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Abstract

This paper investigates the rate of convergence of estimating the regression weight function in a functional
linear regression model. It is assumed that the predictor as well as the weight function are smooth and
periodic in the sense that the derivatives are equal at the boundary points. Assuming that the functional data
are observed at discrete points with measurement error, the complex Fourier basis is adopted in estimating
the true data and the regression weight function based on the penalized least-squares criterion. The rate of
convergence is then derived for both estimators.A simulation study is also provided to illustrate the numerical
performance of our approach, and to make a comparison with the principal component regression approach.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

As a byproduct of modern science and technology, a lot of the data that are observed or collected
in many fields nowadays are exceptionally high-dimensional. One such example is functional data,
where each observation in a sample can be viewed as a function, as opposed to a scalar or a vector.
In reality, for one reason or another if not simply human limitation, instead of observing such
functions in their entirety, one only observes the values of the functions at a finite set of points.
Nevertheless, the number of values observed per function may be quite large, sometimes much
larger than the total number of functions, so that traditional multivariate analytical theory and
methodology are not directly applicable. Indeed, the analysis of functional data has been steadily
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gaining attention among statisticians and practitioners, and there has been much progress on the
methodology front in trying to understand how to deal with such data. The books Ramsay and
Silverman [15,16,20] and their website “http://ego.psych.mcgill.ca/misc/fda” contain a substantial
amount of information in that regard. However, there has been much less progress on the theory
front. This is not a surprise in view of the nature of the difficulties, as theoretical results in this
regard invariably involve the theory of functional analysis, multivariate analysis, optimization,
and nonparametric function estimation.

One relatively simple problem, the linear regression, did receive a considerable attention theory-
wise. Consider the model

Yi = � +
∫ b

a

Xi(t)f (t) dt + εi, i = 1, . . . , n, (1)

where the response Yi , the fixed intercept � and error εi are scalar, and the predictor Xi and
regression weight function f are functions on [a, b]. For now, assume that we observe the Xi, Yi

and we are interested in the inference of �, f and the variance of ε. In particular, we are interested
in the rates of convergence in estimating f. In this regard, we mention the papers Cai and Hall
[3], Cardot et al. [4], Cardot and Sarda [5], Hall and Horowitz [11] and Müller and Stadtmüller
[14]. Each of these papers contributes ideas to the development a satisfying asymptotic theory for
functional data analysis. However, all of the papers assumed that the functional predictors Xi are
completely observed. This assumption is crucial for their results, but is seldom met in practice.
To make matters worse, in reality there may be measurement error in observing Xi . The goal of
the present paper is to address the linear regression problem under these practical situations.

This problem is ill-posed in the sense that a minute change in the data may lead to a huge
changes in the resulting estimates [19]. One of the greatest challenges here (and elsewhere in
functional data analysis) is to consider how to interface the finite-dimensional space in which
the data are collected and the infinite-dimensional space where the truth resides. Ramsay and
Silverman [20] proposed the following practical solution. First, represent both the Xi and g, any
candidate estimate of f, in terms of a set of pre-selected basis functions �1, . . . ,�K , say, so that

X̃i =
K∑

k=1

bi,k�k and g =
K∑

k=1

ck�k,

where the “ ˜” in X̃i signifies the fact that this is a function that approximates the true function
Xi based on the finitely observed values of Xi . Then estimate � and f by the minimizer of the
following penalized least-squares criterion function

n−1
n∑

i=1

[
Yi − � −

∫ 1

0
X̃ig

]2

+ �
∫ 1

0
[g(m)]2

= n−1
n∑

i=1

[
Yi − � −

K∑
k=1

K∑
�=1

bi,kc�

∫ 1

0
�k��

]2

+ �
K∑

k=1

K∑
�=1

ckc�

∫ 1

0
�(m)

k �(m)
� ,

where � is a smoothing parameter. They noted that the choice of the basis functions depends on
the nature of the problem and the data. This is appealing since now we have a finite-dimensional
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optimization problem to cope with. Furthermore, if the basis functions are such that the matrix
{∫ 1

0 �(m)
k �(m)

� }Kk,�=1 has a band structure, the computations will be even more straightforward;
examples of such basis functions include Fourier, B-splines, and natural splines. It is also worth
mentioning that variations of the basis-function approaches are adopted by other authors in study-
ing the linear regression model; they include Cardot et al. [4] who studied penalized B-splines,
and James et al. [12] who considered a parametric approach.

The splines are general and flexible approximating functions which have a lot of desirable
properties for this problem. However, theoretically they are more difficult to deal with, and we
will address that problem in a forthcoming paper. In the present paper, we will focus on Fourier
basis. The Fourier functions are a ideal basis if the data are smooth and exhibit periodicity; an
example of that is the Canadian weather data in Ramsay and Silverman [20]. They are certainly
the most convenient basis functions to work with in terms of developing theory, since they are
orthogonal, their mth derivatives are orthogonal, and the orthogonality even carries over to the
discretized basis vectors when the set of discrete points are equally spaced. Our goal of this paper
is to study the rate of convergence of the penalized least-squares estimation using the Fourier
basis. We will show that the rate of convergence is similar to that obtained in nonparametric
regression function estimation.

The nature of the topic makes it necessary to employ some standard functional analysis termi-
nology and results. They are basic and do not go beyond the first course in functional analysis.
The reader is referred to Conway [6] for details.

This paper is structured as follows. Section 2 describes the model assumptions, the two-stage
penalized least-squares approach for estimation of the weight function, and our main theoretical
results for the estimator. In Section 3, we discuss some computational issues, such as selection
of the smoothing parameters, and conduct a simulation study to illustrate the performance of
the penalized least-squares approach. Another popular approach in functional linear model is the
principal component regression (PCR) approach, which was considered by Hall and Horowitz
[11], Cai and Hall [3], Müller and Stadtmüller [14], among others. A comparison of the penalized
least-squares approach with the PCR approach is also provided via the simulation study in Section
3. All proofs and lemmas are collected in Section 4.

2. Assumptions and main results

2.1. Model assumptions and the two-stage penalized least-square estimator

Assume that the functional predictor X is a real-valued, zero-mean, second-order stochastic
process on [0, 1] (cf. [1]). Further, for some positive integer m, assume that with probability one
X belongs to the periodic Soblev space

Wm
2,per = {g ∈ L2[0, 1]: g is m-times differentiable where g(m) ∈ L2[0, 1] and

g(�) is absolutely continuous with g(�)(0) = g(�)(1), 0���m − 1}.
It is well known that Wm

2,per is dense in L2[0, 1], therefore our methodology below based on this
assumption applies to even situations for which this assumption is not met. However, relaxing the
smoothness and boundary conditions does affect the convergence rate of our estimator. Denote
by R(s, t) the covariance function

R(s, t) = E[X(s)X(t)], s, t ∈ [0, 1],
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and T the corresponding covariance operator

T : g →
∫ 1

s=0
R(s, ·)g(s) ds, g ∈ L2[0, 1].

For convenience, we will assume throughout without further mention that E‖X‖4
L2 < ∞, where

‖ · ‖L2 denotes the usual norm in L2[0, 1]. This implies, among other things, that∫ 1

0

∫ 1

0
R2(s, t) ds dt =

∫ 1

0

∫ 1

0
E2[X(s)X(t)] ds dt

�
∫ 1

0

∫ 1

0
E[X2(s)X2(t)] ds dt = E(‖X‖4

L2) < ∞,

which shows that T is a Hilbert–Schmidt operator. Also, for convenience, we will assume through-
out that Var(

∫ 1
0 X(t) dt) > 0, which will guarantee that our penalized least-squares estimator is

well defined when the sample size is large.
Let Xi, 1� i�n, be n independent realizations of X. Below we consider the linear regression

model (1) with � = 0. This simplification is minor for our results, but entails a considerable
saving in term of notation. Let tj = (2j − 1)/(2J ), 1�j �J , be the locations where we observe
the Xi ; assume that the data that are observed are Yi, 1� i�n, and

Zi = (Zi,1, . . . , Zi,J )T = (Xi(t1) + �i,1, . . . , Xi(tJ ) + �i,J )T , 1� i�n,

where �i,j is measurement error for Xi(tj ). The εi, �i,j are assumed to be mutually uncorrelated,
and independent of the Xi(tj ), with mean zero and

Var(εi) = �2
ε and Var(�i,j ) = �2

� .

The most convenient Fourier basis functions for our problem are the complex Fourier functions
�k(t) = e2�ikt , k = 0, ±1, ±2, . . . . We could equivalently use the pairs of sine and cosine
functions, but that will be much more cumbersome notationally. Thus, we need to extend our
L2-space inner product and norm to cover complex-valued functions; specifically, for complex-
valued measurable functions g and h satisfying

∫ 1
0 gḡ and

∫ 1
0 hh̄ < ∞, define 〈g, h〉L2 := ∫ 1

0 gh̄

and ‖g‖2
L2 = 〈g, g〉L2 .

It is well known that each g ∈ Wm
2,per can be uniquely represented as g =∑∞

k=−∞ ck�k in the

L2 sense with c̄k = c−k . Let

K = [(J − 1)/2] = max{k�(J − 1)/2; k is an integer},
and put

�(t) = (�−K(t), . . . ,�0(t), . . . ,�K(t))T ,

� = {�k(tj )}j=1,...,J ;k=−K,...,K,

and

W = {〈�(m)
i , �(m)

j 〉L2}Ki,j=−K.

Clearly,

W = diag {(2�K)2m, . . . , (2�)2m, 0, (2�)2m, . . . , (2�K)2m}, (2)
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and, since the tj are equally spaced,

J−1�̄
T
� = I.

First, for some smoothing parameter 	, approximate each Zi by X̃i,	, the minimizer u =∑K
k=−K

bk�k of the penalized least-squares criterion function

J−1
J∑

j=1

|Zi,j − u(tj )|2 + 	
∫ 1

0
|u(m)|2,

namely,

X̃i,	(t) = �T (t)P	Zi , (3)

where

P	 = J−1(I + 	W)−1�̄
T
. (4)

Since the Zi are real, it is easily seen that the X̃i,	 are real. Note that this smoother is an ap-
proximation to the periodic smoothing spline which uses infinitely many Fourier basis functions.
In Theorem 2 below, we will show that, under certain assumptions, the convergence rate of the
smoother in (3) is comparable to that of periodic smoothing spline given by Rice and Rosenblatt
[17]. See Eubank [9], Section 6.3.1 for more details on periodic splines. This justifies the usage
of roughly the same number of Fourier basis functions as the number of points. Using a finite
number of basis functions is, of course, crucial for the computations that have to be performed in
this problem.

Next, in addition to the smoothing parameter 	 that we used for obtaining the X̃i,	, let � be
a second smoothing parameter, and f̂�,	 be the minimizer g ∈ Wm

2,per of the following criterion
function:

n−1
n∑

i=1

|Yi − 〈X̃i,	, g〉L2 |2 + �
∫ 1

0
|g(m)|2. (5)

In real life, a good choice of the smoothing parameters is crucial to the success of the estimators.
More discussions on the strategy of smoothing parameter selection are provided in Section 3.

2.2. Theoretical results

Our main results below address the rate of convergence of f̂�,	 as functions of 	, �, as well as
the sample sizes n, J .

Denote by E the space spanned by the eigenfunctions of the covariance operator T. It is clear
that if E is not the whole L2 space, then f is not identifiable, since 〈f + g, X〉L2 = 〈f, X〉L2 for
any g ∈ E⊥. Therefore, we will discuss convergence rate in some functional norms other than
L2.

Let T̃	 be the covariance operator of the sample covariance function

R̃	(s, t) = 1

n

n∑
i=1

X̃i,	(s)X̃i,	(t), (6)
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and

〈g, h〉
T̃	

= 〈g, T̃	h〉L2 and ‖g‖2
T̃	

= 〈g, g〉
T̃	

.

Similarly, define 〈g, h〉T and ‖g‖T with T replacing T̃	 in the above. We will consider the con-
vergence rate of f̂� based on the following two criteria:

E(‖f̂�,	 − f ‖2
T̃	

|Z) and E(‖f̂�,	 − f ‖2
T |Z), (7)

where Z = (Z1, . . . , Zn)
T . Since

‖f̂�,	 − f ‖2
T̃	

= n−1
n∑

i=1

|〈X̃i,	, f 〉L2 − 〈X̃i,	, f̂�,	〉L2 |2,

E(‖f̂�,	 −f ‖2
T̃	

|Z) is heuristically a measure of prediction error based on the smoothed empirical

distribution. On the other hand, E(‖f̂�,	 − f ‖2
T |Z) is a measure of prediction error for a future

observation. Indeed, if we ideally observe every value on a new curve X0(t) from the same
population but independent of Xi , i = 1, . . . , n, then the conditional mean square prediction
error for 〈X0, f 〉L2 is

E[(〈X0, f̂�,	〉L2 − 〈X0, f 〉L2)2|Z] = E(‖f̂�,	 − f ‖2
T |Z).

Nevertheless, as will be shown below, T̃	 converges to T in the large sample scenario and the two
criteria are very close. Similar considerations exist in Cai and Hall [3] and Cardot et al. [4].

Now we state the main results.

Theorem 1. There exists some finite constant C that depends only on f such that

E(‖f̂�,	 − f ‖2
T̃	

|Z)�C

(
� + n−1�−1/(2m)�2

	 + 1

n

n∑
i=1

E(‖X̃i,	 − Xi‖2
L2 |Zi )

)
(8)

for all n, J, �, and 	, where �	 is the largest eigenvalue of T̃	.

Note that the first and second terms on the right of (8) describe the square bias and variance,
respectively, of the procedure; the third term there essentially reflects the error of approximating
Xi by X̃i,	.

To obtain a concrete rate of convergence for E(‖f̂�,	 − f ‖2
T̃	

|Z), the following Theorem 2 is

crucial.

Theorem 2. Assume that X ∈ Wm
2,per a.s. and E(‖X(m)‖2

L2) < ∞. Then

E(‖X̃1,	 − X1‖2
L2) = O(	 + J−1	−1/(2m)) (9)

for 	 → 0 and J 2m	 → ∞. If, in addition, X ∈ W 2m
2,per a.s. and E(‖X(2m)‖2

L2) < ∞, then

E(‖X̃1,	 − X1‖2
L2) = O(	2 + J−1	−1/(2m)) (10)

for 	 → 0 and J 2m	 → ∞.
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Theorem 2 is similar in spirit to Theorem 2 of Rice and Rosenblatt [17], which studies the
rate of convergence of the periodic smoothing spline estimator in nonparametric regression. As
we mentioned before, even though X̃1,	 is estimated with a finite number of Fourier basis func-
tions, the rate of convergence is comparable to that of the periodic smoothing spline estimator
using an infinite number of basis functions. The result (10) shows that with the extra conditions
X1 ∈ W 2m

2,per a.s. and E(‖X(2m)
1 ‖2

L2) < ∞ in place but not specifically taken into account in the
estimation procedure, the rate of convergence will nevertheless improve. This also parallels Rice
and Rosenblatt’s treatment of the periodic smoothing spline.

For the case where �� = 0, i.e., the Xi(tj ) are observed without measurement error, we have

E(‖X̃1,0 − X1‖2
L2)�CJ−(2m−1),

under E‖X(m)
1 ‖2

L2 < ∞. The proof of this result follows in a straightforward manner from the
derivations in the proof of Theorem 2 and is omitted.

The term n−1∑n
i=1 E(‖X̃i,	 − Xi‖2

L2 |Zi ) in (8) clearly converges in L1 to 0 at the rates
described by (9) and (10) under the respective settings there. Further, since T is bounded, it is
natural to expect that T̃	 is also bounded so that �	 = Op(1) under appropriate conditions. Thus,
we state the following result.

Theorem 3. Suppose that X ∈ Wm
2,per a.s., and E(‖X(m)‖2

L2) < ∞. Then

E(‖f̂�,	 − f ‖2
T̃	

|Z) = Op(� + 	 + n−1�−1/(2m) + J−1	−1/(2m)) (11)

for � → 0, 	 → 0, n2m� → ∞, and J 2m	 → ∞. If, in addition, X ∈ W 2m
2,per a.s., and

E(‖X(2m)‖2
L2) < ∞, then we have

E(‖f̂�,	 − f ‖2
T̃	

|Z) = Op(� + 	2 + n−1�−1/(2m) + J−1	−1/(2m)) (12)

for � → 0, 	 → 0, n2m� → ∞, and J 2m	 → ∞.

It follows from (11) that the optimal rate of convergence of f̂�,	 in T̃	-norm is

n−2m/(2m+1) + J−2m/(2m+1)

under the general assumptions of Theorem 3; the rate can be improved to

n−2m/(2m+1) + J−4m/(4m+1)

under the additional assumptions X ∈ W 2m
2,per a.s. and E(‖X(2m)‖2

L2) < ∞, as described by (12).

In the following, we consider rates of convergence if T̃	 is replaced by T. To do that we need
to quantify the distance between T̃	 and T, for which the Hilbert–Schmidt norm seems ideal. See
Conway [6] and Dauxois et al. [8]. For any self-adjoint operator A on L2[0, 1], let ‖A‖H be the
Hilbert–Schmidt norm of the operator.

Theorem 4. Suppose that, for some m�2, X ∈ Wm
2,per a.s., supt E{[X(m)(t)]2} < ∞, and

E(‖X(m)‖4
L2) < ∞. Also assume that E(�4) < ∞. Then

E(‖T̃	 − T ‖2
H) = O(n−1 + 	 + J−2	−1/(2m))
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for � → 0, 	 → 0, n2m� → ∞, and J 2m	 → ∞. If, in addition, X ∈ W 2m
2,per a.s., supt E{[X(2m)

(t)]2} < ∞, and E(‖X(2m)‖4
L2) < ∞, then

E(‖T̃	 − T ‖2
H) = O(n−1 + 	2 + J−2	−1/(2m))

for � → 0, 	 → 0, n2m� → ∞, and J 2m	 → ∞.

Note that Theorem 4 should be compared with the results in Dauxois et al. [8] which were
proved under the assumption that the Xi are completely and precisely observed.

The following result gives the rates of convergence of f̂�,	 in T-norm.

Theorem 5. Suppose that for some m�2, X ∈ Wm
2,per a.s., supt E{[X(m)(t)]2} < ∞, and

E(‖X(m)‖4
L2) < ∞. Also assume that E(�4) < ∞. Then

E(‖f̂�,	 − f ‖2
T |Z) = Op(n−1/2 + � + n−1�−1/(2m) + 	1/2 + J−1	−1/2m)

for n, J, �, 	 with

� → 0, 	 → 0, n2m� → ∞, (n�)−1 = O(1),

J 2m	 → ∞ and (	 + J−1	−1/(2m))/� = O(1). (13)

If, in addition, X ∈ W 2m
2,per a.s., supt E{[X(2m)(t)]2} < ∞, and E(‖X(2m)‖4

L2) < ∞, then

E(‖f̂�,	 − f ‖2
T |Z) = Op(n−1/2 + � + n−1�−1/(2m) + 	 + J−1	−1/2m)

for n, J, �, 	 satisfying (13).

3. Computational issues and a simulation study

3.1. Smoothing parameter selection

As explained, our approach requires two smoothing parameters, 	 and �, for smoothing each
individual curve and estimating the regression weight function, respectively.

There is sizeable literature on smoothing a group of curves, for example Brumback and Rice
[2], Guo [10], Ruppert et al. [18]. As pointed out by these authors, when the group of curves
are modeled as realizations of a stochastic process, it is reasonable to use the same smoothing
parameter for all the curves. In addition, the relationship between smoothing spline or P-spline
with mixed-effects models has long been established, and thus the smoothing parameter can be
chosen by standard variation estimation procedures in mixed-effects models, such as REML.
See Ruppert et al. [18] for a comprehensive review. Following these, the periodic smoothing
splines used in the first stage of our method also has a mixed-effects model interpretation, and
the smoothing parameter 	 can be chosen by REML. The details are given as follows.

In our theoretical derivation, we used complex Fourier basis in order to simplify notation. In a
real-data analysis, one can avoid complex numbers by using real Fourier basis: �0(t) = 1, �k(t) =√

2 cos (2k�t) for k = 1, . . . , K , and �k(t) = √
2 sin {2(k − K)�t} for k = K + 1, . . . , 2K ,

where K = [J/2]. The mixed-effects model for the functional predictors is the following. Let

Zi = vi1 + �̃ui + �i , i = 1, . . . , n,
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where �i ∼ MVN(0, �2
�I ), vi are the fixed effects, ui ∼ MVN(0, (�2

�/	)W−1) are the random

effects, �̃ = {�k(tj )}J×2K , and W = (〈�(m)
k1

, �(m)
k2

〉)2K×2K . Then the periodic smoothing splines

X̃i are the BLUPs of this mixed-effects model, and the smoothing parameter 	 can be selected
by REML.

After smoothing each individual curve, the second stage of our method is simply a ridge regres-
sion. The smoothing parameter can, in principle, be chosen by a number of standard procedures,
such as GCV or Cp.

3.2. Simulation study

In this section, we apply our method of estimation to a simulated data set and compare the
result with that of PCR approach.

In our simulations, we generated Xi by

Xi(t) = ui,0 +
∞∑

k=1

ui,k

√
2 cos (2k�t)/(k + 0.5)3 +

∞∑
k=1

vi,k

√
2 sin (2k�t)/(k + 0.5)3

+ ũi,1{1 + √
2 cos (8�t) + 0.75

√
2 sin (16�t)}/36

+ ũi,2{0.6
√

2 cos (4�t) + 1.5
√

2 sin (10�t)}/25, (14)

where ui,k, vi,k, ũi,k ∼ Normal(0, 1). The last two terms on the rhs of (14) introduce dependence
into the Fourier coefficients of X(t), and also change the principal component directions somewhat
so that they are not simply the Fourier basis functions.

Suppose the regression weight function has the following decomposition

f (t) = b0 +
∞∑

k=1

b1,k

√
2 cos (2k�t) +

∞∑
k=1

b2,k

√
2 sin(2k�t).

Then

Yi =
∫ 1

0
Xi(t)f (t) dt + εi

= ui,0b0 +
∞∑

k=1

(ui,kb1,k + vi,kb2,k)/(k + 0.5)3

×ũi,1(b0 + b1,4 + 0.75b2,8)/36 + ũi,2(0.6b1,2 + 1.5b2,5)/25 + εi .

In our simulations, we set �2
ε = 0.09, and adopted the following weight function:

f (t) = 0.8 − 0.8
√

2 cos (2�t) + 0.7
√

2 sin (2�t) − 1.4
√

2 cos (4�t)

+ 0.65
√

2 sin(4�t) +
∞∑

k=3

k−3
√

2{cos (2k�t) + sin (2k�t)}.

The functional predictors Xi(t) were observed at J = 100 equally spaced points, and the mea-
surements were contaminated with measurement errors with �2

� = 0.04. In each simulation run,
we generated n = 100 observations for training (estimation) and another 100 for validation
(prediction), and used 〈Xnew, f̂�,	〉L2 to predict 〈Xnew, f 〉L2 .

For the training sample, we first smoothed each curve with the same smoothing parameter 	
selected by REML. The results of smoothing for the first nine curves are shown in Fig. 1. As one
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Fig. 1. Smoothing each individual curves, 	 chosen by REML. The dots are the error contaminated observations Zi , the
red solid curves are the true functional predictor Xi(t), and the blue dashed curves are the ones recovered from noisy data
X̃i (t).

can see the results are quite satisfactory. In the second stage, we estimated the weight function,
with the smoothing parameter � chosen by generalized cross-validation (GCV). We then applied
the estimator to the simulated validation data and calculated the prediction mean-squared error.
As discussed before, the prediction mean-squared error is related to the T-norm criterion in our
theoretical results.

A numerical comparison was made with the PCR approach, which is another popular approach
for functional linear regression. See the references given in Section 1. Generally, the PCR ap-
proach assumes that the data Xi are completely observed as curves, where the leading principal
components of the estimated covariance functions are used as basis functions. The number of
principal components to be used can also, in principle, be chosen by GCV or Cp. Since the Xi

in our case are observed at discrete points, to make the comparison fair, we applied the same
smoothing step as in the first stage of our approach to smooth each curve before carrying out
the functional principal component analysis. The number of principal components entering the
model was selected by the cross-validation approach suggested in Cai and Hall [3].
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We observed from our simulations that whenever the data-driven procedures selected appro-
priate � and the number of principal components, both procedures worked well but our approach
had a clear advantage in terms of the prediction mean-squared error. We attribute this partly to the
fact the response Y is not directly linked to the principal components of the predictor X(t). We
also observed that both data-driven parameter selection procedures bring extra variability to the
estimators, especially for the PCR approach; in fact, since the principal components of X(t) do
not contribute to Y directly, cross-validation tends to admit too many components into the model,
causing more frequent failures for the PCR.As such, in order to still make some sort of comparison
in multiple-run simulations, one possibility is to fix � and the number of principal components in
the two procedures. Thus, we conducted 100 simulation runs of the experiment described above,
with a fixed � selected by a successful run and the number of principal components set to be 5,
which, by our experience, is when PCR performs the best in this particular model. The averaged
prediction mean square error over the 100 runs is 0.0048 for our approach and 0.0050 for the
PCR approach.

This simulation study provides an example where our penalized least-squares approach is a
highly competitive alternative to the PCR.

4. Proofs

Throughout this section, we adopt the following notations: for any complex-valued vector
b, ‖b‖2 = bT b̄; for any zero-mean, complex-valued, random variables X and Y, Cov(X, Y ) =
E(XȲ ).

4.1. Proof of Theorem 1

Since X̃i,	 ∈ span{�i (·), i = −K, . . . , K}, by orthogonality of Fourier basis, f̂�,	 is spanned

by the same set of basis functions and we can write f̂�,	 = �T 
̂. Then minimizing (5) to obtain

f̂�,	 for all g ∈ Wm
2,per is equivalent to minimizing

n−1
n∑

i=1

|Yi − ZT
i V b̄|2 + �bT Wb̄

to obtain 
̂ for all b in the (2K + 1)-dimensional complex space, where V = P T
	 〈�, �T 〉L2 =

J−1�̄(I + 	W)−1, P	 being defined in (4). Since Yi and X̃i,	 are real-valued, it is clear that f̂�,	

is real-valued, and 
̂ satisfies 
̂j = 
̂−j , j = −K, . . . , K .
Define

�n,J = n−1ZT Z and �̌	 = n−1V̄ T ZT ZV, (15)

and

ri = 〈Xi, f 〉L2 − 〈X̃i,	, f 〉L2 and r = (r1, . . . , rn)
T .

It is easy to check that �̌	 is an Hermitian matrix, i.e. �̌
T

	 = �̌	. Suppose that f =∑∞
j=−∞ 
j�j ,

and denote by f̌ the projection of f onto span{�−K, . . . ,�K}, and 
̌ = (
−K, . . . , 
K)T . By

orthogonality of Fourier basis, 〈X̃i,	, f 〉L2 = 〈X̃i,	, f̌ 〉L2 = ZT
i V 
̌. On the other hand, since both
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X̃i,	 and f are real-valued functions, we have 〈X̃i,	, f 〉L2 = ZT
i V̄ 
̌. Writing � = (ε1, . . . , εn)

T ,
we have

f̂�,	(t) = �T (t)(V T ZT ZV̄ + n�W)−1V T ZT Y

= �T (t)(�̌
T

	 + �W)−1n−1V T ZT (ZV̄ 
̌ + r + �)

=: �T (t)(
̌� + 
̂r + 
̂ε)

=: f̌�,	(t) + g�(t) + h�(t). (16)

By (6),

R̃	(s, t) = 1

n

n∑
i=1

X̃i,	(s)X̃i,	(t) = �(s)T P	�n,J P T
	 �(t).

For any g(t) = �(t)T b ∈ span{�−K, . . . ,�K}, we have

(T̃	g)(t) =
∫

R̃	(s, t)g(s) ds

= �T (t)P	�n,J P̄ T
	

{∫
�̄(s)�T (s) ds

}
b = �T (t)P	�n,J V̄ b

and hence by (15),

‖g‖2
T̃	

= 〈g, T̃	g〉L2 = bT V̄ T �n,J V b̄ = bT �̌	b̄ = n−1‖ZV̄ b‖2. (17)

It follows from (16) that

‖f̂�,	 − f ‖2
T̃	

�3‖f̌�,	 − f ‖2
T̃	

+ 3‖g�‖2
T̃	

+ 3‖h�‖2
T̃	

. (18)

First, consider ‖f̌�,	 − f ‖2
T̃	

which is equal to ‖f̌�,	 − f̌ ‖2
T̃	

. By (17),

‖f̌�,	 − f ‖2
T̃	

= ‖f̌�,	 − f̌ ‖2
T̃	

= n−1‖ZV̄ (
̌� − 
̌)‖2.

Since f̌�,	 is the solution of the following problem:

min
g=�T b

{n−1‖ŽV̄ (b − 
̌)‖2 + �bT Wb̄},

we conclude that

‖f̌�,	 − f ‖2
T̃	

= n−1‖ZV̄ (
̌� − 
̌)‖2

� n−1‖ZV̄ (
̌� − 
̌)‖2 + �
̌
T

� W 
̌�

� �
̌
T
W 
̌ = �‖f̌ (m)‖2

L2 ��‖f (m)‖2
L2 . (19)

Note that this is an approach for handling the bias introduced by Craven and Wahba [7]. Next,
by (17),

E(‖h�‖2
T̃	

|Z) = E{�T n−1ZV (�̌	 + �W)−1�̌	(�̌
T

	 + �W)−1n−1V̄ T ZT �|Z}
= n−1�2

ε tr{(�̌	 + �W)−1�̌	(�̌	 + �W)−1�̌	}.
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Let �i , �i , 	i , and �i be the ith smallest eigenvalue of W, �̌	, �̌	 + �W , and (�̌	 + �W)−1�̌	,
respectively. Observe that for any complex-valued function g = �T b, we have

〈g, T̃	g〉L2

‖g‖2
L2

= bT �̌	b̄

bT b̄
, (20)

and hence the eigenvalues of �̌	 are the same as those of T̃	. Thus, �̌	 is positive semi-definite
and �i �0 for all i. Note that �2K+1 is denoted as �	 in the statement of the theorem to emphasize
its dependence on 	. By (2), �i = ([i/2]2�)2m, i = 1, . . . , 2K + 1. We clearly also have

�i �1 and 	i ��([i/2]2�)2m ��((i − 1)�)2m for all i.

It follows from Theorem 7 of Merikoski and Kumar [13] that

�(2K+1)−i+1 �	−1
i �	 for all i.

Thus,

�(2K−1)−i+1 � min(1, �	�−2m�−1(i − 1)−2m) for all i,

and therefore

tr{(�̌	 + �W)−1�̌	(�̌	 + �W)−1�̌	}

=
2K+1∑
i=1

�2
i �

[�−1/(2m)]∑
i=1

1 + �2
	

�4m�2

2K+1∑
i=[�−1/(2m)]+1

(i − 1)−4m �C�−1/(2m)�2
	.

Hence,

E(‖h�‖2
T̃	

|Z)�Cn−1�−1/(2m)�2
	. (21)

Next,

E(‖g�‖2
T̃	

|Z) = E{rT n−1ZV (�̌	 + �W)−1�̌	(�̌	 + �W)−1n−1V̄ T ZT r|Z}.

Since the eigenvalues of ZV (�̌	 + �W)−1�̌	(�̌	 + �W)−1n−1V̄ T ZT are the same as those of

(�̌	 + �W)−1�̌	(�̌	 + �W)−1n−1V̄ T ZT ZV = [(�̌	 + �W)−1�̌	]2,

which are bounded by 1, we conclude that

E(‖g�‖2
T̃	

|Z) � 1

n
E(rT r|Z) = 1

n

n∑
i=1

E(r2
i |Zi )

�
‖f ‖2

L2

n

n∑
i=1

E(‖X̃i,	 − Xi‖2
L2 |Zi ), (22)

by the Cauchy–Schwarz inequality. The result follows from (18), (19), (21), and (22).
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4.2. Proof of Theorem 2

Lemma 6. Suppose tj = (2j − 1)/(2J ), j = 1, . . . , J , then

J∑
j=1

�̄k1
(tj )�k2

(tj ) =
{

(−1)sJ if k2 = k1 + sJ,

0 otherwise.

Proof. If k2 − k1 is not a multiple of J, we have

J∑
j=1

�̄k1
(tj )�k2

(tj ) =
J∑

j=1

e(k2−k1)2�itj = e(k2−k1)2�i(2J+1)/(2J ) − e(k2−k1)2�i/(2J )

1 − e(k2−k1)2�i/J
= 0.

Next, suppose k2 = k1 + sJ for some integer s, we have

J∑
j=1

�̄k1
(tj )�k2

(tj ) =
J∑

j=1

es�i(2j−1) =
J∑

j=1

(−1)s = J (−1)s . �

Lemma 7. Let g∈Wm
2,per have the Fourier basis representation g=∑∞

j=−∞ cj�j (t) in L2[0, 1].
Then the Fourier basis representation for g(m) is

∞∑
j=−∞

cj (2�ji)m�j (t),

and we have

‖g(m)‖2
L2 =

∞∑
j=−∞

(2�j)2m|cj |2.

Proof. Let gk = ∑k
j=−k cj�j and consider g(m) − g

(m)
k . Note that the assumption implies that

g(�)(0) = g(�)(1), 0���m − 1, and �(s)
j (0) = �(s)

j (1) for all s. Integrating by parts repeatedly,

〈g(m) − g
(m)
k , �j 〉L2 = (−1)m〈g − gk, (2�ji)m�j 〉L2 = 0 for all j = −k, . . . , k.

This means that g
(m)
k = ∑k

i=−k (2�ji)mcj�j is the L2 projection of g(m) on span{�j , j =
−k, . . . , k}. Since g(m) ∈ L2[0, 1], and the Fourier basis is complete, we conclude that g

(m)
k →

g(m) in L2[0, 1] and the result follows. �

Proof of Theorem 2. The proof is similar to those in Rice and Rosenblatt [17]. As before,

X = (X(t1), . . . , X(tJ ))T , � = (�1, . . . , �J ) and Z = X + �.

Let X(t) =∑∞
j=−∞ aj�j (t). By Lemma 6,

ãj := J−1
J∑

l=1

�j (tl)X(tl) =
∞∑

s=−∞
(−1)saj+sJ , j = −K, . . . , K.
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Thus,

X̃	(t) = �T (t)(I + 	W)−1J−1�T Z

=
K∑

j=−K

(1 + (2�)2m	j2m)−1(ãj + �̃j )�j (t),

where �̃j = J−1∑J
k=1 �j (tk)�k . Next,

E(‖X̃	 − X‖2) = E

⎡⎢⎣∫
∣∣∣∣∣∣

K∑
j=−K

{aj − (1 + (2�)2m	j2m)−1(ãj + �̃j )}�j (t)

∣∣∣∣∣∣
2

dt

⎤⎥⎦

+ E

⎡⎢⎣∫
∣∣∣∣∣∣
∑

|j |>K

aj�j (t)

∣∣∣∣∣∣
2

dt

⎤⎥⎦
= E

⎡⎣ K∑
j=−K

|	(2�)2mj2maj − (ãj − aj ) − �̃j |2
(1 + 	(2�)2mj2m)2

⎤⎦+ E

⎡⎣ ∑
|j |>K

|aj |2
⎤⎦

� 2E

⎡⎣ K∑
j=−K

	2(2�)4mj4m|aj |2
(1 + 	(2�)2mj2m)2

⎤⎦+ 2E

⎡⎣ K∑
j=−K

|ãj − aj |2
(1 + 	(2�)2mj2m)2

⎤⎦
+

K∑
j=−K

J−1�2
�

(1 + 	(2�)2mj2m)2 + E

⎡⎣ ∑
|j |>K

|aj |2
⎤⎦ .

Note that, by Lemma 7,

‖X(m)‖2
L2 =

∞∑
j=−∞

(2j�)2m|aj |2 a.s.

and therefore, with probability one,

K∑
j=−K

	2(2�)4mj4m|aj |2
(1 + 	(2�)2mj2m)2 �

K∑
j=−K

	(2�)2mj2m|aj |2
(1 + 	(2�)2mj2m)

� 	
K∑

j=−K

(2�)2mj2m|aj |2 �	‖X(m)‖2
L2

and ∑
|j |>K

|aj |2 �(2�)−2mK−2m
∑

|j |>K

(2�)2mj2m|aj |2 �K−2m(2�)−2m‖X(m)‖2
L2 .
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By integral approximation,

K∑
j=−K

(1 + 	(2�j)2m)−r ∼ (2�)−1	−1/(2m)

∫ ∞

−∞
(1 + x2m)−r dx, r �1. (23)

On the other hand, with probability one,

|ãj − aj |2 =
∣∣∣∣∣∣
∑
s �=0

(−1)saj+sJ

∣∣∣∣∣∣
2

�

⎧⎨⎩∑
s �=0

(j + sJ )−2m

⎫⎬⎭
⎧⎨⎩∑

s �=0

(j + sJ )2m|aj+sJ |2
⎫⎬⎭

= O(J−2m)‖X(m)‖2
L2 ,

so that

K∑
j=−K

|ãj − aj |2
(1 + 	(2�)2mj2m)2 = O(J−2m	−1/2m)‖X(m)‖2

L2 .

Combining these and applying the assumptions K ∼ J/2, and E(‖X(m)‖2
L2) < ∞, we obtain

(9).
Next, if X ∈ W 2m

2,per, we have
∑∞

j=−∞(2�j)4m|aj |2 = ‖X(2m)‖2
L2 . The proof of (10) is the

same as that for (9), except that now we have, with probability one,∑
|j |>K

|aj |2 �(2�)−4mK−4m
∑

|j |>K

(2�)4mj4m|aj |2 �K−4m(2�)−4m‖X(2m)‖2
L2 ,

|ãj − aj |2 �

⎧⎨⎩∑
s �=0

(j + sJ )−4m

⎫⎬⎭
⎧⎨⎩∑

s �=0

(j + sJ )4m|aj+sJ |2
⎫⎬⎭ �O(J−4m)‖X(2m)‖2

L2 ,

K∑
j=−K

	2(2�)4mj4m|aj |2
(1 + 	(2�)2mj2m)2 �	2

K∑
j=−K

(2�)4mj4m|aj |2 �	2‖X(2m)‖2
L2 .

Therefore, the term O(	) in (9) is replaced by O(	2) and (10) follows. �

4.3. Proof of Theorem 3

In view of the discussions prior to the statement of the theorem, it suffices to show that �	 =
Op(1), where �	 is the largest eigenvalue of T̃	. By (20), T̃	 and �̌	 have the same eigenvalues. By

(15), the eigenvalues of �̌	 are bounded by those of J−1�n,J = J−1n−1ZT Z. Hence it suffices
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to show that

sup
n,J

J−2E[tr(�2
n,J )] < ∞.

Straightforward computations show that

1

J 2 E[tr(�2
n,J )] = 1

nJ 2

J∑
j=1

J∑
k=1

E[(X1(tj ) + �1,j )
2(X1(tk) + �1,k)

2]

+n − 1

nJ 2

J∑
j=1

J∑
k=1

E2[(X1(tj ) + �1,j )(X1(tk) + �1,k)].

By the Cauchy–Schwarz inequality, it is sufficient to deal with the first expression on the right.
Since the Xi and the �i,j are independent,

1

J 2

J∑
j=1

J∑
k=1

E[(X1(tj ) + �1,j )
2(X1(tk) + �1,k)

2]

= 1

J 2

J∑
j=1

J∑
k=1

{E[X2
1(tj )X

2
1(tk)] + �2

�(E[X2
1(tj )] + E[X2

1(tk)]) + �4
�},

which will be bounded under the assumption that E(‖X1‖4
L2) < ∞.

4.4. Proof of Theorem 4

Let X{�} =∑�
j=−� aj�j , namely the projection of X on span{�k, −��k��}. Then

R(s, t) = E[X(s)X̄(t)] = lim
�1,�2→∞ E[X{�1}(s)X̄{�2}(t)]

=
∞∑

j1=−∞

∞∑
j2=−∞

E(aj1 āj2)�j1
(s)�̄j2

(t).

For convenience, write aj1,j2 = E(aj1 āj2). By an argument similar to that used in Lemma 7,
using the assumption E{[X(m)(s)]2} < ∞ for all s, we have

R(m,m)(s, t) =
∞∑

j1=−∞

∞∑
j2=−∞

aj1,j2(2�ij1)
m(−2�ij2)

m�j1
(s)�̄j2

(t)

= lim
�1,�2→∞ E[X(m)

{�1}(s)X̄
(m)
{�2}(t)] = E[X(m)(s)X̄(m)(t)].

Consequently, we have
∞∑

j1=−∞

∞∑
j2=−∞

(2�j1)
2m(2�j2)

2m|aj1,j2 |2

=
∫ 1

0

∫ 1

0
[R(m,m)(s, t)]2 ds dt=

∫ 1

0

∫ 1

0
E2[X(m)(s)X(m)(t)]�E‖X(m)‖4

L2<∞. (24)
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Similarly, under the additional conditions X ∈ W 2m
2,per a.s., E{[X(2m)(s)]2} < ∞ for all s, and

E‖X(2m)‖2
L2 < ∞, we can show

∞∑
j1=−∞

∞∑
j2=−∞

(2�j1)
4m|aj1,j2 |2 =

∫ 1

0

∫ 1

0
|R(2m,0)(s, t)|2

=
∫ 1

0

∫ 1

0
E2[X(2m)(s)X(t)]

�
(
E‖X(2m)‖4

L2E‖X‖4
L2

)1/2
< ∞. (25)

Define R	 = E[R̃	(s, t)] and let T	 be the corresponding covariance operator. The following
calculations are similar to those in Theorem 2. Let � = E(X1XT

1 ) = (R(tl, tk))
J
l,k=1, it follows

that

R	(s, t) = �T (s)P	E(Z1ZT
1 )P̄ T

	 �̄(t)

= J−2�T (s)(I + 	W)−1�̄
T
(� + �2

�I )�(I + 	W)−1�̄(t)

=
K∑

j=−K

K∑
k=−K

ãjk{1 + 	(2�j)2m}−1{1 + 	(2�k)2m}−1�j (s)�̄k(t)

+ �2
�J

−1
K∑

j=−K

{1 + 	(2�j)2m}−2�j (s)�̄j (t),

where

ãj1,j2 =
J∑

l=1

J∑
k=1

R(tl, tk)�̄j1
(tl)�j2

(tk)

=
∞∑

s1=−∞

∞∑
s2=−∞

(−1)s1+s2aj1+s1J,j1+s2J , −K �j1, j2 �K.

Then

‖T	 − T ‖2
H =

∫ 1

0

∫ 1

0
[R	(s, t) − R(s, t)]2 ds dt

� 2
K∑

j1=−K

K∑
j2=−K

|ãj1,j2{1 + 	(2�j1)
2m}−1{1 + 	(2�j2)

2m}−1 − aj1,j2 |2

+ 2�4
�J

−2
K∑

j=−K

{1 + 	(2�j)2m}−4 +
∑

|j1|>K

∑
|j2|>K

|aj1,j2 |2.

Suppose first that X ∈ Wm
2,per and E‖X(m)‖4

L2 < ∞. By (24),

∑
|j1|>K

∑
|j2|>K

|aj1,j2 |2 �(2�K)−4m
∑

|j1|>K

∑
|j2|>K

(2�j1)
2m(2�j2)

2m|aj1,j2 |2 = Op(J−4m),
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and by (23) with r = 4,

J−2
K∑

j=−K

{1 + 	(2�j)2m}−4 = O(J−2	−1/(2m)).

Now,

K∑
j1=−K

K∑
j2=−K

|ãj1,j2{1 + 	(2�j1)
2m}−1{1 + 	(2�j2)

2m}−1 − aj1,j2 |2 �2(A + B),

where

A =
K∑

j1=−K

K∑
j2=−K

|ãj1,j2 − aj1,j2 |2{1 + 	(2�j1)
2m}−2{1 + 	(2�j2)

2m}−2,

B =
K∑

j1=−K

K∑
j2=−K

|aj1,j2{1 + 	(2�j1)
2m}−1{1 + 	(2�j2)

2m}−1 − aj1,j2 |2.

It follows that

|ãj1,j2 − aj1,j2 |2 �

⎛⎝ ∑
(s1,s2)�=(0,0)

|aj1+s1J,j1+s2J |
⎞⎠2

�

⎧⎨⎩ ∑
(s1,s2)�=(0,0)

(j1 + s1J )−2m(j2 + s2J )−2m

⎫⎬⎭
×
⎧⎨⎩ ∑

(s1,s2)�=(0,0)

(j1 + s1J )2m(j2 + s2J )2m|aj1,j2 |2
⎫⎬⎭

�

⎡⎣⎧⎨⎩∑
s1 �=0

(j1 + s1J )−2m

⎫⎬⎭
{ ∞∑

s2=−∞
(j2 + s2J )−2m

}

+
{ ∞∑

s1=−∞
(j1 + s1J )−2m

}⎧⎨⎩∑
s2 �=0

(j2 + s2J )−2m

⎫⎬⎭
⎤⎦

×
∫ 1

0

∫ 1

0
|R(m,m)(s, t)|2 ds dt

= O(J−2m). (26)

By (23) with r = 2 and (26),

A = O(J−2m	−1/m).
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Next,

B � 3
K∑

j1=−K

K∑
j2=−K

	2(2�j1)
4m|aj1,j2 |2 + 	2(2�j2)

4m|aj1,j2 |2
{1 + 	(2�j1)2m}2{1 + 	(2�j2)2m}2

+ 3
K∑

j1=−K

K∑
j2=−K

	4(2�j1)
4m(2�j2)

4m|aj1,j2 |2
{1 + 	(2�j1)2m}2{1 + 	(2�j2)2m}2 .

Clearly,

	2(2�j1)
4m + 	2(2�j2)

4m

{1 + 	(2�j1)2m}2{1 + 	(2�j2)2m}2 �	(2�j1)
2m + 	(2�j2)

2m,

and

	4(2�j1)
4m(2�j2)

4m

{1 + 	(2�j1)2m}2{1 + 	(2�j2)2m}2 �	2(2�j1)
2m(2�j2)

2m.

We thus have

B � 3
K∑

j1=−K

K∑
j2=−K

{	(2�j1)
2m + 	(2�j2)

2m + 	2(2�j1)
2m(2�j2)

2m}|aj1,j2 |2

= O(	).

Combining the various computations, using the fact that if m�2 and
J−1	−1/(2m) → 0 then J−2m	−1/m = o(J−2	−1/(2m)), we conclude

‖T	 − T ‖2
H = O(	 + J−2	−1/(2m)) if X ∈ Wm

2,per and E‖X(m)‖4
L2 < ∞. (27)

Now if X ∈ W 2m
2,per and E‖X(2m)‖2

L2 < ∞, the same approach shows that B = O(	2). Thus,

‖T	 − T ‖2
H = O(	2 + J−2	−1/(2m)) if X ∈ W 2m

2,per and E‖X(2m)‖4
L2 < ∞. (28)

Next,

E(‖T̃	 − T	‖2
H) = E

∫ 1

0

∫ 1

0
[R̃	(s, t) − R	(s, t)]2 ds dt

= n−1
∫ 1

0

∫ 1

0
Var{X̃	(s)X̃	(t)} ds dt �n−1E(‖X̃	‖4

L2).

If follows that

E(‖X̃	‖4
L2)�8E(‖X‖4

L2) + 8E(‖X̃	 − X‖4
L2),

where E(‖X‖4
L2) < ∞ by assumption. By calculations in Theorem 2, we have

‖X̃	 − X‖2
L2 �{	 + O(J−2m)}‖X(m)‖2

L2 + 2
J∑

j=1

�̃2
j

(1 + 	�2mj2m)2 .

Some tedious but straightforward calculations show that E(�̃2
j �̃

2
k) = O(J−2), and we obtain

E(‖X̃	 − X‖4
L2) = O(	2) + O(J−2	−1/m).
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We have thus shown

E(‖T̃	 − T	‖2
H) = O(n−1). (29)

The results in theorem follow from (27)–(29).

4.5. Proof of Theorem 5

Define bilinear forms

L(g) = 〈g, T	g〉L2 + 〈g(m), g(m)〉L2 and L̃(g) = 〈g, T̃	g〉L2 + 〈g(m), g(m)〉L2 .

Lemma 8. Assume that the conditions of Theorem 4 hold. Let n, J, 	 be such that n−1 + 	 +
J−1	−1/(2m) → 0. The following can be shown:

(i) lim infJ,	 inf
g=�T b,‖g‖

L2 =1 L(g) > 0, and

(ii) limn,J,	 P(inf
g=�T b,‖g‖

L2 =1 L̃(g) > c) = 1 for some constant c > 0.

Proof. For convenience let n, J, 	 be indexed by k and n−1
k +	k +J−1

k 	−1/(2m)
k → 0 as k → ∞.

(i) Notice that the null space of 〈g(m), g(m)〉L2 is spanned by �0. On the other hand, by our
assumption, 〈�0, T �0〉L2 = c0 > 0. Fix 0 < 
 < c0 and pick a large enough k so that we have
‖T	 −T ‖ < 
 and 〈�0, T	�0〉L2 �c0 − 
 by Theorem 4. Note that in this proof, the operator norm
can be the usual sup-norm, which is dominated by the Hilbert–Schmidt norm. For any g = �T b

with bT b̄ = 1, let h = g − b0�0, then ‖h‖2 = 1 − |b0|2. Thus,

L(g) � c1|b0|2 − 2|b0||〈�0, T	h〉L2 | + 〈h(m), h(m)〉L2

� c1|b0|2 − 2c2‖h‖ + c3‖h‖2 for all large k;
on the other hand, L(g)�〈g(m), g(m)〉L2 = 〈h(m), h(m)〉L2 �c3‖h‖2, therefore

L(g)�(c1|b0|2 − 2c2‖h‖)+ + c3‖h‖2 for all large k.

Note that the minimum of this lower bound does not depend on J or 	.
(ii) Let c be the lim inf in part (i). For any 0 < 
 < c,

P

(
inf

g=�T b,bT b̄=1
L̃(g)�c − 


)
= P

(
inf

g=�T b,bT b̄=1
L̃(g)�c − 
, ‖T̃	 − T	‖�


)

+P

(
inf

g=�T b,bT b̄=1
L̃(g) > c − 
, ‖T̃	 − T	‖ > 


)
.

When k is large enough, the first term is equal to P(‖T̃	 − T	‖�
) which tends to 1 as k → ∞,
and the second term tends to 0. �

Proof of Theorem 5. We will start by showing that E(‖f̂�,	‖2|Z) = Op(1). First,

‖f̌�,	‖2
L2 = ‖(�̌T

	 + �W)−1�̌
T

	 
̌‖2 �‖
̌‖2 = ‖f̌ ‖2
L2 < ‖f ‖2

L2 .

Second, let �min(·) and �max(·) be the functions that return the smallest and largest eigenvalues
of a matrix. For any function g(t) = �T (t)b, we have L̃(g) = bT (�̌	 + W)b̄, then by Lemma 8,
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�min(�̌	+W) = Op(1). Hence, �min(�̌	+�W) = Op(�), and �max{(�̌	+�W)−1} = Op(�−1).

Also, as stated before, the eigenvalues of �̌	 are the same as those of T̃	, and hence �̌	 is positive
semi-definite. It then follows that

E(‖h�‖2
L2 |Z) = E{�n−1ZV (�̌	 + �W)−2n−1V̄ T ZT �|Z}

= n−1�2

 tr {(�̌	 + �W)−2�̌	}

� n−1�2

 tr {(�̌	 + �W)−1}

� n−1�2



⎡⎣�max{(�̌	 + �W)−1} + 2�−1
K∑

j=1

(2�j)−2m

⎤⎦
= Op(n−1�−1).

Thirdly, by the assumption that (	 + J−1	−1/(2m))/� is bounded,

E(‖g�‖2
L2 |Z) = E{rn−1ZV (�̌	 + �W)−2n−1V̄ T ZT r|Z}

� n−1�max{(�̌	 + �W)−1}E{rn−1ZV (�̌	 + �W)−1V̄ ZT r|Z}
� n−1�max{(�̌	 + �W)−1}E(rT r|Z)

= Op(�−1){Op(	) + Op(J−1	−1/(2m))} = Op(1).

Now, by (16), we have E(‖f̂�,	‖2
L2 |Z) = Op(1), and therefore

E(‖f̂�,	 − f ‖2
L2 |Z) = Op(1).

Finally, notice that

E(‖f̂�,	 − f ‖2
T |Z) = E(‖f̂�,	 − f ‖2

T̃	
|Z) + E{〈f̂�,	 − f, (T − T̃	)(f̂�,	 − f )〉L2 |Z}

� E(‖f̂�,	 − f ‖2
T̃	

|Z) + ‖T − T̃	‖HE(‖f̂�,	 − f ‖2
L2 |Z).

The result follows from Theorems 3 and 4. �
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