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Abstract

An alternative to the accelerated failure time model is to regress the median of the failure time on the
covariates. In the recent years, censored median regression models have been shown to be useful for analyzing
a variety of censored survival data with the robustness property. Based on missing information principle, a
semiparametric inference procedure for regression parameter has been developed when censoring variable
depends on continuous covariate. In order to improve the low coverage accuracy of such procedure, we apply
an empirical likelihood ratio method (EL) to the model and derive the limiting distributions of the estimated
and adjusted empirical likelihood ratios for the vector of regression parameter. Two kinds of EL confidence
regions for the unknown vector of regression parameters are obtained accordingly. We conduct an extensive
simulation study to compare the performance of the proposed methods with that normal approximation based
method. The simulation results suggest that the EL methods outperform the normal approximation based
method in terms of coverage probability. Finally, we make some discussions about our methods.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that Cox’s regression model is popular in the analysis of survival data. An
alternative to the Cox [5] proportional hazards model is the accelerate failure time (AFT) model.
The AFT model is attractive due to its easy and simple interpretation. Some related early work
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includes Buckley and James [2], Koul et al. [16], Lai and Ying [17], Ritov [32], Tsiatis [38], Wei
et al. [42], among others.

Bassett and Koenker [1] and Koenker and Bassett [15] introduced the least absolute deviations
(LAD) method for the robust estimation of median regression models with uncensored data. In
recent years, the median regression models have shown many useful applications in economics,
biology, ecology, finance and statistics, etc. In biomedical research, median life length provides
accurate and meaningful information on the survival when the distribution is heavily skewed.
Once the regression parameters of the model are estimated, it is straightforward to obtain the
information about median life length. Thus, the median regression model offers an attractive
alternative to both the Cox regression model and AFT model with the robustness property.

We consider the problem of fitting a median regression model from right censored data. Let
Ti (i = 1, . . . , n) be the response of interest. Let Zi = (Z0i , Z1i , . . . , Zpi)

′, where Z0i = 1 be
the corresponding p+1 dimensional covariate vector. The censoring variable Ci is assumed to be
conditionally independent of Ti given the covariate Zi for 1� i�n. We observe (Xi, �i ), where
Xi = min(Ti, Ci) and �i = I (Xi = Ti).

Suppose

Ti = �′Zi + εi , (1.1)

where � is a (p + 1) × 1 vector of unknown regression parameter. The joint distribution of the
observation error εi and the covariate Zi is unknown, but the conditional median of εi is zero.

Ying et al. [44] investigated censored median regression model in which the censoring is
independent of the covariate, or that Z takes only discrete values. More recently, Qin and Tsao [30]
proposed an alternative semiparametric procedure based on the estimating equation proposed by
Ying et al. [44]. The theoretical result holds only when censoring is independent of the covariate,
or when the covariate is discrete. It is known that the independence of Ci from Zi is rare in
clinical trials. Thus, the independence assumption where the censoring variable is independent of
the covariate is restrictive in the applications. Hence, the proposed method is not applicable when
censoring depends on continuous covariate and it limits the application of the proposed method
in practice.

Recently, McKeague et al. [21] applied missing information principle (MIP) to the median re-
gression model (1.1) and proposed a new estimating equation. The MIP originated from Orchard
and Woodbury [25] (cf. [18]). The idea of MIP is to replace a full-data estimating equation by
its estimated conditional expectation given the observed data. It gives a general way to construct
estimating equation in incomplete data problem. Moreover, the simulation study by McKeague
et al. [21] demonstrates that the new estimator has improved moderate-sample performance of
the estimator of Ying et al. [44]. Applying Dabrowska’s [6] kernel conditional Kaplan–Meier
estimator for the conditional survival function to estimate F(t, z) for a one-dimensional contin-
uous covariate, Subramanian [36] proposed an estimating equation with MIP. Subramanian [36]
removes the independence assumption of censoring variable from covariates in Ying et al. [44],
and allows censoring variable to depend on a one-dimensional covariate which is more suitable
in clinical trials. In addition, he derived the large sample properties of the MIP estimator. The
simulation study shows that the estimator of Ying et al. [44] performs significantly worse than
the MIP estimator. However, Subramanian [36] had some overcoverage problems, sometimes
severely for small sample and heavy censoring.

Empirical likelihood (EL) method is a powerful nonparametric method for constructing confi-
dence regions of parameters. It is well known that it holds some unique and desirable
properties, such as range respecting, transformation-preserving, asymmetric confidence interval,
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Bartlett correctability, and better coverage probability for small sample, see for example DiCiccio
et al. [7], DiCiccio and Romano [8,9], Hall [13]. The EL approach does not require to estimate
the limiting variance matrix. Moreover, the confidence region is adapted to the data set and not
necessarily symmetric. Thus, it reflects the nature of the underlying data and hence give a more
representative way to make inferences about the parameter of interest.

The use of empirical likelihood in survival analysis goes back to Thomas and Grunkemeier [37]
who derived pointwise confidence intervals for survival function with right censored data. In the
seminar papers, Owen [26,27] introduced novel empirical likelihood confidence regions for the
mean of a random vector based on i.i.d. complete data. Since then, the empirical likelihood has been
widely applied to do statistical inferences in various statistical settings due to its excellent proper-
ties and well-recognized advantage compared to other methods such as normal-approximation and
bootstrap methods. Recent work of empirical likelihood includes construction of simultaneous
confidence band for right-censored data under a variety of setting [14,11,19,22–24], linear model
[28,3,4], linear model for missing data [40,41], partial linear regression model [39,33], regression
analysis of long-term survival rate [45], the semiparametric additive risk model [46], missing re-
sponse problem and the application in observational studies [30], nonlinear errors-in-covariables
models with validation data [35], weighted empirical likelihood [12], among others.

In order to overcome the limitation of existing methods, we adopt EL approach. We consider
censored median regression model (1.1) with continuous covariate, make full use of the estimating
equation of Subramanian [36], and propose two kinds of empirical likelihood-based confidence
regions for unknown vector of regression parameter. The profiled EL is used to obtain the estima-
tor of regression parameter. The MIP and EL estimators are identical (cf. Section 2.2). The EL
and MIP approaches differ from which the confidence regions are derived. Thus, our objective
is to build proper confidence region for the unknown regression parameter and compare their
confidence regions other than for the purpose of efficiency estimates. We propose an estimated
EL confidence region, which is based on the weighted chi-square distribution. The correspond-
ing constrained maximization of empirical likelihood can be done reliably by Newton–Raphson
method. Moreover, in order to avoid the simulation for critical value of weighted chi-square
distribution, we also develop an adjusted empirical likelihood confidence region for the vector
of regression parameter. The simulation results demonstrate the proposed EL methods are more
accurate than existing method in terms of coverage probability.

The rest of the paper is organized as follows. The proposed estimated EL and adjusted EL
confidence regions and main asymptotic results are presented in Section 2. In Section 3, we
conduct extensive simulation study to compare the performance of EL based methods with that of
normal approximation based method. In Section 4, we make some discussions about the proposed
method. Proofs are put in the Appendix.

2. Main results

2.1. Preliminaries

We consider the median regression model (1.1). For uncensored data, the LAD estimator of �
is obtained by minimizing

∑n
i=1 |Ti − �′Zi |, or by solving the LAD estimating equation

U1(�) =
n∑

i=1

(
I (Ti ��′Zi) − 1

2

)
Zi ≈ 0. (2.1)
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A “root" of this estimating equation is a minimizer of the Euclidean norm of the estimating
function.

Suppose the censoring variable depends on the covariate Z = (1, W)′ and the W is a one-
dimensional continuous variable (Note that 1st component 1 corresponds to the intercept and
p = 1). Subramanian [36] applied MIP to the uncensored LAD estimating equation (2.1). The
idea is to replace the unobservable I (Ti ��′Zi) by an estimate of its conditional expectation given
the data. It can be shown that (cf. [10, p. 840, Equation (7.4)]) the condition expectation Ei(�) is
given by

Ei(�) = E(I (Ti ��′Zi)|(Xi, �i , Zi))

= I (Xi ��′Zi) + I (Xi < �′Zi, �i = 0)
F (�′Zi, Zi)

F (Xi, Zi)
,

where F(t, z) = P(T > t |Z = z) is the conditional survival function of T given Z. Let

Êi(�) = I (Xi ��′Zi) + I (Xi < �′Zi, �i = 0)
F̂ (�′Zi, Zi)

F̂ (Xi, Zi)
,

where F̂ (t, z) is an appropriate estimator of F(t, z) which is defined using the product integral
by

F̂ (t, z) =
∏
s � t

(1 − d�̂(s, z)), (2.2)

where �̂(t, z) is the kernel conditional Nelson–Aalen estimator of the conditional cumulative
hazard function of T given Z = z, denoted by �(t, z), and is given by

�̂(t, z) =
∫ t

−∞
dĤ1(s, z)

Ĥ (s−, z)
, (2.3)

and

Ĥ1(t, z) = ĝ(z)−1

(
(nan)

−1
n∑

i=1

I (Xi � t, �i = 1)K(a−1
n (z − Zi))

)
,

Ĥ (t, z) = ĝ(z)−1

(
(nan)

−1
n∑

i=1

I (Xi > t)K(a−1
n (z − Zi))

)
,

ĝ(z) = (nan)
−1

n∑
i=1

K(a−1
n (z − Zi)),

where Ĥ1(t, z) is a kernel estimator of the conditional subdistribution function of X given Z = z,
namely H1(t, z) = P(X� t, � = 1|Z = z), Ĥ (t, z) is a kernel estimator of the conditional
survival function of X given Z = z, namely H(t, z) = P(X > t |Z = z), K is an appropriate
kernel function, and an is a bandwidth sequence.

The MIP estimating equation takes

U(�) =
n∑

i=1

(
Êi(�) − 1

2

)
Zi ≈ 0, (2.4)
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and define �̂ to be a minimizer of the Euclidean norm ofU(�). Under mild conditions the estimating
equation (4.1) has a unique solution �̂.

Throughout the paper, we only concern about the case where the censoring variable is dependent
on a one-dimensional continuous covariate W. We assume the censoring variable Ci is assumed
to be conditionally independent of Ti given the covariate Zi for 1� i�n. Let D be a bounded
convex region. Suppose that the true value �0 of � is in its interior. In order to derive the asymptotic
normality of �̂, we need the following conditions (cf. [36]). Assume the following conditions hold:

1. The sequence, {an}, of bandwidths satisfies (i) na2
n/ log(a−1

n ) → ∞ as n → ∞ and (ii)
na4

n → 0.
2. The kernel K (i) is a probability density function with support on [−M, M] for some M > 0,

(ii) is bounded and continuous, and of bounded variation and (iii) satisfies
∫M

−M
sK(s) ds = 0.

3. The covariate Z (i) is bounded, i.e., ‖Z‖�L for some positive constant L, where ‖ · ‖ is the
Euclidean norm, (ii) has a bounded density g which is bounded away from 0, and with support
on [−L, L]; the density is uniformly continuous on [−L, L]. Furthermore, (iii) the density g
is twice differentiable in [−L, L] and the first and second derivatives are bounded, continuous,
and bounded away from 0.

4. For � ∈ D, there exists a constant t1, such that P(X� t1|Z) > 0 and �′Z� t1 with probability
1. Moreover, (i) the functions H1(x, z) and H(x, z) are bounded away from 0 over the range
(−∞, t1]× [−L, L], (ii) the first, second and third partial derivatives of H1(x, z) with respect
to z and with respect to x are, respectively, continuous and uniformly bounded in (x, z) ∈
(−∞, t1] × [−L, L], and (iii) the same conditions are satisfied by the first and second partial
derivatives of H(x, z) with respect to z or x.

5. The matrix A is positive definite, where A = E[ZZ′f (0|Z)] and f (t |z) = f (t + �′
0z, z) is

the conditional density of ε = T − �′
0Z given Z = z.

Remark. The above regularity conditions are commonly used in survival analysis, see Subra-
manian [36] for discussion. These conditions are essential for the consistency and asymptotic
normality of the estimator �̂. Condition 3 is somewhat strong and the bounded assumption in
Condition 3 is standard for continuous covariate used in survival analysis. Condition 4 is not
difficult to check. These assumptions are satisfied by the most common distributions in survival
analysis. Condition 5 guarantees that the estimators are well defined asymptotically.

Let

�(�) = 1

4
E

(
Z1Z

′
1

∫ �T Z1

−∞
d�(s, Z1)

H(s, Z1)

)
. (2.5)

Under conditions 1–5, it is shown in Subramanian [36],

n1/2(�̂ − �0)
D→ N(0, A−1�A−1). (2.6)

Assume that

�̂ = 1

4n

n∑
i=1

ZiZ
′
i

∫ �̂T Zi

−∞
d�̂(s, Zi)

Ĥ (s, Zi)
.
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From Lemma A.1, � is consistently estimated by �̂. Thus, an asymptotic 100(1 − �)% confi-
dence region for � based on the above normal approximation is given by

R1 = {� : nU
′
(�)�̂−1U(�)��2

p+1(�)}, (2.7)

where �2
p+1(�) is the upper �-quantile of the chi-squared distribution with degrees of freedom

p + 1.

2.2. EL confidence region

Now consider empirical likelihood approach. For 1� i�n, we define

Wi =
(

Ei(�0) − 1

2

)
Zi,

Wni =
(

Êi(�0) − 1

2

)
Zi.

It is easy to check that EWi = 0 by the definition of Wi . Then, the empirical likelihood is given
by

L(�0) = sup

{
n∏

i=1

pi :
∑

pi = 1,

n∑
i=1

piWi = 0, pi �0, i = 1, . . . , n

}
.

However, the Wi’s depend on F(t, z) which is unknown, we replace them by the Wni’s. Therefore,
using the notation Ln, an estimated empirical likelihood at the true value �0 is given by

Ln(�0) = sup

{
n∏

i=1

pi :
∑

pi = 1,

n∑
i=1

piWni = 0, pi �0, i = 1, . . . , n

}
.

Let p = (p1, . . . , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi �0 for 1� i�n. Note
that

∏n
i=1 pi attains its maximum at pi = 1/n. Thus, the empirical likelihood ratio at the true

value �0 is defined by

R(�0) = sup

{
n∏

i=1

npi :
∑

pi = 1,

n∑
i=1

piWni = 0, pi �0, i = 1, . . . , n

}
.

We profile the estimated empirical likelihood ratio and obtain the profile estimator of �, i.e.,
�̂P = argmax� R(�). We note that

∏n
i=1 npi attains its maximum 1 at pi = 1/n, and then �̂P

satisfies estimating equation (2.6). Thus �̂P = �̂.
By using Lagrange multipliers, we know that R(�0) is maximized when

pi = 1

n
{1 + �′Wni}−1, i = 1, . . . , n,

where � = (�1, . . . , �p+1)
′ satisfies the equation

1

n

n∑
i=1

Wni

1 + �′Wni

= 0. (2.8)
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The value of � may be found by Newton–Raphson algorithm. Thus, from the above equalities we
have

l̂(�0) = −2 log R(�0) = −2 log
n∏

i=1

(npi) = 2
n∑

i=1

log{1 + �′Wni}, (2.9)

where � satisfies Eq. (2.8).
Let

�1 = lim
n→∞ n−1

n∑
i=1

(
Ei(�0) − 1

2

)2

ZiZ
′
i .

Now we state our main result and explain how it can be used to construct confidence region
for �.

Theorem 2.1. Under the above conditions, −2 log R(�0) converges in distribution to r1�2
1,1 +

· · · + rp+1�2
1,p+1, where �2

1,1, . . . , �
2
1,p+1 are independent chi-square random variables with 1

degree of freedom and r1, . . . , rp+1 are the eigenvalues of �−1
1 �.

From Theorem 2.1, we note that the limiting distribution of the EL ratio is a weighted sum of i.i.d.
�2

1’s instead of the standard �2
p+1 distribution, where the weights can be consistently estimated.

Because the Wni’s are dependent, −2 log R(�0) is no longer a sum of standard independent random
variables. The similar phenomenon has occurred in various contexts such as right censoring and
missing data settings (cf. [40,20,45]).

From Lemma A.1(i), �1 is consistently estimated by

�̂1 = n−1
n∑

i=1

(
Êi(�̂) − 1

2

)2

ZiZ
′
i .

Hence, the ri’s can be estimated by the r̂i’s which are the eigenvalues of �̂−1
1 �̂.

An asymptotic 100(1 − �)% estimated empirical likelihood (EEL) confidence region for � is
given by

R2 = {� : −2 log R(�)�c(�)}, (2.10)

where c(�) is the upper �-quantile of the distribution of r̂1�2
1,1 + · · · + r̂p+1�2

1,p+1 and can be
obtained by simulation method.

However, the accuracy of the EEL depends on the values of the r̂i’s. Alternatively, the above EEL
approach can be adjusted to avoid the weighted sum expression. Let �(�)=(p+1)/tr{�−1

1 (�)�(�)}
with tr(·) denoting the trace vector. Then, following Rao and Scott [31], the distribution of
�(�0)(r1�2

1,1 +· · ·+ rp+1�2
1,p+1) may be approximated by �2

p+1. This implies that the asymptotic

distribution of the Rao–Scott adjusted empirical likelihood ratio, l̃ad (�0) = �̂(�0)l̂(�0), may be
approximated by �2

p+1, where the adjustment factor �̂(�) is �(�) with �1(�) and �(�) replaced

by �̂1(�) and �̂(�), respectively.
Wang and Rao [40,41] and Li and Wang [20], among others proposed the adjusted empirical

likelihood method. Now, we define an adjusted empirical likelihood ratio, by modifying �(�0)
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in l̃ad (�0), whose asymptotic distribution is exactly a �2
p+1. Note that

�̂(�) = tr{�̂−1(�)�̂(�)}
tr{�̂−1

1 (�)�̂(�)}
.

We define r̂(�) to be �̂(�) with �̂(�) replaced by Ŝ(�) = {∑n
i=1 Wni(�)/n}×{∑n

i=1 Wni(�)/n}′.
That is,

r̂(�) = tr{�̂−1(�)Ŝ(�)}
tr{�̂−1

1 (�)Ŝ(�)}
.

We define an adjusted empirical likelihood ratio by

l̂ad (�) = r̂(�)l̂(�).

Theorem 2.2. Under the above conditions, the EL statistic l̂ad (�0) converges in distribution
to �2

p+1.

Based on Theorem 2.2, an asymptotic 100(1 − �)% adjusted empirical likelihood (AEL) con-
fidence region for � is given by

R3 = {� : l̂ad (�)��2
p+1(�)},

where �2
p+1(�) is as before.

3. Simulation study

In this section, we compare the performance of the proposed empirical likelihood (EEL and
AEL) confidence regions with the normal approximation (NA) based confidence region. Our goal
is to compare coverage probabilities. We consider the following simulation models:

In each simulation example, we use Z = (1, W)′, with W taking Uniform(0, 1). The true value
of the intercept is 0, and the true value of the slope is 1, i.e., �0 = (0, 1)′. A grid search over
the rectangle (−2, 2) × (−1, 3) is used to find the solution of the estimating equation (4.1). The
kernel function K(u) on [−1, 1] is chosen to be a biweight kernel

K(u) = 15
16 (1 − u2)2+ = 15

16 (1 − u2)2I[−1,1](u).

The sequence of bandwidths is chosen to be an = n−1/2+0.15 which satisfies condition 1.
We consider model M1: T |Z ∼ Exponential(log(2)/w). It is a median regression model (the

conditional median of T given Z is �′
0z), and also a Cox proportional hazard model with covariate

log w, regression parameter −1, and baseline hazard log 2. The conditional hazard function of C
given Z is �c(t |w) = C0w, where C0 is used to control the censoring rate.

We consider model M2: T |Z ∼ N(w, 0.5), which departs from the Cox proportional hazard
model. A Cox proportional hazard model is used for the censoring time: �c(t |w) = C0w, i.e.,
a Cox regression model with covariate log w, regression parameter 1, and baseline hazard 0.25,
where C0 is used to calibrate the censoring rate.

We consider model M3: The error distribution is taken to be normal with mean 0, and constant
variance 1, i.e., T |Z ∼ N(w, 1). The censoring is C|Z ∼ log Uniform(0, C0w), where C0 is
chosen to give the censoring rate.
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Table 1
Coverage probabilities for the regression parameter � under simulation model M1: T |Z ∼ Exponential(log(2)/w) and
�c(t |w) = C0w, where C0 was used to calibrate the censoring rate

Model: M1 1 − � = 0.90 1 − � = 0.95

CR n EEL AEL NA EEL AEL NA

10% 30 0.9207 0.8644 0.9571 0.9607 0.9013 0.9751
70 0.9196 0.8907 0.9640 0.9617 0.9290 0.9810

120 0.9143 0.9009 0.9610 0.9600 0.9400 0.9823
200 0.9146 0.9026 0.9566 0.9598 0.9464 0.9824

20% 30 0.9408 0.8628 0.9606 0.9694 0.8995 0.9794
70 0.9383 0.8955 0.9685 0.9744 0.9299 0.9850

120 0.9263 0.9001 0.9661 0.9664 0.9358 0.9857
200 0.9188 0.9038 0.9602 0.9638 0.9415 0.9832

30% 30 0.9331 0.8486 0.9639 0.9600 0.8846 0.9804
70 0.9461 0.8891 0.9691 0.9756 0.9259 0.9835

120 0.9406 0.9059 0.9687 0.9698 0.9389 0.9865
200 0.9363 0.9043 0.9630 0.9710 0.9432 0.9837

Table 2
Coverage probabilities for the regression parameter� under simulation model M2: T |Z ∼ N(w, 0.5) and �c(t |w) = C0w,
where C0 was used to calibrate the censoring rate

Model: M2 1 − � = 0.90 1 − � = 0.95

CR n EEL AEL NA EEL AEL NA

10% 30 0.9231 0.8491 0.9803 0.9618 0.8893 0.9969
70 0.9233 0.8914 0.9482 0.9630 0.9273 0.9835

120 0.9149 0.8984 0.9316 0.9593 0.9387 0.9738
200 0.9110 0.9006 0.9200 0.9552 0.9418 0.9653

20% 30 0.9278 0.8535 0.9793 0.9606 0.8891 0.9962
70 0.9327 0.8836 0.9539 0.9694 0.9196 0.9873

120 0.9249 0.8948 0.9394 0.9639 0.9303 0.9769
200 0.9218 0.9056 0.9287 0.9629 0.9457 0.9696

30% 30 0.9075 0.8275 0.9672 0.9424 0.8625 0.9877
70 0.9349 0.8739 0.9481 0.9642 0.9076 0.9829

120 0.9393 0.8953 0.9389 0.9670 0.9307 0.9756
200 0.9312 0.9012 0.9316 0.9631 0.9390 0.9696

We take 0.90, 0.95 as the nominal confidence level 1 − �, respectively. We use 10%, 20%, and
30% censoring rates (CR), respectively, for Tables 1–3, which represent light censoring, middle
censoring, and heavy censoring, respectively. The sample size n is chosen to be 30, 70, 120, and
200, respectively, which represent small sample, moderate sample, large sample and very large
sample, respectively. The simulated coverage probabilities of the normal approximation based
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Table 3
Coverage probabilities for the regression parameter � under simulation model M3: T |Z ∼ N(w, 1) and C|Z ∼
log Uniform(0, C0w), where C0 was used to calibrate the censoring rate

Model: M3 1 − � = 0.90 1 − � = 0.95

CR n EEL AEL NA EEL AEL NA

10% 30 0.9219 0.8450 0.9852 0.9617 0.8815 0.9979
70 0.9078 0.8758 0.9439 0.9534 0.9144 0.9829

120 0.9092 0.8945 0.9263 0.9518 0.9335 0.9723
200 0.9070 0.8950 0.9195 0.9547 0.9367 0.9623

20% 30 0.9292 0.8388 0.9867 0.9645 0.8750 0.9982
70 0.9235 0.8726 0.9588 0.9624 0.9118 0.9887

120 0.9221 0.8910 0.9328 0.9627 0.9278 0.9747
200 0.9190 0.9021 0.9236 0.9610 0.9411 0.9669

30% 30 0.9289 0.8332 0.9907 0.9620 0.8703 0.9983
70 0.9349 0.8685 0.9592 0.9706 0.9028 0.9892

120 0.9334 0.8794 0.9323 0.9690 0.9179 0.9734
200 0.9319 0.8907 0.9175 0.9669 0.9299 0.9609

method and the empirical likelihood methods are estimated from 10,000 simulated data sets. The
simulation results for the three models are reported in Tables 1–3, respectively. The models are
also specified in the titles of the tables.

From these tables, we make the following observations:

1. At each nominal level, the coverage accuracies for empirical likelihood and normal approxi-
mation methods in the three models tend to decrease as censoring rates increase, and tend to
increase when sample size increases.

2. The coverage probabilities for the normal approximation method and estimated empirical
likelihood method are consistently larger than the nominal level. While the coverage probability
for adjusted empirical likelihood undercovers the nominal level for small sample size. However,
NA method performs poorly in all cases.

3. The empirical likelihood outperforms the normal approximation method in these models. In
particular, under very large sample (n = 200), the adjusted empirical likelihood confidence
region has more accurate coverage probabilities than the normal approximation based and
estimated empirical likelihood confidence region.

4. The coverage probability of NA confidence region is more conservative than that of EEL
confidence region. The normal approximation based confidence regions overcover the true
regression parameter and the coverage probabilities are far above the nominal levels.

From Tables 1–3, we find that the normal approximation based method does not always work
well. One reason is that the NA based confidence region needs to estimate � (cf. (2.7)). The
variance estimates are not very stable and may contain values outside their ranges. Another
possible reason is that we may not use an optimal bandwidth to obtain the coverage probability.
However, the EL method is relatively robust and not sensitive to the choice of bandwidth.

In summary, our simulation study indicates that the proposed EL methods give very competitive
coverage probabilities and suggests that the EL based confidence regions outperform the NA based
confidence region.
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4. Discussion

To choose an optimal bandwidth for the estimator, a number of methods have been proposed
in the kernel density estimation, see the discussion in Silverman [34]. However, the bandwidth
selection for obtaining the accurate coverage probability has not been studied by researchers. A
worthwhile direction for future research would be to investigate bandwidth selection in censored
median regression model.

We have investigated the continuous covariate case based on MIP in the article. When the
censoring variable depends on the covariate vector Z and Z takes only discrete values, the EL
approach also works. In the discrete case, denote the possible values of Z by zk , k = 1, . . . , K ,
and assume each occurs with positive probability. Let nk denote the number of Zj , j = 1, . . . , n,

taking value zk . Rewrite the sample (Xi, �i , Zi), i = 1, . . . , n as (Xk,m, �k,m), m = 1, . . . , nk, for
k = 1, . . . , K, where (Xk,m, �k,m) corresponds to (Xi, �i ) with covariate Zi having the value zk .
Let F̂ (t, zk) be the local Kaplan–Meier estimator based on the pairs (Xk,m, �k,m), m = 1, . . . , nk .

The MIP estimating equation takes

U(�) =
n∑

i=1

(
Êi(�) − 1

2

)
Zi ≈ 0, (4.1)

and define �̂ to be a minimizer of the Euclidean norm ofU(�). Under mild conditions the estimating
Eq. (4.1) has a unique solution �̂.

Following the same argument as before we can define estimated empirical likelihood ratio
and adjusted empirical likelihood ratio, derive the limiting distributions of the two empirical
likelihood ratios for the regression parameter. The estimated EL and adjusted EL confidence
regions for the vector of regression parameter can be obtained. We also compare the proposed
methods with that normal approximation based method through extensive simulation study and
the results are omitted here to save the space. The simulation results suggest that our proposed
methods outperform the normal approximation based method in terms of coverage probability
which is the same as that for a one-dimensional continuous covariate case.

In this article, we consider the median regression model when censoring variable depends on
a one-dimensional continuous covariate and EL works well in this case. However, the drawback
of our method is the curse of dimensionality problem when the dimension of covariate is higher.
Because it is difficult to estimate F nonparametrically in high dimensions—the higher the dimen-
sion the more spread apart are the data points, and the larger the data set required for a sensible
analysis. One way to avoid this problem is to make an independence assumption in Ying et al.
[44]. However, these independence assumptions limit the application of the proposed method in
clinical trials. Thus, a more flexible approach is to fit Cox regression model or semiparametric
additive risk model. It may provide a relatively good approximation for the unknown conditional
distribution in the estimating equation. In addition, Yang [43] proposed alternative estimators.
They are based on some weighted empirical survival and hazard functions. In the future, we will
explore this challenging issue using EL.
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Appendix A. Proofs of Theorems

We need the following lemma in order to prove Theorem 2.1.

Lemma A.1. Under the conditions of Theorem 2.1, we have

(i)
∑n

i=1 WniW
′
ni/n

P→ �1, (ii) �̂1
P→ �1, (iii) �̂

P→ �.

Proof. Let

�̂1n = 1

n

n∑
i=1

WniW
′
ni, �1n = 1

n

n∑
i=1

WiW
′
i .

In order to prove (i), we only need to show �̂1n = �1n + oP (1).
For any a ∈ Rp+1, the following decomposition holds:

a′(�̂1n − �1n)a = 1

n

n∑
i=1

(a′(Wni − Wi))
2 + 2

n

n∑
i=1

(a′Wi)(a
′(Wni − Wi))

= I1 + 2I2. (A.1)

First note that

a′(Wni − Wi)

= a′(Êi(�0) − Ei(�0))Zi

= I (Xi < �′
0Zi, �i = 0)(F̂ (�′

0Zi, Zi)F (Xi, Zi) − F(�′
0Zi, Zi)F̂ (Xi, Zi))

F̂ (Xi, Zi)F (Xi, Zi)
(a′Zi).

The conditions 1–4 imply that the kernel conditional Kaplan–Meier estimator F̂ (t, z) is strongly
uniformly consistent (cf. [6]). It follows from conditions 1–4 that

|I2| � 1

n

n∑
i=1

I (Xi < �′
0Zi)|F̂ (�′

0Zi, Zi)F (Xi, Zi) − F(�′
0Zi, Zi)F̂ (Xi, Zi)|

F̂ (Xi, Zi)F (Xi, Zi)
(aZi)

2

= max
Xi<�′

0Zi,1� i �n

(
|F̂ (�′

0Zi, Zi)−F(�′
0Zi, Zi)|

F̂ (Xi, Zi)
+|F̂ (Xi, Zi)−F(Xi, Zi)|

F̂ (Xi, Zi)

)
(‖a‖L)2

= oP (1). (A.2)

Similarly, we can show that I1 = oP (1). Thus by (A.1), (A.2), we prove Lemma A.1(i).
In order to prove Lemma A.1(ii), we only need to show that �̂1 = �̂1n + oP (1). Let

Ji = I (Xi � �̂
′
Zi) − I (Xi ��′

0Zi)

+I (Xi < �̂
′
Zi, �i = 0)F̂ (�̂

′
Zi, Zi)

F̂ (Xi, Zi)
− I (Xi < �′

0Zi, �i = 0)F̂ (�′
0Zi, Zi)

F̂ (Xi, Zi)
.
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We have

|Ji | � |(I (Xi � �̂
′
Zi) − I (Xi ��′

0Zi)|
(

1 + F̂ (�̂
′
Zi, Zi)

F̂ (Xi, Zi)

)

+|I (Xi < �′
0Zi, �i = 0)| |F̂ (�̂

′
Zi, Zi) − F(�̂

′
Zi, Zi)|

F̂ (Xi, Zi)

+|I (Xi < �′
0Zi, �i = 0)| |F(�̂

′
Zi, Zi) − F(�′

0Zi, Zi)|
F̂ (Xi, Zi)

+|I (Xi < �′
0Zi, �i = 0)| |F̂ (�′

0Zi, Zi) − F(�′
0Zi, Zi)|

F̂ (Xi, Zi)
.

By (2.6), we have the following equality as (A.7) in Ying et al. [44]

n∑
i=1

|I (Yi � �̂′Zi) − I (Yi ��′
0Zi)| = OP (n2/3).

It follows by combining conditions 1–4 and (2.6)

1

n

n∑
i=1

J 2
i + 1

n

n∑
i=1

|Ji | � 4

n

n∑
i=1

|Ji | + 1

n

n∑
i=1

|Ji |

� 10

n

n∑
i=1

|I (Yi � �̂
′
Zi) − I (Yi ��′

0Zi)| + oP (1)

= oP (1). (A.3)

Then for any a ∈ Rp+1, by ‖Z‖�L and (A.3) we have

|a′(�̂1 − �̂1n)a| � 1

n

n∑
i=1

(a′Zi)
2J 2

i + 2

n

n∑
i=1

(a′Zi)
2|Ji |

∣∣∣∣Êi(�0) − 1

2

∣∣∣∣
� sup

1� i �n

(a′Zi)
2 1

n

n∑
i=1

J 2
i + sup

1� i �n

(a′Zi)
2 1

n

n∑
i=1

|Ji |

� (‖a‖L)2

(
1

n

n∑
i=1

J 2
i + 1

n

n∑
i=1

|Ji |
)

= oP (1).

Therefore, we have a′(�̂1 − �̂1n)a = oP (1). Lemma A.1(ii) follows. Following the same line as
above, we can show Lemma A.1(iii). �

Proof of Theorem 2.1. By conditions 3, 4, and the uniform consistency of F̂ (t, z)

max
1� i �n

‖Wni‖ � max
1� i �n

∣∣∣∣Êi(�0) + 1

2

∣∣∣∣ max
1� i �n

‖Zi‖
= OP (1). (A.4)
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Let � = ��, where ��0 and ‖�‖ = 1. Recall that �̂1n = �1 + oP (1) (cf. Lemma A.1(i)). Let
	1 > 0 be the smallest eigenvalue of �1. Then,

�′�̂1n��	1 + oP (1). (A.5)

From the Appendix of Subramanian [36], we have∥∥∥∥∥1

n

n∑
i=1

Wni

∥∥∥∥∥ = OP (n−1/2). (A.6)

Then, it follows from (2.8), (A.5), (A.6), and the argument used in Owen [27] that

‖�‖ = OP (n−1/2). (A.7)

Applying Taylor’s expansion to (2.9), we have

− 2 log R(�0) = 2
n∑

i=1

(
�′Wni − 1

2
(�′Wni)

2
)

+ rn, (A.8)

where

|rn|�C

n∑
i=1

|�′Wni |3 in probability.

Hence, by (A.5), (A.8)

|rn|�Cn‖�‖3
(

max
1� i �n

‖Wni‖
)3

= OP (n−1/2). (A.9)

Note that

0 = 1

n

n∑
i=1

Wni

1 + �′Wni

= 1

n

n∑
i=1

Wni

(
1 − �′Wni + (�′Wni)

2

1 + �′Wni

)

= 1

n

n∑
i=1

Wni −
(

1

n

n∑
i=1

WniW
′
ni

)
� + 1

n

n∑
i=1

Wni(�
′Wni)

2

1 + �′Wni

. (A.10)

By (A.4), (A.7), (A.10), and Lemma A.1(i), it follows that

� =
(

n∑
i=1

WniW
′
ni

)−1 n∑
i=1

Wni + oP (n−1/2). (A.11)

By (A.10), we have

0 =
n∑

i=1

�′Wni

1 + �′Wni

=
n∑

i=1

(�′Wni) −
n∑

i=1

(�′Wni)
2 +

n∑
i=1

(�′Wni)
3

1 + �′Wni

. (A.12)
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Similarly as before, we have

n∑
i=1

(�′Wni)
3

1 + �′Wni

= oP (n−1/2). (A.13)

Combining (A.12) and (A.13) we have

n∑
i=1

(�′Wni)
2 =

n∑
i=1

�′Wni + oP (1). (A.14)

By (A.8), (A.9), (A.11), (A.14) and Lemma A.1(i), we have

−2 log R(�0) =
n∑

i=1

�′Wni + oP (1)

=
(

n−1/2
n∑

i=1

Wni

)′ (
n−1

n∑
i=1

WniW
′
ni

)−1 (
n−1/2

n∑
i=1

Wni

)
+ oP (1)

=
(

�−1/2n−1/2
n∑

i=1

Wni

)′
(�1/2�−1

1 �1/2)

(
�−1/2n−1/2

n∑
i=1

Wni

)
+ oP (1).

By the proof of Theorem 1 in Subramanian [36], we have �−1/2(n−1/2∑n
i=1 Wni)

D→
N(0, Ip+1). Because �1/2�−1

1 �1/2 and �−1
1 � have the same eigenvalues. Using [29, Lemma

A.3] to re-express the limiting distribution of (2.9) as a weighted sum of independent �2
1 distribu-

tion, we complete the proof of Theorem 2.1. �

Proof of Theorem 2.2.. Recall the definition of l̂ad (�). It follows that, by (A.8),

l̂ad (�0) =
(

n−1/2
n∑

i=1

Wni

)′
�̂−1

(
n−1/2

n∑
i=1

Wni

)
+ oP (1).

We can show that �̂
P→ �. Using �−1/2(n−1/2∑n

i=1 Wni)
D→ N(0, Ip+1) again, we complete

the proof of Theorem 2.2. �
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