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a b s t r a c t

We consider a partially linear regression model with multivariate covariates and with re-
sponses that are allowed to be missing at random. This covers the usual settings with fully
observed data and the nonparametric regression model as special cases. We first develop a
test for additivity of the nonparametric part in the complete datamodel. The test statistic is
based on the difference between two empirical estimators that estimate the errors in two
ways: the first uses a local polynomial smoother for the nonparametric part; the second
estimates the additive components by a marginal integration estimator derived from the
local polynomial smoother. We present a uniform stochastic expansion of the empirical
estimator based on the marginal integration estimator, and we derive the asymptotic dis-
tribution of the test statistic. The transfer principle of Koul et al. (2012) then allows a direct
adaptation of the results to the case when responses are missing at random. We examine
the performance of the tests in a small simulation study.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Data sets with a large number of covariates are commonly observed in applications, in particular in biological studies.
It is well known that many nonparametric methods do not perform well in this situation, which is often referred to as the
‘curse of dimensionality’. A popular semiparametric model which is used to cope with this difficulty is the partially linear
model. It combines the flexible nonparametric regression model with the basic linear regression model. In this article we
consider a partially linear regression model of the form

Y = ϑ⊤U + ϱ(X)+ ε,

where ϑ is an unknown vector in Rp and ϱ is an unknown smooth function. The error ε has mean zero and is assumed to be
independent of the pair (U, X), where U and X are (random) covariate vectors. In the ideal situation one observes the triplet
(U, X, Y ). However, in almost all real life data sets there are missing values. This is an important problemwhich needs to be
handled with care, since the presence of missing data can easily distort statistical inferences if the wrong method is used. In
this article we are specifically interested in the case when some responses Y are missing. Then one observes (δ,U, X, δY )
with δ an indicator random variable, with the interpretation that for δ = 1 one observes the full triplet (U, X, Y ), while for
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δ = 0 one observes only the covariates (U, X). We make the common assumption that the responses aremissing at random,
which means that the conditional distribution of δ given (U, X, Y ) depends only on the covariates (U, X),

P(δ = 1|U, X, Y ) = P(δ = 1|U, X).

Monographs on missing data are [19,36].
The partially linear regression model considered here has by definition a partially additive structure. We want to go one

step further and test the hypothesis that the regression function is completely additive, i.e. even the smooth function ϱ is
actually additive,

ϱ(x) = ϱ1(x1)+ · · · + ϱq(xq), x = (x1, . . . , xq) ∈ Rq.

It is important to have a diagnostic tool to assess additivity. As shown by Stone [32], additive models avoid the curse of
dimensionality and are easy to interpret.

Wewill first develop a test procedure for themodel with fully observed data, whichwe describe next. Thenwewill apply
a method by Koul et al. [15], which they call the transfer principle, to derive a corresponding procedure for the model with
missing responses. The transfer principle is a novel approach that makes it easy to derive procedures for certain missing data
problems from those with fully observed data.

Assume that we observe n independent copies (U1, X1, Y1), . . . , (Un, Xn, Yn) of (U, X, Y ). Our test statistic for additivity
will be of the form

T = n1/2
∥F̂ − F̃∥ = n1/2 sup

t∈R
|F̂(t)− F̃(t)|

with two different residual-based empirical distribution functions F̂ and F̃.
The first uses residuals of the form ε̂j = Yj − ϑ̂⊤Uj − ϱ̂(Xj) with ϱ̂ a local polynomial smoother based on the covariates

Xj and the ‘‘observations’’ Yj − ϑ̂⊤Uj. The second exploits the additivity assumption and works with residuals of the form
ε̃j = Yj − ϑ̂⊤Uj − ϱ̃(Xj) with ϱ̃ the marginal integration estimator derived from ϱ̂. In both cases, ϑ̂ is some

√
n-consistent

estimator of ϑ . Efficient estimators of ϑ for additive ϱ are constructed in [28]. Our test statistic T is a variant of the test
statistic in [24], who test for additivity in a nonparametric regression model with heteroscedastic errors. Those authors
study a bootstrap test based on their test statistic. Here we use the asymptotic distribution to develop our test. We show
that, under additivity, T converges in distribution to κ|Z |, where Z is standard normal and κ is a constant depending on the
underlying distribution. This leads us to the test 1[T > κ̂zα/2] which rejects the null hypothesis if T exceeds κ̂zα/2 with zα/2
the (1 − α/2)-quantile of the standard normal distribution and κ̂ a consistent estimator of κ .

Our test formissing data uses the complete case version of the above test, which is constructed using only the observations
with observed responses. More precisely, we reject the null hypothesis if Tc exceeds κ̂czα/2, where Tc and κ̂c are the complete
case versions of T and κ̂ . The complete case version of a statistic Sn = sn((U1, X1, Y1), . . . , (Un, Xn, Yn)) is of the form
Sc = sN((Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN )), where (Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN ) are the N =

n
j=1 δj observations with

observed responses. An implementation of the test is straightforward since it suffices to write a program for the model
with fully observed data. This program then can be used for applications with responses missing at random: just delete all
cases where only the covariates are available and work with the remaining N cases that are complete. Since we assume that
the covariates and the errors are independent it is clear that the covariates alone do not carry information about the error
distribution: the complete cases are sufficient for inference about functionals of the error distribution function F ; see also
the discussion in [15].

The reason for using the marginal integration estimator in F̃ is that the stochastic expansion of F̃ is then different from
that of F̂ even under the hypothesis of additivity of ϱ, as will be shown in Section 2. This is necessary for the test based on
T to have power under contiguous alternatives of the form ϱ(x) = ϱ1(x1) + · · · + ϱq(xq) + n−1/2s(x). The two stochastic
expansions of F̂ and F̃ imply in particular an expansion of our test statistic T under the hypothesis of additivity. From this
we obtain the asymptotic distribution of T and hence an asymptotic critical value for the test.

We note that the marginal integration estimator is not particularly well suited for estimating the error distribution
function. A better estimator would be the series estimator studied in Section 4 of [23]. The empirical distribution function
of this estimator would however be stochastically equivalent to F̂ and therefore lead to a test with local asymptotic power
equal to the significance level. The estimator F̂ was studied in [23], generalizing results by Müller et al. [21] who estimate
the error distribution function in the partially linear regression model but only for one-dimensional X . The case ϑ = 0 was
studied by Müller et al. [22], and by Neumeyer and Van Keilegom [24], who assume heteroscedastic errors.

The components of the regression function in additive regressionmodels can be estimated in severalways. Stone [32] uses
an additive spline estimator. The backfitting method of Breiman and Friedman [2], and Buja et al. [3], estimates the additive
components one by one and iterates this procedure. Orthogonal series estimators for semiparametric regressionmodels are
studiedby Eubank et al. [11], Andrews [1], Donald andNewey [8], Eubank [10], Li [16] andDelecroix andProtopopescu [6]; for
partially linear additive regression models see [23]. Here we use the marginal integration method of Newey [25], Tjøstheim
and Auestad [35] and Linton and Nielsen [18]. The method starts with an estimator ϱ̂ for a multivariate nonparametric
regression function and obtains estimators for the additive components by integrating out all but one of the variables, usually
with empirical estimators based on the remaining components of the covariates. Linton [17] uses marginal integration to
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provide an initial estimator, and then a single backfitting step. See also [12,20]. The estimators are compared by Sperlich
et al. [29], Delecroix and Protopopescu [5] and Dette et al. [7].

Residual-based empirical distribution functions can be used to test various other hypotheses about regression models.
Tests for parametric hypotheses about the regression function are considered in nonparametric regression by Stute [33],
Khmaladze andKoul [13,14] and Stute et al. [34]. Tests for a parametric regression function in heteroscedastic nonparametric
regression are studied in [37].

The paper is organized as follows. In Section 2 we derive a uniform stochastic expansion for F̃. The proof is in Section 6.
We apply the result to testing ϱ(x) = ϱ1(x1)+ · · · + ϱq(xq) in Section 3. Section 4 shows how the results carry over to the
situationwith responsesmissing at random. In Section 5wediscuss the finite sample performance of the test and summarize
some simulation results.

2. Residual-based empirical distribution functions

First we consider the general partially linear model Y = ϑ⊤U + ϱ(X) + ε, where the error ε has mean zero, finite
variance σ 2 and a density f , and is independent of the covariate pair (U, X), with U a p-dimensional random vector and X a
q-dimensional random vector. We make the following standard assumptions on U and X .

(G) The distribution G of X is quasi-uniform on C = [0, 1]q in the sense that G(C ) = 1 and has a density g that is bounded
and bounded away from zero on C .

(H) The covariate vector U satisfies E[|U|
2
] < ∞ and the matrix

W = E[(U − E(U|X))(U − E(U|X))⊤]

is positive definite.

For a non-negative integerm and a γ ∈ (0, 1]we introduce the Hölder spaceHq(m, γ ) as follows.We say that a function
h from C to R belongs to Hq(m, γ ) if it has continuous partial derivatives up to orderm and the partial derivatives of order
m are Hölder with exponent γ . We assume that the function ϱ belongs to Hq(m, γ ), and estimate it by a local polynomial
smoother of degreem; see [30,31,26] for general results on multivariate local polynomial smoothers. Such estimators were
used in [22] for estimating the error distribution function in the case ϑ = 0, i.e., for the nonparametric regression model.
Since ϑ is not zero here, we need a

√
n-consistent estimator ϑ̂ of ϑ . Such estimators exist,see e.g. [27]. We then work with

the difference Yj − ϑ̂⊤Uj instead of the response variable Yj.
In order to define the local polynomial smoother, we introduce some notation. By amulti-indexwemean a q-dimensional

vector i = (i1, . . . , iq) whose components are non-negative integers. For a multi-index i let ψi denote the function on Rq

defined by

ψi(x) =
xi11
i1!

· · ·
xiqq
iq!
, x = (x1, . . . , xq) ∈ Rq.

Set i• = i1 + · · · + iq. Let I(m) denote the set of multi-indices iwith i• ≤ m, and J(m) the set of multi-indices iwith i• = m.
Now fix densitiesw1, . . . , wq and set

w(x) = w1(x1) · · ·wq(xq), x = (x1, . . . , xq) ∈ Rq.

Let cn be a bandwidth. Then the local polynomial smoother ϱ̂ (of degreem) is defined as follows. For a fixed x inC , the estimator
ϱ̂(x) is the component β̂0(x) corresponding to the multi-index 0 = (0, . . . , 0) of a minimizer

β̂(x) = arg min
β=(βi)i∈I(m)

n
j=1

w
Xj − x

cn


Yj − ϑ̂⊤Uj −


i∈I(m)

βiψi

Xj − x
cn

2

.

We estimate the errors εj by the residuals

ε̂j = Yj − ϑ̂⊤Uj − ϱ̂(Xj).

The empirical distribution functions for F based on the errors εj and on the residuals ε̂j, respectively, are denoted by

F(t) =
1
n

n
j=1

1[εj ≤ t], F̂(t) =
1
n

n
j=1

1[ε̂j ≤ t].

Let us write

µ(X) = E(U|X), τ (X) = E(|U|
2
|X).

Müller et al. [23] have shown the following uniform stochastic expansion for F̂.

Theorem 1. Suppose (G) and (H) hold, ∥U∥ has a moment greater than 2, µ is continuous and τg is bounded. Suppose that ϱ
belongs to Hq(m, γ ) with s = m + γ > 3q/2. Let the error density f have mean zero, a finite moment of order greater than
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4s/(2s−q), and beHölderwith exponent greater than q/(2s−q). Let the densitiesw1, . . . , wq be (q+2) times continuously differ-
entiable with compact support [−1, 1]. Choose a bandwidth cn ∼ (n log n)−1/(2s). Thenwe have the uniform stochastic expansion

sup
t∈R

F̂(t)− F(t)− f (t)
1
n

n
j=1

εj

 = op(n−1/2).

The smoothness parameter s = m+γ is assumed to be greater than 3q/2. This means that the higher the dimension q of
the covariate vectorX , themore partial derivatives forϱweneed.Wealso point out that 4s/(2s−q) < 3 and q/(2s−q) < 1/2
if s > 3q/2. Thus the assumptions on the error density f are satisfied if f has mean zero, a finite third moment, and is Hölder
with exponent 1/2. The Hölder condition is met by all densities with finite Fisher information for location.

Suppose now that the regression function ϱ is additive, ϱ(x) = ϱ1(x1) + · · · + ϱq(xq). For this model we introduce
an estimator for ϱ such that the corresponding empirical distribution function has a stochastic expansion that is different
from that of the empirical distribution function F̂ based on the above local polynomial smoother ϱ̂, even in this submodel.
Specifically, we take themarginal integration estimator ϱ̃ of ϱ,

ϱ̃(x) = (1 − q)Ȳ∗ +

q
l=1

1
n

n
j=1

ϱ̂(Xj,−l(xl)),

where the random vector Xj,−l(xl) is obtained from Xj by replacing its lth coordinate by xl, and where Ȳ∗ is the average

Ȳ∗ =
1
n

n
j=1

(Yj − ϑ̂⊤Uj) =
1
n

n
j=1

εj +
1
n

n
j=1

ϱ(Xj)− (ϑ̂ − ϑ)⊤
1
n

n
j=1

Uj. (2.1)

This leads to the residuals ε̃j = Yj − ϑ̂⊤Uj − ϱ̃(Xj) and to the residual-based empirical distribution function

F̃(t) =
1
n

n
j=1

1[ε̃j ≤ t]

for F . The asymptotic behavior of F̂ differs from that of F̃, as shown next. To state the result, we need some notation.
For l = 1, . . . , q, let gl denote the density of the l-th coordinate of X , let g−l denote the density of the vector obtained

from X by deleting its l-th coordinate, and set
g(l)(x) = gl(xl)g−l(x1, . . . , xl−1, xl+1, . . . , xq), x = (x1, . . . , xq) ∈ Rq.

Note that g(l) is the density ofX1,−l(X2,l), which is the randomvectorX1 with its l-th coordinate replaced by the l-th coordinate
X2,l of X2. Let us write

h(x) =

q
l=1

g(l)(x)− g(x)
g(x)

, x ∈ C ,

and

ν =


µ(x)h(x)g(x) dx.

Theorem 2. Suppose that the assumption of Theorem 1 are satisfied, now for the partially linear additive model with ϱ1, . . . , ϱq
belonging to H1(m, γ ), where s = m + γ > 3q/2. Then we have the uniform stochastic expansion

sup
t∈R

F̃(t)− F(t)− f (t)
1
n

n
j=1

εj(1 + h(Xj))− (ϑ̂ − ϑ)⊤ν
 = op(n−1/2).

The proof of Theorem 2 is in Section 6.

3. Testing for additivity

In this section we test the hypothesis ϱ(x) = ϱ1(x1)+ · · · + ϱq(xq) in the partially linear regression model Y = ϑ⊤U +

ϱ(X) + ε. As in Section 2, let F̂ and F̃ denote the residual-based empirical distribution functions based on residuals
ε̂j = Yj − ϑ̂⊤Uj − ϱ̂(Xj) and ε̃j = Yj − ϑ̂⊤Uj − ϱ̃(Xj), respectively.

It follows from Theorems 1 and 2 that, under the hypothesis of additivity, the test statistic
T = n1/2

∥F̂ − F̃∥

satisfies the stochastic expansion

T = ∥f ∥
n−1/2

n
j=1

εjh(Xj)− n1/2(ϑ̂ − ϑ)⊤ν

+ op(1). (3.1)
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Now assume that ϑ̂ satisfies the stochastic expansion

ϑ̂ = ϑ +
1
n

n
j=1

W−1(Uj − µ(Xj))εj + op(n−1/2). (3.2)

Many authors have constructed such estimators; see e.g. [4,27], and the references therein. For estimators satisfying (3.2)
the expansion (3.1) becomes

T = ∥f ∥
n−1/2

n
j=1

εj


h(Xj)− ν⊤W−1(Uj − µ(Xj))

+ op(1),

and the test statistic T converges in distribution to ∥f ∥σγ |Z |, where Z is a standard normal random variable and

γ =

E[h2(X)] + ν⊤W−1ν

1/2
.

The implementation of this test requires estimators of ∥f ∥, σ and γ . We estimate σ by the sample standard deviation σ̂
based on the residuals ε̂1, . . . , ε̂n. An estimator for ∥f ∥ is ∥f̂ ∥, with f̂ a kernel density estimator based on these residuals.
We estimate γ by

γ̂ =

1
n

n
j=1

ĥ2(Xj)+ ν̂⊤Ŵ−1ν̂
1/2

,

where ĥ is a plug-in estimator of h using kernel estimators of gl, g−l and g , and where

ν̂ =
1
n

n
j=1

µ̂(Xj)ĥ(Xj) and Ŵ =
1
n

n
j=1

(Uj − µ̂(Xj))(Uj − µ̂(Xj))
⊤

with µ̂ a nonparametric estimator ofµ such as a Nadaraya–Watson estimator. For properly chosen kernels and bandwidths,
these estimators are consistent under the assumptions of Theorem 1. The resulting test is 1[T > ∥f̂ ∥σ̂ γ̂ zα/2]. If γ is positive,
it will have asymptotic size α.

Local asymptotic behavior. The local asymptotic power of our test can be derived under a local alternative with ϱ replaced
by ϱ + n−1/2∆, where∆ belongs to L2(G) and is orthogonal to the subspace of additive functions. Let us briefly sketch this.
Suppose that f has finite Fisher information for location and set ℓ = −f ′/f . Under the local alternative, T converges in
distribution to ∥f ∥

σγ Z +

h∆ dG

. This follows from LeCam’s third lemma which says that the shift must be

E

ε(h(X)− ν⊤W−1(U − µ(X)))ℓ(ε)∆(X)


= E


εℓ(ε)


E[

h(X)− ν⊤W−1(U − µ(X)))∆(X)


=


h∆ dG.

Here we used the property E[εℓ(ε)] = 1. For the test to detect the local alternative, the shift

h∆ dGmust be non-zero. The

shift is always zero if, for example, the covariate X follows a uniform distribution on C . Then g(l) = g = 1C and therefore
h = 0. The shift is also zero if the components of X are independent.

Nonparametric regression. Our test is easily modified to cover the nonparametric regression model Y = ϱ(X)+ ε. In this
case we take ϑ̂ = ϑ = 0 and obtain the expansion

sup
t∈R

F̂(t)− F̃(t)+ f (t)
1
n

n
j=1

εjh(Xj)

 = op(n−1/2) (3.3)

under the assumption that ϱ is additive. Now γ simplifies to γ0 = (E[h2(X)])1/2, and we work with the test

1

T > ∥f̂ ∥σ̂

1
n

n
j=1

ĥ2(Xj)
1/2

zα/2

.

Neumeyer and Van Keilegom [24] consider testing for additivity in the heteroscedastic nonparametric regression model
Y = ϱ(X) + s(X)η with E[η] = 0 and E[η2] = 1. They study a bootstrap test based on an appropriate version of
n1/2

∥F̂ − F̃∥ using standardized residuals. Under the null hypothesis they obtain an expansion which coincides with (3.3)
when specialized to the homoscedastic case, i.e. to the case s(X) = σ and ε = ση.

4. Responses missing at random

The results of the previous sections carry over to the situation in which responses are missing at random. Then we ob-
serve i.i.d. copies (δ1,U1, X1, δ1Y1), . . . , (δn,Un, Xn, δnYn) of (δ,U, X, δY )where δ is an indicator variable depending on the
covariables (U, X), but not on the response Y . The simplest approach is the complete case analysis, which uses only the
N =

n
j=1 δj completely observed triplets (Ui1 , Xi1 , Yi1), . . . , (UiN , XiN , YiN ), where i1, . . . , iN are the indices ij for which
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δij = 1. Koul et al. [15] show how stochastic expansions carry over from a statistic Tn = tn(U1, X1, Y1, . . . ,Un, Xn, Yn) to
the corresponding complete case statistic Tc = tN(Ui1 , Xi1 , Yi1 , . . . ,UiN , XiN , YiN ). We apply this to our empirical distribution
functions F̂ and F̃. For the conditional probability of δ = 1 given (U, X, Y )we write

π(U, X) = P(δ = 1|U, X) = P(δ = 1|U, X, Y ).

Let R denote the joint law of the covariates (U, X), and Q (U, X, dy) the conditional distribution of the response Y given
(U, X). Then the joint law of (δ,U, X, δY ) is

P(dz, du, dx, dy) = R(du, dx)Bπ(u,x)(dz)

zQ (u, x, dy)+ (1 − z)∆0(dy)


,

where Bp denotes the Bernoulli distributionwith parameter p, and∆t is the Diracmeasure at t . It follows that the conditional
distribution of (U, X, Y ) given δ = 1 is

Pc(du, dx, dy) = R(du, dx)
π(u, x)
E[δ]

Q (u, x, dy).

Let µc , gc , hc and νc be defined like µ, g , h and ν in Section 2, but now with the distribution of (U, X) replaced by the con-
ditional distribution of (U, X) given δ = 1. Explicitly, µc(X) = E(U|X, δ = 1), and gc is the density of X given δ = 1. For
l = 1, . . . , q let gc,l denote the conditional density of the l-th coordinate of X given δ = 1, let gc,−l denote the conditional
density of the vector obtained from X by deleting its l-th coordinate, and set

gc(l)(x) = gc,l(xl)gc,−l(x1, . . . , xl−1, xl+1, . . . , xq), x = (x1, . . . , xq) ∈ Rq.

Write

hc(x) =

q
l=1

gc(l)(x)− gc(x)
gc(x)

, x ∈ C ,

and define νc =

µc(x)hc(x)gc(x) dx.

We must of course assume that E[δ] > 0. The assumptions (G) and (H) on U and X are now required to hold under the
conditional distribution of (U, X) given δ = 1. Thismeans that the conditional distribution ofU given δ = 1 is quasi-uniform,
E(|U|

2
|δ = 1) < ∞, and

Wc = E

(U − µc(X))(U − µc(X))⊤|δ = 1


is positive definite. These assumptions are implied by (G) and (H) if π is bounded away from zero.

Assume that ϑ̂ has a stochastic expansion of the form (3.2). Let ϑ̂c denote the version of ϑ̂ based on the complete obser-
vations. From the arguments of Koul et al. [15] it follows that ϑ̂c has the stochastic expansion

ϑ̂c = ϑ +
1
n

n
j=1

δj

E[δ]
W−1

c (Uj − µc(Xj))εj + op(n−1/2).

Define the local polynomial smoother ϱ̂c and the marginal integration estimator ϱ̃c as in Section 2, now using only the
complete observations. Note that minimax properties of such complete case estimators in nonparametric regression are
obtained by Efromovich [9]. Define residuals ε̂c,j = Yj − ϑ̂⊤

c Uj − ϱ̂c(Xj), and ε̃c,j = Yj − ϑ̂⊤
c Uj − ϱ̃c(Xj). The complete case

versions of the empirical distribution functions F, F̂ and F̃ are

Fc(t) =
1
N

n
j=1

δj1[εj ≤ t], F̂c(t) =
1
N

n
j=1

δj1[ε̂c,j ≤ t], F̃c(t) =
1
N

n
j=1

δj1[ε̃c,j ≤ t].

Using [15] again, from the uniform stochastic expansions for F̂ and F̃ in Theorems 1 and 2 we obtain uniform stochastic
expansions for the complete case versions,

sup
t∈R

F̂c(t)− Fc(t)− f (t)
1
n

n
j=1

δj

E[δ]
εj

 = op(n−1/2),

sup
t∈R

F̃c(t)− Fc(t)− f (t)
1
n

n
j=1

δj

E[δ]
εj


1 + hc(Xj)− ν⊤

c W−1
c (Uj − µc(Xj))

 = op(n−1/2).

It follows from these two expansions that under the hypothesis of additivity the complete case test statistic

Tc = sup
t∈R

N1/2
|F̂c(t)− F̃c(t)|

satisfies the stochastic expansion

Tc = ∥f ∥(E[δ])−1/2
n−1/2

n
j=1

δjεj


h(Xj)− ν⊤

c W−1
c (Uj − µc(Xj))

+ op(1).
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The test is now
1[Tc > ∥f̂c∥σ̂c γ̂czα/2],

where f̂c , σ̂c and γ̂c are complete case versions of the estimators f̂ , σ̂ , and γ̂ from the previous section. For example, if f̂ is
the kernel estimator

f̂ (t) =
1

nbn

n
j=1

k
 ε̂j − t

bn


, t ∈ R,

based on the kernel k and bandwidth bn, then its complete case version is of the form

f̂c(t) =
1

NbN

n
j=1

δjk
 ε̂c,j − t

bN


, t ∈ R.

Since the pairs (U, X) are always observed, one might be tempted to use γ̂ instead of γ̂c . However, for missing data we
need to estimate γc , which is a functional of the conditional distribution of (U, X) given δ = 1, and not γ , which is the same
functional of the unconditional distribution of (U, X). Thus γc is typically different from γ , and it is imperative to use γ̂c in
the present case. Note also that the use of γ̂ instead of γ̂c would not result in a complete case estimator.

5. Finite sample performance

Amarginal integration estimator of F is used to ensure convergence of the test statistic T to a non-degenerate distribution.
Workingwith the additive series estimator proposed byMüller et al. [23] gives a better estimator of F , but yields convergence
to a degenerate limiting distribution. Indeed, for the additive series estimator the test statistic T converges to zero in
probability.

The convergence to the limiting distributionmay be slow. Thus a bootstrap version of our testmight be preferable in small
to moderate sample sizes. For very large sample sizes, however, the bootstrap test becomes intractable and our proposed
test provides a reasonable alternative. The simulations in [24] demonstrate good performance of their bootstrap test in their
setting with uniform covariates. We expect this to carry over to our situation.

In the following we will give the results for one particular scenario for which the simulations turned out fairly well, even
for the relatively small sample size n = 100. We considered the case q = 2 and ϑ = 0, i.e. X is two-dimensional and the
regression function does not have a linear part. We generated covariates X = (X1, X2) from a quasi-uniform distribution on
C = [0, 1]2 specified by the density

g(x) = g(x1, x2) = 1 + 0.5 sign(x1 − 0.5)sign(x2 − 0.5), x = (x1, x2) ∈ C . (5.1)
Note that g alternately takes the values 0.5 and 1.5 on the four quarters of C and that g1 = g2 = g−1 = g−2 = 1 on [0, 1].
The conditional probability of δ = 1 given the covariates is π(X) = π(X1) = cos(X1) so that the data contain on average
about 84% complete cases. The errors are generated from a normal distribution with mean zero and standard deviation σ .
The test is

1

Tc > ∥f̂c∥σ̂c

1
n

n
j=1

ĥ2
c (Xj)

1/2
zα/2


.

In order to implement the test statistic Tc we used a locally linear smoother provided by the R routine ‘‘loess’’. We looked
at several choices of the smoothing parameter ‘‘span’’ (between zero and one). Under the null hypothesis of additivity we
chose ϱ(X) = X1 +X2. Since our smoother is locally linear, it is not too surprising that the test performs best for large values
of ‘‘span’’ (see Table 1; note that the default value in R is 0.75).

For estimation of the quantiles we used the routine ‘‘density’’ implemented in R to estimate the error density, with a
particularly small bandwidth (the range of the residuals ε̂j divided by 20) to avoid oversmoothing, in order to obtain a good
estimate of the maximum. Our estimator σ̂ 2

c is the residual-based empirical estimator. Finally we hand coded ĥc (which
involves estimators of the bivariate covariate density and of the marginal densities) using a uniform kernel function and the
bandwidth 1/3.

In Table 1 we consider the situation when the regression function is additive and the null hypothesis should not be
rejected. The entries are the proportions of tests that reject the hypothesis of additivity in 1000 trials (n = 100) and in 500
trials (n = 500).We study both the scenariowithmissing responses and the scenariowhere all data are completely observed
(π(X) = 1). In order to keep the significance level of the test (α = 0.05 in all simulations), we work with a large ‘‘span’’. For
completely observed data and our choice of g , we have Eh2(X) = 4/3. The ‘true’ quantile for the simulation scenario thus
computes to 0.903. The rejection rates of the tests that use this quantile are given in Table 1 in parentheses. The results are
apparently similar to the case when the quantile is estimated. We also observe that there is no great difference between the
two cases missing data/no missing data, which can perhaps be explained by the fact that only a relatively small percentage
of responses (about 16%) is missing.

In Table 2 we work with the regression function ϱ(X)+ cX1X2, c ∈ {0.1, 0.5, 1}, which violates the null hypothesis since
it contains an additional multiplicative part. Note that for c = 0.1 the additional part can be regarded a local alternative
since cX1X2 = n−1/2X1X2. We observe that the rejection rates for this particular case are quite low and not greatly affected
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Table 1
Test performance under the null hypothesis, ϱ(X) = X1 + X2 .

n = 100 n = 500
π(x) = cos(x) π(x) = 1 π(x) = cos(x) π(x) = 1

Span σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5

1 0.07 0.08 0.06 0.06 0.03 0.03 0.01 0.02
(0.07) (0.07) (0.01) (0.01)

0.95 0.13 0.14 0.10 0.10 0.09 0.10 0.05 0.08
(0.09) (0.10) (0.04) (0.05)

0.9 0.18 0.19 0.16 0.17 0.10 0.12 0.09 0.10
(0.14) (0.15) (0.09) (0.09)

0.75 0.19 0.20 0.16 0.18 0.13 0.14 0.12 0.13
(0.24) (0.26) (0.13) (0.14)

0.5 0.28 0.29 0.27 0.28 0.19 0.21 0.16 0.17
(0.31) (0.33) (0.14) (0.15)

The figures are the (rounded) proportions of tests with significance level α = 0.05 that reject the null hypothesis
(in fact true) of additivity. The entries in parentheses are the proportions if the ‘true’ quantile is used instead of the
estimated quantile.

Table 2
Performance under the alternative hypothesis with regression function ϱ(X)+ cX1X2 , where ϱ(X) = X1 + X2 .

Span 1 Span 0.95
π(x) c σ = 0.1 0.25 0.5 0.75 σ = 0.1 0.25 0.5 0.75

cos(x1) 0.1 0.09 0.09 0.08 0.09 0.17 0.16 0.17 0.15
0.5 0.53 0.15 0.09 0.08 0.66 0.25 0.17 0.17
1 0.94 0.41 0.18 0.13 0.98 0.52 0.28 0.19

1 0.1 0.10 0.09 0.08 0.07 0.18 0.15 0.14 0.11
(0.10) (0.09) (0.07) (0.07) (0.19) (0.14) (0.14) (0.12)

0.5 0.62 0.21 0.11 0.08 0.77 0.29 0.19 0.13
(0.65) (0.20) (0.11) (0.08) (0.79) (0.31) (0.19) (0.14)

1 0.98 0.47 0.20 0.12 1.00 0.61 0.29 0.21
(0.99) (0.50) (0.20) (0.13) (1.00) (0.62) (0.29) (0.22)

The figures are proportions of tests that (correctly) reject the null hypothesis as in Table 1. The sample size is n = 100.

by the error variance σ 2. The situation is different for c = 0.5 and c = 1, which denotes alternatives that are easier to detect.
As expected, the rejection rates are high for small σ and large c , and decrease as σ becomes larger. Consider, for example,
the rejection rates for span 1 (which yielded reasonable results under the null hypothesis) and c = 1: for σ = 0.1 about
98% of the simulated tests reject the (false) null hypothesis, but only about 12% of the tests reject it when σ = 0.75.

Finally, we also looked at the case when g is the uniform density on C = [0, 1]2. Here we expect that our test will fail to
detect local alternatives: in Section 3wehave shown that under local alternatives the limiting distribution of the test statistic
T is shifted by the value


h∆ dG, which is zero for uniform covariates, i.e. the test has no local asymptotic power. For a quick

comparison with Table 2 we considered the case π(x) = 1, c = n−1/2
= 0.1, σ = 0.1 and span 0.95. (The results for span

1 were similar.) Only 4% of the tests in the scenario with a uniform covariate density rejected the null hypothesis. This is
considerably lower than the 18% listed in Table 2 for the corresponding case with covariate density (5.1). For comparison
we also looked at the case n = 500 and c = n−1/2

≈ 0.045. About 12% of the tests with g from (5.1) and 0.4% of the tests
with uniform covariates rejected the null hypothesis. These results are in line with our theoretical findings about uniformly
distributed covariates.

Although the simulation results turned out quite well in the example with covariate density (5.1)—at least for small σ
and sufficiently large c—this was not the case in other scenarios that we considered. The problem seems to be that the
distribution of T is not close to the asymptotic distribution. One possible reason is that the marginal integration estimator
is based on a multivariate local polynomial smoother, which is affected by the curse of dimensionality. A sample size of
several hundreds may not be sufficient for the finite sample approximation to be appropriate. Summing up, the proposed
additivity test can be used for large enough samples for which a bootstrap test is no longer practically feasible. Our test will
have no local power if the components of the covariate vector are independent which applies, for example, if they follow a
multivariate uniform distribution.

6. Proof of Theorem 2

The marginal integration estimator ϱ̃ is based on the local polynomial smoother ϱ̂. We begin by recalling results on
ϱ̂ from [23]. Order the multi-indices i ∈ I(m) lexicographically. Let ψ be the vector with components ψi, i ∈ I(m). By
definition, ϱ̂ is the component β̂0 of β̂ , where β̂ is the solution of the normal equation

R(x) = W (x)β̂(x)
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with

R(x) =
1
ncqn

n
j=1

w
Xj − x

cn


(Yj − U⊤

j ϑ̂)ψ
Xj − x

cn


and

W (x) =
1
ncqn

n
j=1

w
Xj − x

cn


ψ
Xj − x

cn


ψ⊤

Xj − x
cn


.

On the Hölder space Hq(m, γ )we introduce the norm

∥h∥(q)m,γ = max
i∈I(m)

sup
x∈C

|Dih(x)| + max
i∈J(m)

sup
x,y∈C ,x≠y

|Dih(y)− Dih(x)|
∥x − y∥γ

with

Dih(x) =
∂ i1+···+iq

∂xi11 · · · ∂xiqq
h(x), x = (x1, . . . , xq) ∈ C .

LetBq(m, γ ) denote the unit ball ofHq(m, γ ) for this norm. In the general partially linear regressionmodel,Müller et al. [23]
have obtained the following uniform stochastic expansion of the regression function estimator,

sup
u∈Rp,x∈C

ϑ̂⊤u + ϱ̂(x)− ϑ⊤u − ϱ(x)− (ϑ̂ − ϑ)⊤(u − µ(x))− ĉ(x)
 = op(n−1/2) (6.1)

with

ĉ(x) = e⊤(E[W (x)])−1 1
ncqn

n
j=1

w
Xj − x

cn


εjψ

Xj − x
cn


,

where e is the vector (ei)i∈I(m) with e0 = 1 and ei = 0 for i ≠ 0. In particular,

P

ĉ ∈ Bq(q, α)


→ 1, (6.2)

|ĉ(x)|1+ξg(x) dx = op(n−1/2), (6.3)

for some α > 0 and ξ > q/(2s − q).
In the additive partially linear regression model, let us set

ã(u, x) = (ϑ̂ − ϑ)⊤(u − µ∗(x))+ c̃(x),
where

µ∗(x) = (1 − q)E[U] +

q
l=1

E[µ(X1,−l(xl))],

c̃(x) = (1 − q)
1
n

n
j=1

εj +

q
l=1

1
n

n
j=1

ĉ(Xj,−l(xl)).

For the Hölder space H1(q, α) the above norm simplifies to

∥a∥(1)q,α =

q
i=1

sup
0≤t≤1

|a(i)(t)| + sup
0≤s≤t≤1

|a(q)(s)− a(q)(t)|
|s − t|α

.

Let B(q, α) denote the unit ball of H1(q, α) for this norm. We write D for the set of functions of the form
a(u, x) = b⊤(u − µ∗(x))+ a1(x1)+ · · · + aq(xq)

with |b| ≤ 1 and al ∈ B(q, α) for l = 1, . . . , q. Here α is so small that (6.2) holds. Let Q denote the joint distribution of U
and X . Recall that f is bounded. By Theorem 2.2 in [21], the desired result then follows from the following statements:

P(ã ∈ D) → 1; (6.4)
|ã|1+ξ dQ = op(n−1/2), ξ > q/(2s − q); (6.5)
ã dQ =

1
n

n
j=1

εj +
1
n

n
j=1

εjh(Xj)− (ϑ̂ − ϑ)⊤ν = op(n−1/2); (6.6)

sup
u∈Rk,x∈C

ϑ̂⊤u + ϱ̃(x)− ϑ⊤u − ϱ(x)− ã(u, x)
 = op(n−1/2). (6.7)
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Note that requirement (2.1) of [21] on the bracketing numbers of the class D is verified as in that paper, but now using
the bound (1.5) in [22] in place of the bound (3.1) in [21]. Statements (6.4) and (6.5) above are simple consequences of the
√
n-consistency of ϑ̂ and the properties (6.2) and (6.3) of ĉ . Statement (6.6) follows from the identities

ã dQ = (ϑ̂ − ϑ)⊤

E[U] − E[µ∗(X)]


+ (1 − q)

1
n

n
j=1

εj +

q
l=1

1
n

n
j=1


ĉ(Xj,−l(t))gl(t) dt

and

E[U] − E[µ∗(X)] = qE[U] −

q
l=1


µ(x)g(l)(x) dx = −ν

and from the expansions

1
n

n
j=1


ĉ(Xj,−l(t))gl(t) dt =


ĉ(x)g(l)(x) dx + op(n−1/2)

and
q

l=1


ĉ(x)g(l)(x) dx =


ĉ(x)(q + h(x))g(x) dx =

1
n

n
j=1

εj(q + h(Xj))+ op(n−1/2).

These expansions are proved as in [22]. We omit the details.
We now verify (6.7). Note that (6.1) implies the expansion

sup
x∈C

ϱ̂(x)− ϱ(x)+ (ϑ̂ − ϑ)⊤µ(x)− ĉ(x)
 = op(n−1/2).

From this we can conclude that

sup
x∈C

 q
l=1

1
n

n
j=1


ϱ̂(Xj,−l(xi))− ϱ(Xj,−l(xl))+ (ϑ̂ − ϑ)⊤µ(Xj,−l(xl))− ĉ(Xj,−l(xl))

 = op(n−1/2).

In view of the additivity of ϱ, we have the identity
q

l=1

1
n

n
j=1

ϱ(Xj,−l(xl)) = ϱ(x)+ (q − 1)
1
n

n
j=1

ϱ(Xj).

Using the representation (2.1) for Ȳ∗, we have

sup
x∈C

ϱ̃(x)− ϱ(x)+ (ϑ̂ − ϑ)⊤µ̃(x)− c̃(x)
 = op(n−1/2),

where

µ̃(x) = (1 − q)
1
n

n
j=1

Uj +

q
l=1

1
n

n
j=1

µ(Xj,−l(xl)).

Since µ is continuous, we obtain

sup
x∈C

|µ̃(x)− µ∗(x)| = op(1).

Combining the above, we obtain (6.7).
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