
Journal of Multivariate Analysis 143 (2016) 327–344

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

The Fine–Gray model under interval censored competing
risks data
Chenxi Li
Department of Epidemiology and Biostatistics, Michigan State University, East lansing, MI 48824, USA

a r t i c l e i n f o

Article history:
Received 30 March 2014
Available online 22 October 2015

AMS subject classifications:
62G20
62E20
62N02
62P10

Keywords:
Competing risk
Cumulative incidence function
Interval censored data
Subdistribution hazard
Semiparametric efficiency
Sieve estimation

a b s t r a c t

Weconsider semiparametric analysis of competing risks data subject tomixed case interval
censoring. The Fine–Gray model (Fine and Gray, 1999) is used to model the cumulative
incidence function and is coupled with sieve semiparametric maximum likelihood
estimation based on univariate or multivariate likelihood. The univariate likelihood of
cause-specific data enables separate estimation of cumulative incidence function for each
competing risk, in contrast with the multivariate likelihood of full data which estimates
cumulative incidence functions formultiple competing risks jointly. Under both likelihoods
and certain regularity conditions, we show that the regression parameter estimator is
asymptotically normal and semiparametrically efficient, although the spline-based sieve
estimator of the baseline cumulative subdistribution hazard converges at a rate slower than
root-n. The proposedmethod is evaluated by simulation studies regarding its finite sample
performance and is illustrated by a competing risk analysis of data from a dementia cohort
study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Interval censored failure time data arise widely from longitudinal studies where the failure occurrence is only detectable
at periodic assessments, yielding the time to failure being known up to an interval. An example of such data is from the
PAQUID project [20], where the age of onset of dementia on incident cases was only known to be between the date of the
visit last seen without dementia and the date of the visit first seen with dementia. Another example of such data is from the
Breastfeeding, Antiretrovirals, and Nutrition (BAN) study [5], where the time to HIV-1 infection of an infant breast-fed by its
HIV-1 positive mother is only known up to being between two successive HIV tests. Besides interval censoring, competing
risk is another common issue in the statistical analysis of failure time data. Competing risks data arise when subjects may
fail from several dependent causes but the occurrence of failure from one cause precludes the occurrence of failure from the
others or only time to the first failure occurrence is of interest. For example, in the PAQUID study, a subject may die before
the onset of dementia, so death is a competing risk that precludes the occurrence of dementia. Also, in the BAN study, an
infant may beweaned before getting HIV infected, which greatly reduces the risk of infection; or an infant could die without
being HIV infected, which totally precludes the infection. Therefore, only the time to the first event of weaning, death and
HIV infection is of clinical interest with respect to mother-to-child HIV transmission.

Competing risks data have drawn a great deal of attention since 1970s. Most of the works in the literature summarize
competing risks data by the cause-specific hazard function and/or the cumulative incidence function. The former quantifies
the instantaneous risk of failure from a specific cause, while the latter quantifies the cumulative risk of failure from a
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competing risk. There have been a lot ofworks on the estimation of these two quantitieswith right censored competing risks
data. The cause-specific hazard function may be estimated nonparametrically by the increment of Nelson–Aalen estimator
censoring individuals who experience competing causes of failure, and the cumulative incidence functionmay be estimated
nonparametrically by the Aalen–Johansen estimator [1]. To incorporate covariates, one can estimate the cause-specific
hazard function semiparametrically by the standard Cox proportional hazards model treating failures from competing
causes as independent right censoring events [23], or estimate the cumulative incidence function semiparametrically by
the Fine–Gray model [7] or other semiparametric transformation models [6]. However, there are not as many published
works on analyzing interval censored competing risks data, which are seen quite often in longitudinal medical studies. For
the estimation of the cumulative incidence functionwith interval censored competing risks data, Hudgens et al. [15] derived
an algorithm to compute the nonparametric maximum likelihood estimator, and Jewell et al. [17] proposed a simpler naive
nonparametricmaximum likelihood estimator based on reduced current status data for the cause of interest, which could be
naturally extended tomixed case interval censored data. Groeneboom et al. [8] and Groeneboom et al. [9] rigorously derived
the asymptotic properties of these two nonparametric cumulative incidence estimators for current status competing risks
data in terms of consistency, convergence rates and limiting distributions. For the estimation of the cause-specific hazard
function with interval censored competing risks data, Li and Fine [21] proposed two cause-specific hazard estimators for
current status competing risks data based on smoothing the nonparametric cumulative incidence estimators and the plug-
in principle, and derived their asymptotic distributions. The computation of the cause-specific hazard estimators in [21]
could be naturally extended to mixed case interval censored data. Despite these works, several important research areas
on interval censored competing risks data are still open. For example, the large sample properties of the nonparametric
maximum likelihood estimator of the cumulative incidence function [15] and the nonparametric estimators of the cause
specific hazard [21] have not been derived for mixed case interval censored data with competing risks; the semiparametric
estimation of the cause-specific hazard and the cumulative incidence with interval censored competing risks data has not
been rigorously studied yet.

Unlike right censored competing risks data, the likelihood of interval censored competing risks data can be formulated
concisely by just cumulative incidence functions [14, Lemma 1]. Furthermore, the likelihood of reduced mixed case interval
censored data for the cause of interest involves only the cumulative incidence function of that cause [14, Lemma 2]. Such
properties make models that directly link the cumulative incidence to explanatory variables appealing in the analysis of
interval censored competing risks data. The most popular model of this kind is the Fine–Gray model, which however has
been only applied to competing risks data under right censoring so far.

In this article, we study the semiparametric inference for the Fine–Gray model with mixed case interval censored
competing risks data where observation times are strictly separated. Inspired by Zhang et al. [30], we employ a monotone
B-spline [25] to approximate the log baseline cumulative subdistribution hazard, reducing the dimension of the parameter
space to a finite number. With this approximation, maximum likelihood estimators of the regression parameters and the
B-spline coefficients are obtained by an adaptive barrier algorithm [19]. Under certain regularity conditions, we establish
that the proposed estimators of the regression parameter and the baseline cumulative subdistribution hazard are consistent.
Moreover, we show that the estimator of the baseline cumulative subdistribution hazard achieves the optimal convergence
rate as in the nonparametric regression setting, and the estimator of the regression parameter is asymptotically normal
and semiparametrically efficient. When there are more than one competing risk under consideration, one could perform a
univariate analysis modeling each competing risk separately or a multivariate analysis modeling multiple competing risks
jointly. Through simulation studies, we show that the multivariate analysis is more efficient than the univariate analysis for
estimating the regression parameters when sample size is large.

The rest of the article is organized as follows. Section 2 specifies the Fine–Gray model and its associated likelihood for
interval censored competing risks data. Section 3 describes an spline-based maximum likelihood estimation for the model.
Section 4 derives the information matrix for the regression parameter in the semiparametric inference setting. Section 5
presents the asymptotic properties of the maximum likelihood estimators of baseline cumulative subdistribution hazards
and regression parameters. The finite sample performance of the proposed method is then evaluated by simulation studies
in Section 6, followed by a real data example in Section 7 that illustrates the application of themethod. Finally, we give some
discussion on our method and future research directions in Section 8. The proofs of the asymptotic results are collected in
the Appendix.

2. Model specification

We assume that a Fine–Gray model holds for each of J competing risks under consideration. Specifically, the cumulative
incidence function of cause k given a vector of covariates Z ∈ Rd, Fk(t; Z), is modeled as:

Fk(t; Z) = 1 − exp

−

 t

0
λk0(s) exp(ZT θk)ds


k = 1, . . . , J, (1)

i.e., the subdistribution hazard of Fk(t; Z) is λk(t; Z) = λk0(t) exp(ZT θk). For the identifiability of the model parameters, we
assume throughout:

A0.
J

k=1 Fk(∞; 0) < 1.
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Remark 1. When J = 1, the upper bound one is allowed to be achieved, inwhich case there is actually no other failure cause
and the Fine–Gray model becomes the proportional hazards model. The estimation and inferential procedures for that case
are discussed in [30].

Remark 2. The total number of competing risks could be equal to or larger than J . When it is equal to J , A0 means that there
is a cured fraction of the population.

Define the following notations:

θ = (θT
1, . . . , θ

T
J )

T
∈ RJd,

Λk0(t) =

 t

0
λk0(s)ds, φk0(t) = logΛk0(t), k = 1, . . . , J,

and

φ = (φ10(·), . . . , φJ0(·)).

For subject i, i = 1, . . . , n, denote its underlying failure time by Ti, its failure cause by Ki and its covariate vector by Zi.
We consider the situation where the failure time is not observed exactly but subject to ‘mixed case’ interval censoring as
defined in [24]. Let Mi be a random positive integer denoting the number of examination times for failure on subject i and
Wi = {W (i)

m,l : l = 1, . . . ,m,m = 1, 2, . . .} be a triangular array of random examination times withW (i)
m,l < · · · < W (i)

m,m. The
observed examination times are W (i)

Mi,1
, . . . ,W (i)

Mi,Mi
. From the observed examination times, we select a pair of examination

times (Ui, Vi) bracketing Ti as follows. (Ui, Vi) = (W (i)
Mi,l−1,W

(i)
Mi,l

) if Ti ∈ (W (i)
Mi,l−1,W

(i)
Mi,l

] for some l ∈ {2, . . . ,Mi};

(Ui, Vi) = (W (i)
Mi,1

,W (i)
Mi,2

) if Ti ≤ W (i)
Mi,1

; (Ui, Vi) = (W (i)
Mi,Mi−1,W

(i)
Mi,Mi

) if Ti > W (i)
Mi,Mi

. Let ∆
(i)
k1 = I{Ti ≤ Ui, Ki = k},

∆
(i)
k2 = I{Ui < Ti ≤ Vi, Ki = k} and ∆

(i)
3 = 1 −

J
k=1(∆

(i)
k1 + ∆

(i)
k2). The observable data related to the J competing risks

from subject i consist of (Mi,W
(i)
Mi,1

, . . . ,W (i)
Mi,Mi

, Zi), whether any of the J types of failure has occurred by the time of each
examination, and Ki if a failure has occurred by the last examination time. In light of assumption A0, we define a convention
that Ki = J + 1 if no failure from any of the J causes occurs to subject i, which happens with a positive probability.

Under mixed case interval censoring, (M,W ) are independent of (T , K) conditional on Z and the joint distribution of
(M,W , Z) does not depend on (θ, φ). Thus, by Lemma 1 and 2 in [14], the likelihood of the data related to the J competing
risks, omitting the multiplicative terms that do not involve (θ, φ), can be written as

Ln(θ, φ) =

n
i=1


J

k=1

Fk(Ui; Zi)
∆

(i)
k1 {Fk(Vi; Zi) − Fk(Ui; Zi)}

∆
(i)
k2


1 −

J
k=1

Fk(Vi; Zi)

∆
(i)
3

. (2)

Note that the data involved in the likelihood (2) are only composed of Yi = (∆
(i)
11, ∆

(i)
12, ∆

(i)
21, ∆

(i)
22, . . . , ∆

(i)
J1 , ∆

(i)
J2 , ∆

(i)
3 ,Ui,

Vi, Zi), i = 1, . . . , n, not the full data, since Yi’s contain sufficient information for themodel parameters. In order to facilitate
deriving the large sample properties of maximum likelihood estimators for (θ, φ), we make a working assumption that
(U, V ) are independent of (T , K) conditional on Z and the joint distribution of (U, V , Z) is uninformative about (θ, φ). This
assumption was also assumed in [11,30] for mixed case interval censored data except not involving failure cause K . It is
satisfied under case 2 interval censoring but may not hold in general. However, in view of the equivalence between (2) and
the likelihood written in terms of the full data, we can derive the same large sample properties under the likelihood (2) and
the working assumption as derived under the likelihood in terms of the full data, and the former derivation would be less
complicated.

The log likelihood of (2) is

ln(θ, φ) =

n
i=1


J

k=1


∆

(i)
k1 log Fk(Ui; Zi) + ∆

(i)
k2 log{Fk(Vi; Zi) − Fk(Ui; Zi)}


+ ∆

(i)
3 log


1 −

J
k=1

Fk(Vi; Zi)


,

which, under model (1), is

ln(θ, φ) =

n
i=1


J

k=1


∆

(i)
k1 log


1 − exp


−eZ

T
i θk+φk0(Ui)


+ ∆

(i)
k2 log


exp


−eZ

T
i θk+φk0(Ui)


− exp


−eZ

T
i θk+φk0(Vi)


+ ∆

(i)
3 log


1 − J +

J
k=1

exp

−eZ

T
i θk+φk0(Vi)



≡

n
i=1

l(Yi; θ, φ). (3)
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3. Sieve maximum likelihood estimation

To estimate the parameters ζ = (θ, φ) in model (1), we consider a spline-based semiparametric maximum likelihood
estimation. The estimation procedure extends that of Zhang et al. [30] for univariate interval censored data to competing
risks setting. Suppose τ0 and τ1 are respectively the lower and upper bounds of the bracketing examination times (U, V ).
Let τ0 = dk0 < dk1 < · · · < dk,Kkn < dk,Kkn+1 = τ1 (k = 1, . . . , J) be J partitions of [τ0, τ1], where Kkn = O(nνk) for
some νk > 0 is a positive integer such that max1≤j≤Kkn+1 |dj − dj−1| = O(n−νk). Denote the kth set of partition points
by Dkn = {dk1, . . . , dk,Kkn}. Let Skn(Dkn, Kkn,mk) be the space of polynomial splines of order mk ≥ 1 comprising functions
s satisfying: (i) the restriction of s to [dkt , dk,t+1), t = 0, . . . , Kkn, is a polynomial of order mk, and (ii) for mk ≥ 2 and
0 ≤ m′

k ≤ mk − 2, s ism′

k times continuously differentiable on [τ0, τ1]. According to Schumaker [25, Corollary 4.10], there is
a local basis Bkn ≡ {bkt(·), 1 ≤ t ≤ qkn}, called B-spline, for Skn(Dkn, Kkn,mk), where qkn ≡ Kkn + mk. These basis functions
are nonnegative and sum up to one at each point in [τ0, τ1], and every bkt is zero outside the interval [dk,t−mk , dkt ], where
dk,1−mk = dk,2−mk = · · · = dk,0 = τ0 and dk,Kkn+1 = dk,Kkn+2 = · · · = dk,Kkn+mk = τ1.

Since φk0(t) is a nondecreasing function, it is desirable to restrict its estimate to be also nondecreasing. Let

Mkn(Dkn, Kkn,mk) =


φkn : φkn(t) =

qkn
j=1

βkjbkj(t) ∈ Skn(Dkn, Kkn,mk), βk ∈ Bkn, t ∈ [τ0, τ1]


,

where Bkn = {βk = (βk1, . . . , βk,qkn)
T

: βk1 ≤ βk2 . . . ≤ βk,qkn}. As a consequence of the variation diminishing properties
of B-spline (see, for example [25], example 4.75 and Theorem 4.76), every element of Mkn(Dkn, Kkn,mk) is a nondecreasing
function because of themonotonicity constraints onβk1, . . . , βk,qkn . Denote the feasible domain for the regression parameter
θ by 2 ⊂ RJd. We search for ζ̂n = (θ̂n, φ̂n) that maximizes ln(θ, φ) over 2 ×

J
k=1 Mkn, which is equivalent to

maximizing ln(θ, BT
1nβ1, . . . , BT

JnβJ) over 2 ×
J

k=1 Bkn. In practice, we use an adaptive barrier algorithm [19] to maximize
ln(θ, BT

1nβ1, . . . , BT
JnβJ) subject to the linear inequality constraints. It is implemented by the R function ‘constrOptim’.

In the subsequent simulation study and real data example, we set the initial values of the regression parameters for
the optimization to be all 0 and the initial value of βkj to be µ + (j − 1)δk, where µ = log{− log(1 − 0.15J−1)} and
δk = [log{− log(1 − 0.85J−1)} − µ]/(qkn − 1) (j = 1, . . . , qkn; k = 1, . . . , J).

4. Information for θ

We would like to show that the estimate of the regression parameter θ, θ̂n, is semiparametrically efficient [18, Section
3.1]. To prove that, we first derive the efficient score function and information matrix for θ [18, Section 3.2]. Our derivation
is similar to that in [12].

By some algebra, the score function for θ is

l̇θ(Y) =
∂ l(Y; θ, φ)

∂θ

=


[∆11A11(U, V , Z)Λ10(U) − ∆12{A12(U, V , Z)Λ10(U) − A13(U, V , Z)Λ10(V )}

−∆3A14(U, V , Z)Λ10(V )] eZ
T θ1Z

...
∆J1AJ1(U, V , Z)ΛJ0(U) − ∆J2{AJ2(U, V , Z)ΛJ0(U) − AJ3(U, V , Z)ΛJ0(V )}

−∆3AJ4(U, V , Z)ΛJ0(V )

eZ

T θJZ

 , (4)

where

Ak1(U, V , Z) = exp

−eZ

T θkΛk0(U)


1 − exp

−eZ

T θkΛk0(U)


,

Ak2(U, V , Z) = exp

−eZ

T θkΛk0(U)


exp

−eZ

T θkΛk0(U)


− exp

−eZ

T θkΛk0(V )


,

Ak3(U, V , Z) = exp

−eZ

T θkΛk0(V )


exp

−eZ

T θkΛk0(U)


− exp

−eZ

T θkΛk0(V )


,

and

Ak4(U, V , Z) = exp

−eZ

T θkΛk0(V )


1 − J +

J
j=1

exp

−eZ

T θjΛj0(V )


for k = 1, . . . , J .
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Let P be the statistical model consisting of probability measures on the sample space Y of Y, and it can be expressed
in the form P = {Pθ,φ : (θ, φ) ∈ 2 ×

J
k=1 Φk}, where Φk is a class of functions with bounded pkth derivative in [τ0, τ1]

for pk ≥ 1 (k = 1, . . . , J). Consider its one-dimensional submodels of the form {Pθ,φ(s) : s ∈ [0, ϵ)}, where the cumulative

incidence function corresponding to φ(s)’s kth component φ
(s)
k0 (k = 1, . . . , J) is F (s)

k0 (t) =
 t
0 (1+ sa(w, k))dFk0(w) for some

function a(w, k) that is a function of w with bounded variation on R+ when holding k fixed, and ϵ > 0 depends on a(·, ·).
Define a convention that

a(w, J + 1) =



1 −

J
k=1

Fk0(∞)

−1
∂

∂s


s=0


1 −

J
k=1

F (s)
k0 (∞)


if w = ∞,

0 if w < ∞

in order for the score operator forφ, derived from the score functions of the above one-dimensional submodels, to be a linear
continuousmap l̇φ : L02(F(T ,K)|Z=0) → L02(Pθ,φ), where F(T ,K)|Z denote the conditional distribution of (T , K) given Z, and L02(Q )

denote the function space {f :

f 2dQ < ∞ and


fdQ = 0} for any measure Q . Specifically, for any a ∈ L02(F(T ,K)|Z=0),

l̇φa(Y) =
∂

∂s


s=0

l(Y; θ, φ(s)) =

J
k=1

[∆k1Ak1(U, V , Z)hk(U) − ∆k2{Ak2(U, V , Z)hk(U)

− Ak3(U, V , Z)hk(V )} − ∆3Ak4(U, V , Z)hk(V )] eZ
T θk

≡

J
k=1

l̇(k)φ (Y; θ, φ)(ηk)

≡ l̇φ(Y; θ, φ)(η), (5)

where hk(t) =
∂
∂s


s=0Λ

(s)
k0 (t) =

 t
0 a(w, k)dFk0(w)/{1 − Fk0(t)}, ηk(t) =

∂
∂s


s=0φ

(s)
k0 (t) = hk(t)/Λk0(t) (k = 1, . . . , J) and

η = (η1(·), . . . , ηJ(·)). Let N be the class of functions ηk(t).
Since L02(F(T ,K)|Z=0) and L02(Pθ,φ) are two Hilbert spaces with respective inner products ⟨·, ·⟩F(T ,K)|Z=0 and ⟨·, ·⟩Pθ,φ

, where
⟨f , g⟩Q =


fgdQ , there is an adjoint operator l̇∗φ : L02(Pθ,φ) → L02(F(T ,K)|Z=0) satisfying ⟨b, l̇φa⟩Pθ,φ

= ⟨l̇∗φb, a⟩F(T ,K)|Z=0 for
any b ∈ L02(Pθ,φ) and a ∈ L02(F(T ,K)|Z=0). To determine the efficient score function for θ, for each of the Jd components
in l̇θ , l̇θlj (l = 1, . . . , J; j = 1, . . . , d), we need to find an a∗

lj ∈ L02(F(T ,K)|Z=0) such that ⟨l̇θlj − l̇φa∗

lj, l̇φa⟩Pθ,φ
= 0 for any

a ∈ L02(F(T ,K)|Z=0). This amounts to solving the following normal equations:

l̇∗φ l̇φa
∗

lj = l̇∗φ l̇θlj , l = 1, . . . , J; j = 1, . . . , d. (6)

To solve for a∗

lj , we need to evaluate both sides of (6). In the remainder of this section, we assume d = 1 to simplify the
notations in the derivation of a∗

lj . The derivation for the general case is similar. As a result, all the notations θlj (j = 1, . . . , d)
can be simplified to a single scalar θl for l = 1, . . . , J , a∗

lj (j = 1, . . . , d) can be simplified to a∗

l , and we change the notation
of one-dimensional Z to Z .

From [3, pp. 271–272], we know that
l̇∗φ l̇φa(t, k) = E[l̇φa(Y )|T = t, K = k] = EZE[l̇φa(Y )|T = t, K = k, Z].

By assumptions A3 and A7 in Section 5,

E[l̇φa(Y )|T = t, K = k, Z = z] =

 τ1−η

u=t

 τ1

v=u+η

ezθkhk(u)Ak1g(u, v|z)dvdu

−

 t

u=τ0

 τ1

v=t
ezθk{hk(u)Ak2 − hk(v)Ak3}g(u, v|z)1[v − u ≥ η]dvdu

−

 t−η

u=τ0

 t

v=u+η

J
l=1

ezθlAl4hl(v)g(u, v|z)dvdu,

where g(u, v|z) is the conditional density of (U, V ) given Z . Let Bkj(u, v) = EZ [eZθkAkj(u, v, Z)g(u, v|Z)] (k = 1, . . . , J; j =

1, 2, 3, 4). We obtain

L(t, k) ≡ l̇∗φ l̇φa(t, k) =

 τ1−η

u=t

 τ1

v=u+η

hk(u)Bk1(u, v)dvdu

−

 t

u=τ0

 τ1

v=t
{hk(u)Bk2(u, v) − hk(v)Bk3(u, v)}1[v − u ≥ η]dvdu

−

 t−η

u=τ0

 t

v=u+η

J
l=1

Bl4(u, v)hl(v)dvdu.
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Similar calculation yields

Rl(t, k) ≡ l̇∗φ l̇θl(t, k) =



 τ1−η

u=t

 τ1

v=u+η

Λl0(u)Cl1(u, v)dvdu

−

 t

u=τ0

 τ1

v=t
{Λl0(u)Cl2(u, v) − Λl0(v)Cl3(u, v)}1[v − u ≥ η]dvdu

−

 t−η

u=τ0

 t

v=u+η

Λl0(v)Cl4(u, v)dvdu

if k = l,

−

 t−η

u=τ0

 t

v=u+η

Λl0(v)Cl4(u, v)dvdu if k ≠ l,

where Clj(u, v) = EZ [ZeZθlAlj(u, v, Z)g(u, v|Z)] (l = 1, . . . , J; j = 1, 2, 3, 4). Eq. (6) implies that

L(t, k) = Rl(t, k), t ∈ R+, k = 1, . . . , J, l = 1, . . . , J. (7)

Let bk(t) =
 τ1
t+η

Bk1(t, x)dx +
 τ1
t+η

Bk2(t, x)dx +
 t−η

τ0
Bk3(x, t)dx +

 t−η

τ0
Bk4(x, t)dx. Then

∂

∂t
L(t, k) = −bk(t)hk(t) +

 t−η

τ0

hk(x)Bk2(x, t)dx +

 τ1

t+η

hk(x)Bk3(t, x)dx −

J
m=1,m≠k

hm(t)
 t−η

τ0

Bm4(x, t)dx.

Let cl(t) =
 τ1
t+η

Cl1(t, x)dx +
 τ1
t+η

Cl2(t, x)dx +
 t−η

τ0
Cl3(x, t)dx +

 t−η

τ0
Cl4(x, t)dx. Then

rl(t, k) ≡
∂

∂t
Rl(t, k) =


−cl(t)Λl0(t) +

 t−η

τ0

Λl0(x)Cl2(x, t)dx +

 τ1

t+η

Λl0(x)Cl3(t, x)dx if k = l,

−Λl0(t)
 t−η

τ0

Cl4(x, t)dx if k ≠ l.

Taking the derivative with respect to t on both sides of (7) and fixing l, we get

hk(t) −


Kk(t, x)hk(x)dx +

1
bk(t)

J
m=1,m≠k

hm(t)
 t−η

τ0

Bm4(x, t)dx = dl(t, k), k = 1, . . . , J, (8)

where Kk(t, x) = [Bk2(x, t)1[τ0 ≤ x ≤ t − η] + Bk3(t, x)1[t + η ≤ x ≤ τ1]]/bk(t) and dl(t, x) = −rl(t, x)/bk(t).
(8) is a systemof Fredholm integral equations of the second kind. There exists a solutionh∗

l (t) = (h(l),∗
1 (t), . . . , h(l),∗

J (t))T .
The corresponding a is denoted by a∗

l . Let a∗
= (a∗

1, . . . , a
∗

J )
T and l̇φa∗(y) = (l̇φa∗

1(y), . . . , l̇φa
∗

J (y))
T . Then l∗θ(y) ≡

l̇θ(y)− l̇φa∗(y) is the efficient score function for θ, and its covariancematrix I(θ) = E[l∗θ(Y)l∗θ(Y)T ] is the efficient information
matrix for θ. The efficient influence function for θ is l̃θ(y) ≡ I(θ)−1l∗θ(y).

5. Large sample properties

To study the large sample properties of the semiparametric maximum likelihood estimator ζ̂n = (θ̂n, φ̂n), we make the
following assumptions similar to those in [30].

A1. E(ZZT ) is non-singular, and Z is bounded with probability 1.
A2. 2 is a compact subset of RJd.
A3. There exists a positive number η such that Pr(V − U ≥ η) = 1, and the union of the supports of U and V is contained

in an interval [τ0, τ1], where 0 < τ0 < τ1 < ∞, and 0 < Λk0(τ0) < Λk0(τ1) < ∞ (k = 1, . . . , J).
A4. φk0 = logΛk0 belongs to Φk (k = 1, . . . , J), a class of functions with bounded pkth derivative in [τ0, τ1] for pk ≥ 1 and

the first derivative of φk0 is uniformly positive and continuous on [τ0, τ1].
A5. The conditional density g(u, v|z) of (U, V ) given Z has bounded partial derivatives with respect to (u, v). The bounds

of these partial derivatives do not depend on (u, v, z).
A6. For some κ ∈ (0, 1), xT var(Z|U)x ≥ κxTE(ZZT

|U)x and xT var(Z|V )x ≥ κxTE(ZZT
|V )x a.s. for all x ∈ Rd.

A7. (T , K) and (U, V ) are conditionally independent given Z, and the distribution of (U, V , Z) does not involve (θ, φ).

These conditions, together with A0, guarantee the results in the forthcoming theorems.
Let 8 =

J
k=1 Φk. For any φ1 =


φ

(1)
10 , . . . , φ

(1)
J0


, φ2 =


φ

(2)
10 , . . . , φ

(2)
J0


∈ 8, define

∥φ1 − φ2∥
2
8 =

J
k=1


E

φ

(1)
k0 (U) − φ

(2)
k0 (U)

2
+ E


φ

(1)
k0 (V ) − φ

(2)
k0 (V )

2
,
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and for any ζ1 = (θ(1), φ1) and ζ2 = (θ(2), φ2) in the space of T = 2 × 8, define an L2-metric:

d(ζ1, ζ2) = ∥ζ1 − ζ2∥T =

∥θ(1)

− θ(2)
∥
2
+ ∥φ1 − φ2∥

2
8

1/2
.

Theorem 1. For k = 1, . . . , J , let Kkn = O(nνk), where νk satisfies the restriction 1/{2(1 + pk)} < νk < 1/(2pk), and
mk ≥ pk+2. Furthermore, suppose that the assumptionsA0–A7 hold. Denote the true parameters of model (1) by ζ0 = (θ(0), φ0).
Then d(ζ̂n, ζ0) = Op(n−min{mink(pkνk),(1−maxk νk)/2}).

This theorem implies that if νk = 1/(1 + 2pk) (k = 1, . . . , J), d(ζ̂n, ζ0) = Op(n−mink{pk/(1+2pk)}) which is the optimal
convergence rate as in the nonparametric regression setting.

Theorem 2. Under the conditions of Theorem 1, n1/2(θ̂n − θ(0)) → N(0, I−1(θ(0))) in distribution, where I(θ(0)) is the efficient
information matrix for θ(0).

The theorem implies that, although the estimator of the baseline cumulative subdistribution hazard converges at a
rate lower than n1/2, the estimator of the regression parameter converges to the truth at the usual root-n rate and is
semiparametrically efficient. Because I(θ(0)) is determined by a system of integral equations and does not have an explicit
expression as shown in Section 4, direct plug-in estimator of I(θ(0)) is not available. We give an approach of estimating
I(θ(0)) which is parallel to that of Zhang et al. [30].

For a Jd-dimensional θ, l̇θ(y) is the vector of partial derivatives of l(y; θ, φ) with respect to the components of θ. For each
component of l̇θ(y), we consider a corresponding score function for φ, l̇φ(y; θ, φ)(η), as defined in (5). Thus the score vector
for φ corresponding to l̇θ(y) is

l̇φ(y; θ, φ)(η⃗) ≡ {l̇φ(y; θ, φ)(η(11)), l̇φ(y; θ, φ)(η(12)), . . . , l̇φ(y; θ, φ)(η(Jd))}T , (9)

where η⃗ = {η(11), η(12), . . . , η(Jd)
} and η(lj)

= {η
(lj)
1 (·), . . . , η

(lj)
J (·)} with η

(lj)
k ∈ N (k = 1, . . . , J; l = 1, . . . , J; j =

1, . . . , d). According to Bickel et al. [3, Theorem 1, pp. 70], the efficient score vector for θ is l̇θ(y) − l̇φ(y; θ, φ)(η⃗∗), where
η⃗∗ = {η

(11)
∗ , η

(12)
∗ , . . . , η

(Jd)
∗ } is an element of N J2d that minimizes

ρ(η⃗) ≡ E∥l̇θ(Y) − l̇φ(Y; θ, φ)(η⃗)∥2 (10)

over N J2d and is called the least favorable direction. Then the information for θ is

I(θ) = E[{l̇θ(Y) − l̇φ(Y; θ, φ)(η⃗∗)}{l̇θ(Y) − l̇φ(Y; θ, φ)(η⃗∗)}
T
].

The definition of η⃗∗ given by (10) leads to a least-squares estimator of η⃗∗ based on the method of Huang et al. [13].
Specifically, with a random sample Y1, . . . , Yn and the consistent estimators θ̂n and φ̂n, we can estimate the least favorable
direction η⃗∗ corresponding to θ(0) by the minimizer ˆ⃗ηn of

ρn(η⃗) ≡ n−1
n

i=1

∥l̇θ(Yi; θ̂n, φ̂n) − l̇φ(Yi; θ̂n, φ̂n)(η⃗)∥2 (11)

over N J2d. Then a natural estimator of I(θ(0)) is

În ≡ n−1
n

i=1

{l̇θ(Yi; θ̂n, φ̂n) − l̇φ(Yi; θ̂n, φ̂n)(
ˆ⃗ηn)}{l̇θ(Yi; θ̂n, φ̂n) − l̇φ(Yi; θ̂n, φ̂n)(

ˆ⃗ηn)}
T .

In practice, one can compute the component of ˆ⃗ηn corresponding to η
(lj)
∗ (l = 1, . . . , J; j = 1, . . . , d) using the ordinary

least-squares regression with its feasible region N J approximated by the space
J

k=1 Nkn, where Nkn is the linear span of
the B-spline basis functions Bkn (k = 1, . . . , J).

6. Numerical experiment

In this section, we present the results of a numerical investigation on the finite sample performance of our estimates
of regression parameters and baseline subdistribution hazards in Model (1). In the numerical experiment, the underlying
overall survival time and the observed failure cause were generated from Model (1) with J = 2, d = 3, Z1 ∼

Bin(1, 0.5), Z2 ∼ Unif (0, 5) and Z3 ∼ min{Γ (3, 1), 5}, the true regression parameters were (θ11, θ12, θ13, θ21, θ22, θ23) =

(0.15, −0.10, −0.20, 0.39, −0.08, −0.13), and the true baseline cumulative incidence functions were F01(t) = 1 −

exp[−0.15{1 − exp(−0.25t)}/0.25] and F02(t) = 1 − exp[−0.175{1 − exp(−0.5t)}/0.5], which are the Gompertz
models considered in [16]. There were five successive inspections for each subject, and the inspection times were uniformly
distributed from 0.8 to 1.2, 1.8 to 2.2, . . . , and 4.8 to 5.2, respectively.
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Table 1
Simulation results of the estimates of regression parameters.

n θ Univariate analysis Multivariate analysis
Bias(θ̂ ) Var(θ̂ )

(×102)

E( ˆvar)
(×102)

MSE(θ̂ )
(×102)

Pr
(θ ∈ CI)

Bias(θ̂ ) Var(θ̂ )
(×102)

E( ˆvar)
(×102)

MSE(θ̂ )
(×102)

Pr
(θ ∈ CI)

150 0.15 −0.001 17.105 20.538 17.088 0.973 −0.026 17.878 22.484 17.930 0.976
−0.10 −0.006 1.761 2.507 1.763 0.977 −0.004 1.803 2.717 1.803 0.977
−0.20 −0.019 2.171 3.162 2.204 0.977 −0.009 2.170 3.373 2.176 0.983
0.39 0.005 15.831 17.702 15.817 0.967 −0.001 13.820 17.828 13.806 0.977

−0.08 −0.002 1.707 2.072 1.706 0.975 −0.005 1.745 2.124 1.746 0.974
−0.13 −0.014 2.037 2.494 2.054 0.961 −0.011 2.017 2.529 2.027 0.969

450 0.15 −0.017 4.799 5.323 4.823 0.960 0.005 4.497 5.350 4.495 0.968
−0.10 −0.010 0.624 0.645 0.634 0.945 −0.006 0.506 0.650 0.509 0.978
−0.20 −0.023 0.744 0.793 0.798 0.962 −0.012 0.611 0.798 0.624 0.971
0.39 0.011 5.001 4.904 5.008 0.954 −0.017 3.982 4.952 4.006 0.968

−0.08 −0.002 0.534 0.576 0.534 0.965 −0.009 0.560 0.581 0.568 0.958
−0.13 −0.002 0.577 0.682 0.577 0.968 −0.010 0.636 0.685 0.646 0.961

900 0.15 −0.008 2.382 2.531 2.385 0.966 −0.029 1.885 2.467 1.965 0.969
−0.10 −0.008 0.315 0.306 0.321 0.950 0.002 0.244 0.299 0.244 0.965
−0.20 −0.012 0.410 0.373 0.423 0.947 0.019 0.285 0.364 0.319 0.957
0.39 0.0005 2.217 2.335 2.214 0.961 −0.061 2.114 2.298 2.489 0.947

−0.08 0.001 0.282 0.274 0.281 0.942 0.009 0.241 0.269 0.248 0.954
−0.13 −0.003 0.322 0.323 0.323 0.957 0.012 0.260 0.320 0.273 0.959

We computed the sieve maximum likelihood estimates using the cubic B-splines and estimated the variances of the
regression parameter estimates using the least-squares method based on the same cubic B-splines as in the parameter
estimation. For the B-splines for estimating φ10(t) and φ20(t), the knots were equally spaced, and the numbers of knots over
the observation window (0.8, 5.2) were respectively chosen to be K1n = ⌊n1/3

⌋ and K2n = ⌊n1/5
⌋, where ⌊x⌋ denotes the

largest integer not exceeding x and n is the sample size. For each simulated data set, we performed a multivariate analysis,
whichmodels the two competing risks jointly, and two univariate analyses, each of whichmodels one competing risk based
on the reduced interval censored data corresponding to it. We conducted the Monte Carlo simulation study with 1000
repetitions for sample size n = 150, 450 and 900 representing small, moderate and large sample size respectively.

The simulation results of the estimates of regression parameters are in Table 1,where Bias(θ̂ ) and Var(θ̂ ) are the empirical
bias and variance of the parameter estimator respectively, E( ˆvar) is the average of the 1000 estimated asymptotic variances
of the parameter estimator, MSE(θ̂ ) is the empirical mean squared error of the parameter estimator, and Pr(θ ∈ CI) is
the proportion of the 1000 95% asymptotic confidence intervals that cover the true parameter. The estimation biases are
negligible compared to the empirical standard errors, indicating that the asymptotic bias of θ̂ is on the order of o(1/

√
n),

which is consistent with the large sample theory. When the sample size is small, the estimated asymptotic variances are
larger than the empirical variances in both the univariate analysis and the multivariate analysis, leading to higher empirical
coverage probabilities of the asymptotic confidence intervals. This variance overestimation lessens as sample size increases,
as indicated by the coverage probabilities approaching their nominal level. In the univariate analysis, the overestimation is
not worrisome when the sample size is 450 and does not exist for sample size 900. In the multivariate analysis, it is not
worrisomewhen sample size is 900. Comparing the variance andMSE of the two types of analyses, themultivariate analysis
is more efficient when the sample size is large. This is expected because the additional data in the multivariate analysis
contain information about the cumulative incidence function of the competing risk estimated in the univariate analysis.
However, since the multivariate analysis maximizes a likelihood in much higher dimension compared to the univariate
analysis, its estimation variances could be bigger when the sample size is not large, as shown in the portions of Table 1 for
n = 150 and 450. All the above findings suggest that compared to the univariate analysis, the multivariate one needs a
larger sample size to perform well because of the higher dimension.

The simulation results of the estimates of baseline cumulative subdistribution hazards are shown in Figs. 1 and 2. Overall,
the bias of the spline-based estimator is small. The estimator for the cumulative hazard of Cause 2 has a little bit smaller
bias than the estimator for Cause 1. This is expected because the estimation assumed that the cumulative hazard of Cause 2
is one order more differentiable than that of Cause 1, yielding estimators with different convergence rates.

7. A time-to-dementia data analysis

7.1. Backgrounds and data

Section 7 presents an application of the foregoing methods to the data from an ongoing cohort study of dementia: the
Memory and Aging Project (MAP) [2]. The MAP study recruits older individuals without dementia who agree to receive
clinical and psychological evaluation each year and to donate their brain for postmortem examination. The study began
in 1997 and currently includes more than 1400 participants from about 40 retirement communities and senior housing
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Fig. 1. Averaged estimates of the baseline cumulative subdistribution hazard functions for Cause 1 over the 1000 Monte Carlo samples.

facilities in the Chicago metropolitan area. In the study, annual visits with diagnoses of mild cognitive impairment (MCI),
Alzheimer’s disease (AD), and other types of dementia are scheduled for every participant. We used the MAP data to
investigate the effects of years of education (categorized into two levels:≤12 years and>12 years), gender, and the presence
of the apolipoprotein E ϵ4 allele (ApoE4) on time from baseline study visit to incident dementia (AD or other dementia). Two
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Fig. 2. Averaged estimates of the baseline cumulative subdistribution hazard functions for Cause 2 over the 1000 Monte Carlo samples.

other covariates, baseline age and the presence of baseline MCI, were also included in the analysis to further explain inter-
individual differences in time to dementia. In the MAP study, the time to incident dementia is known up to between two
consecutive study visits, and death may occur before dementia in older people. This yields interval censored time-to-event
data with dementia and death as two competing risks.
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Table 2
Characteristics of the sample for the analysis.

Characteristic Analysis

Gender—no. (%)
Male 255 (26.7%)
Female 701 (73.3%)

Years of education—no. (%)
>12 (attended college) 651 (68.1%)
≤12 (not attended college) 305 (31.9%)

ApoE4 status—no. (%)
Carrier 214 (22.4%)
Non-carrier 742 (77.6%)

Age at baseline (yrs)—mean (sd) 80.28 (7.16)
MCI at baseline—no. (%)
MCI 267 (27.9%)
No MCI 689 (72.1%)

No. of study visits—mean (sd) 5.7 (2.4)
Years of follow-up—mean (sd) 4.8 (2.5)
Outcome event—no. (%)
Dementia 183 (19.1%)
Death before dementia 181 (18.9%)

Table 3
Inference for regression parameters in the univariate analysis of cumulative
incidence of dementia.

Covariate Parameter estimate Standard error p-value

MCI at baseline (yes) 1.406 0.168 <0.001
Baseline age (yrs) 0.039 0.013 0.003
College education (yes) −0.318 0.158 0.044
Gender (male) 0.015 0.158 0.926
ApoE4 (carrier) 0.521 0.163 0.001

The data set we used from the MAP study was frozen in 2010. We excluded from that data set the participants who had
only baseline visit and were not known to have died as well as the ones who have missing covariates. The resulting sample
for the analysis has 956 subjects. A summary of characteristics of the sample is presented in Table 2.

7.2. Univariate analysis for cumulative incidence of dementia

In this subsection, we focus on estimating the cumulative incidence function for dementia and thus model the observed
data related only to dementia, essentially treating deaths prior to dementia as right censored observations. The fact that
death terminates the follow-upmakesmixed case interval censoringmodel not directly applicable to the inspection process
of the MAP study. However, according to the study design, those deceased subjects in our data set would have dementia
examinations approximately one year apart until 2010 had they not died ahead of that year. Therefore, it is reasonable to
treat the subjects who deceased before developing dementia as being right censored at 2010, and the resulting data are
the time-to-dementia data under mixed case interval censoring, for which the likelihood is of form (2) with J equal to one.
We used the Fine–Gray model to model the covariates’ effects on the cumulative incidence function of dementia. The sieve
maximum likelihood estimation was performed using the cubic B-spline. The estimates of the regression parameters and
their asymptotic standard errors are given in Table 3 along with the p-values for significance. All the covariates except
gender have significant effects on the cumulative incidence for dementia at 0.05 level. Specifically, MCI at baseline, being
older at baseline and ApoE4 allele all increase the cumulative risk for dementia, while having college education decreases
the cumulative risk. Fig. 3, which shows the estimated cumulative incidence functions for women with different values of
the significant categorical covariates, reflects the magnitude of those covariates’ effects on the cumulative risk of dementia.

7.3. Multivariate analysis for cumulative incidences of dementia and deaths

In this subsection, we estimate the cumulative incidence functions of dementia and death jointly. Keep in mind that
death considered here is death prior to dementia. As mentioned above, the deceased subjects in our data set would have
dementia examinations approximately one year apart until 2010 had they not died ahead of that year. Thus, it is reasonable
to treat the subjects who deceased before developing dementia as being interval censored between the last visit before
death and the first visit after death, which did not happen but was scheduled. This scheduled visit ism years apart from the
last visit before death where m is a positive integer and most often equal to one. The resulting data are interval censored
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a b

Fig. 3. Cumulative incidence functions of dementia estimated from the univariate analysis for women with baseline age 80.28 years, the mean baseline
age of the sample. Plots (a) and (b) show the cumulative incidence functions for no MCI at baseline and having MCI at baseline respectively. Solid lines
are for no college education and no ApoE4 allele; dashed lines are for no college education and having ApoE4 allele; dotted lines are for having college
education and no ApoE4 allele; dot dash lines are for having college education and ApoE4 allele.

Table 4
Inference for regression parameters in the multivariate analysis for cumulative incidences of
dementia and death.

Cause Covariate Parameter estimate Standard error p-value

Dementia MCI at baseline (yes) 1.341 0.160 <0.001
Baseline age (yrs) 0.063 0.014 <0.001
College education (yes) −0.207 0.156 0.182
Gender (male) 0.048 0.162 0.786
ApoE4 (carrier) 0.496 0.162 0.002

Death MCI at baseline (yes) −0.187 0.172 0.278
Baseline age (yrs) 0.062 0.013 <0.001
College education (yes) 0.058 0.161 0.716
Gender (male) 0.418 0.162 0.010
ApoE4 (carrier) −0.280 0.188 0.137

time-to-event data of the competing risks, dementia and death, for which the likelihood is of the form (2) with J = 2.
It loses statistical efficiency to treat death as being interval censored rather than use its exact time. This interval censoring
treatmentwas performed in order to use the proposedmethod to estimate the cumulative incidences of dementia and death
jointly. Since the time intervals bracketing death are mostly one year in length in the analytic sample (138 out of 181 death
bracketing intervals), the efficiency loss is expected to be small. Annually scheduled dementia examinations also decrease
the chance that dementia incidence was not caught in subjects who died after developing dementia. The analysis results of
regression parameters are given in Table 4. We can see that the results of the covariate effects on cumulative incidence of
dementia are similar to the univariate analysis except that the effect of college education became non-significant. For the
cumulative incidence of death, baseline age has a significant increasing effect, men have significantly higher cumulative risk
than women, and the other covariates are not significant. Fig. 4 is the counterpart of Fig. 3 obtained from the multivariate
analysis. The two figures look similar. Fig. 5 shows the estimated cumulative incidence functions of death for people who
attended college and whose baseline age is 80.28 years.

8. Discussion

In this article, we proposed a spline-based sieve maximum likelihood estimation for the Fine–Gray model to an-
alyze interval-censored competing risks data. We showed that, under certain regularity conditions, the sieve estima-
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a b

Fig. 4. Cumulative incidence functions of dementia estimated from the multivariate analysis for women with baseline age 80.28 years, the mean baseline
age of the sample. Plots (a) and (b) show the cumulative incidence functions for no MCI at baseline and having MCI at baseline respectively. Solid lines
are for no college education and no ApoE4 allele; dashed lines are for no college education and having ApoE4 allele; dotted lines are for having college
education and no ApoE4 allele; dot dash lines are for having college education and ApoE4 allele.

a b

Fig. 5. Cumulative incidence functions of death estimated from the multivariate analysis for people with college education and baseline age 80.28 years,
the mean baseline age of the sample. Plots (a) and (b) show the cumulative incidence functions for female and male respectively. Solid lines are for no MCI
at baseline and no ApoE4 allele; dashed lines are for no MCI at baseline and having ApoE4 allele; dotted lines are for having MCI at baseline and no ApoE4
allele; dot dash lines are for having MCI at baseline and ApoE4 allele.

tor of the baseline cumulative subdistribution hazard is consistent and converges with the optimal rate as in the non-
parametric regression setting, and the regression parameter estimator is asymptotically normal and semiparametrically
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efficient. The efficient information matrix for the regression parameter can be consistently estimated by a least-squares
method.

One could also use the nonparametric maximum likelihood estimator (NPMLE) for the baseline cumulative
subdistribution hazard in the Fine–Graymodel under interval censored competing risks data. The NPMLE approach assumes
that the baseline cumulative subdistribution hazard jumps only at the effective observation times of (Ui, Vi) (i = 1, . . . , n)
as defined in Definition 1.1, page 45, of Groeneboom and Wellner [10]. In the univariate analysis, this way is equivalent to
the method of Huang and Wellner [12]. But we recommend the spline-based estimator over the NPMLE for the following
reasons. First, the dimension of spline-based estimator is actually smaller than that of the NPMLE, making the computation
simpler. The former is of order

J
k=1 n

νk (νk < 1/(2pk)), while the latter is on the order of n. Second, if the number of knots
is selected properly, e.g. νk = 1/(1 + 2pk), the spline-based estimator will converge at a rate, which is npk/(1+2pk) when
νk = 1/(1 + 2pk), no less than that of the NPMLE, which is always n1/3. Third, a smooth cumulative hazard estimator is
more realistic than an estimator that is a step function.

Though the joint analysis of multiple competing risks improves statistical efficiency when sample size is large, it is
more vulnerable to model mis-specification because it requires that the Fine–Gray model holds for every competing risk
under consideration. If a competing risk is of much more interest compared to the others, the univariate analysis of that
specific competing risk is preferred to the joint analysis since it would be more robust. Take the MAP study for example,
the investigators are more interested in dementia incidence in alive people compared to death prior to dementia. Thus
the univariate analysis in Section 7.2 should be used to report study findings. As a result, we would conclude that college
education has a decreasing effect on the cumulative risk of dementia, which was not reflected by the joint analysis in
Section 7.3.

It should not take much effort to generalize the developed inferential approach to the class of semiparametric
transformationmodels [6] for the analysis of interval censored competing risks data, since the Fine–Graymodel is amember
of that class. Motivated by the late entry of the MAP participants to the study for the analysis of age to dementia, extending
our method to accommodate left truncation is warranted. Also, the fact that time to some competing risk such as death
was exactly known in the MAP study as well as many other longitudinal studies makes it worthwhile to extend our method
to partly interval censored competing risks data. Computationally, these two extensions should be straightforward, since
one just needs to respectively divide the likelihood (2) by the overall survival function at the entry time and replace
Fk(Vi; Zi) − Fk(Ui; Zi) in (2) by the corresponding subdensity at the exactly observed occurrence time, and the resulting
likelihoods can be maximized using the same model for Fk(t; Z) as (1) and the same sieve method as in Section 3. The
derivation of the relevant asymptotic theory is not that straightforward and needs further investigation.
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Appendix. Proofs

The proofs of Theorems 1 and 2 followed similar arguments in [30]. Throughout the following proofs, Pζ f =
f (y)dPθ,φ(y), Pnf = n−1n

i=1 f (Yi), ⌊x⌋ denotes the largest integer below x, and we let C represent a generic constant
that may vary from place to place.

Proof of Theorem 1. We first prove the consistency of ζ̂n in the metric d. This can be accomplished by verifying the
conditions of Theorem 5.7 in [27].

Let M(ζ) = Pζ0 l(Y; ζ) = Pζ0 l(Y; θ, φ) and Mn(ζ) = Pnl(Y; ζ) = Pnl(Y; θ, φ). Therefore, for any ζ ∈ T n =

2 ×
J

k=1 Mkn, Mn(ζ) − M(ζ) = (Pn − Pζ0)l(Y; ζ).
Let L1 = {l(Y; ζ) : ζ ∈ T n}. By the calculation of Shen andWong [26, pp. 597], for all ϵ > 0, there exist J sets of brackets

φL
ki, φ

U
ki


: i = 1, 2, . . . ,


(1/ϵ)Cqkn


(k = 1, . . . , J) such that for any φ = (φ10(·), . . . , φJ0(·)) ∈

J
k=1 Mkn, one has

φL
kik

(t) ≤ φk0(t) ≤ φU
kik

(t) (k = 1, . . . , J) for some 1 ≤ ik ≤

(1/ϵ)Cqkn


and all t ∈ [τ0, τ1], and Pn

φU
ki(Y ) − φL

ki(Y )
 ≤ ϵ

with Y = U and V for all 1 ≤ i ≤

(1/ϵ)Cqkn


and 1 ≤ k ≤ J . As 2 ⊂ RJd is compact, 2 can be covered by


C(1/ϵ)Jd


balls

with radius ϵ and centers being denoted by θ(s) (s = 1, . . . ,

C(1/ϵ)Jd


) respectively; that is for any θ ∈ 2, there exists a

1 ≤ s ≤

C(1/ϵ)Jd


such that ∥θ − θ(s)

∥ ≤ ϵ and hence |ZT θk − ZT θ
(s)
k | ≤ Cϵ for all Z and 1 ≤ k ≤ J because of A1. This

implies that ZT θk ∈ [ZT θ
(s)
k − Cϵ, ZT θ

(s)
k + Cϵ] for all Z and 1 ≤ k ≤ J . Hence we can easily construct such a set of brackets

{[lLs,i1,...,iJ (Y), lUs,i1,...,iJ (Y)] : s = 1, 2, . . . , ⌊C(1/ϵ)Jd⌋; ik = 1, . . . , ⌊(1/ϵ)Cqkn⌋, k = 1, . . . , J} that for any l(Y; ζ) ∈ L1, there
exist a 1 ≤ s ≤


C(1/ϵ)Jd


and a 1 ≤ ik ≤ ⌊(1/ϵ)Cqkn⌋ (k = 1, . . . , J) such that l(Y; ζ) ∈ [lLs,i1,...,iJ (Y), lUs,i1,...,iJ (Y)] for any
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sample point Y, where

lLs,i1,...,iJ (Y) =

J
k=1


∆k1 log


1 − exp


−eZ

T θ
(s)
k −Cϵ+φL

kik
(U)


+ ∆k2 log


exp


−eZ

T θ
(s)
k +Cϵ+φU

kik
(U)


− exp


−eZ

T θ
(s)
k −Cϵ+φL

kik
(V )


+ ∆3 log


1 − J +

J
k=1

exp

−eZ

T θ
(s)
k +Cϵ+φU

kik
(V )


and

lUs,i1,...,iJ (Y) =

J
k=1


∆k1 log


1 − exp


−eZ

T θ
(s)
k +Cϵ+φU

kik
(U)


+ ∆k2 log


exp


−eZ

T θ
(s)
k −Cϵ+φL

kik
(U)


− exp


−eZ

T θ
(s)
k +Cϵ+φU

kik
(V )


+ ∆3 log


1 − J +

J
k=1

exp

−eZ

T θ
(s)
k −Cϵ+φL

kik
(V )


.

Using Taylor expansion along with assumptions A1–A3, we can easily demonstrate that Pn|lUs,i1,...,iJ (Y) − lLs,i1,...,iJ (Y)| ≤ Cϵ

for all 1 ≤ s ≤ ⌊C(1/ϵ)Jd⌋ and 1 ≤ ik ≤ ⌊(1/ϵ)Cqkn⌋ (k = 1, . . . , J), which leads to the conclusion that the ϵ-
bracketing number for L1 with L1(Pn)-norm is bounded by C(1/ϵ)C

J
k=1 qkn+Jd. As N(ϵ, L1, L1(Pn)) ≤ N[](ϵ, L1, L1(Pn)),

L1 is Glivenko–Cantelli by van der Vaart and Wellner [28, Theorem 2.4.3]. Therefore, supζ∈T n |Mn(ζ) − M(ζ)| −→a.s. 0. Let
gk(Z, t) = exp{ZT θk + φk0(t)} and gk0(Z, t) = exp(ZT θ

(0)
k + φ

(0)
k0 (t)) (k = 1, . . . , J). Some algebra yields that

M(ζ0) − M(ζ) = E


J

k=1


[1 − exp{−gk0(Z,U)}] log

1 − exp{−gk0(Z,U)}

1 − exp{−gk(Z,U)}

+ [exp{−gk0(Z,U)} − exp{−gk0(Z, V )}] log
exp{−gk0(Z,U)} − exp{−gk0(Z, V )}

exp{−gk(Z,U)} − exp{−gk(Z, V )}



+


1 − J +

J
k=1

exp{−gk0(Z, V )}


log

1 − J +

J
k=1

exp{−gk0(Z, V )}

1 − J +

J
k=1

exp{−gk(Z, V )}


= E


J

k=1


[1 − exp{−gk(Z,U)}]w


1 − exp{−gk0(Z,U)}

1 − exp{−gk(Z,U)}


+ [exp{−gk(Z,U)} − exp{−gk(Z, V )}]w


exp{−gk0(Z,U)} − exp{−gk0(Z, V )}

exp{−gk(Z,U)} − exp{−gk(Z, V )}



+


1 − J +

J
k=1

exp{−gk(Z, V )}


w


1 − J +

J
k=1

exp{−gk0(Z, V )}

1 − J +

J
k=1

exp{−gk(Z, V )}


 ,

where w(x) = x log x − x + 1 ≥ (x − 1)2/4 for 0 ≤ x ≤ 5. Further analysis by using Taylor expansion leads to

M(ζ0) − M(ζ) ≥
1
4
E

 J
k=1

1
1 − exp{−gk(Z,U)}

[exp{−gk(Z,U)} − exp{−gk0(Z,U)}]2

+
1

1 − J +

J
k=1

exp{−gk(Z, V )}


J

k=1

[exp{−gk0(Z, V )} − exp{−gk(Z, V )}]

2


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=
1
4
E

 J
k=1

1
1 − exp{−gk(Z,U)}

γ 2
[ξ{θ

(0)
k , θk, Z, φ

(0)
k0 (U), φk0(U)}]{ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(U)}2

+

 J
k=1

γ [ξ{θ
(0)
k , θk, Z, φ

(0)
k0 (V ), φk0(V )}]{ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(V )}

2
1 − J +

J
k=1

exp{−gk(Z, V )}

 ,

where γ (x) = d{exp(−ex)}/dx = − exp(−ex + x), ξ{θ
(0)
k , θk, Z, φ

(0)
k0 (U), φk0(U)} is some number between ZT θ

(0)
k +φ

(0)
k0 (U)

and ZT θk + φk0(U), and ξ{θ
(0)
k , θk, Z, φ

(0)
k0 (V ), φk0(V )} is some number between ZT θ

(0)
k + φ

(0)
k0 (V ) and ZT θk + φk0(V ). Let

Z =

ZT

. . .

ZT


J×Jd

, Γ =

γ [ξ{θ
(0)
1 , θ1, Z, φ

(0)
10 (V ), φ10(V )}]

...

γ [ξ{θ
(0)
J , θJ , Z, φ

(0)
J0 (V ), φJ0(V )}]


and λmin = the minimum eigenvalue of Γ Γ T . Further analysis using assumptions A1–A3 leads to

M(ζ0) − M(ζ) ≥ CE


J

k=1


ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(U)

2
+ {Z(θ(0)

− θ) + (φ0 − φ)(V )}TΓ Γ T
{Z(θ(0)

− θ) + (φ0 − φ)(V )}



≥ CE


J

k=1


ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(U)

2
+ λmin{Z(θ(0)

− θ) + (φ0 − φ)(V )}T {Z(θ(0)
− θ) + (φ0 − φ)(V )}



≥ CE


J

k=1


ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(U)

2
+

J
k=1


ZT (θ

(0)
k − θk) + (φ

(0)
k0 − φk0)(V )

2
.

With assumptions A1–A4 and A6, using the same arguments as those in [29, pp. 2126–2127] leads to

M(ζ0) − M(ζ) ≥ C(∥θ(0)
− θ∥2

+ ∥φ0 − φ∥
2
8) = Cd2(ζ0, ζ).

Then it implies that supζ:d(ζ,ζ0)≥ϵ M(ζ) ≤ M(ζ0) − Cϵ2 < M(ζ0).

For φ0 ∈ 8, Lu [22] has shown that there exists a φk0,n ∈ Mkn of order mk ≥ pk + 2 such that ∥φk0,n − φ
(0)
k0 ∥∞ ≤

Cq−pk
kn = O(n−pkνk) (k = 1, . . . , J). This also implies that ∥φk0,n − φ

(0)
k0 ∥Φk ≤ Cq−pk

kn = O(n−pkνk) (k = 1, . . . , J). Now let
φ0,n = (φ10,n(·), . . . , φJ0,n(·)) and ζ0,n = (θ(0), φ0,n), we have

Mn(ζ̂n) − Mn(ζ0) = Mn(ζ̂n) − Mn(ζ0,n) + Mn(ζ0,n) − Mn(ζ0)

≥ Pnl(Y; ζ0,n) − Pnl(Y; ζ0)

= (Pn − P){l(Y; ζ0,n) − l(Y; ζ0)} + M(ζ0,n) − M(ζ0).

Using the brackets for Mkn (k = 1, . . . , J) given before, we can similarly construct a set of brackets for the class L2 =

{l(Y; θ(0), φ) − l(Y; θ(0), φ0) : φ ∈
J

k=1 Mkn and ∥φk0 − φ
(0)
k0 ∥Φk ≤ Cn−pkνk for k = 1, . . . , J} with the ϵ-bracketing

number associated with L2(P)-norm bounded by (1/ϵ)C
J

k=1 qkn . This yields a finite-valued bracketing integral defined
in [27, p. 270]. Hence the class L2 is P-Donsker. By the dominated convergence theorem, it is obvious that in this class
P{l(Y; θ(0), φ) − l(Y; θ(0), φ0)}

2
→ 0 as n → ∞. Hence

(Pn − P){l(Y; θ(0), φ0,n) − l(Y; θ(0), φ0)} = op(n−1/2)

by the relationship between Donsker and asymptotic equicontinuity given by van der Vaart and Wellner [28, Corollary
2.3.12]. By the dominated convergence theorem again, it is easy to see that M(ζ0,n)−M(ζ0) > −o(1) as n → ∞. Therefore,

Mn(ζ̂n) − Mn(ζ0) ≥ op(n−1/2) − o(1) = −op(1).
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This completes the proof of d(ζ̂n, ζ0) → 0 in probability.
Next, we verify the conditions of van der Vaart andWellner [28, Theorem 3.2.5] to derive the convergence rate. First, we

have already shown in the proof of consistency that M(ζ0) − M(ζ) ≥ Cd2(ζ0, ζ).
Second, we further explore Mn(ζ̂n) − Mn(ζ0). In the proof of consistency, we know that Mn(ζ̂n) − Mn(ζ0) ≥ I1,n + I2,n,

where I1,n = (Pn − P){l(Y; θ(0), φ0,n) − l(Y; θ(0), φ0)} and I2,n = P{l(Y; θ(0), φ0,n) − l(Y; θ(0), φ0)}. By Taylor expansion, we
have, for any 0 < ϵ < 1/2 − min1≤k≤J{pkνk},

I1,n = (Pn − P)


J

k=1

l̇(k)φ (Y; θ(0), φ̃)(φk0,n − φ
(0)
k0 )


=

J
k=1

n−pkνk+ϵ(Pn − P)


l̇(k)φ (Y; θ(0), φ̃)

φk0,n − φ
(0)
k0

n−pkνk+ϵ


,

where φ̃ = (φ̃10, . . . , φ̃J0) and φ̃k0 = φ
(0)
k0 + s∗(φk0,n − φ

(0)
k0 ) for some s∗ ∈ (0, 1) and all 1 ≤ k ≤ J . Because

∥φk0,n−φ
(0)
k0 ∥∞ = O(n−pkνk) and l̇(k)φ (Y; θ(0), φ̃) is uniformly bounded as a result of assumptions A1–A4, we can easily obtain

that P

l̇(k)φ (Y; θ(0), φ̃)

φk0,n−φ
(0)
k0

n−pkνk+ϵ

2

→ 0. As a result of L2 being Donsker, using van der Vaart and Wellner [28, Corollary

2.3.12] again, we can conclude that (Pn − P)


l̇(k)φ (Y; θ(0), φ̃)

φk0,n−φ
(0)
k0

n−pkνk+ϵ


= op(n−1/2) (k = 1, . . . , J). Hence,

I1,n =

J
k=1

op(n−pkνk+ϵn−1/2) = op(n
−2min

k
{pkνk}

),

owing to the selection of ϵ. Using the fact that the functionm(x) = x log(x)− x+1 ≤ (x−1)2 in the neighborhood of x = 1,
it can be easily argued that M(ζ0) − M(ζ0,n) ≤ C

J
k=1 ∥φk0,n − φk0∥

2
Φk

= C
J

k=1 O(n−2pkνk) = CO(n−2mink{pkνk}), which
implies that I2,n = M(ζ0,n) − M(ζ0) ≥ −O(n−2mink{pkνk}). Thus, we conclude that

Mn(ζ̂n) − Mn(ζ0) ≥ −Op(n
−2min

k
{pkνk}

) = −Op


n

−2min{min
k

(pkνk),(1−max
k

νk)/2}


.

Let L3(η) = {l(Y; ζ) − l(Y; ζ0) : φ ∈
J

k=1 Mkn and d(ζ, ζ0) ≤ η}. Using the same arguments as in the proof of
consistency, we obtain that the logarithm of the ϵ-bracketing number of L3(η), logN[]{ϵ, L3(η), L2(P)}, is bounded by
C(
J

k=1 qkn) log(η/ϵ). This leads to

J[]{η, L3(η), L2(P)} =

 η

0


1 + logN[]{ϵ, L3(η), L2(P)}dϵ ≤ C


J

k=1

qkn

1/2

η.

Because assumptions A1–A3 guarantee the uniform boundedness of l(Y; ζ), using van der Vaart and Wellner [28, Lemma
3.4.2], the key function φn(η) in [28, Theorem 3.2.5] is given by φn(η) = (

J
k=1 qkn)

1/2η +
J

k=1 qkn/
√
n. Note that

n
2min

k
{pkνk}

φn(1/n
min
k

{pkνk}
) = n

min
k

{pkνk}O(n
max
k

νk/2
) + n

2min
k

{pkνk}n−1/2O(n
max
k

νk
)

≤ Cn1/2

n
min
k

(pkνk)−(1−max
k

νk)/2
+ n

2min
k

(pkνk)−(1−max
k

νk)


.

Therefore, if mink{pkνk} ≤ (1 − maxk νk)/2, n2mink{pkνk}φn(1/nmink{pkνk}) ≤ n1/2. This implies that if we choose rn =

nmin{mink(pkνk),(1−maxk νk)/2}, it follows that r2nφn(1/rn) ≤ n1/2 and Mn(ζ̂n) − Mn(ζ0) ≥ −Op(r−2
n ). Hence, rnd(ζ̂n, ζ0) =

Op(1). �

Proof of Theorem 2. Toderive the asymptotic normality for θ̂n, we just need to verify the conditions (B1)–(B3) of the general
theorem given in Appendix B of Zhang et al. [30]. For condition (B1), we only need to verify that Pn l̇φ(Y; θ̂n, φ̂n)(η

∗) =

op(n1/2) as Pn l̇θ(Y; θ̂n, φ̂n) ≡ 0. Because each component of η∗ has a bounded derivative, it is also a function with
bounded variation. Then it can be easily shown using the argument in [4, pp. 435–436] that there exists a η∗

n ∈

(
J

k=1 Skn(Dkn, Kkn,mk))
⊗Jd such that ∥η∗

n,jk − η∗

jk∥Φk = O(q−1
kn ) = O(n−νk) for j = 1, . . . , Jd and 1 ≤ k ≤ J and

Pn l̇φ(Y; ζ̂n)(η
∗
n) = 0. Therefore, we can write Pn l̇φ(Y; ζ̂n)(η

∗) = I3,n + I4,n, where

I3,n = (Pn − P)l̇φ(Y; ζ̂n)(η
∗
− η∗

n)

and

I4,n = P{l̇φ(Y; ζ̂n)(η
∗
− η∗

n) − l̇φ(Y; ζ0)(η
∗
− η∗

n)}.

Let L4 = {l̇φ(Y; ζ)(η∗
− η) : ζ ∈ T n, η ∈ (

J
k=1 Skn(Dkn, Kkn,mk))

⊗Jd and ∥η∗

jk − ηjk∥Φk = O(n−νk) for j =

1, . . . , Jd and 1 ≤ k ≤ J}. It can be similarly argued that the ϵ-bracketing number associated with L2(P)-norm is
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bounded by C(1/ϵ)Jd(1/ϵ)C
J

k=1 qkn(1/ϵ)C
J

k=1 qkn , which leads to L4 being Donsker. Furthermore, for any r(Y; ζ, η) ∈ L4,
Pr2 → 0 as n → ∞. Hence I3,n = op(n−1/2) by van der Vaart and Wellner [28, Corollary 2.3.12]. By Cauchy–Schwarz
inequality and assumptions A1–A4, it can be easily shown that ∥I4,n∥ ≤ C

Jd
j=1
J

k=1 d(ζ̂kn, ζk0)∥η
∗

jk − η∗

n,jk∥Φk =

Op(n−mink[min{(pk+1)νk,(1+νk)/2}]) = op(n−1/2), where ζ̂kn and ζk0 are respectively the collections of the components of ζ̂n
and ζ0 associated with cause k. So (B1) holds. (B2) holds by similarly verifying that the class L5(δ) = {l∗θ(Y; ζ) − l∗θ(Y; ζ0) :

ζ ∈ T n and d(ζ, ζ0) ≤ δ} is P-Donsker and for any r(Y; ζ) ∈ L5(δ), Pr2 → 0 as δ → 0. (B3) can be easily established using
Taylor expansion and the convergence rate derived in Theorem 1. Hence the proof is complete. �
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