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a b s t r a c t

The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-
dimensional data as it can reduce the number of free parameters through its factor-analytic
representation of the component covariance matrices. This paper extends the MFA model
to incorporate a restricted version of the multivariate skew-normal distribution for the
latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The
proposed MSNFA model allows us to relax the need of the normality assumption for
the latent factors in order to accommodate skewness in the observed data. The MSNFA
model thus provides an approach to model-based density estimation and clustering of
high-dimensional data exhibiting asymmetric characteristics. A computationally feasible
Expectation Conditional Maximization (ECM) algorithm is developed for computing the
maximum likelihood estimates of model parameters. The potential of the proposed
methodology is exemplified using both real and simulated data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Factor analysis (FA) is a popular technique for explaining the covariance relationships among many variables through
a fewer number of unobservable random quantities known as latent factors. Finite mixture models (FMMs) have been
widely used as flexible means to model heterogeneous data, in particular, for density estimation and clustering. There are
a number of monographs on mixture models; see, for example, [14,19,26,38,46,50,57,68] and the references contained
therein. Mixtures of factor analyzers (MFAs), introduced by Ghahramani and Hinton [28], provide a global non-linear
approach to dimension reduction via the adoption of component distributions having a factor-analytic representation for the
component-covariance matrices; see also [51]. McLachlan et al. [48,52] exploited the MFA model for clustering microarray
gene-expression profiles. For datawith clusters having longer than the normal tails, McLachlan et al. [47] adopted the family
of multivariate t-distributions for the component factors and errors to establish a robust extension of MFA. More recently,
Baek et al. [9] proposed mixtures of common factor analyzers (MCFA) in which the factors are taken to have a common
distribution before their transformation to bewhite noise. A robust version ofMCFA using t-component distributions, called
mixtures of common factor t analyzers (MCtFA), was subsequently provided by Baek et al. [8]. Wang [72,73] extended the
MCFA and MCtFA approaches to accommodate high-dimensional data with possibly missing values. Bayesian treatments
of the MFA model have been investigated by Ghahramani and Beal [27] via a variational approximation and Utsugi and
Kumagai [70] using the Gibbs sampler and a deterministic algorithm.
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For computational convenience andmathematical tractability, component errors and latent factors in the traditionalMFA
model are routinely assumed to follow multivariate normal distributions. However, in many applied problems, the data to
be analyzed may contain a group or groups of observations whose distributions are moderately or severely skewed. Just
like other normal-based mixture models, a slight deviation from normality may seriously affect the estimates of mixture
parameters and/or lead to spurious groups, subsequently misleading inference from the data. Wall et al. [71] conducted
several simulation studies to explore the influence of non-normal latent factors in the estimation of parameters.

In recent years, there has been growing interest in studying mixtures of skew-normal distributions [37,40], both in
the univariate and multivariate cases, as a more general tool for handling heterogeneous data involving asymmetric
behavior across sub-populations. Pyne et al. [65] proposed mixtures of multivariate skew-normal and t-distributions based
on a restricted variant of the skew-elliptical family of distributions of Sahu et al. [66], which we shall refer to as the
restricted multivariate skew-normal (rMSN) distribution. The use of ‘‘restricted’’ was adopted by Lee and McLachlan [33]
since it is obtained by imposing the restriction that the p latent skewing variables are all equal in the form of the class
of skew elliptical distributions proposed by Sahu et al. [66]. The latter class without this restriction was referred to
as ‘‘unrestricted’’. The rMSN distribution is equivalent to the skew normal distribution proposed by Azzalini and Dalla
Valle [7]. Lee and McLachlan [34] gave a systematic overview of various existing multivariate skew distributions and
clarified their conditioning-type and convolution-type representations. Also, Lee and McLachlan [35] have provided the
EMMIXuskew package, which implements a closed-form expectation–maximization (EM) algorithm for computing the
maximum likelihood (ML) estimates of the parameters for mixtures of unrestricted skew-normal and skew-t distributions.

There have been a few different proposals of mixtures of skew factor models in the literature, see, for instance, mixtures
of shifted asymmetric Laplace factor analyzers of Franczak et al. [24], mixtures of generalized hyperbolic factor analyzers of
Tortora et al. [69], and mixtures of skew-t factor analyzers (MSTFA) of Murray et al. [61]. An unrestricted version of MSTFA
was considered by Murray et al. [62]. Notice that the form of the skew-t distribution used in Murray et al. [61] arises as a
special case of the generalized hyperbolic distribution [10], called the generalized hyperbolic skew-t (GHST) distribution.
More recently, Murray et al. [63] have put forward a skew version of the MCFA model in which the common factors follow
the GHST distribution. The model is henceforth referred to as mixtures of common skew-t factor analyzers (MCSTFA). We
should emphasize that the GHST distribution differs from the restricted skew-t distribution in a number of ways, such as
different behavior in its tails, for example in the univariate case, with one polynomial and the other exponential [1]. Also, it
does not become a skew normal distribution as a limiting case [36].

In this paper, we propose mixtures of skew-normal factor analyzers (MSNFA) where the latent component factors are
assumed to follow the family of rMSN distributions in an attempt to model the data adequately in the presence of skewed
sub-populations. The proposed model, which is a generalization of the MFA model, can be viewed as a novel approach to
achieving dimensionality reduction and representing appropriately non-normal data. ML estimates of the parameters in the
model can be computed via the closed-form EM implementations [16,58], and the estimated factor scores can be obtained
as by-products within the estimation procedure. The asymptotic covariance matrix of the estimated mixture parameters is
obtained by inverting an approximation to the observed information matrix [30].

The rest of the paper is organized as follows. In Section 2, we establish notation and provide a preliminary account of
the rMSN distribution. In Section 3, we briefly present the formulation of the skew-normal factor analysis (SNFA) model
and study its related properties. Section 4 extends the work to the MSNFA model and presents an EM-type algorithm for
obtaining the ML estimates of model parameters. Section 5 describes some practical issues, including the specification of
starting values, the stopping rule, model selection and two indices for performance evaluation. The proposed methodology
is illustrated through both real and simulated data in Section 6. Some concluding remarks are given in Section 7.

2. The restricted multivariate skew-normal distribution

We begin with a brief review of the rMSN distribution and a study of some essential properties. A unification of families
of MSN distributions and several variants and extensions can be found in [2,4]. To establish notation, let φp(· ;µ,6) be the
probability density function (pdf) corresponding to Np(µ,6), a p-dimensional multivariate normal distribution with mean
vector µ and variance–covariance matrix 6, and Φ(·) the cumulative distribution function (cdf) of the standard normal
distribution. Further, let TN(µ, σ 2

; (a, b)) denote the truncated normal distribution for N(µ, σ 2) lying within a truncated
interval (a, b).

Following Lee and McLachlan [33], a p × 1 random vector X is said to follow a rMSN distribution with location vector µ,
dispersion matrix 6 and skewness vector λ, denoted by X ∼ rSNp(µ,6,λ), if it can be represented as

X = λ|U1| + U2, U1 ⊥ U2, (1)

where U1 ∼ N(0, 1), U2 ∼ Np(µ,6) and the symbol ‘⊥’ indicates independence. LettingW = |U1|, a two-level hierarchical
representation of (1) is

X | (W = w) ∼ Np(µ + λw,6),

W ∼ TN (0, 1; (0,∞)) . (2)

For computing the moments ofW , we use the following proposition.
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Proposition 1. Let W ∼ TN(µ, σ 2
; (0,∞)). The density of W is

f (w) =
φ(w;µ, σ 2)

Φ(µ/σ)
I(w > 0),

where I(·) is an indicator function. For positive integer k, the moments of W are given by

E(W ) = µ+ σ
φ(µ/σ)

Φ(µ/σ)
for k = 1,

E(W k) = (k − 1)σ 2 E(W k−2)+ µ E(W k−1) for k ≥ 2.

The pdf of X , expressed as a product of a multivariate normal density and a univariate normal cdf, is given by

f (x) = 2φp(x; µ,�)Φ(ξ/σ ), (3)

where � = 6 + λλ⊤, ξ = λ⊤�−1(x − µ), and σ 2
= (1 + λ⊤6−1λ)−1

= 1 − λ⊤�−1λ. The rMSN distribution falls into
the class of fundamental skew-normal (FUSN) distribution [3]. In addition, it can be treated as a simplified version of Sahu
et al. [66] or a modification of the traditional version of Azzalini and Dalla Valle [5,7] via a reparameterization. The version
allows us to develop computationally feasible EM-type algorithms for parameter estimation in SNFA and MSNFA models.

Using Proposition 1 and the law of iterative expectations, it follows from (1) that the mean and covariance matrix of X
are

E(X) = µ + cλ and cov(X) = 6 + (1 − c2)λλ⊤, (4)

where c =
√
2/π . The higher order moments of X can be derived from the moment generating function (mgf) given in the

following proposition.

Proposition 2. If X ∼ rSNp(µ,6,λ), then the mgf of X is

MX (t) = 2 exp

t⊤µ +

1
2
t⊤�t


Φ(λ⊤t), t ∈ Rp.

The following result shows an appealing closure property of the rMSN distribution under affine transformations, which
is useful for later methodological developments.

Proposition 3. Let X ∼ rSNp(µ,6,λ). For any full rank matrix L ∈ Rq×p (1 6 q 6 p), the distribution of the linear transfor-
mation LX is

LX ∼ rSNq(Lµ, L6L⊤, Lλ).

The proof follows directly by applying Proposition 2 to the transformation LX .

3. The skew-normal factor analysis model

3.1. The model

We consider a generalization of the traditional FA model, namely the SNFA model, in which the hidden factors are
assumed to follow an rMSN distribution within the family defined by (1). Suppose that Y = {Y1, . . . , Yn} is a random
sample of n p-dimensional observations. The SNFA model can be written asYj = µ + BUj + εj, Uj ⊥ εj,

Uj
iid
∼ rSNq(−c1−1/2λ,1−1,1−1/2λ), εj

iid
∼ Np(0,D),

(5)

for j = 1, . . . , n, where µ is a p-dimensional location vector, B is a p × q matrix of factor loadings, Uj is a q-dimensional
vector (q < p) of latent variables called factors, εj is a p-dimensional vector of errors, and 1 = Iq + (1 − c2)λλT is a scale
matrix. The elements of the factor loadings B indicate the strength of dependence of each variable on each factor. Moreover,
D is a positive diagonal matrix and Iq stands for an identity matrix of order q.

Under model (5), an appealing property is that

E(Uj) = 0 and cov(Uj) = Iq. (6)

Hence, the chosen distributional assumption for Uj makes the factor score estimates of FA and SNFAmodels comparable. By
Proposition 3, we can deduce that

Yj ∼ rSNp(µ − cα,6,α),
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where 6 = B1−1B⊤
+ D and α = B1−1/2λ. Clearly, the marginal distribution of Yj belongs to the family of rMSN

distributions in which the skewness parameter α depends both on B and λ. It follows immediately from (4) that

E(Yj) = µ and cov(Yj) = BB⊤
+ D. (7)

Another interesting feature of this model is that the parameter estimates of µ, B and D can be used to recover the sample
mean and sample covariance for both FA and SNFA models. The important characteristics (6) and (7) were not considered
neither in Montanari and Viroli [60] nor in other developments in the literature.

3.2. Identifiability issues

For a hidden dimensionality q > 1, there is an identifiability issue associated with the rotational invariance of the factor
loading matrix B. For any orthogonal matrix P of order q, model (5) still holds when B is replaced by BP and the latent
Uj is changed to PTUj. Moreover, such an orthogonal transformation will leave the covariance matrix in (7) invariant since
BP(BP)T = BB⊤.

To circumvent this identifiability problem (rotational indeterminacy), one of the most commonly used techniques is to
constrain the loading matrix B so that the upper-right triangle is zero and the diagonal entries are strictly positive, see, for
example, Fokoué and Titterington [21] and Lopes andWest [42]. This means that q(q − 1)/2 elements of B are constrained.
The number of free parameters to be estimated ism = p(q + 2)+ q − q(q − 1)/2.

The mixture model itself poses another identifiability problem raised by relabeling of components. More precisely, the
likelihood is invariant under a permutation of the class labels in parameter vectors, and thus a label switching problem can
occur when some labels of the mixture classes permute [50]. However, the switching of class labels is not a concern with
the use of the EM algorithm and its variants to compute the ML estimates.

4. Mixture of restricted skew-normal factors

4.1. Model formulation

Let Yj = (Yj1, . . . , Yjp)
⊤ be a p-dimensional vector of p feature variables (j = 1, . . . , n), where Yj comes from a het-

erogeneous population with a finite number, say g , of groups. To denote which component Yj belongs in this finite mixture
framework, we introduce the latent membership-indicator vectors, Z1, . . . , Zn. Here Zij = (Zj)i is one or zero, according to
whether Yj belongs or does not belong to the ith component (i = 1, . . . , g; j = 1, . . . , n). Accordingly, we have

Z1, . . . , Zn
iid
∼ M(1;π1, . . . , πg),

where the pdf of the multinomial variate Zj is given by

f (zj; π) = π
z1j
1 π

z2j
2 · · ·π

zgj
g , for j = 1, . . . , n,

and π = (π1, . . . , πg)
⊤ subject to

g
i=1 πi = 1.

TheMSNFAmodel is a generalization of theMFAmodel by postulating amixture of g SNFA sub-models for the distribution
of Yj. We consider the use of the MSNFA model in an attempt to accommodate skewness arising frequently in high-
dimensional data without performing transformation.

Given Zij = 1, each Yj can be modeled as

Yj = µi + BiUij + εij, with probability πi (i = 1, . . . , g), (8)

for j = 1, . . . , n, where the factors Ui1, . . . ,Uin
iid
∼ rSNq(−c1−1/2

i λi,1
−1
i ,1

−1/2
i λi), independently of the errors εij, which

are distributed independently as Np(0,Di), where 1i = Iq + (1 − c2)λiλ
T
i and Di is a positive diagonal matrix.

From model (8), the marginal pdf of Yj is

f (yj; 2) =

g
i=1

πiψ(yj; θi),

where ψ(yj; θi) is the pdf of rMSN distribution defined in (3), θi = (µi, Bi,Di,λi) is composed of the unknown parameters
of the ith mixture component, and 2 = {π1, . . . , πg−1, θ1, . . . , θg} represents all the unknown parameters of the mixture
model. Given a set of n observations y = {y1, . . . , yn}, ML estimation can be undertaken by maximizing the log-likelihood
function of 2, given by

ℓ(2; y) =

n
j=1

log


g

i=1

πiψ(yj; θi)


. (9)
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Unfortunately, it is not straightforward to derive explicit analytical solutions for ML estimator of 2. To cope with this
obstacle, one usually resorts to the EM-type algorithm [16], which is a popular iterative device for ML estimation in models
involving latent variables or missing data.

Under model (8), it can be shown that

Yj | (Zij = 1) ∼ rSNp(µi − cαi,6i,αi), (10)

where 6i = Bi1
−1
i B⊤

i + Di and αi = Bi1
−1/2
i λi. To facilitate the derivation of our inference procedure, we adopt the

following scaling transformation:

B̃i
△
= Bi1

−1/2
i and Ũij

△
= 1

1/2
i Uj.

Based on (2) and (10), a four-level hierarchical representation of model (8) is

Yj | (ũij, wj, Zij = 1) ∼ Np(µi + B̃iũij,Di),

Ũij | (wj, Zij = 1) ∼ Nq

(wj − c)λi, Iq


,

Wj | (Zij = 1) ∼ TN

0, 1; (0,∞)


,

Zj ∼ M(1;π1, . . . , πg). (11)

In the EM framework, the augmented quadruples {Yj, Zj, Ũij, wj}
n
j=1 are referred to as the complete data. Using Bayes’

Theorem, it suffices to show that

Ũij | (Zij = 1, wj, yj) ∼ Nq

qij, Ci


,

Wj | (Zij = 1, yj) ∼ TN

aij, 1 − α⊤

i �−1
i αi; (0,∞)


, (12)

where qij = Ci[vij + λi(wj − c)], vij = B̃⊤

i D
−1
i (yj − µi), Ci = (Iq + B̃⊤

i D
−1
i B̃i)

−1, aij = α⊤

i �−1
i (yj − µi + cαi) and

�i = 6i + αiα
⊤

i . As an immediate consequence, we establish the following proposition, which is crucial for the calculation
of some conditional expectations involved in the proposed ECM algorithm.

Proposition 4. Given the hierarchical representation (12), we have the following (the symbol ‘‘| · · · ’’ denotes conditioning on
Zij = 1 and Yj = yj):

(a) The conditional expectation of Zij given Yj = yj is

E(Zij | yj) =
πiψ(yj; θi)

f (yj; 2)
. (13)

(b) Some specific conditional expectations related to Wj and Uj are

E(Wj | · · · ) = (1 − α⊤

i �−1
i αi)

1/2

Aij +

φ(Aij)

Φ(Aij)


, (14)

E(W 2
j | · · · ) = (1 − α⊤

i �−1
i αi)


1 + Aij


Aij +

φ(Aij)

Φ(Aij)


, (15)

E(Ũij | · · · ) = Ci

vij + λi(E(Wj | · · · )− c)


, (16)

E(WjŨij | · · · ) = Ci


vijE(Wj | · · · )+ λi


E(W 2

j | · · · )− cE(Wj | · · · )

, (17)

and

E(ŨijŨ⊤

ij | · · · ) =

Iq + E(Ũij | · · · )v⊤

ij +

E(WjŨij | · · · )− cE(Ũij | · · · )


λ⊤

i


Ci, (18)

where Aij = (1 − α⊤

i �−1
i αi)

−1/2aij.

4.2. ML estimation via the ECM algorithm

The EM algorithm has several attractive features such as simplicity of implementation and monotonic convergence
properties. However, it cannot be directly applied for ML estimation of the MSNFA model because the M-step is difficult
to compute. To proceed further, we exploit a variant of the EM algorithm, called the ECM algorithm [58], which is easy to
implement and more broadly applicable than EM. The key feature of ECM is to replace the M-step of the EM algorithmwith
a sequence of simpler constrained or conditional maximization (CM) steps. Moreover, it shares all appealing features of EM
and can show faster convergence in terms of number of iterations or total CPU time.
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For notational convenience, let u = (u⊤

1 , . . . , u
⊤
n )

⊤, w = (w1, . . . , wn)
⊤ and z = (z⊤

1 , . . . , z
⊤
n )

⊤, which are treated as
missing data in the EM framework. According to (11), the log-likelihood function of2that can be formed from the complete-
data vector yc = (y⊤, u⊤,w⊤, z⊤)⊤, aside from additive terms not involving the parameters, is

ℓc(2; yc) =

g
i=1

n
j=1

zij

logπi −

1
2


log |Di| + tr


D−1

i ϒij

+ (wj − c)2λ⊤

i λi − 2(wj − c)λ⊤

i ũij

, (19)

where ϒij = (yj − µi − B̃iũij)(yj − µi − B̃iũij)
⊤.

In the E-step of the algorithm, we need to calculate the Q -function, denoted by Q (2; 2̂
(k)
), which is the conditional

expectation of (19) given the observed data y and the current estimate 2̂
(k)

. To evaluate the Q -function, the necessary
conditional expectations include ẑ(k)ij = E(Zij | yj, 2̂

(k)
), ŵ(k)1ij = E(Wj | Zij = 1, yj, 2̂

(k)
), ŵ(k)2ij = E(W 2

j | Zij = 1, yj, 2̂
(k)
),

κ̂
(k)
ij = E(WjŨij | yj, 2̂

(k)
), η̂(k)ij = E(Ũij | yj, 2̂

(k)
) and 9̂

(k)
ij = E(ŨijŨ⊤

ij | yj, 2̂
(k)
). Therefore, we have

Q (2; 2̂
(k)
) =

g
i=1

n
j=1

ẑ(k)ij


logπi −

1
2


log |Di| + tr


D−1

i ϒ
(k)
ij


+ ĥ(k)ij λ⊤

i λi − 2λ⊤

i ζ̂
(k)
ij


, (20)

where ĥ(k)ij = ŵ
(k)
2ij − 2cŵ(k)1ij + c2, ζ(k)ij = κ̂

(k)
ij − cη̂(k)ij and

ϒ
(k)
ij = (yj − µi − B̃iη̂

(k)
ij )(yj − µi − B̃iη̂

(k)
ij )

⊤
+ B̃i(9̂

(k)
ij − η̂

(k)
ij η̂

(k)⊤
ij )B̃⊤

i , (21)

which involves free parameters µi and B̃i for i = 1, . . . , g .
In summary, the implementation of the ECM algorithm proceeds as follows:

E-step: Given 2 = 2̂
(k)

, compute ẑ(k)ij , ŵ
(k)
1ij , ŵ

(k)
2ij , κ̂

(k)
ij , η̂(k)ij and 9̂

(k)
ij by using (13)–(18), for i = 1, . . . , g and j = 1, . . . , n.

CM-step 1: Calculate π̂ (k+1)
i = n̂(k)i /n, where n̂(k)i =

n
j=1 ẑ

(k)
ij .

CM-step 2: Update µ̂
(k)
i by maximizing (20) over µi, which gives

µ̂
(k+1)
i =

1

n̂(k)i

n
j=1

ẑ(k)ij


yj −

ˆ̃B
(k)

i η̂
(k)
ij


.

CM-step 3: Fix µi = µ̂
(k+1)
i , update B̃(k)i by maximizing (20) over B̃i, which gives

ˆ̃B
(k+1)

i =

n
j=1

ẑ(k)ij


(yj − µ̂

(k+1)
i )η̂

(k)⊤
ij

 n
j=1

ẑ(k)ij 9̂
(k)
ij

−1

.

CM-step 4: Fix µ = µ̂
(k+1)
i and B̃i =

ˆ̃B
(k+1)

i , update D̂(k)i by maximizing (20) over Di, which leads to

D̂(k+1)
i =

1

n̂(k)i

Diag
 n

j=1

ẑ(k)ij ϒ̂
(k)
ij


,

where ϒ̂
(k)
ij is ϒ

(k)
ij in (21) with (µi, B̃i) replaced by (µ̂(k+1)

i ,
ˆ̃B
(k+1)

i ), respectively.

CM-step 5: Update λ̂
(k)
i by maximizing (20) over λi, which gives

λ̂
(k+1)
i =

n
j=1

ẑ(k)ij ζ̂
(k)
ij

n
j=1

ẑ(k)ij ĥ(k)ij

.

The E- and CM-steps are alternated repeatedly until a suitable convergence rule is satisfied, e.g., the difference in
successive values of the log-likelihood is less than a tolerance value. Upon convergence, the ML estimate of 2 is denoted by

2̂ = {π̂i, µ̂i, B̂i, D̂i, λ̂i}
g
i=1, where B̂i =

ˆ̃Bi1̂
1/2
i and 1̂i = Iq + (1− c2)λ̂iλ̂

⊤

i . Consequently, the conditional prediction of factor
scores is estimated by

Ûj =

g
i=1

π̂i1̂
−1/2
i η̂ij, (22)

where η̂ij can be calculated through (16) with 2 evaluated at 2̂.
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4.3. Computing standard errors via numerical differentiation

The asymptotic covariance matrix of the ML estimator can be approximated by the inverse of the observed information
matrix; see Efron and Hinkley [18]. Specifically, the observed information matrix

I(2̂; y) = −
∂2ℓ(2; y)
∂2∂2⊤


2=2̂

is a m × m matrix of the negative of second-order partial derivatives of the log-likelihood function with respect to each
parameter, where m is the number of distinct parameters in 2. The asymptotic standard errors of 2̂ can be calculated by
taking the square roots of the diagonal elements of [I(2̂; y)]−1.

In the literature, there have been a few strategies recommended for efficiently computing I(2̂; y) when implementing
the ECM algorithm; see, for example, Louis [43] and Meng and Rubin [59]. A problem raising from these methods is that
they require the second-order derivatives of the Q -function, which is rather cumbersome to calculate in FA models.

To approximate I(2̂; y)numerically, Jamshidian [30] suggested using the central difference. Let s(2; y) = ∂ℓ(2; y)/∂2
be the score vector of ℓ(2; y) and sc(2; y) = ∂ℓc(2; yc)/∂2 be the complete-data score of ℓc(2; yc). Moreover, it can be
verified that s(2; y) = E[sc(2; yc) | y], see McLachlan and Peel [50]. Explicit expressions for the elements of s(2; y) are
available upon request.

Let G = [g1 | · · · | gm] be am × m matrix with the rth column being

gr =
s(2̂ + h∗

r er; y)− s(2̂ − h∗
r er; y)

2h∗
r

, r = 1, . . . ,m,

where er is a unit vector corresponding to the rth element. The values of h∗
r are small numbers chosen based on the scale of

problem. In later data analysis, we use h∗
r = max(η, η|2̂r |) with 2̂r denoting the rth of element of 2̂, where values such

as η = 10−4 should be sufficiently small to approximate and large enough to avoid the roundoff error. Since G may not be
symmetric, it is suggested to use Ĩ(2̂; y) = −(G + G⊤)/2 to approximate I(2̂; y).

5. Strategies for implementation

5.1. Initialization

As described in Section 4, the MSNFA parameters are estimated through the ECM algorithm. However, the EM-type
algorithm has an intrinsic limitation that there is no guarantee of convergence to the global optimum [77]. For modeling
multi-model distributions, the iterations may converge to a local maximum or to a saddle point. Sometimes, the quality of
the final solution depends heavily on starting values. To cope with such potential problems, we recommend a simple way
of obtaining suitable initial values for the ECM algorithm below.

1. Perform the k-means algorithm initialized with a random seed. Then, initialize the zero–one membership indicator
ẑ(0)j = {ẑ(0)ij }

g
i=1 according to the k-means clustering result. The initial values for the mixing proportions and component

locations are then given by π̂ (0)i = n−1n
j=1 ẑ

(0)
ij and µ̂

(0)
i =

n
j=1 ẑ

(0)
ij yj/

n
j=1 ẑ

(0)
ij .

2. Subtract each observation from its initial cluster means. Then, do a FA fit to these k ‘‘centralized samples’’ via the ML
estimation (default) or the PCA method. The resulting estimates of factor loadings and error covariance matrices are
taken as the initial values, namely B̂(0)i and D̂(0)i for i = 1, . . . , g . Next, compute the corresponding factor scores of each

cluster via the conditional predictionmethod such as (22). The initial values for the skewness parameters λ̂
(0)
i are obtained

by fitting the rMSN distribution to the k samples of factor scores via the R package EMMIXskew [74].

The k-means is the most widely used method for getting an initial partition of groups, but it can sometimes be very
inadequate for non-spherical data, especially when the dimension of the data is high [45,55]. The use of deterministic
initialization such as the agglomerative nesting [76], the model-based hierarchical clustering of [22] implemented using
the R package mclust [23] and the multistage procedure of [44] provide further choices of starting values. There are other
popular approaches based on stochastic initialization schemes which may alleviate the potential drawbacks of k-means. For
instance, the emEM [12] employs some short runs of EM algorithm from a number of random initializations. Each short run
is stopped according to a loose convergence criterion. The solution with the highest log-likelihood value is used as a starter
of the single long EM with a strict convergence criterion. Maitra [44] proposed a simple modification of emEM, called the
ranEM, which skips running the short-EM by just evaluating the likelihood of each valid initial random start and choosing
the parameters with the highest log-likelihood value as the initializer for the long-EM. Other extraordinary strategies of
searching optimal starting values to promote algorithmic efficiency can be referred to [31,56,64].

The above procedure provides a quick and convenient strategy to initialize the parameters. Once the ECM algorithm has
converged, we can determine the cluster membership according to the maximum a posteriori (MAP) classification rule. That
is, each observation yj is assigned to the component with the highest posterior probability.
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The ECMprocedure can get stuck in one of themany localmaximaof the likelihood function [58]. To overcome such a flaw,
it is recommended to initialize the algorithm with various choices of starting values for searching for all local maxima [49].
This can be done by specifying a variety of other starting points such as random starts [50]. The ML estimate 2̂ can be taken
to be the maximizer corresponding to the highest log-likelihood value.

5.2. Model selection

A number of information criteria have been proposed to facilitate identifying an appropriate model. The most frequently
employed index is the Bayesian Information Criterion (BIC) [67]

BIC = −2ℓmax + m log n,

where m is the number of free parameters, and ℓmax is the maximized log-likelihood value. Empirical evidence [8,9,53] has
shown that BIC is useful in choosing the true number of classes of a given mixture model and an ideal number of latent
factors.

As outlined by Biernacki et al. [13], an alternative promising measure for estimating the proper number of clusters is
based on the integrated completed likelihood (ICL), defined as

ICL = BIC + 2ENT(ẑ),

where ENT(ẑ) = −
g

i=1
n

j=1 ẑij log ẑij is the entropy used to measure the overlap of clusters, where ẑij is the posterior
probability of yj classified to class i. Notably, ICL penalizes complex models more severely than BIC and thus favors the
models with fewer latent classes.

In general, a smaller BIC or ICL value indicates a better fitted model. We note by passing that there is no clear consensus
regarding which criterion is better to use. This depends on the problem at hand and usually a combined use would be of
help to screen reasonable candidate models.

5.3. Convergence assessment

To monitor the convergence by using the likelihood increasing property of the ECM algorithm, the default stopping
rule is ℓ(2̂

(k)
|y)/ℓ(2̂

(k−1)
|y) − 1 < ϵ, where ϵ is a user-specified tolerance. Another recommendation is to adopt the

Aitken’s acceleration criterion [49] which estimates the asymptotic maximum of the likelihood and allows to detect an early
convergence. In our analysis, the algorithm is terminated if the maximum number of iterations kmax = 5000 is reached or
when the relative difference between two successive log-likelihood values is less than ϵ = 10−8.

5.4. Performance evaluation

To assess the model-based classification accuracy, we use the correct classification rate (CCR) and the adjusted Rand
index (ARI) as proposed by Hubert and Arabie [29]. The CCR is calculated by considering all permutations of the class labels
and the one with the lowest misclassification error can be treated as the final class membership assignment. As a measure
of class agreement, the ARI accounts for the fact that a random classification may correctly classify some instances. The ARI
has expected values of 0 under random classification and 1 for perfect classification. For both CCR and ARI, larger values
indicate better classification results.

6. Application

6.1. Fishers’ Iris data

As a motivating example, we use the Versicolor subset of Fisher’s Iris data [20]. There are a total of 50 samples with each
containing four-dimensional measurements in centimeters on the attributes of petal length, petal width, sepal length and
sepal width. First, we employ a one-factor FA using the ML method for the data. Fig. 1 depicts the histogram of estimated
factor scores inwhich the patterns aremarkedly skewed to the leftwith sample skewness equal to−0.52. Table 1 reports the
ML results obtained by fitting the FA and SNFAmodels with q = 1 to the Versicolor data. The proportion of the total sample
variances explained by the factor is larger under SNFA (69.7%) than under FA (66.6%). The ML estimate of the skewness
parameter λ is −5.68 and its standard error is 0.29, supporting strongly non-normality of the underlying factor.

Since the maximized likelihood values of the two fitted models are obtained, we perform the likelihood ratio test (LRT)
for testing the hypothesis H0 : λ = 0 (FA) against H1 : λ ≠ 0 (SNFA). The resulting LRT statistic is 4.52 with p-value 0.034,
which is significant compared with a χ2

1 distribution, giving the other indication that the SNFA model is superior to the
conventional FA. The χ2

1 distribution would be the limiting null distribution if regularity conditions hold [17]. Moreover, the
sample skewness of the factor scores estimated by SNFA is –0.65, which exhibits a stronger left skew than does FA. In this
regard, the ‘‘missed skewness’’ by the FA is then corrected to some extent by the SNFA.
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Fig. 1. Histogram of the factor scores obtained by fitting FA (q = 1) together with the fitted skew-normal (solid line) and normal (dot-dashed line)
densities.

We consider also the fitting of the MSNFA model to the full set of Fisher’s Iris data, which contains four geometric
measurements of 50 samples from each of the three species of Iris (Setosa, Versicolor, andVirginica). For this illustration, the
true number of clusters is taken to be unknown. Hence, theMSNFAmodel was applied to the datawith g ranging from 1 to 4.
The number of latent factors q is fixed at 1 to satisfy the restriction (p− q)2 ≥ (p+ q) as given by Eq. (8.5) of McLachlan and
Peel [50]. For comparison, we also implement the MSTFA and MCSTFA models via the alternating expectation conditional
maximization (AECM) algorithms described by [58,57], respectively. When implementing the estimating procedure, the
component dfs are restricted to be equal for stabilizing the convergence. A summary of the results is listed in Table 2.

To compare the clustering performance of these models, we report in Table 2 the associated ARI and CCR values for each
model considered. It can be observed that BIC selects the correct number of clusters (g = 3) for the MSNFA model and it
attains its highest CCR and ARI for g = 3 (CCR = 0.980 and ARI = 0.941). The MSTFA model also attains its highest values
for g = 3, which are not as high as for the MSNFA model (CCR = 0.973 and ARI = 0.922). Also, BIC suggests g = 2 rather
than g = 3 clusters for MSTFA. The use of the ICL criterion selects g = 2 clusters for both the MSNFA and MSTFA models.
The performance of the MCSTFA model can be seen to be much poorer than that for the MSNFA and MCSTFA models. Cross-
tabulation of the true and predicted class memberships (Table 3) shows that both models can perfectly separate Setosa and
Virginica samples from the other two species. The MCSTFA approach does not perform relatively well for this dataset as not
a large number of parameters are needed to characterize the structure of clusters.

6.2. The WDBC dataset

Breast cancer is a major cause of death for women. Early detection of breast cancer through classification can avoid
unnecessary surgery. As another illustration, we applied our method to the Wisconsin Diagnostic Breast Cancer (WDBC)
data,which are available from the UCI Machine Learning data repository [25]. These data consist of n = 569 instances
with a total of 32 different attributes. The first two attributes correspond to the ID number and the diagnosis status, of
which 357 have the diagnosis benign and 212 have the diagnose malignant. The rest p = 30 attributes are ten real-
valued measurements (Radius, Texture, Perimeter, Area, Smoothness, Compactness, Concavity, Concave points, Symmetry
and Fractal dimension) computed from a digitized mammography image of a fine needle aspirates (FNA) of breast tissue,
together with their associated mean, standard error and the mean of the three largest (‘worst’) values, respectively. Fig. 2
displays the scatterplots of the first 10quantitative features. One canobserve thatmanyof these plots are apparently bimodal
and appear to have rather non-elliptical patterns for both benign and malignant samples.

Fig. 3 shows the histograms of sample skewness of the 30 variables in benign and malignant samples. It is readily seen
thatmost of the variables exhibit highly positive skewness. There are indeed over half of the variableswith skewness greater
than one. This motivates us to advocate the use of MSNFA model to analyze this dataset.

Since there are two known classes, we implemented two-component MFA and MSNFA models with q ranging from 1 to
10. To fit the models via the ML method, the ECM algorithm developed in Section 4.2 was employed under twenty different
initializations for the parameters. The resulting ML solutions, including the maximized log-likelihood values, the number
of parameters together with the BIC and ICL values are listed in Table 4. To compare the classification accuracy, we also
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Table 1
ML results for the Versicolor subset of the Iris data. Valueswithin parentheses are the corresponding
standard errors of ML estimates.

Variable MFA (g = q = 1) MSNFA (g = q = 1)
µ B d µ B d

Sepal Length 5.936 0.395 0.105 5.942 0.403 0.105
(0.072) (0.063) (0.025) (0.090) (0.069) (0.029)

Sepal Width 2.770 0.198 0.057 2.773 0.201 0.058
(0.044) (0.041) (0.012) (0.054) (0.053) (0.013)

Petal Length 4.260 0.442 0.021 4.267 0.454 0.019
(0.066) (0.052) (0.015) (0.090) (0.097) (0.005)

Petal Width 1.326 0.162 0.012 1.329 0.163 0.013
(0.028) (0.023) (0.003) (0.038) (0.027) (0.003)

Proportion of 0.666 0.697variance explained

m 12 13
ℓmax −16.488 −14.229

LRT (p-value) 4.517 (0.034)

Table 2
Comparison of the fitted MSNFA, MSTFA and MCSTFA models on the Iris data.

Model g ℓmax m BIC ICL ARI CCR

MSNFA

1 −419.3 13 903.8 903.8 0.000 0.333
2 −231.6 27 598.4 598.4 0.568 0.667
3 −192.8 41 591.2 600.6 0.941 0.980
4 −184.6 55 644.6 672.8 0.757 0.820

MSTFAa

1 −387.4 17 860.0 860.0 0.000 0.333
2 −214.4 34 599.2 599.2 0.568 0.667
3 −176.8 51 609.2 617.6 0.922 0.973
4 −170.7 68 680.8 692.6 0.727 0.807

MCSTFAb

1 −700.3 14 1470.8 1470.8 0.000 0.333
2 −686.4 21 1478.0 1583.8 0.185 0.553
3 −680.5 28 1501.2 1624.8 0.140 0.460
4 −676.1 35 1527.6 1698.2 0.238 0.440

MSTFAa and MCSTFAb indicate the mixture of skew-t factor analyzers [61] and
the mixture of common skew-t factor analyzers [63], respectively, based on the
generalized hyperbolic skew-t distribution.

Table 3
Cross-tabulations of true and predicted class memberships for the
selected MSNFA and MSTFA models on the Iris data.

MSNFA MSTFA
1 2 3 1 2 3

Setosa 50 0 0 50 0 0
Versicolor 0 47 3 0 46 4
Virginica 0 0 50 0 0 50

computed the ARI and CCR for each q. As can be seen, the best fitted model is MSNFA with q = 9, no matter which model
selection criterion was used. In addition, the resulting ARI (0.712) and CCR (0.923) under the fitted MSNFA (q = 9) are
higher than all those under MFAmodels, although the MSNFA reaches its best ARI (0.762) and CCR (0.937) when q = 7. The
result confirms that the MSNFA is more appropriate for this dataset, providing more accurate classification for this dataset,
which exhibits a departure from normality. Finally, we did attempt to compare our MSNFA method with the MSTFA and
MCSTFA models [61,63], but we encountered certain convergence problem when implementing the latter two models for
this dataset.

6.3. Seeds data

Our third example concerns the seeds dataset analyzed by Charytanowicz and Niewczas [15]. Seven geometric features
(area, perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, and length of kernel groove) were
measured from the X-ray images of 210wheat kernels. These grains belong to three different wheat varieties, namely Kama,
Rosa, and Canadian. We consider the fitting of the MFA, MSNFA, MSTFA, and MCSTFA models to this dataset, with q varying
from 1 to 3. Focusing first on the case where g is a priori known to be 3, it can be observed from Table 5 that the model with
q = 3 is preferred by both the BIC and ICL for the MFA and MSTFA models. For the GHST factor models (see Table 6), the
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Fig. 2. Pairwise scatterplots of the first 10 quantitative features. The blue dot represents benign samples, and the red dot represents malignant samples.

MSTFAmodel obtained its lowest BIC and ICL values when q = 3, whereas q = 2 is preferred by BIC and ICL for the MCSTFA
model. However, their performances in clustering were relatively poor in terms of ARI and CCR.

We consider also the fitting of these factor models to the seeds data when g is taken to be unknown. The MFA, MSNFA,
MSTFA, and MCSTFA models were applied to the data with g ranging from 1 to 4. As above, the number of latent factors q
varies from 1 to 3. On comparing their results reported in Tables 5 and 6, it can be observed that the model corresponding
to g = 3 and q = 3 is preferred by both BIC and ICL for the MFA and MSNFA model, with the latter obtaining lower BIC and
ICL values. For the MSTFA and MCSFTA models, a model with g = 2 would be chosen based on BIC and ICL. In this example,
the highest ARI and CCR is given by the MSNFA model with q = 3 (ARI = 0.7505 and CCR = 0.9095), which coincides with
the model selected by BIC and ICL. We note in Table 6 that the likelihood does not always increase with g and/or q for the
MSTFA and MCSTFA models, indicating the convergence problems we encountered in the fitting of these two models.

6.4. A simulation study

We undertook a simulation study to examine the goodness of fit and clustering ability in simulated data by applying the
proposedMSNFAmodel. To conduct experimental studies, we generated data sets in R10 of size n each from a 3-component
MSNFA model with q = 2 factors. The presumed parameters are given as

w1 = w2 = w3 = 1/3, µ1 = 1110, µ2 = 2110, µ3 = 3110

Bi = Unif(10, 2), Di = diag{Unif(10, 1)}, λi = λ12, (i = 1, 2, 3),
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Fig. 3. Histograms of sample skewness of the 30 variables in benign and malignant samples.

Table 4
Comparison of MFA and MSNFA fitting results and implied clustering versus the true membership of WDBC data.

Model q ℓmax m BIC ICL ARI CCR

MFA

1 9,624.8 181 −18,101.4 −18,083.8 0.520 0.861
2 12,362.7 239 −23,209.2 −23,193.2 0.396 0.817
3 13,962.5 295 −26,053.6 −26,043.4 0.359 0.803
4 15,616.8 349 −29,019.6 −29,013.6 0.658 0.907
5 15,726.5 401 −28,909.2 −28,897.4 0.595 0.888
6 16,691.4 451 −30,521.6 −30,513.4 0.630 0.898
7 17,017.2 499 −30,868.8 −30,862.0 0.670 0.910
8 17,248.6 545 −31,039.8 −31,030.6 0.595 0.888
9 18,467.3 589 −33,198.0 −33,190.8 0.700 0.919

10 17,692.3 631 −31,381.6 −31,370.0 0.624 0.896

MSNFA

1 9632.8 183 −18,104.8 −18,086.2 0.515 0.859
2 12,441.3 243 −23,341.0 −23,325.2 0.373 0.808
3 14,117.8 301 −26,326.2 −26,317.2 0.397 0.817
4 15,700.5 357 −29,136.2 −29,127.6 0.658 0.907
5 15,830.1 411 −29,053.0 −29,042.6 0.618 0.895
6 16,933.3 463 −30,929.4 −30,918.6 0.718 0.924
7 17,486.8 513 −31,719.2 −31,712.0 0.762 0.937
8 17,572.5 561 −31,586.0 −31,579.0 0.681 0.914
9 18,598.8 607 −33,347.0 −33,340.4 0.712 0.923

10 18,000.9 651 −31,872.0 −31,862.8 0.700 0.919

where Unif(r, s) denotes a r × s matrix of random numbers drawn from a uniform distribution on the unit (0, 1) interval
and 1p is a p × 1 vector of ones.

As pointed out by Wall et al. [71], the skewness of generated latent factors may become much smaller than the actual
population values when the sample size n is not large enough. In this study, we therefore consider somewhat large sample
sizes (n = 600, 1200, and 2400) to enhance the skewness effects. The specific values of λ are chosen as 0, 5, and 10. The
higher the value of λ, the stronger the departure from the normality, while the zero-skewness λ = 0 corresponds to normal
factors.

For comparison purposes, each simulated data set was fitted under the MFA andMSNFA scenarios along with the MSTFA
model of Murray et al. [61] with g = 3 and q = 2. The total numbers of free parameters in the threemodels are 119, 125 and
152, respectively. Compared with the formulation of MSNFA, the MSTFAmodel involves a much larger number of unknown
parameters because its factor analytic representation applies to the error terms rather than the latent factors.

A total of 100 replications were run across each combination of n and λ. The comparison between the three models
is made using BIC and ARI, which are commonly adopted to evaluate model fitting and classification performances,
respectively. Table 7 lists the averageBIC andARI values and the corresponding standarddeviations. To evaluate the objective
use of the criteria, the frequencies preferred by BIC and ARI are also listed in the table. When λ = 0, it is not surprising that
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Table 5
Comparison of the fitted MFA and MSNFA models on the seeds data.

Model g q ℓmax m BIC ICL ARI CCR

1 1 75.74 21 −39.20 −156.80 0.0000 0.3333
1 2 105.05 27 −65.73 −262.93 0.0000 0.3333
1 3 680.75 32 −1190.39 −4761.58 0.0000 0.3333
2 1 265.34 43 −300.75 −1176.00 0.4191 0.6571
2 2 274.18 55 −254.28 −998.27 0.4388 0.6571

MFA 2 3 1026.80 65 −1706.03 −6814.15 0.4685 0.6667
3 1 419.77 65 −491.98 −1945.11 0.4261 0.7667
3 2 385.98 83 −328.14 −1286.14 0.4189 0.7619
3 3 1201.36 98 −1878.71 −7503.86 0.6875 0.8810
4 1 396.86 87 −328.52 −1294.94 0.4891 0.7429
4 2 540.57 111 −487.61 −1925.27 0.4430 0.6476
4 3 1255.09 131 −1809.72 −7218.28 0.6043 0.7381

1 1 80.68 22 −43.73 −174.92 0.0000 0.3333
1 2 112.00 29 −68.94 −275.77 0.0000 0.3333
1 3 685.99 35 −1184.82 −4739.29 0.0000 0.3333
2 1 303.42 45 −366.21 −1416.58 0.2868 0.6000
2 2 278.44 59 −241.39 −937.19 0.4257 0.6524

MSNFA 2 3 1034.95 71 −1690.26 −6751.42 0.4720 0.6667
3 1 505.52 68 −647.44 −2570.41 0.1253 0.5238
3 2 476.50 89 −477.10 −1878.65 0.2363 0.6333
3 3 1207.38 107 −1842.61 −7357.09 0.7505 0.9095
4 1 368.88 91 −251.18 −961.32 0.4517 0.7238
4 2 816.30 119 −996.29 −3951.51 0.2632 0.5143
4 3 1280.77 143 −1796.90 −7167.82 0.5971 0.7333

Table 6
Results of the fitted MSTFA and MCSTFA models on the seeds data.

Model g q ℓmax m BIC ICL ARI CCR

1 1 535.65 29 −916.24 −3664.95 0.0000 0.3333
1 2 565.63 35 −944.12 −3776.47 0.0000 0.3333
1 3 673.56 40 −1133.25 −4532.98 0.0000 0.3333
2 1 809.71 59 −1303.94 −5193.91 0.4268 0.6524
2 2 733.04 71 −1086.44 −4331.91 0.4372 0.6286

MSTFA 2 3 1047.10 81 −1661.07 −6624.61 0.4685 0.6667
3 1 469.99 89 −464.09 −1808.96 0.5216 0.8238
3 2 829.82 107 −1087.50 −4314.84 0.4664 0.7476
3 3 1071.08 122 −1489.81 −5940.30 0.3975 0.6333
4 1 542.17 119 −448.04 −1656.63 0.3651 0.6333
4 2 754.36 143 −744.08 −2939.44 0.5776 0.7762

1 1 −609.55 23 1342.08 5368.33 0.0000 0.3333
1 2 113.49 30 −66.58 −266.30 0.0000 0.3333
1 3 −301.87 36 796.23 3184.93 0.0000 0.3333
2 1 −607.92 34 1397.64 5594.50 0.0000 0.3381

MCSTFA 2 2 −751.58 44 1738.43 6953.74 2.0096 0.3333
2 3 540.83 54 −792.92 −3167.05 0.0002 0.3429
3 1 −978.40 45 2197.43 9006.83 0.2199 0.5571
3 2 175.25 58 −40.38 −27.31 0.5103 0.8048
3 3 −893.33 72 2171.64 8821.90 0.1243 0.5000

MFA is more likely to be selected. When focusing on the cases of non-zero skewness, the BIC scores provide a 53%–100%
agreement with the specification of MSNFA, and the percentage of correctly choosing the true model increases with the
sample size and the value of skewness parameter. In this study, the MSTFA model does not work well as it is strongly
penalized due to over-fitting.

With regard to the MAP classification, the results indicate that when the latent factors approach normality (λ = 0), all
three models produce comparable ARI values. When the latent factors are moderately and highly skewed (λ = 5, 10), the
MSNFA model yields slightly higher classification accuracies and is preferred more often than the other two models. Such a
phenomenon becomes apparent as the sample size increases. In summary, the MNSFA model can provide greater flexibility
in model fitting and superiority for clustering in the presence of skew factors, at least for the setting of parameters used in
this study.

7. Conclusion

We have proposed the MSNFA model by replacing the normal latent factors in the classical MFA model with the rMSN
distributed factors for each component. This family of mixture factor analyzers has emerged as an attractive tool since
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Table 7
Simulation results based on 100 replications.

λ = 0 λ = 5 λ = 10
MFA MSNFA MSTFAa MFA MSNFA MSTFAa MFA MSNFA MSTFAa

n = 600
Mean −7746.56 −7762.45 −7821.87 −7746.58 −7743.88 −7816.90 −7871.05 −7865.28 −7939.25

BIC Std 341.70 342.46 342.47 335.16 362.39 337.12 358.66 362.49 359.65
Freq 98 2 0 47 53 0 40 60 0

Mean 0.717 0.716 0.706 0.719 0.732 0.714 0.680 0.697 0.672
ARI Std 0.092 0.092 0.099 0.088 0.085 0.092 0.097 0.095 0.104

Freq 37 34 29 15 65 20 15 69 16

n = 1200
Mean −15,319.82 −15,338.41 −15,409.79 −15,246.60 −15,228.07 −15,318.34 −15,330.90 −15,307.24 −15,399.61

BIC Std 785.44 785.75 785.97 804.30 807.57 805.04 784.52 792.12 787.92
Freq 98 2 0 24 76 0 15 85 0

Mean 0.715 0.715 0.708 0.728 0.742 0.729 0.713 0.730 0.713
ARI Std 0.080 0.080 0.082 0.089 0.084 0.089 0.094 0.088 0.094

Freq 25 44 31 11 68 21 10 75 15

n = 2400
Mean −30,409.19 −30,428.81 −30,513.46 −30,178.59 −30,129.58 −30,245.06 −30,423.53 −30,350.51 −30,488.06

BIC Std 1407.30 1405.85 1405.87 1390.61 1400.14 1393.94 1422.68 1433.58 1426.50
Freq 98 2 0 1 99 0 0 100 0

Mean 0.727 0.727 0.723 0.727 0.739 0.730 0.721 0.739 0.726
ARI Std 0.075 0.075 0.077 0.071 0.067 0.069 0.087 0.082 0.085

Freq 35 37 28 4 76 20 1 84 15
a Murray et al.’s [61] approach based on the generalized hyperbolic skew-t distribution.

it can account for groups in the data exhibiting patterns of asymmetry and multimodality which are commonly seen
in high-dimensional data. For estimating parameters, an analytically simple ECM algorithm is developed under a four-
level hierarchical framework. Some computational strategies related to the specification of starting values, convergence
assessment and provision of standard errors are provided. Two main identification problems regarding invariant likelihood
caused by factor indeterminacy and label switching are also discussed. We should mention that both of which do not affect
the clustering results. Numerical results on model choice based on information-based criteria and apparent error rate for
summarizing classification accuracy indicate the effectiveness and superiority of the proposedmethodwhen comparedwith
the traditional MFA.

There are a number of possible extensions of the current work. While the proposed MSNFA has shown its flexibility in
modeling asymmetric features among heterogeneous data, its robustness against outliers could still be unduly influenced
by heavy-tailed observations. Mixtures of factor analyzers based on a more general family of distributions such as the skew
t-distribution and its variants [6,32,39,65,66] would be of interest for future research. For identifying the optimal number of
clusters, an effective method is to design a mixture component merging procedure using entropy as the criterion suggested
by Baudry et al. [11]. Melnykov [54] further derived the asymptotic distribution of entropy and applied it to find good cluster
partitions. Another worthwhile task is to develop workable Markov chain Monte Carlo algorithms for drawing inferences
under a Bayesian paradigm. Although the proposed ECM procedure is quite easy to implement, its convergence can be slow
in certain situations. Therefore, pursuing some modified algorithms such as [41,75,78] toward fast convergence deserves
further investigation.
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