞ: Compute the penalized
negative log-likelihoods Sþg; S�g as in (5). Let Sg ¼ minðSþg;S�gÞ:

5. Identify the winning gene g� ¼ arg ming Sg: Compare it to Sold; the criterion

value before gene g� was added.
6(a) IF not improved, i.e. Sg�4Sold: Do not accept the gene, terminate the group,

continue with groups G1;y;Gq and their centroids. If qoqfinal ; increment q

and return to step 3 to start a new group.
6(b) IF improved, i.e. Sg�oSold: Accept the gene, determine the its polarity

parameter ag� and update group, group centroid and criterion value to
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ag�’signðS�g� � Sþg� Þ; Gq’Gq,fg�g;

exxq’
jGqj 	 exxq þ ag� 	 xg�

jGqj þ 1
; Sold’Sg� :

7. FOR each gene g ¼ 1;y; p̃ in group Gq repeat: Leave groups G1;y;Gðq�1Þ
unchanged and build the temporary candidate group Gg

q by excluding gene g

from group Gq: Update the group centroid,

exxg
q ¼ 1

jGqj � 1
X

g0AGq\fgg
ag0xg0 :

Fit penalized logistic regression with predictor exxg ¼ ð1; exx1;y; exxg
qÞ to obtain the

parameter vector yg and conditional probabilities pygðexxgÞ: Compute the
penalized negative log-likelihood Sg as in (5).

8. Identify the gene g� ¼ arg ming Sg; whose exclusion minimizes the grouping

criterion and compare it to Sold:
9(a) IF not improved, i.e. Sg�4Sold: Do not delete the gene, continue with groups

G1;y;Gq (note that Gq was augmented in step 6) and their centroids. Try to

add another gene by restarting at step 4.
9(b) IF improved, i.e. Sg�oSold: Exclude gene g� and update group, group centroid

and criterion value by
Gq’Gq\fg�g; exxq’exxg�

q ; Sold’Sg� :
Now try to add another gene by restarting at step 4.

In summary, our supervised algorithm is a one-step procedure for variable
selection, variable grouping and formation of new features by averaging the gene
expression within a group, including potential sign-flipping. Variable selection and
grouping are done with a stepwise forward search, where we try all genes and
augment the group by the gene which optimizes the criterion S from (5). After each
forward search, we continue with a backward pruning step to root out genes that
have been added wrongly to the group at earlier forward stages. Again, we try all
genes and decide on removal by optimizing the criterion S: Our grouping procedure
is supervised, since all decisions are based on optimizing the criterion S that
measures the ability of the groups for explaining the response variable y:
The number of groups qfinal can be set according to previous knowledge, it can be

chosen data-adaptively by cross validation, or it can be estimated by techniques such
as proposed in [8,19]. The computing time for finding q ¼ 10 groups in the AML/
ALL leukemia dataset with n ¼ 72 observations and p ¼ 3571 genes on a Linux PC
with an Intel Pentium IV 1:6 GHz processor is about 560 s: Software for our
supervised grouping algorithms is available under GNU public license as an R-
package called supclust from our webpage http://stat.ethz.ch/~dettling/

supervised.html. In the next sections, we discuss how Pelora can be extended to
non-dichotomous response, to a forward selection procedure based on single genes,
and how additional clinical covariates can be embedded into the grouping.
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3.4.3. How to deal with multiclass problems

Polytomous response problems will be handled by reformulating them as multiple
binary problems. This approach has been successful for a wide variety of machine
learning methods on many datasets. With microarray data, according to our
experience from [7], it often improves substantially upon simultaneous multiclass
versions, especially when variable selection is involved. The reason is that it is hard
to come up with single genes that accurately discriminate polytomous response.
Various approaches for reducing a K-class problem with yAf0;y;K � 1g to

binary problems exist, see [2] for a thorough discussion. We observed good empirical
prediction results already with the most simple solution, the one-against-all
approach. It works by defining

yðkÞ ¼
1 if y ¼ k;

0 else

�

for k ¼ 0;y;K � 1; and running the supervised grouping algorithm K times on the

dichotomous-response datasets ðx1; y
ðkÞ
1 Þ;y; ðxn; y

ðkÞ
n Þ as explained above. For each

binary problem, this finally yields q group centroids exxðkÞ
1 ;y; exxðkÞ

q that can be used as

features for polytomous classification. Instead of considering each class against all
the other classes, more complex or problem dependent strategies that utilize deeper
knowledge about the biological relation between the response classes could be even
more accurate for reducing multi-category to multiple binary problems.

3.4.4. How to incorporate clinical covariates

Cancer prognosis is traditionally done on the basis of clinical covariates such as
gender, patient age, tumor size, metastasis, cytogenetic aberrations and many more.
Some of these are easy to record and it is thus a waste of useful information if
modern cancer prognosis just relies on microarray data without regarding the
clinical status of a patient. We present here an approach for cancer prognosis that
combines microarray gene expression data with clinical covariates. We also address
the question of statistical inference in Section 4.4. Instead of the random pair ðx; yÞ;
we now have a random triple ðx; u; yÞ; where uARm are the m clinical covariates.
These can either be continuous, polytomous or binary, even a mixture of all three
types is allowed. We assume to have complete clinical data for all n patients.
For model selection, we apply our algorithm Pelora, still based on optimizing the

log-likelihood from (5) with penalized logistic regression. The idea is to identify a
combination of gene groups and clinical variables that is optimally predictive for the
response y: In particular, the predictor exx can now both contain group centroids exxj

and clinical covariates uk: To allow this, we just need to formulate step 3(c) from our
grouping procedure a bit more precisely:

3(c) Fit penalized logistic regression with the augmented predictor exxþg ¼ ðexx; 1 	 xgÞ
for every gene g and with exxþk ¼ ðexx; 1 	 ukÞ for every clinical covariate k to

obtain estimated parameter vectors yþg and yþk; as well as conditional class

probabilities pyþgðexxþgÞ; pyþkðexxþkÞ: Compute
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3(c) the penalized negative log-likelihoods Sþg;Sþk as in (5). Determine the winning

gene g� ¼ arg ming Sþg and the best covariate k� ¼ arg mink Sþk: If

minðSþg� ;Sþk� Þ ¼ Sþg� ; start a new group, set exxq ¼ xg� and continue with step

4. Else, if minðSþg� ;Sþk� Þ ¼ Sþk�
; pick up covariate k� into the predictor, setexxq ¼ uk� and restart at step 3 to identify the next predictor variable.

Thus, if a clinical covariate optimizes the grouping criterion S in step 3, it is
directly incorporated into the model without any grouping or averaging, and we
proceed by incrementing the current number q of predictors and restart at step 3 to
find the next starting gene or the next clinical covariate. On the other hand, if a gene
leads to the lowest value of S in step 3, we set the initial group centroid equal to this
gene and continue with step 4 to build a group.

3.4.5. Forward search without averaging

As pointed out by a referee, the Pelora algorithm can also be run as a forward
variable selection tool based on penalized logistic regression. Each predictor variableexxj consists of one single gene and neither any grouping nor any averaging

takes place. Thus, the gene that optimizes the grouping criterion S in step 3 of
our algorithm is incorporated into the model and the algorithm proceeds by
incrementing the current number of predictor variables q and restarts at step
3 to find the next gene. When performing such a forward selection, steps
4–9 of the algorithm are obsolete. This forward selection approach will be called
Forsela.

3.4.6. Pelora in comparison to Forsela

From a modeling point of view, both Pelora and Forsela perform gene selection
and fit a penalized linear logistic model with the selected genes. In Pelora, an
additional constraint comes in, this is, that the regression parameters are the same
for all genes within the same group. Thus, Pelora’s constraint can be viewed as a
further regularization, besides the c2-penalty in the objective function S: In view of
the ridge-type c2-penalty, Forsela penalizes every gene (standardized to variance one)
by the same amount while the matrix P for Pelora, appearing in (5), implies a
variable ridge penalty for the gene groups, which is inversely proportional to the
group size 1=jGj: Intuitively, this is the right notion since large groups have low-
variance centroids, as motivated in Section 2.3.
It is important to point out that Pelora does a more drastic dimensionality

reduction, by reducing to the group centroids, than Forsela which reduces to the
selected single genes. Moreover, the group centroids in Pelora have lower variance
than single genes which often results in lower variability in out-of-sample
predictions. The usefulness of such low-variance features, also known as meta- or
super-genes, has been recognized by others, see for example [15]. Thus, Pelora

can be viewed as a supervised method to construct good class-discriminatory
meta-genes.
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3.4.7. Extension to continuous response problems

If the interest is in finding gene groups whose collective expression is informative
for continuous responses such as tumor size or drug response, Pelora can be easily
adapted. The grouping algorithm is still supervised and follows the description from
Section 3.4.2, but it differs in the objective function S and does no longer rely on
penalized logistic regression as a learner. Instead, we may use the c2-penalized
residual sum of squares

S ¼
Xn

i¼1
ðyi � myðexxiÞÞ2 þ

n

2
lyT Py; ð8Þ

based on myðexxiÞ from (9), where y is the parameter vector, l is the tuning parameter
and P is the non-unit penalty matrix from Eq. (7). The ðq þ 1Þ-dimensional predictor
is exx ¼ ð1; exx1;y; exxqÞ: For continuous response y; the residual sum of squares is the

‘natural’ loss criterion and we rely on the classical linear model

myðexxiÞ ¼
Xq

j¼0
yjexxij ¼ exxiy for observations i ¼ 1;y; n: ð9Þ

The notion behind ridge regression [14] is to estimate the parameter vector y by
minimizing S from (8) with respect to y: Setting derivatives to zero leads to ðq þ 1Þ
linear equations, which can be solved as

byy ¼ eXX T eXX þ n

2
lP

� ��1
	 eXX T y;

representing an explicit solution for minimizing S in (8). Thus, the Newton–Raphson
approximation is not necessary, and we directly obtain the exact solution.

4. Numerical results

We evaluated our supervised grouping algorithms on several different datasets, all
describing the gene expression of cancer patients. In particular, we analyzed:

* The leukemia dataset of Golub et al. [12]: This dataset contains gene expression
levels of n ¼ 72 patients either suffering from acute lymphoblastic leukemia
(ALL, 47 cases) or acute myeloid leukemia (AML, 25 cases) and was obtained
from Affymetrix oligonucleotide microarrays. Available at http://www.geno-
me.wi.mit.edu/MPR are a training set of 38 observations and a test set of 34
samples. Following the protocol in [9], we preprocess the data by thresholding,
filtering, a base 10 log-transformation and standardization, so that the data finally
comprise the expression values of p ¼ 3571 genes.

* The estrogen and nodal datasets of West et al. [21]: These datasets monitor p ¼
7129 genes in 49 breast tumor samples and were obtained by applying the
Affymetrix technology. They are available at http://mgm.duke.edu/genome/
dna micro/work/. After thresholding to a floor of 100 and a ceiling of 16,000
expression units, we applied a base 10 log-transformation and standardized each
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experiment to zero mean and unit variance. Two response variables are available:
one describing the status of the estrogen receptor and the other coding for the
lymph node involvement. The two datasets are referred to as estrogen and nodal.

* The colon cancer dataset of Alon et al. [3]: This dataset was obtained from the
Affymetrix technology and shows expression levels of 40 tumor and 22 normal
colon tissues for a selection of 2000 genes with highest minimal intensity across
the samples. It is available at http://microarray.princeton.edu/oncology/.
We process these data further by a base 10 log-transformation and standardiza-
tion of each experiment to zero mean and unit variance across genes.

* The prostate cancer dataset of Singh et al. [18]: Available at http://www-

genome.wi.mit.edu/MPR/prostate, these data comprise the expression of 52
prostate tumor and 50 non-tumor prostate samples, obtained from the Affymetrix
technology. We use normalized and thresholded data as described in [18], leaving
us with the base 10 log-transformed expression of p ¼ 6033 genes, for each
experiment standardized to zero mean and unit variance across genes.

* The lymphoma dataset of Alizadeh et al. [1]: This dataset contains cDNA
microarray gene expression levels of the K ¼ 3 most prevalent adult lymphoid
malignancies. The sample size is n ¼ 62; the data are available at http://

llmpp.nih.gov/lymphoma/data/figure1. The expression of 4026 accurately
measured genes, either preferentially expressed in lymphoid cells or with known
immunological or oncological importance is documented. We imputed missing
values and standardized the data as described in [9].

4.1. Typical output

Generally, the output of Pelora looks very promising. In two-class datasets, each
group centroid exxj ; for j ¼ 1;y; qfinal; perfectly discriminates the two response

classes. As an example, the two-dimensional projection in Fig. 3 impressively shows
how well the group centroids separate between the three different tissue types of the
lymphoma dataset. The plot suggests that our group centroids are very suitable to
predict the tissue types. Indeed, they allow error-free classification of training
data and as shown in Section 4.2, they also yield good results on independent
test data.
The typical group size with Pelora is between 10 and 20 genes, Table 1 reports

average and standard deviation of the number of grouped genes for the first q ¼ 10
groups in each dataset, obtained from Pelora with l ¼ 1=32: Note that the choice of
the parameters q and l is discussed in Section 4.2. The group size slightly diminishes
with stronger penalization (increasing l), but the differences are not very big. Note
that with Wilma, our supervised algorithm from [6], the groups were smaller and
contained on average only between 5 and 7 genes. This may be caused by the fact
thatWilma is running under stronger supervision and has a grouping criterion which
is less smooth than the one of Pelora.
It is beyond the scope of our paper to judge the functional relevance and the

biological meaning of Pelora’s output. Instead, we collect empirical evidence that the
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group centroids are very informative for sample classification and perform at least as
good as established methods based on single genes.

4.2. Predictive potential

By our supervised grouping algorithm Pelora, sample classification is straightfor-
ward, as it comprises a built-in classifier. In general, a classifier is a function that
assigns a class label, based on observed features x: Here, these features will be the
group centroids exx1;y; exxq and class label prediction is done with Pelora’s conditional

probabilities pyðexxÞ via
byyðexxÞ ¼ 0 if pyðexxÞp1=2;

1 if pyðexxÞ41=2:
�

In multiclass problems, when using the one-against-all approach from Section 3.4.3,
the built-in classifier works by a maximum-likelihood principle. We obtain
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Fig. 3. Two-dimensional projection of lymphoma data: group centroid exxð0Þ
1 for discrimination of class 0

versus the classes 1 and 2 is on the x-axis, and exxð2Þ
1 for separation of class 2 versus classes 0 and 1 is on the

y-axis.

Table 1

Group size: average and standard deviation of q ¼ 10 groups from Pelora with l ¼ 1=32; for colon,
leukemia, estrogen, nodal, prostate and lymphoma data

Group size Colon Leuke Estro Nodal Prost Lymph

Mean 14.0 12.1 15.4 14.8 17.9 15.8

Standard dev. 5.3 3.2 4.2 4.3 9.0 3.5
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conditional class probabilities pyðexxðkÞÞ for every binary problem k ¼ 0;y;K � 1 and
assign the class label

byyðexxð0Þ;y; exxðK�1ÞÞ ¼ arg max
k

pyðexxðkÞÞ:
Instead of working with the built-in classifier, we could also use the group
centroids exx1;y; exxq as input for alternative methods like the nearest-neighbor rule

[9], (possibly restricted) linear or quadratic discriminant analysis [9] or support
vector machines [11], and many more. However, extensive experimentation (data not
shown) yielded no improvement with these alternative methods compared to the
built-in classifier.
In practice, the supervised groups and the built-in classifier are fitted on a learning

set of tissues whose class labels are known. Subsequently, they can be used to predict
the class labels of new tissues with unknown outcome. Since all the methodology for
the grouping and the built-in classifier have been described earlier, we focus now on
the only issue that remains, the choice of Pelora’s two free parameters: the number of
groups qfinal and the penalty parameter l: For a fair evaluation of the predictive
potential, tuning parameters should not be chosen such that the prediction results on
the test data are optimized. This often leads to a considerable selection bias and does
not reflect the practical situation where we have to predict the class labels of new
patients’ samples with unknown outcome.
As an example, we show here how to tune qfinal and l in a honest manner on the

leukemia training dataset comprising 38 observations. The idea is to mimic out-of-
sample classification by randomly splitting the training data into a learning set
of 25 observations and a validation set of 13 observations. We fit Pelora on
the learning set using all combinations of parameter values qfinalAf1; 2;y; 10g and
lA 1; 1

2
; 1
4
; 1
8
; 1
16
; 1
32
; 0

� �
; and then estimate the prediction accuracy by computing the

fraction of misclassified individuals on the validation set. We repeat the splitting
50 times and average the misclassification rates, see Table 2 and Fig. 4. The
optimal parameter values, leading to the lowest error-rates on the leukemia training

data, are qfinal ¼ 10 and l ¼ 1
32
: We now use Pelora’s groups and the built-in

classifier with these parameters to predict the original leukemia test dataset
comprising 34 observations. We observe that only 1 sample is wrongly classified, a
result which meets the state-of-the-art reported in the literature. Note that
penalized logistic regression without any variable selection as in [10] yielded
3 false predictions, whereas the combination of penalized logistic regression
and recursive feature elimination proposed in [22] also achieved our result of
1 misallocation.
Fig. 4 contains a graphical overview of the results we obtained for different

parameter values. We observe that the predictive potential is poor with very few
groups, then improves with increasing number of groups and stabilizes when more
than 6 groups are used. Of course, a much larger number of groups would exhibit
overfitting and result in poor prediction. Moreover, the correct amount of
penalization drastically improves the classification. Without penalization (l ¼ 0),
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the error-rates are almost twice as high as with moderate lA 1
32
; 1
8

� �
: Too strong

penalization with lX1
4
again degrades the classification. In general, the choice of the

parameters is not too difficult, as the misclassification rates do not fluctuate wildly
and are close to optimal over a larger range of qfinal and l:
Tables and figures for all the other datasets cannot be displayed here due to space

constraints. However, the full information is available from our webpage http://
stat.ethz.ch/~dettling/supervised.html. The results for the other datasets are
qualitatively equivalent, and the conclusions drawn from Table 2 and Fig. 4 also
hold there. After extensive experimentation, we determine the parameters qfinal ¼ 10
and l ¼ 1

32
as default values, with which we will run Pelora on datasets where no

independent test sets are available.
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Fig. 4. Graphical representation of misclassification rates for Pelora’s built-in classifier with different

parameter values l and qfinal; based on 50 random splits of the leukemia training dataset into learning sets

of 25 observations and validation sets of 13 tissues. In the right panel, the size of the squares corresponds

to the magnitude of the misclassification error.

Table 2

Misclassification rates for Pelora’s built-in classifier with different parameter values l and qfinal; based on

50 random splits of the leukemia training dataset into learning sets of 25 observations and validation sets

of 13 tissues

q ¼ 2 ð%Þ q ¼ 4 ð%Þ q ¼ 6 ð%Þ q ¼ 8 ð%Þ q ¼ 10 ð%Þ

l ¼ 1 23.54 16.62 14.15 13.54 12.77

l ¼ 1
2

16.31 13.69 12.62 11.08 10.62

l ¼ 1
4

13.85 10.77 9.54 8.77 8.00

l ¼ 1
8

9.08 8.31 7.23 7.54 7.23

l ¼ 1
16

7.08 7.54 7.54 7.54 6.77

l ¼ 1
32

8.77 6.92 6.77 6.31 5.69

l ¼ 0 9.54 10.00 10.00 10.00 10.00
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4.3. Comparison to other methods

In this section, we compare the predictive potential of Pelora’s built-in classifier
with our former supervised grouping algorithm Wilma [6], the forward selection
approach Forsela as presented in Section 3.4.5, and three classifiers that are working
with single genes as input. Since, except for the leukemia dataset, no genuine test sets
are available, we base this comparison on repeated random splits into learning sets
comprising two thirds, and validation sets containing one-third of the training data.
We do not run out-of-sample tuning to optimize the prediction results, but instead
rely on fixed default parameters. For Pelora, we use the built-in classifier with default
values qfinal ¼ 10 and l ¼ 1

32
: Our supervised grouping algorithm Wilma from [6],

which does not comprise an internal classifier, is used with q ¼ 10 group centroids as
input for the 1-nearest-neighbor rule. Extensive experimentation (data not shown)
with Forsela showed that l ¼ 1

32
and q ¼ 30 predictor variables (single genes) are

reasonable default parameters for this technique. Finally, we compare the predictive
potential of the group centroids with benchmark classification methods based on
single genes.
For the benchmark methods, we select the 200 individually most predictive genes

by the Wilcoxon statistic on the learning data (for each random split into training
and validation data). In multiclass problems, this gene preselection consists of
selecting the 200 most predictive genes for every binary discrimination. Note that
this number has been recognized as a reasonable value in the broad evaluation of
Dudoit et al. [9], and that Pelora is working with a similar number of genes, as it
relies on 10 groups containing on average around 20 genes. The classifiers that are
used with these 200 genes as input are the default 1-nearest-neighbor rule and
diagonal linear discriminant analysis, which were the best classifiers in Dudoit et al.’s
comparison study on microarray data [9]. As the state-of-the-art in modern
classification, we also employ a support vector machine (from the R-package e1071)
with radial basis kernel. We here rely on its default settings, although this flexible
classifier may yield better results after sophisticated fine tuning.
According to Table 3 and Fig. 5, the predictive potential of supervised groups’

centroids is convincing. We observe that our former implementation Wilma has an
edge over Pelora in the four ‘‘easier’’ datasets leukemia, estrogen, prostate and
lymphoma, but performs worse on the colon and nodal data. The improvement with
our new method is thus not just on the methodological side, but also with regard to
the prediction results in classification problems with substantial Bayes risk. This is
most likely due to more robustness in Pelora, that is, weaker influence of the
response y in gene grouping.
The forward selection approach Forsela, based on penalized logistic regression

without any averaging, compares surprisingly favorably against Pelora and all the
other methods. It yields low error-rates throughout, except for the leukemia and
nodal data. The observation that Pelora is better than Forsela on the difficult nodal
data set is probably due to the fact that the group centroids in Pelora are low-
variance predictors yielding smaller variability in out-of-sample predictions; see also
Section 3.4.6.
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The benchmark methods, diagonal linear discriminant analysis, the 1-nearest-
neighbor-rule and support vector machines, perform similarly as Pelora, but slightly
worse than Wilma and Forsela. This means that we have collected quite a bit of
empirical evidence that our supervised grouping approaches yield gene groups which
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Fig. 5. Box and whisker plots, showing the variation of the misclassification rates over 50 random splits

into learning set 2
3
of data

� �
and validation set 1

3
of data

� �
for 6 different classifiers: Pelora and Wilma

with q ¼ 10 groups, Forsela with q ¼ 30 single genes, as well as the 1-nearest-neighbor rule (NNR),
diagonal linear discriminant analysis (DLD) and a support vector machine (SVM), based on 200 single

genes.

Table 3

Misclassification rates for our supervised grouping algorithms Pelora and Wilma, the forward selection

approach Forsela based on penalized logistic regression, as well as for the 1-nearest-neighbor rule (NNR),

diagonal linear discriminant analysis (DLD) and support vector machines (SVM) with the 200 individually

most predictive genes for 6 different datasets

Colon (% ) Leuke (% ) Estro (% ) Nodal (% ) Prost (% ) Lymph (% )

Pelora 15.71 5.69 11.50 27.88 8.94 0.76

Wilma 16.48 2.62 8.75 35.88 8.06 0.57

Forsela 13.81 4.15 11.88 35.25 8.24 0.48

NNR 200 15.90 2.46 15.38 43.25 12.82 0.67

DLD 200 13.33 2.62 9.50 36.12 15.82 0.67

SVM 200 17.62 0.92 11.12 36.88 8.35 0.48

All error-rates are means from 50 random splits into learning set 2
3
of data

� �
and validation set

1
3
of data

� �
:
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are valuable for sample classification. But bothWilma and Pelora should not only be
seen as pure prediction tools. They partition thousands of genes into a few small
groups that contain very useful information for explaining the outcome y: This is
certainly an interesting dimensionality reduction and the gene groups may yield a
clue on how the genome works with respect to certain diseases, and they can be used
as a starting point to reveal functional gene groups or regulatory gene sub-networks.

4.4. Significance of group centroids and clinical variables

For obtaining a prediction model that combines microarray data and clinical
covariates, we described in Section 3.4.4 how Pelora incorporates clinical variables
into the grouping process. Here, we analyze how much prediction information is
contained in the group centroids and the covariates. For illustration, we rely on the
breast cancer dataset of van’t Veer et al. [20]. Its training dataset contains expression
values of 5408 genes from red/green cDNA microarrays for 78 patients: 34 who
developed metastases within 5 years, and 44 who remained disease-free during this
period. Furthermore, information about 6 covariates is provided, which in clinical
practice is used to decide upon therapy. In particular, these variables are the tumor
grade Af1; 2; 3g; the estrogen receptor status A½0; 100�; the progesteron receptor
status A½0; 100�; the tumor size in millimeters, the patient age and angioinvasion
Af0; 1g:
When using Pelora with default l ¼ 1

32
on the combined breast cancer expression

and clinical data, we observe that none of the clinical variables entered the model,
even if the number of predictors was raised to qfinal ¼ 30: This is in line with the
findings in van’t Veer et al. [20] and can be interpreted that the clinical covariates,
compared to the expression profile, do not contain much useful information for class
prediction.
Note that in other datasets, where more strongly predictive clinical variables are

available, we may observe a mixture of group centroids and covariates already
among the first 10 predictors identified by Pelora. To simulate this situation and to
exemplify how one can determine which predictors contribute significantly to sample
classification, we artificially reduced the breast cancer dataset to 1141 arbitrarily
chosen genes. Then, among the first 10 predictors Pelora selected, are the intercept,
six gene groups and 3 clinical variables. In order of selection, the latter are tumor
grade, patient age and angioinvasion.
To answer the question whether some of these clinical covariates, and which of the

group centroids, contribute significantly to sample classification, we do bootstrap-
based statistical inference on an independent breast cancer test dataset, which
contains the expression values and clinical data of 19 additional patients: 7 who
remained metastasis-free for 5 years and 12 who experienced disease progression. By
using only the model-structure from the training data, we fitted penalized logistic
regression as in Section 3.4.1 on the test dataset and obtained the parameter vectorbyytest ¼ ðbyytest0 ;y;byytestq Þ: To get an impression about the distribution and variability of
these coefficients, we generate 1000 non-parametric bootstrap samples from the test
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data by drawing with replacement: every run bAf1;y; 1000g yields an estimated
parameter vector byyðbÞ ¼ ðbyyðbÞ0 ;y;byyðbÞq Þ: For quantifying the significance of each
predictor variable, we computed the ð1� aÞ-bootstrap confidence intervals

½2 	 byytestj � q
j;ð1� a

2
Þ; 2 	 byytestj � q

j;
a
2
�;

where qj;a is the a-quantile of the bootstrap distribution. Inverting these intervals
leads to the p-values reported in Table 4. For the reduced breast cancer dataset with
1141 genes, all fitted predictor variables except for 3 group centroids turned out to be
significant at the 5%-level.

5. Conclusions

We have presented methodology for finding predictive molecular gene signatures
from microarray data by using supervised grouping techniques. This is potentially
beneficial in medical diagnostics and prognostics, as the identified signature groups
are made up of interacting genes whose expression centroids have high explanatory
power for the response variable. These groups of genes and their centroids can in
turn be used to accurately predict the outcome of new samples. But supervised
grouping should not be seen as a pure prediction tool: it partitions thousands of
genes into a few small gene groups which amounts to a drastic dimensionality
reduction. Moreover, groups of genes may yield more important biological insights
than single genes, for example as valuable first information about gene function and
regulation.
From a more technical viewpoint, our novel supervised grouping algorithm Pelora

combines supervised gene selection, gene grouping and optional sample classification
in a single-step approach. Its goal is to find groups of genes whose centroids render
the discrimination of the outcome y as simple as possible. We solve this by building
the groups incrementally in a combination of forward steps and regularly recurring
cleaning steps. All grouping operations are based on an empirical objective function
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Table 4

Bootstrap p-values for the coefficients of Pelora’s prediction model on the breast cancer data with 1141

arbitrarily chosen genes

Predictor 0 1 2 3 4

Variable Intercept Clinical Group Clinical Group

p-value 0.012 0.000 0.000 0.000 0.136

Predictor 5 6 7 8 9

Variable Group Group Group Clinical Group

p-value 0.084 0.008 0.146 0.024 0.022

Variables 2, 4, 5–7 and 9 are group centroids, variable 1 is the tumor grade, variable 3 is the patient age

and variable 8 is angioinvasion.
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that includes information from the y-values and is based on conditional class
probabilities computed from penalized logistic regression analysis. By using these
probability estimates, Pelora also comprises a built-in classifier that exploits the gene
group centroids.

Pelora improves many of the limitations of Wilma, our first implementation of
supervised grouping. It also allows to capture genes operating in multiple pathways,
as it does not require disjointness of its groups. By using a grouping criterion that is
based on multiple groups, we can expect to find a team of interacting groups instead
of a cohort of individual players as with Wilma. Moreover, we have proposed
extensions of Pelora to polytomous and continuous response problems, to a forward
selection technique for genes without any averaging, as well as a combination with
additional clinical covariates. But Pelora does not only convince by its neat features
or its coherent algorithm which is based on sound statistical methodology within the
likelihood framework: with an extensive empirical study on a variety of microarray
gene expression datasets, we provide empirical evidence that Pelora’s predictive
potential can keep up with established classifiers and state-of-the-art machine
learning methods, and has a great potential to improve them on difficult datasets
with high misclassification risk. Although Pelora was specifically developed for the
analysis of microarray data, it may be useful for other data that are subject to the
‘‘large p; small n’’ problem and where a few underlying groups of explanatory
variables are expected to determine most of the outcome variation.

Appendix. Proof—penalized logistic regression with non-unit penalty

Here, we prove that penalized logistic regression with non-standardized predictorexx ¼ ð1; exx1;y; exxqÞ and the non-unit penalty matrix P from (7) yields equivalent

parameter estimates and the same fitted values as when working with the unit

penalty matrix Q ¼ diagð0; 1q�qÞ and standardized predictor *u ¼ 1
s0
;exx1

s1
;y;

exxq

sq

� �
;

where s0 ¼ 1 per definition and sj; for j ¼ 1;y; q; is the (empirical) standard

deviation of exxj: The classical logistic model can then be formulated equivalently as

log
pyðexxiÞ

1� pyðexxiÞ

� 	
¼

Xq

j¼0
yjexxij ¼

Xq

j¼0
gj ũij ¼ log

pgð*uiÞ
1� pgð*uiÞ

� 	
; ðA:1Þ

with parameters y ¼ ðy0;y; yqÞT and g ¼ ðg0;y; gqÞT ; where gj ¼ yjsj for j ¼
0;y; q: From (A.1) it follows that pyðexxiÞ ¼ pgð*uiÞ: Estimates of the parameters are
then obtained by penalized maximum likelihood via

byy ¼ arg min
y

�
Xn

i¼1
ðyi log pyðexxiÞ þ ð1� yiÞ logð1� pyðexxiÞÞÞ þ n

l
2
yT Py;

bgg ¼ arg min
g

�
Xn

i¼1
ðyi log pgð*uiÞ þ ð1� yiÞlogð1� pgð*uiÞÞÞ þ n

l
2
gT Qg:
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Now, by using pyðexxiÞ ¼ pgð*uiÞ and the equality yT Py ¼ gT Qg; we obtain bggj ¼ byyjsj ;

from which the claim follows.
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