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Abstract

Longitudinal data are frequently encountered in medical follow-up studies and eco-
nomic research. Conditional mean regression and conditional quantile regression are
often used to fit longitudinal data. Many methods focused on the cases where the
observation times are independent of the response variables or conditionally indepen-
dent of them given the covariates. Few papers have considered the case where the the
response variables depend on the observation times or observation times are random
variables associated with a counting process. In this paper, we propose a marginally
conditional quantile regression approach for modeling longitudinal data with random
observing times and informative observation times. Estimators of the parameters in the
proposed conditional quantile regression are derived by constructing non-smooth esti-
mating equations when the observation times follow a counting process. Consistency
and asymptotic normality for these estimators are established. Asymptotic variance is
estimated based on a resampling method. A simulation study is conducted and sug-
gests that the finite sample performance of the proposed approach is very good, and
an illustrative approach is provided.

Keywords: Estimating equation; Informative observation times; Longitudinal data; Quan-

tile regression; Resampling method.

1 Introduction

Longitudinal data arise frequently in many types of studies, for example, medical follow-

up studies and observational investigations. In these longitudinal studies, observations from
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an individual are collected repeatedly over time. Various methods including generalized es-

timating equation and random effects model have been developed to analyze longitudinal

data, see, Diggle et al. (1994) and Laird & Ware (1982). Recently, non-parametric and semi-

parametric models for longitudinal data have attracted much attention. For nonparametric

methods see Hoover et al. (1998), Wu et al. (1998), Scheike & Zhang (1998), Wu & Zhang

(2002b), Wu & Liang (2004), and Sun & Wu(2003); for semiparametric approaches see Moy-

eed & Diggle (1994), Wu & Zhang (2000a), Liang et al. (2003). One major difficulty in

analyzing longitudinal data is that the observation times are often different across subjects.

In Martinussen & Scheike (1999, 2000, 2001) and Lin & Ying (2001), these authors consid-

ered time-varying coefficient regression models for longitudinal data, based on modeling the

observation times by counting process,. Under this framework, the observation times were

allowed to have arbitrary pattern and to depend on covariates. These seminal work provided

ways for modeling the time-dependent observations, survival data and recurrent event data

in a unified framework.

Most existing methods assumed that the response variable is independent of observation

times completely or conditionally independent given the covariates. This assumption may

be unrealistic in applications. Informative observation times often occur when they are

subject- or response variable- dependent. For example, consider the bladder cancer study

conducted by Veterans Administration Cooperative Urological Research Group (See Sun &

Wei (2000)). In the beginning of this study, all subjects who participated in the study had

superficial bladder tumors and these tumors were removed. During the study, many patients

suffered from multiple recurrences of tumor, and the recurrent tumors were removed during

clinical visits. The clinical visit times and the number of tumors occurred between clinical

visits were collected. One aim of this study was to compare the recurrence rates of the

tumors of patients in different treatment groups. It is worth noting that, some subjects had

significantly more clinical visits than others, which suggests that the number of clinical visits

may contain some information about the tumor recurrence rates and the clinic visit times

may depend on subject or covariate. It is important to make use of these information for

inference on the recurrence rate of tumor. This motivated several authors to consider to

incorporating the informative observation times in longitudinal data analysis. For example,

Sun et al. (2005) considered a semiparametric regression approach by using the estimating

equation approach when the response variable depends on the observation times. They

proposed a marginal model for the response variable process conditional on the covariates

and the observation times, and the observation times was assumed to follow a counting

process. Their model is a generalization of the marginal model proposed by Lin & Ying

(2001). Almost all papers on longitudinal data whose observation times follow a counting

process were conducted by conditional mean regression method. Besides the traditional

conditional mean regression method, conditional quantile regression is another important

approach used in longitudinal data analysis. When data contain some outliers or the error

distribution is skewed or has heavy tails, the latter method is more robust and efficient than

the former one.

Quantile regression method has been widely applied to the analysis of of longitudinal
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data. He et al. (2003) reviewed and compared three estimators of median regression in

linear models for longitudinal data. Motivated by the penalized least squares for random

effects models, Koenker (2004) proposed a penalized quantile regression method when there

were a large number of individual fixed effects that can significantly inflate the variability

of the estimates of the main covariate effects. Karlsson (2005) considered the nonlinear

quantile regression model for longitudinal data. Fenske et al. (2008) detected the risk

factor for obesity in early childhood by using quantile regression methods for longitudinal

data. Mu & Wei (2009) studied the dynamic quantile regression transformation model for

longitudinal data. Liu & Bottai (2009) studied the mixed-effects models with longitudinal

data by employing the quantile regression method. Wang & Fygeson (2009) developed

quantile regression inference procedures for longitudinal data when some of the measurements

were censored by fixed constants. Wang et al. (2009) developed a quantile estimation method

for partially linear varying coefficient models using splines. Wang & Zhu (2011) considered

a quantile regression approach for longitudinal data by empirical likelihood method.

However, the existing literature of quantile regression for longitudinal data did not con-

sider the case where observation times are informative. Furthermore, the observations times

in the estimating methods are assumed to be independent of the covariates. To relax these

limitations, in this paper, we study the quantile regression method for longitudinal data

when the response variable depends on the observation times which depend on covariates

by following a counting process. To make inference to parameters, estimating equations are

constructed. The main difficulties are the Taylor expansion can not be used to derive the

asymptotic distribution of the estimators and Newton algorithm can no longer be used to

compute the estimators, because the involved estimating equations are non-smooth. In this

paper, the key results of empirical process theory, namely the uniform law of large number

and the stochastic equicontinuity, are used to derive the asymptotic properties of estimators.

This method has been used in the literatures on non-smooth estimating equations, see for

example, Pakes & Pollard (1989) and Chen et al. (2003). To overcome the computational

difficulty, an iterative method based on MM algorithm of quantile regression(see Hunter and

Lange 2000) is proposed. Because it is not easy to estimate the asymptotic variances of

quantile regression estimators directly, these asymptotic variances are estimated by using

the resampling method proposed by Jin et al. (2001) in this paper.

This paper is organized as follows. In Section 2, we introduce some notations and describe

the models we consider in this paper. In Section 3, the inference procedure and the MM

algorithm based-iterative method are provided. The consistency, asymptotic normality of

the proposed estimators and the asymptotic variance estimate are given in Section 4. Section

5 reports the simulation results and a real data example is given in section 6. The conditions

and the proofs are presented in Section 7.

2 Notation and Statistical Models

Suppose that a longitudinal study consists of a random sample of n subjects. For subject
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i, let Yi(t) be the response variable and Xi(t) be a p-dimensional vector of possibly time-

dependent covariates, i = 1, . . . , n. The observations of Yi(t) are taken at time points

ti1 < . . . < tini
, where ni is the total number of observations on the ith subject. The number

of observations of the ith subject by time t isNi(t) =
∑ni

j=1 I(tij ≤ t) = N∗i (min(t, Ci)), where

Ci is the follow-up time or censoring time for the ith subject and N∗i (t) is the underlying

counting process of sampling times for subject i. We assume that the covariate history

{Xi(t) : 0 ≤ t ≤ Ci} is observed for each individual.

For inference about the response process Yi(t), if it is completely or conditionally indepen-

dent of N∗i (t), then the marginal approach is usually used (Lin & Ying(2001)). Otherwise,

as described in Sun et al. (2005), there are three choices: modeling them jointly, modeling

Yi(t) marginally and then N∗i (t) conditional on it, or modeling N∗i (t) marginally and then

Yi(t) conditional on it. Our main interest is on the longitudinal process, rather than the

observation times. The evaluation of the covariate effects on the longitudinal process is also

of interest. Hence, we adopt the third choice, that is, we model N∗i (t) marginally and then

model Yi(t) conditionally on it.

Define Fit = {Ni(s), 0 ≤ s < t} as the history observed up to time t for the ith subject.

Consider following quantile regression model

Yi(t) = β(τ)>Xi(t) + α(τ)>H(Fit) + εi(t), (1)

where εi is random error with Pr(εi(t) ≤ 0|Xi(t),Fit) = τ and H(·) is a vector of known

functions of the counting process Ni(t) up to time t−. Here β(τ) is a vector of regression

parameters for the covariate, α(τ) is a q-dimensional vector of coefficients for the counting

process. This model implies that the response process depends on both coveriates and the

history of the observations. Note that in this model, the parameters β and α generally

depend on τ . For notational simplicity and without causing confusion, we drop τ from β(τ)

and α(τ) below.

For the observation process, assume that N∗i (t) is a nonhomogeneous Poisson process

with

E{dN∗i (t)|Xi(t)} = eγ
>Xi(t)dΛ0(t), i = 1, . . . , n, (2)

where γ is a vector of unknown regression parameters and Λ0(t) is the mean cumulative

number of observations by time t. In the following, suppose that the censoring time Ci
may depend on covariates Xi(t) in an arbitrary fashion, but is independent of N∗i (t) and

Yi(t) given Xi(t) and Fit, in the sense that E{dN∗i (t)|Xi(t), Ci ≥ t} = E{dN∗i (t)|Xi(t)} and

E{Yi(t)|Xi(t),Fit, Ci ≥ t} = E{Yi(t)|Xi(t),Fit}. For simplicity, we restrict inference to the

time interval [0, t0].

There are several possible choices for H in (1). A simple and natural choice for H is

H(Fit) = Ni(t−), which means that Fit affects the conditional quantile of the response

variable by the total number of observations. Another choice is H(Fit) = {Ni(t−)−Ni(t−
u)}/u, that is, only the average number of the observations in the recent u time units contains

information on the response variable. If both the total and recent numbers of observations

contain information of the response variable, define H as a vector containing both of them.
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It is worth noting that Sun et al. (2005) considered the informative observation times by

similar idea on the basis of mean regression method.

3 Estimating Procedure and Computation

3.1 Estimating Equation

We develop an estimation procedure for estimating the unknown parameters under the mod-

els (1) and (2). When γ = 0, namely, the observation times are independent of the covari-

ates, a natural approach for estimating β and α is to use the quantile regression principle of

Koenker & Bassett (1978) by minimizing

1

n

n∑

i=1

∫ t0

0

ρτ (Yi(t)− β>Xi(t)− α>H(Fit))dNi(t), (3)

where ρτ (ε) = ε(τ−I(ε < 0)) is the checking function. Note that minimizing above objective

function is equivalent to solving the estimation equations

Dn(θ) =
1

n

n∑

i=1

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) ≤ 0)− τ

}
dNi(t) = 0, (4)

where Zi(t) = {X>i (t), H>(Fit)}>, θ = {β>, α>}>. Note that, the estimating function on

the left hand side of above equation is discontinuous with respect to the parameters, which

may lead to multiple solutions or the exact solution may not exist, we follow the methods

of Ying et al. (1995) to obtain the quantile estimator. That is, a “root” of θ for (4) may be

defined as a minimizer of the function ||Dn(θ)||, where || · || is the Euclidean distance. The

same convention will be used below.

When γ 6= 0, observation times depend on covariates through (2). At this time, if the

estimator still were obtained by minimizing (3) or solving (4) directly, it would lead to the

information contained in model (2) can not be fully used and the covariate effects can not

be accurately evaluated. Thus we consider the following process

gi(θ, γ,Λ0) =

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) ≤ 0)dNi(t)− τξi(t)eγ

>Xi(t)dΛ0(t)

}
, (5)

where ξi(t) = I(Ci ≥ t). Under models (1) and (2) and the assumption that Ci is independent

of N∗i (t) and Yi(t) given Xi(t) and Fit, it is easy to show that E{gi(θ, γ0,Λ0)} = 0. Therefore,

we can estimate the parameters by constructing the estimating equations

Gn(θ, γ0,Λ0) =
1

n

n∑

i=1

gi(θ, γ0,Λ0) = 0.

In order to estimate θ, we need to get consistent estimators of γ0 and Λ0 firstly because both

of them are unknown in the above estimating equation. For this purpose, we estimate them

5



by the partial likelihood method in Lin et al. (2000). With this method, γ̂ can be obtained

by solving

n∑

i=1

∫ t0

0

{Xi(t)− X̄(t; γ)}dNi(t) = 0,

where X̄(t; γ) = S(1)(t; γ)/S(0)(t; γ), and

S(k)(t; γ) =
1

n

n∑

j=1

ξi(t)Xj(t)
⊗k exp(γ>Xj(t)), k = 0, 1, 2,

where for any vector a, a⊗2 = aaT . And Λ̂0 is the Nelson-Aalen type estimator of Λ0, which

is given by

Λ̂0(t) =
n∑

i=1

∫ >

0

dNi(u)∑n
j=1 ξj(u) exp(γ̂>Xj(t))

.

Finally, we estimate θ by solving the following asymptotically unbiased estimating equations

Gn(θ, γ̂, Λ̂0) =
1

n

n∑

i=1

gi(θ, γ̂, Λ̂0) = 0. (6)

We derive an iterative algorithm for solving this estimating equations when there exists a

unique solution of (6) in the next subsection. In order to avoid the problem of no solution

caused by the nonsmoothness of the estimating equations, one can minimize the norm of

estimating function to compute the estimator by the similar methods in Ying et al. (1995)

and Pakes & Pollard (1989). Namely,

θ̂ = arg inf
θ
‖Gn(θ, γ̂, Λ̂0)‖.

And we can show that θ̂ is consistent estimator of the true value θ0 which is

θ0 = arg inf
θ
‖G(θ, γ0,Λ0)‖,

whereG(θ, γ0,Λ0) = E{gi(θ, γ0,Λ0)}.Of course, the true value θ0 satisfies thatG(θ0, γ0,Λ0) =

0 when G(θ, γ,Λ) is continuous about θ given any γ and λ.

3.2 Computation based on MM Algorithm

It is difficult to solve estimating equation (6) directly because the involved estimating func-

tion is not smooth. Here we develop an iterative approach based on the MM-algorithm

(Hunter & Lange (2000)) for solving this equation.

Before describing the iterative approach, we first introduce the MM algorithm for quantile

regression. The key idea of the MM algorithm is searching a surrogate function, which is easy

to be optimized, to replace the objective function when it is difficult to optimize directly. The
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MM stands for Majorize-Minimize in quantile regression. Suppose the goal is to calculate

the minimizer θ̂ of following objective function

L(θ) =
1

n

n∑

i=1

∫ t0

0

ρτ (Yi(t)− θTZi(t))dNi(t).

First, construct the approximating function of L(θ) as

Lδ(θ) =
1

n

n∑

i=1

∫ t0

0

ρδτ (Yi(t)− θTZi(t))dNi(t),

where

ρδτ (ε(t)) = ρτ (ε(t))−
δ

2
ln(δ + |ε(t)|), ε(t) = Y (t)− θTZ(t),

for δ > 0, which is the perturbation constant and determined in Hunter & Lange (2000).

Secondly, we minimize the approximate function Lδ(θ) by the MM algorithm. Let θk denote

the minimum point of Lδ(θ) by the k-th iteration and the residual value εk = εk(t) =

Y (t) − (θk)>Z(t), then ρδτ (ε) is majorized at εk by the quadratic function ζδτ (ε|εk), which is

appropriately chosen chosen so that ζδτ (ε
k|εk) = ρδτ (ε

k). Define the surrogate function

Qδ(θ|θk) =
1

n

n∑

i=1

∫ t0

0

ζδτ (εi(t)|εki (t))dNi(t),

and treat the θk as a known value, then minimize Qδ(θ|θk) to obtain the θk+1. Repeat above

iterative steps until a convergence criteria is satisfied, θ̂ can be obtained. This result can be

proved along the lines of Proportion A.2 of Hunter & Lange (2000).

After briefly introducing the MM algorithm, we develop the iterative method based on

the MM algorithm. By the proof of Theorem 2 given in the Appendix, we can write

Gn(θ, γ̂, Λ̂0) =
1

n

n∑

i=1

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) ≤ 0)− τ

}
dNi(t)

+τ
1

n

n∑

i=1

∫ t0

0

{
Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t), (7)

where S̃(1)(t; γ) is defined in the next section. The second term in (7) does not involve the

parameter θ, hence the difficulty of solving estimating equation (6) is caused by the non-

smoothness of the first term of Gn(θ, γ̂, Λ̂0). Motivated by the above MM algorithm, we can

construct a smooth estimating equation which is easily solved to replace (6).

Note that solving Gn(θ, γ̂, Λ̂0) = 0 for θ is equivalent to minimizing the following function

Qn(θ, γ̂, Λ̂0) =
1

n

n∑

i=1

∫ t0

0

ρτ (Yi(t)− θ>Zi(t))dNi(t)

+τ
1

n

n∑

i=1

∫ t0

0

θ>
{
Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t), (8)
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We can construct a smooth function using the MM algorithm, that is,

Qδ
n(θ, γ̂, Λ̂0) =

1

n

n∑

i=1

∫ t0

0

ρδτ (Yi(t)− θ>Zi(t))dNi(t)

+τ
1

n

n∑

i=1

∫ t0

0

θ>
{
Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t), (9)

where ρδτ (·) is defined above.

Let θk be the solution in kth iteration during minimizing (9) and the residual value

εk = εk(t) = Y (t) − (θk)>Z(t), then ρδτ (ε) is majorized at εk by the quadratic function

ζδτ (ε|εk) so that ζδτ (ε
k|εk) = ρδτ (ε

k), where ζδτ (ε|εk) has been defined above. We just minimize

the following function

Qδ
n(θ, γ̂, Λ̂0) = Qδ(θ|θk) + τ

1

n

n∑

i=1

∫ t0

0

θ>
{
{Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t), (10)

Therefore we can construct the (k + 1)-step surrogate estimating equation

Ḡ(k+1)
n (θ, γ̂, Λ̂0|θk) =

dQδ(θ|θk)
dθ

+ τ
n∑

i=1

∫ t0

0

{
Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t) = 0. (11)

The θk+1 can be obtained by solving (11). The iteration can be carried out in this way, we

stop the iteration when a convergence criteria is satisfied, then the proposed estimators can

be obtained.

4 Main Results

4.1 Large Sample Properties

In this section, we provide the asymptotic properties of the proposed quantile estimator.

Some useful notations are given firstly.

Define

Ω =
1

n

n∑

i=1

[ ∫ t0

0

{
s(2)(t; γ0)

s(0)(t; γ0)
− x̄⊗2(t; γ0)

}
dNi(t)

]
, A = E

{∫ t0

0

Zi(t)Z
>
i (t)fε(0|Xi(t),Fit)dNi(t)

}
,

P =
1

n

n∑

i=1

[ ∫ t0

0

{
s̃(2)(t; γ0)

s(0)(t; γ0)
− s̃(1)(t; γ0)s(1)(t; γ0)

(s(0)(t; γ0))2

}
dNi(t)

]
, Z̄(t; γ) =

S̃(1)(t; γ)

S(0)(t; γ)
, z̄(t; γ) =

s̃(1)(t; γ)

s(0)(t; γ)
,

and

hi(θ) =

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) ≤ 0)− τ

}
dNi(t),Mi(t) = Ni(t)−

∫ >

0

ξi(s) exp(γ>Xi(s))dΛ0(s),
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where

s(k)(t; γ) = E

{
ξi(t)Xj(t)

⊗k exp(γ>Xj(t))

}
, k = 0, 1, 2, x̄(t; γ) =

s(1)(t; γ)

s(0)(t; γ)
,

S̃(1)(t; γ) =
1

n

n∑

j=1

ξj(t)Zj(t) exp(γ>Xj(t)), S̃
(2)(t; γ) =

1

n

n∑

j=1

ξj(t)Zj(t)X
>
j (t) exp(γ>Xj(t)),

s̃(1)(t; γ) = E

{
ξj(t)Zj(t) exp(γ>Xj(t))

}
, s̃(2)(t; γ) = E

{
ξj(t)Zj(t)X

>
j (t) exp(γ>Xj(t))

}
.

Based on the model assumption, it is always true that G(θ0, γ0,Λ0) = 0 for true θ0, γ0

and Λ0. We assume that there exists a unique θ0 such that G(θ0, γ0,Λ0) = 0. Generally

speaking, condition (A4) given in Appendix ensures that G(θ0, γ0,Λ0) = 0 has an unique

solution.

The following theorem provides sufficient conditions for the consistency of θ̂.

Theorem 1. Assume that conditions (A1), (A4), (A6)− (A9) in Section 6 are satisfied, then

θ̂
Pr−→ θ0.

The asymptotic distribution of θ̂ is given by the following theorem.

Theorem 2. Assume that conditions (A1)− (A9) in Section 6 are satisfied, then

√
n(θ̂ − θ0)

D−→ N(0,Σ),

where Σ = A−1V A−1 and

V = E

[
hi(θ0) + τ

∫ t0

0

{
Zi(t)− z̄(t; γ0)

}
dMi(t)− τPΩ−1

∫ t0

0

{
Xi(t)− x̄(t; γ0)

}
dMi(t)

]⊗2

.

4.2 Asymptotic Variance

A direct estimator of Σ can be constructed by the plug-in method. However, it is difficult to

estimate the variance of proposed estimator because it involves bandwidth selection in the

kernel density estimation of fε(0|Xi(t),Fit) which is included in A.

An alternative approach to estimating the asymptotic variance is the resampling method

of Jin et al. (2001). This method involves the stochastically perturbed estimating equations

G̃n(θ, γ̂, Λ̂0(t)) =:
1

n

n∑

i=1

gi(θ, γ̂, Λ̂0(t))Ui ≈ 0, (12)

where Ui (i = 1, . . . , n) which satisfies var(Ui) = {E(Ui)}2 are i.i.d nonnegative random

variables from a known distribution function. Let θ∗ be the solution of the perturbation

estimating equation. It can be shown that n
1
2 (θ∗ − θ̂) has the same limiting distribution as

n
1
2 (θ̂ − θ0) using a method similar to that given in Jin et al. (2001). Thus we can estimate

the variance of θ̂ by the empirical variance of θ∗, which can be obtained by resampling.
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5 Simulation Study

In this section, we conducted simulation study to evaluate the performance of proposed

quantile estimator. We also demonstrated the advantage of the proposed quantile regression

over the existing mean regression when distribution of errors has heavy tails or when the

error variances are heteroscedastic.

We considered generating models with two covariates. Firstly, we generated Xi1 and Xi2

from the uniform distribution over interval (0,1) and the standard normal distribution for

i = 1, . . . , n, respectively. Then, given the values of Xi1 and Xi2, the observation times were

generated from the Poisson process N∗i (t) with intensity rate

E{dN∗i (t)|Xi} = λ0e
γ1Xi1+γ2Xi2dt, (13)

where γ1 = −0.25, γ2 = 0.5, λ0 = 2. The censoring time C was assumed to follow the uniform

distribution over interval (η/2, η), where η was selected to give the desired censoring rate. Let

η = 6, and the average observation times for different subjects are about 12. The response

variable was generated from the regression model

Yi(t) = β1Xi1 + β2Xi2 + αNi(t−) + (1 + σXi1)εi(t), i = 1, . . . , n,

where β1 = −1, β2 = 1, α = 1.5. Under above model, the τth conditional quantile of Yi(t) is

Qτ (Yi(t)|Xi,Fit) = β1(τ)Xi1 + β2(τ)Xi2 + α(τ)Ni(t−) +Q(τ), i = 1, . . . , n, (14)

where β1(τ) = β1 + σQ(τ), β2(τ) = β2, α(τ) = α and Q(τ) is the τth quantile of εi.

We considered three cases:

• S1: homoscedastic normal error model with σ = 0, εi ∼ N (0, 1).

• S2: homoscedastic heavy tailed model with σ = 0 and εi ∼ C(0, 1).

• S3: heteroscedastic errors with σ = 1, εi ∼ N (0, 0.25).

Under S3, β1(τ) = β1 +Q(τ), β2(τ) = β2, α(τ) = α, where Q(τ) is the τth quantile of normal

distribution N (0, 0.25). The sample size is n = 100. The resampling size for variance

estimation is 500.

The estimating equations were solved using the iterative algorithm described in Section

3.2. We also could solve the perturbated estimating equation which defined in Section 4.2 by

using the similar iterative method. We used random variables generated from the exponential

distribution with mean 1 in the perturbed estimating equations.

Tables 1-3 present the results from the three generating models in cases S1-S3 for 0.25th,

median and 0.75th. “true” gives the true parameters and “est” reports the estimated pa-

rameters. Empirical comparisons are in terms of the magnitude of bias (“bias”), standard

deviations of the estimates (“sd”), standard error of estimates (“se”), and the actual confi-

dence interval coverage when the nominal target coverage probability is 0.95 (“cp”).
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Table 1: Simulation results of S1 based on 500 replications

τ = 0.25 τ = 0.5 τ = 0.75

β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ)

true -1.000 1.000 1.500 -1.0000 1.0000 1.5000 -1.000 1.0000 1.5000

est -0.9936 0.9765 1.5072 -1.0004 1.0006 1.5006 -1.0129 1.0131 1.4998

bias -0.0064 -0.0235 0.0072 -0.0004 0.0006 0.0006 -0.0129 0.0131 -0.0002

sd 0.2614 0.1569 0.0148 0.2349 0.1195 0.0121 0.2508 0.1380 0.0135

se 0.2698 0.1547 0.0140 0.2383 0.1222 0.0129 0.2604 0.1486 0.0137

cp 0.9400 0.9380 0.9340 0.9640 0.9560 0.9540 0.9440 0.9720 0.9400

Table 2: Simulation results of S2 based on 500 replications

τ = 0.25 τ = 0.5 τ = 0.75

β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ)

true -1.000 1.000 1.500 -1.0000 1.0000 1.5000 -1.000 1.0000 1.5000

est -1.0338 1.0013 1.4983 -0.9628 1.0059 1.4982 -0.8702 1.0075 1.5002

bias -0.0338 0.0013 -0.0017 0.0372 0.0059 -0.0018 0.1298 0.0075 0.0002

sd 0.5170 0.2710 0.0308 0.2984 0.1764 0.0176 0.5550 0.2889 0.0284

se 0.5398 0.2776 0.0306 0.3126 0.1835 0.0187 0.6050 0.3158 0.0331

cp 0.9560 0.9580 0.9480 0.9560 0.9520 0.9580 0.9520 0.9480 0.9680

Table 1 presents simulation results of S1. From Table 1, we can see that the results

of median are better than those of other quantiles. This is not surprising because for the

normal error, the effective sample size is larger for the median regression than those for the

0.25 or 0.75 quantile regressions. Table 2 presents simulation results of S2. Results from the

median regression are also better than those from other quantile regressions. The reason is

similar to that of S1. Table 3 reports the simulation results of S3. Performance of β1(τ)

is worse than those of β2(τ) and α(τ). This mainly due to the X1i-related heteroscedastic

structure of error.

Table 3: Simulation results of S3 based on 500 replications

τ = 0.25 τ = 0.5 τ = 0.75

β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ)

true -1.3372 1.000 1.500 -1.0000 1.0000 1.5000 -0.6628 1.0000 1.5000

est -1.3426 0.9828 1.5060 -0.9936 1.0016 1.4995 -0.7111 1.0088 1.4998

bias -0.0054 -0.0172 0.0060 0.0064 0.0016 -0.0005 -0.0483 0.0088 -0.0002

sd 0.2289 0.1157 0.0109 0.1971 0.0988 0.0097 0.2214 0.1009 0.0097

se 0.2375 0.1104 0.0106 0.1940 0.0934 0.0094 0.2620 0.1134 0.0107

cp 0.9400 0.9280 0.9400 0.9300 0.9400 0.9420 0.9740 0.9780 0.9600

11



Table 4: Estimated conditional quantile function of response based on 500 replications

τ = 0.25 τ = 0.5 τ = 0.75

t S1 S2 S3 S1 S2 S3 S1 S2 S3

0.5 0.8343 0.5131 1.0199 1.5077 1.5236 1.5071 2.1898 2.5549 2.0040

1.0 2.8554 2.5313 3.0404 3.5277 3.5437 3.5272 4.2087 4.5754 4.0231

1.5 4.8592 4.5502 5.0436 5.5303 5.5641 5.5299 6.2103 6.5961 6.0249

2.0 6.8762 6.5719 7.0601 7.5462 7.5877 7.5458 8.2251 8.6201 8.0400

2.5 8.8899 8.5657 9.0732 9.5587 9.5835 9.5585 10.2365 10.6161 10.0517

3.0 10.8996 10.5691 11.0823 11.5672 11.5885 11.5671 12.2439 12.6213 12.0594

3.5 12.7430 12.4134 12.9252 13.4095 13.4344 13.4095 14.0852 14.4675 13.9009

4.0 14.2516 13.9207 14.4335 14.9173 14.9430 14.9174 15.5921 15.9763 15.4080

Table 5: MSE of mean regression and median regression based on 1000 replications

S1 S2 S3

mean median mean median mean median

β1 0.0515 0.0538 – 0.0924 0.0411 0.0405

β2 0.0144 0.0158 – 0.0316 0.0100 0.0086

α 0.0002 0.0002 – 0.0003 0.0001 0.0001

From Tables 1 to 3, parameter estimators are very close to true value, none of those

estimators exhibit bias of any substantial magnitude, and the actual coverage probabilities

are close to the 0.95 nominal level. In addition, the estimated standard errors obtained by

resmapling provide good estimates of the sampling variabilities, that is, they are close to the

standard deviations calculated based on the replications.

We also evaluated the performance of the estimated conditional quantiles for response

process. For each replication, For each replication, we took the average of n conditional

quantiles of the response variable at a particular time t as the estimated quantile at t for

this replication, and took the average of estimated quantiles for all replications as the finally

estimated conditional quantiles at t. Table 4 shows these estimated conditional quantiles of

Y (t) at t = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. From Table 4 again, we can see that, for the same t,

quantiles increase as τ becoming larger. For the same τ , quantiles increase as t increasing, it

is reasonable because N(t−) is monotonically increase respect to t, and model (14) indicates

that larger N(t−) lead to larger quantile.

We also compared the proposed quantile regression estimators with mean regression es-

timators which are estimated from following marginal conditional mean regression model

E{Yi(t)|Xi,Fit} = β1Xi1 + β2Xi2 + αNi(t−), i = 1, . . . , n,

and the observation times were also generated from (13). Table 5 exhibits the mean square

errors of the mean regression and median regression for all three cases. In Table 5, “mean”
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represents the mean regression and “median” represents median regression. For S1 with

normal error terms, the MSEs based on the mean regression is slightly smaller than those

based on the median regression. Under S2, mean regression can not work because the moment

of Cauchy distribution does not exist, but median regression still works well. Under S3, the

MSEs of median regression are smaller than those of the mean regression.

On the whole, our quantile estimators are perform very well and quantile regression

indeed more robust and efficient than mean regression when the errors are heavy tailed or

have heteroscedasticity.

6 Real Example

We apply the proposed method to analyze the bladder cancer data introduced earlier. This

data set have been analyzed by Sun & Wei (2000), Sun et al. (2005), among others. There

were 85 patients who participated in this study, among them, 47 patients were randomly

allocated to the placebo group and the remained 38 patients were in the thiotepa treatment

group. During the study, the number of initial bladder tumors, the size of the largest initial

tumor, the number of tumors that occurred between clinical visits and the clinical visit times

(observation times) were recorded. The unit of the observation times was in months, and the

largest observation time was 53 months. The purpose of this study is to evaluate the effect

of the thiotepa treatment and clinical visits on the tumor recurrence rates under different

quantiles.

In the analysis, for i = 1, . . . , 85, define Yi(t) as the natural logarithm of the number

of observed tumors plus 1 at time t. Here we add 1 to the number of observed tumors to

avoid taking logarithm of 0. Let Xi1 = 1 if subject i was in the thiotepa group and 0 if

subject i was in the placebo group. Let X2i be the number of initial tumors. Let t0 be the

longest observation time, namely, 53 months. We considered two choices of the function H:

H1(Fit) = Ni(t−) and H2(Fit) = Ni(t−) − Ni(t − 6). Under H1 and H2, we evaluated the

effect of all clinical visit times to t and the observation times in most recent 6 months on

the tumor recurrence rate respectively.

For observation process, we obtained γ̂1 = 0.4952, γ̂2 = −0.0098, with estimated standard

errors of 0.1291 and 0.0346. That means patients in the thiotepa treatment group tend to

visit clinic significantly more often than those in the placebo group, and the clinical visit

process seems to be unrelated to the initial number of tumors.

Table 6 reports analysis results for τ = 0.25, 0.5, 0.75 and 0.95. In the table, “est” gives

the parameter estimates and “se” presents the standard errors. “NIO” shows the results of

the case ignoring informative observation times. Note that, both treatment effect and effect

of the number of initial tumors significantly affect tumor recurrence rate, when informative

observation times are ignored. Under both H1 and H2, the treatment does not significantly

affect the tumor recurrence rate, under 25th and 95th quantiles, while it is significantly

negative related to tumor recurrence rate, under median and 75th quantile. This indicates
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Table 6: Bladder cancer data result
NIO H1 H2

τ β1(τ) β2(τ) β1(τ) β2(τ) α(τ) β1(τ) β2(τ) α(τ)

0.25 est 0.6003 0.0013 0.2664 0.1959 -0.0369 -0.0228 0.0668 0.1155

se 0.0671 0.0181 0.1527 0.0080 0.0064 0.1028 0.0172 0.0106

0.5 est -0.0787 -0.0000 -0.1038 0.1502 -0.0153 -0.6618 0.1128 0.0946

se 0.0063 0.0029 0.0194 0.0147 0.0025 0.0669 0.0194 0.0165

0.75 est -1.5689 -0.0004 -1.6473 -0.0027 -0.0007 -0.9846 -0.0047 -0.0804

se 0.3056 0.0476 0.3709 0.1716 0.0388 0.1683 0.0077 0.0288

0.95 est -3.6570 -0.0410 -2.9296 0.0176 -0.0441 -0.5483 -0.0866 -0.6471

se 1.7861 0.3277 2.4870 0.5478 0.2600 0.3961 0.0561 0.0299

Table 7: Estimated conditional quantiles of Y

treatment group X1 = 1

H1 H2

τ H1 X2 = 1 X2 = 2 X2 = 3 X2 = 4 H2 X2 = 1 X2 = 2 X2 = 3 X2 = 4

0.25 1 -0.2825 -0.2002 -0.1179 -0.0356 1 -0.5775 -0.5107 -0.4439 -0.3771

2 -0.2728 -0.1905 -0.1082 -0.0259 2 -0.4620 -0.3952 -0.3284 -0.2616

0.5 1 0.1593 0.3095 0.4597 0.6099 1 -0.1847 -0.0719 0.0409 0.1537

2 0.1440 0.2942 0.4444 0.5946 2 -0.0901 0.0227 0.1355 0.2483

0.75 1 0.7229 0.7202 0.7175 0.7148 1 0.4022 0.3975 0.3928 0.3881

2 0.7222 0.7195 0.7168 0.7141 2 0.3218 0.3171 0.3124 0.3077

0.95 1 1.7098 1.7274 1.7450 1.7626 1 3.6576 3.5710 3.4844 3.3978

2 1.6657 1.6833 1.7009 1.7185 2 3.0105 2.9239 2.8373 2.7507

placebo group X1 = 0

H1 H2

τ H1 X2 = 1 X2 = 2 X2 = 3 X2 = 4 H2 X2 = 1 X2 = 2 X2 = 3 X2 = 4

0.25 1 -0.7637 -0.6814 -0.5991 -0.5168 1 -0.5547 -0.4879 -0.4211 -0.3543

2 -0.7540 -0.6717 -0.5894 -0.5071 2 -0.4392 -0.3724 -0.3056 -0.2388

0.5 1 0.4046 0.5548 0.7050 0.8552 1 0.4771 0.5899 0.7027 0.8155

2 0.3893 0.5395 0.6897 0.8399 2 0.5717 0.6845 0.7973 0.9101

0.75 1 2.3702 2.3675 2.3648 2.3621 1 1.3868 1.3821 1.3774 1.3727

2 2.3695 2.3668 2.3641 2.3614 2 1.3064 1.3017 1.2970 1.2923

0.95 1 4.6394 4.6570 4.6746 4.6922 1 4.2059 4.1193 4.0327 3.9461

2 4.5953 4.6129 4.6305 4.6481 2 3.5588 3.4722 3.3856 3.2990
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that the treatment effect is not significant for the patients, who with lower or higher tumor

recurrence rate, and the therapy works well for these patients, who have moderate tumor

recurrence rate. It may because patients who with lower recurrence rate, not only tend

to have strong resistance to tumor recurrence, but also tend to have strong resistance to

therapy. Therapy also does not work well for the patients, with higher recurrence rate,

because their weaker resistance to tumor recurrence. For patients with moderate tumor

recurrence rate, thiotepa treatment tends to decrease their tumor occurrence rate. Different

from the treatment effect, the effect of the number for initial tumors on tumor recurrence

rate, is significant under 25th quantile and median, and becomes less significant, when τ

increase to 0.75 and 0.95. It implies that, among the patients whose recurrence rate is

lower than median, patients with the more number of initial tumors tend to have a higher

tumor occurrence rate. For patients whose recurrence rate is higher than median, their

numbers of initial tumors seem to be unrelated to their recurrence rate. Note that, the

tumor recurrence rate and observation times are negatively correlated, under H1 and all

quantiles, but the effect of observation times on tumor recurrence rate, is significantly only

under lower quantiles τ = 0.25, 0.5. This means that the more often the patients visit the

clinic, the lower tumor recurrence rate they tend to has on the whole. It is interesting

to note that under H2, the observation times and recurrence rate are positively correlated

under 25th quantile and median, but are negatively correlated for τ = 0.75 and 0.95. In

other words, among the patients with lower recurrence rate, the more observation times

within past six months, the higher tumor recurrence rate they tend to have. Meanwhile,

among the patients with higher recurrence rate, increasing of clinical visit times within past

six months tends to decrease their tumor recurrence rate. It may because for these lower

recurrence rate-patients, they do not need to visit clinic much often in general, but once

they found their tumor recurrence increasing, they would visit hospital frequently, within a

period of time such as six months. Table 7 presents the fitted conditional quantiles of Y for

both treatment and placebo groups, under different numbers of initial tumors and H1, H2.

From this table, we can see that the fitted quantiles increase monotonically increasing for

the increasing sequence of τ .

Different from the mean regression method in Sun et al. (2005), the proposed method

could evaluate the effect of treatment, number of initial tumors and observation times under

different quantiles, and obtained some interesting phenomenon which could not be found by

mean regression.

7 Conditions and Proofs

Throughout this paper, suppose that the true value θ0 is an interior point of parameter

space Θ. Furthermore, suppose that γ belongs to a compact nuisance parameter space Θ̃.

Let fεi(0|Xi(t),Fit) be the conditional density function of random error εi. We also require

following conditions.

(A1) X(t) and H(.) are continuous and right continuous, respectively, and have bounded
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total variation on [0, t0].

(A2) The density function fε(0|Xi(t),Fit) is uniformly bounded away from 0 and infinity.

(A3) E{‖Z(t)‖4} <∞ for t ∈ [0, t0].

(A4) E
{ ∫ t0

0
Zi(t)Z

>
i (t)fε(Yi(t)−θ>Zi(t)|Xi(t),Fit)dNi(t)

}
is nonsingular in a neighborhood

of θ0.

(A5) E{hi(θ0)}⊗2 <∞ and

E

[ ∫ t0

0

{
Zi(t)− z̄(t; γ0)

}⊗2

ξi(t) exp(γ>Xi(t))dΛ0(t)

]
<∞.

(A6) {Ni(.), Xi(.), ξi(.)}, i = 1, . . . , n are i.i.d..

(A7) Pr(Ci ≥ t0) > 0, i = 1, . . . , n.

(A8) Ni(t0), i = 1, . . . , n are bounded by a constant.

(A9) The following matrix is positive definite

E

[ ∫ t0

0

{
Xi(t)− x̄(t; γ0)

}⊗2

ξi(t) exp(γ>Xi(t))dΛ0(t)

]
.

Condition (A1) is common in the literature on time-varying covariate effect models. Condi-

tions (A2) and (A4) are trivial for quantile regression. (A3) states moment conditions on the

covariate Z(t). Condition (A4) ensures that G(θ, γ,Λ0(t)) has the unique zero at the true

value θ0 which is important to identify the unknown parameters. (A5) and (A9) are needed

to show that the covariance of the estimator θ̂ is finite. (A6)− (A9) are needed to derive the

asymptotic normality and weak convergence of γ̂ and Λ̂0(t), respectively. See also Lin et al.

(2000) for a discussion on these conditions.

We first present a lemma that is important to the proof of the main theorem.

Lemma 1. Assume that (A1)− (A3) hold, then for all positive values εn = o(1), we have

I1 =: sup
‖θ−θ0‖≤εn

‖Gn(θ, γ̂, Λ̂0(t))−G(θ, γ0,Λ0(t))−Gn(θ0, γ̂, Λ̂0(t))‖ = op(n
−1/2).

Proof. It is easy to see that

I1 ≤ sup
‖θ−θ0‖≤εn

‖Gn(θ, γ̂, Λ̂0(t))−Gn(θ, γ0,Λ0(t)) +Gn(θ0, γ0,Λ0(t))−Gn(θ0, γ̂, Λ̂0(t))‖

+ sup
‖θ−θ0‖≤εn

‖Gn(θ, γ0,Λ0(t))−G(θ, γ0,Λ0(t))−Gn(θ0, γ0,Λ0(t))‖

=: I2 + I3.

16



For I2, we have

I2 = sup
‖θ−θ0‖≤εn

∥∥∥∥
1

n

n∑

i=1

[ ∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) < 0)dNi(t)− τξi(t)eγ̂

>Xi(t)dΛ̂0(t)

}

−
∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) < 0)dNi(t)− τξi(t)eγ

>
0 Xi(t)dΛ0(t)

}

+

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>0 Zi(t) < 0)dNi(t)− τξi(t)eγ

>
0 Xi(t)dΛ0(t)

}

−
∫ t0

0

Zi(t)

{
I(Yi(t)− θ>0 Zi(t) < 0)dNi(t)− τξi(t)eγ̂

>Xi(t)dΛ̂0(t)

}]∥∥∥∥
= 0.

Hence, it is sufficient to prove that I3 = op(n
−1/2). For simplicity, denote

mi(θ) =:

∫ t0

0

Zi(t)I(Yi(t)− θ>Zi(t) < 0)dNi(t).

Note that

I3 = sup
‖θ−θ0‖≤εn

∥∥∥∥
1

n

n∑

i=1

mi(θ)− Emi(θ)−
1

n

n∑

i=1

mi(θ0) + Emi(θ0)

∥∥∥∥,

by the Lemma 2.17 of Pakes & Pollard (1989), it is sufficient to prove that {mi(θ), θ ∈ Θ} is

an Euclidean class and mi(θ) is L2(P )-continuous at θ0. By Lemma 22 (ii) in Nolan & Pollard

(1987) and (A1), the Euclidean properties of the two classes {I(Yi(t) < θ>Zi(t)), θ ∈ Θ},
{Zi(t), t ∈ [0, t0]} with the envelope F1 = 1 and bounded of Z(t) hold because the function

I(·) and Z(t) are of bounded variation. Hence, {mi(θ), θ ∈ Θ} is an Euclidean class for a

constant envelope by Lemma 5 in Sherman (1994).

In the following, we verify that mi(θ) is L2(P )-continuous at θ0. Let Zij, and mij denote

the jth coordinates of Zi and mi, respectively. For simplicity, we omit the subscript i in

these expressions such as Zij,mij, Yi, Ni(t),Fit and the observation points tij, j = 1, . . . , ni.

We just need to prove that for all θ ∈ Θ, there exist constants Kj > 0 such that

I4 =: sup
‖θ−θ0‖≤εn

E{mj(θ)−mj(θ0)}2 ≤ Kjεn. (15)

By simple calculation, we obtain

I4 = sup
‖θ−θ0‖≤εn

E

[ ∫ t0

0

Zj(t)

{
I(Y (t)− θ>Z(t) < 0)− I(Y (t)− θ>0 Z(t) < 0)

}
dN(t)

]2

= sup
‖θ−θ0‖≤εn

E

[
E

[[ ∫ t0

0

Zj(t)

{
I(Y (t)− θ>Z(t) < 0)

−I(Y (t)− θ>0 Z(t) < 0)

}
dN(t)

]2∣∣∣∣Xi(t),Ft
]]
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by Holder inequality, (A2) and (A3), we have

I4 ≤ sup
‖θ−θ0‖≤εn

E

[
E

[[ ∫ t0

0

Z2
j (t)

{
I(Y (t)− θ>Z(t) < 0)

−I(Y (t)− θ>0 Z(t) < 0)

}
dN(t)

]∣∣∣∣Xi(t),Ft
]]

≤ sup
‖θ−θ0‖≤εn

∫ t0

0

[
{EZ4

j (t)} 1
2 E

1
2{
∣∣FY |X,Ft(θ

>Z(t) + εn)− FY |X,Ft(θ
>
0 Z(t)− εn)

∣∣}
]
dN(t)

≤ Kjεn,

where Kj <∞. Thus, the proof of this lemma is completed.

Proof of Theorem 1. By Corollary 3.2 of Pakes & Pollard (1989) and the definition of

the estimator θ̂, we just need to verify that conditions (ii) and (iii) in that corollary hold.

In fact, by (A4), we have

inf
‖θ−θ0‖>η

‖G(θ, γ0,Λ0(t))‖ = inf
‖θ−θ0‖>η

‖G(θ, γ0,Λ0(t))−G(θ0, γ0,Λ0(t))‖

= inf
‖θ−θ0‖>η

∥∥∥∥E

[ ∫ t0

0

Zi(t)

{
I(Yi(t)− θ>Zi(t) < 0)

−I(Yi(t)− θ>0 Zi(t) < 0)

}
dNi(t)

]∥∥∥∥

= E

{∫ t0

0

Zi(t)Z
>
i (t)fε(Yi(t)− θ̃TZi(t)|Xi(t),Fit)dNi(t)

}

× inf
‖θ−θ0‖>η

‖θ − θ0‖ > 0,

where θ̃ lies between θ and θ0. Hence, condition (ii) of Corollary 3.2 of Pakes & Pollard

(1989) is satisfied. Let’s verify the last condition, namely

I5 =: sup
θ∈Θ
‖Gn(θ, γ̂, Λ̂0(t))−G(θ, γ0,Λ0(t))‖ = op(1).

Note that

I5 ≤ sup
θ∈Θ
‖Gn(θ, γ̂, Λ̂0(t))−Gn(θ, γ0,Λ0(t))‖+ sup

θ∈Θ
‖Gn(θ, γ0,Λ0(t))−G(θ, γ0,Λ0(t))‖

=: I6 + I7.

For I6, we have

I6 = τ

∥∥∥∥
1

n

n∑

i=1

{∫ t0

0

Zi(t)ξi(t)e
γ̂>Xi(t)dΛ̂0(t)−

∫ t0

0

Zi(t)ξi(t)e
γ>0 Xi(t)dΛ0(t)

}∥∥∥∥

≤ τ

∥∥∥∥
1

n

n∑

i=1

∫ t0

0

Zi(t)ξi(t)e
γ>0 Xi(t)d{Λ̂0(t)− Λ0(t)}

∥∥∥∥

+τ

∥∥∥∥
1

n

n∑

i=1

∫ t0

0

Zi(t)ξi(t){eγ̂
>Xi(t) − eγ>0 Xi(t)}dΛ0(t)

∥∥∥∥

+τ

∥∥∥∥
1

n

n∑

i=1

∫ t0

0

Zi(t)ξi(t){eγ̂
>Xi(t) − eγ>0 Xi(t)}d{Λ̂0(t)− Λ0(t)}

∥∥∥∥

=: τ(I61 + I62 + I63).
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By the Taylor expansion of Λ̂0(t) at γ0 (see Sun & Wu (2005)), we obtain

Λ̂0(t)− Λ0(t) =
1

n

n∑

i=1

∫ >

0

dMi(u)

s(0)(u; γ0)
−
∫ >

0

x̄(u; γ0)dΛ0(u)(γ̂ − γ0) + op(1),

hence, we have

I61 =

∥∥∥∥
1

n

n∑

i=1

∫ t0

0

S̃(1)(t; γ0)

s(0)(t; γ0)
dMi(t)− (γ̂ − γ0)

∫ t0

0

S̃(1)(t; γ0)x̄(u; γ0)dΛ0(t) + op(1)

∥∥∥∥

≤
∥∥∥∥

1

n

n∑

i=1

∫ t0

0

S̃(1)(t; γ0)

s(0)(t; γ0)
dMi(t)

∥∥∥∥+ ‖γ̂ − γ0‖
∥∥∥∥
∫ t0

0

S̃(1)(t; γ0)x̄(u; γ0)dΛ0(t)

∥∥∥∥+ op(1),

by Lin et al. (2000), we know that ‖γ̂ − γ0‖ = Op(n
− 1

2 ), hence the second term of I61 is

Op(n
− 1

2 ). By Martingale Central Limit Theorem and the Continuous Mapping Theorem, it

is easy to get that the first term of I61 is Op(n
− 1

2 ), hence, we can get that I61 = op(1).

By Taylor expansion and γ̂ − γ0 = Op(n
− 1

2 ), it easy to get that I62 = op(1).

For I63, by Taylor expansion of eγ̂
>Xi(t) at γ0, we have

I63 = ‖(γ̂ − γ0) + op(γ̂ − γ0))‖
∥∥∥∥

1

n

n∑

i=1

∫ t0

0

Zi(t)X
>
i (t)ξi(t0)eγ

>
0 Xi(t)d{Λ̂0(t)− Λ0(t)}

∥∥∥∥

= ‖(γ̂ − γ0) + op(γ̂ − γ0))‖
∥∥∥∥
∫ t0

0

{
1

n

n∑

i=1

Zi(t)X
>
i (t)ξi(t0)eγ

>
0 Xi(t)

}
d{Λ̂0(t)− Λ0(t)}

∥∥∥∥

= ‖(γ̂ − γ0) + op(γ̂ − γ0))‖
∥∥∥∥
∫ t0

0

S̃(2)(t; γ0)d{Λ̂0(t)− Λ0(t)}
∥∥∥∥

= ‖(γ̂ − γ0) + op(γ̂ − γ0))‖
∥∥∥∥

1

n

n∑

i=1

∫ t0

0

S̃(2)(t; γ0)

s(0)(t; γ0)
dMi(t)

−(γ̂ − γ0)

∫ t0

0

S̃(2)(t; γ0)x̄(u; γ0)dΛ0(t) + op(1)

∥∥∥∥

≤ ‖(γ̂ − γ0) + op(γ̂ − γ0))‖
{∥∥∥∥

1

n

n∑

i=1

∫ t0

0

S̃(2)(t; γ0)

s(0)(t; γ0)
dMi(t)

∥∥∥∥

+‖(γ̂ − γ0)‖
∥∥∥∥
∫ t0

0

S̃(2)(t; γ0)x̄(u; γ0)dΛ0(t)

∥∥∥∥+ op(1)

}
,

Again using ‖γ̂−γ0‖ = Op(n
− 1

2 ), the Martingale Central Limit Theorem and the Continuous

Mapping Theorem, it is easy to obtain I63 = op(1). This means that I6 = op(1). At last, we

just need to verify that I7 = op(1).

For simplicity, denote

g̃i(θ, γ,Λ0, t) =

∫ t

0

Zi(s)

{
I(Yi(s)− θ>Zi(s) < 0)dNi(s)− τξi(s)eγ

>Xi(s)dΛ0(s)

}
,

to prove I7 = op(1), according to the Lemma (2.8) of Packs & Pollard (1989), it is sufficient

to prove that the class {g̃i(θ, γ,Λ0, t), t ∈ [0, t0]} is the Euclidean class with envelop F which
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has finite expectation. Similar to the proof of Lemma 1, by Lemma 22 (ii) in Nolan &

Pollard (1987), it can be shown that {ξi(t), t ∈ [0, t0]} and {eγ>Xi(t), γ ∈ Θ̃, t ∈ [0, t0]}
are Euclidean classes for envelope F = 1 and envelope {supγ∈Θ̃,t∈[0,t0] e

γ>Xi(t)} respectively

because indicator function has bounded variation and eγ
>Xi(t) is Lipschitz continuous when

γ belongs to a compact parameter space Θ̃. Therefore, by Lemma 5 in Sherman (1994),

{g̃i(θ, γ,Λ0, t), t ∈ [0, t0]} is a Euclidean class.

Therefore, all of conditions in Corollary 3.2 of Pakes & Pollard (1989) hold, and we have

completed the proof of Theorem 1.

Proof of Theorem 2. We verify the conditions of Theorem 3.3 in Pakes & Pollard (1989).

By (A4), Lemma 1 and definition of the estimator, it is easy to see that conditions (i)-(iii)

and (v) of Theorem 3.3 of Pakes & Pollard (1989) hold. Here, it is sufficient to prove that

condition (iv) is satisfied.

Note that

√
nGn(θ0, γ̂, Λ̂0(t)) =

1√
n

n∑

i=1

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>0 Zi(t) < 0)dNi(t)− τξi(t)eγ̂

>Xi(t)dΛ̂0(t)

}

=
1√
n

n∑

i=1

∫ t0

0

Zi(t)

{
I(Yi(t)− θ>0 Zi(t) < 0)− τ

}
dNi(t)

+τ
1√
n

n∑

i=1

{∫ t0

0

Zi(t)dNi(t)−
∫ t0

0

ξi(t)Zi(t)e
γ̂>Xi(t)dΛ̂0(t)

}

=
1√
n

n∑

i=1

hi(θ0) + τ
1√
n

n∑

i=1

∫ t0

0

{
Zi(t)−

S̃(1)(t; γ̂)

S(0)(t; γ̂)

}
dNi(t)

=
1√
n

n∑

i=1

hi(θ0) + τ
1√
n

n∑

i=1

∫ t0

0

{
Zi(t)−

S̃(1)(t; γ0)

S(0)(t; γ0)

}
dNi(t)

−τP√n(γ̂ − γ0) + op(1)

=
1√
n

n∑

i=1

hi(θ0) + τ
1√
n

n∑

i=1

∫ t0

0

{
Zi(t)− Z̄(t; γ0)

}
dMi(t)

−τPΩ−1 1√
n

n∑

i=1

∫ t0

0

{
Xi(t)− X̄(t; γ0)

}
dMi(t) + op(1),

hence, by central limit theorems, we have

√
nGn(θ0, γ̂, Λ̂0(t))

D−→ N(0, V ),

where

V = E

[
hi(θ0) + τ

∫ t0

0

{
Zi(t)− z̄(t; γ0)

}
dMi(t)− τPΩ−1

∫ t0

0

{
Xi(t)− x̄(t; γ0)

}
dMi(t)

]⊗2

.

It means that the condition (iv) of Theorem 3.3 of Pakes & Pollard (1989) hold, hence, by

Theorem 3.3 in Pakes & Pollard (1989), we can derive the conclusion. This completes the

proof of the theorem.
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