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a b s t r a c t

We observe a sample of n independent p-dimensional Gaussian vectors with Toeplitz
covariance matrix Σ = [σ|i−j|]1≤i,j≤p and σ0 = 1. We consider the problem of testing
the hypothesis that Σ is the identity matrix asymptotically when n → ∞ and p → ∞.
We suppose that the covariances σk decrease either polynomially (


k≥1 k

2ασ 2
k ≤ L for

α > 1/4 and L > 0) or exponentially (


k≥1 e
2Akσ 2

k ≤ L for A, L > 0).
We consider a test procedure based on a weighted U-statistic of order 2, with optimal

weights chosen as solution of an extremal problem. We give the asymptotic normality of
the test statistic under the null hypothesis for fixed n and p → +∞ and the asymptotic
behavior of the type I error probability of our test procedure. We also show that the
maximal type II error probability, either tend to 0, or is bounded from above. In the latter
case, the upper bound is given using the asymptotic normality of our test statistic under
alternatives close to the separation boundary. Our assumptions imply mild conditions:
n = o(p2α−1/2) (in the polynomial case), n = o(ep) (in the exponential case).

We prove both rate optimality and sharp optimality of our results, for α > 1 in the
polynomial case and for any A > 0 in the exponential case.

A simulation study illustrates the good behavior of our procedure, in particular for small
n, large p.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last decade, both functional data analysis (FDA) and high-dimensional (HD) problems have known an unprece-
dented expansion both from a theoretical point of view (as they offer many mathematical challenges) and for the applica-
tions (where data have complex structure and grow larger every day). Therefore, both areas share a large number of trends,
see [3] and the review by [12], like regression models with functional or large-dimensional covariates, supervised or unsu-
pervised classification, testing procedures, covariance operators.

Functional data analysis proceeds very often by discretizing curve datasets in time domain or by projecting on suitable
orthonormal systems and produces large dimensional vectors with size possibly larger than the sample size. Hencemethods
and techniques from HD problems can be successfully implemented (see e.g. [1]). However, in some cases, HD vectors can
be transformed into stochastic processes, see [9], and then techniques from FDA bring new insights into HD problems. Our
work is of the former type.
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We observe independent, identically distributed Gaussian vectors X1, . . . , Xn, n ≥ 2, which are p-dimensional, centered
andwith a positive definite Toeplitz covariancematrixΣ . We denote by Xk = (Xk,1, . . . , Xk,p)

⊤ the coordinates of the vector
Xk in Rp for all k.

Our model is that of a stationary Gaussian time series, repeatedly and independently observed n times, for n ≥ 2. We
assume that n and p are large. In functional data analysis, it is quite often that curves are observed in an independent
way: electrocardiograms of different patients, power supply for different households and so on, see other datasets in [3].
After modelization of the discretized curves, the statistician will study the normality and the whiteness of the residuals in
order to validate the model. Our problem is to test from independent samples of high-dimensional residual vectors that the
standardized Gaussian coordinates are uncorrelated.

Let us denote by σ|j| = Cov(Xk,h, Xk,h+j), for all integer numbers h and j, for all k ∈ N∗, where N∗ is the set of positive
integers. We assume that σ0 = 1, therefore σj are correlation coefficients. We recall that {σj}j∈N is a sequence of non-
negative type, or, equivalently, the associated Toeplitz matrix Σ is non-negative definite. We assume that the sequence
{σj}j∈N belongs to ℓ1(N)∩ ℓ2(N), where ℓ1(N) (resp. ℓ2(N)) is the set all absolutely (resp. square) summable sequences. It is
therefore possible to construct a positive, periodic function

f (x) =
1
2π


1 + 2

∞
j=1

σj cos(jx)


, for x ∈ (−π, π),

belonging to L2(−π, π) the set of all square-integrable functions f over (−π, π). This function is known as the spectral
density of the stationary series {Xk,i, i ∈ Z}.

We solve the following test problem,

H0 : Σ = I (1.1)

versus the alternative

H1 : Σ ∈ T (α, L) such that

j≥1

σ 2
j ≥ ψ2, (1.2)

forψ = (ψn,p)n,p a positive sequence converging to 0. From now on, C>0 denotes the set of squared symmetric and positive
definite matrices. The set T (α, L) is an ellipsoid of Sobolev type

T (α, L) =


Σ ∈ C>0,Σ is Toeplitz;


j≥1

σ 2
j j

2α
≤ L and σ0 = 1


, α > 1/4, L > 0.

We shall also test (1.1) against

H1 : Σ ∈ E(A, L) such that

j≥1

σ 2
j ≥ ψ2, for ψ > 0, (1.3)

where the ellipsoid of covariance matrices is given by

E(A, L) =


Σ ∈ C>0,Σ is Toeplitz;


j≥1

σ 2
j e

2Aj
≤ L and σ0 = 1


, A, L > 0.

This class contains the covariance matrices whose elements decrease exponentially, when moving away from the diagonal.
Wedenote byG(ψ) eitherG(T (α, L), ψ) the set ofmatrices under the alternative (1.2) orG(E(A, L), ψ)under the alternative
(1.3).

We stress the fact that amatrixΣ inG(ψ) is such that 1/(2p)∥Σ−I∥2
F ≥


j≥1 σ

2
j ≥ ψ2, i.e.Σ is outside a neighborhood

of I with radius ψ in Frobenius norm.
Our test can be applied in the context of model fitting for testing the whiteness of the standard Gaussian residuals. In

this context, it is natural to assume that the covariance matrix under the alternative hypothesis has small entries like in our
classes of covariance matrices. Such tests have been proposed by [15], where it is noted that weighted test statistics can be
more powerful.

Note that, most of the literature on testing the null hypothesis (1.1), either focus on finding the asymptotic behavior of
the test statistic under the null hypothesis, or control in addition the type II error probability for one fixed unknownmatrix
under the alternative, whereas our main interest is to quantify the worst type II error probabilities, i.e. uniformly over a
large set of possible covariance matrices.

Various test statistics in high dimensional settings have been considered for testing (1.1), as it was known for some time
that likelihood ratio tests do not converge when dimension grows. Therefore, a corrected Likelihood Ratio Test is proposed
in [2] when p/n → c ∈ (0, 1), and its asymptotic behavior is given under the null hypothesis, based on the randommatrix
theory. In [24] the result is extended to c = 1. An exact test based on one column of the covariance matrix is constructed
by [20]. A series of papers propose test statistics based on the Frobenius norm of Σ − I , see [25,30,31,10]. Different test
statistics are introduced and their asymptotic distribution is studied. In particular in [10] the test statistic is a U-statistic
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with constant weights. An unbiased estimator of tr(Σ − Bk(Σ))
2 is constructed in [28], where Bk(Σ) = (σij · I{|i− j| ≤ k}),

in order to develop a test statistic for the problem of testing the bandedness of a given matrix. Another extension of our
test problem is to test the sphericity hypothesisΣ = σ 2I , where σ 2 > 0 is unknown. [16] introduced a test statistic based
on functionals of order 4 of the covariance matrix. Motivated by these results, the test H0 : Σ = I is revisited by [14].
The maximum value of non-diagonal elements of the empirical covariance matrix was also investigated as a test statistic.
Its asymptotic extreme-value distribution was given under the identity covariance matrix by [6] and for other covariance
matrices by [32]. We propose here a new test statistic to test (1.1) which is a weighted U-statistic of order 2 and study its
probability errors uniformly over the set of matrices given by (1.2) and (1.3).

The test problem with alternative (1.2) and with one sample (n = 1) was solved in the sharp asymptotic framework,
as p → ∞, by [13]. Indeed, [13] studies sharp minimax testing of the spectral density f of the Gaussian process. Note that
under the null hypothesis we have a constant spectral density f0(x) = 1/(2π) for all x and the alternative can be described
in L2 norm as we have the following isometry ∥f − f0∥2

2 = (2π)−1
∥Σ − I∥2

F . Moreover, the ellipsoid of covariance matrices
T (α, L) are in bijection with Sobolev ellipsoids of spectral densities f . Let us also recall that the adaptive rates for minimax
testing are obtained for the spectral density problemby [19] by a non constructivemethod using the asymptotic equivalence
with a Gaussian white noise model. Finding explicit test procedures which adapt automatically to parameters α and/or L of
our class of matrices will be the object of future work. Our efforts go here into finding sharp minimax rates for testing.

Our results generalize the results in [13] to the case of repeatedly observed stationary Gaussian process. We stress the
fact that repeated sampling of the stationary process (X1,1, . . . , X1,p) to (Xn,1, . . . , Xn,p) can be viewed as one sample of
size n × p under the null hypothesis. However, this sample will not fit the assumptions of our alternative. Indeed, under
the alternative, its covariance matrix is not Toeplitz, but block diagonal. Moreover, we can summarize the n independent
vectors into one p-dimensional vector X = n−1/2n

k=1 Xk having Gaussian distribution Np(0,Σ). The results by [13] will
produce a test procedure with rate that we expect optimal as a function of p, but more biased and suboptimal as a function
of n. The test statistic that we suggest removes cross-terms and has smaller bias. Therefore, results in [13] do not apply in a
straightforward way to our setup.

A conjecture in the sense of asymptotic equivalence of themodel of repeatedly observed Gaussian vectors and a Gaussian
white noise model was given by [8]. Our rates go in the sense of the conjecture.

The test of H0 : Σ = I against (1.2), with Σ not necessary Toeplitz, is given in [5]. Their rates show a loss of a factor p
when compared to the rates for Toeplitz matrices obtained here. This can be interpreted heuristically by the size of the set
of unknown parameters which is p(p − 1)/2 for [5] whereas here it is p. We can see that the family of Toeplitz matrices
is a subfamily of general covariance matrices in [5]. Therefore, the lower bounds are different, they are attained through a
particular family of Toeplitz large covariance matrices. The upper bounds take into account as well the fact that we have
repeated information on the same diagonal elements. The test statistic is different from the one used in [5].

The test problemwith alternative hypothesis (1.3) has not been studied in this model. The class E(A, L) containsmatrices
with exponentially decaying elements when further from themain diagonal. The spectral density function associated to this
process belongs to the class of functionswhich are inL2 and admit an analytic continuation on the strip of complex numbers
z with |Im(z)| ≤ A. Such classes of analytic functions are very popular in the literature of minimax estimation, see [18].

In times series analysis such covariance matrices describe among others the linear ARMA processes. The problem of
adaptive estimation of the spectral density of an ARMA process has been studied by [17] (for known α) and adaptively to α
via wavelet based methods by [27] and by model selection by [11]. In the case of an ARFIMA process, obtained by fractional
differentiation of order d ∈ (−1/2, 1/2) of a casual invertible ARMA process, [29] gave adaptive estimators of the spectral
density based on the log-periodogram regression model when the covariance matrix belongs to E(A, L).

Before describing our results let us define more precisely the quantities we are interested in evaluating.

1.1. Formalism of the minimax theory of testing

Let χ be a test, that is a measurable function of the observations X1, . . . , Xn taking values in {0, 1} and recall that G(ψ)
corresponds to the set of covariance matrices under the alternative hypothesis. Let

η(χ) = EI(χ) be its type I error probability, and
β(χ,G(ψ)) = sup

Σ∈G(ψ)
EΣ (1 − χ) be its maximal type II error probability.

We consider two criteria to measure the performance of the test procedure. The first one corresponds to the classical
Neyman–Pearson criterion. Forw ∈ (0, 1), we define,

βw(G(ψ)) = inf
χ;η(χ)≤w

β(χ,G(ψ)).

The test χw is asymptotically minimax according to the Neyman–Pearson criterion if

η(χw) ≤ w + o(1) and β(χw,G(ψ)) = βw(G(ψ))+ o(1).

The second criterion is the total error probability, which is defined as follows:

γ (χ,G(ψ)) = η(χ)+ β(χ,G(ψ)).
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Table 1
Separation rates ψ and b(ψ) in the sharp asymptotic bounds where C(α, L) = (2α + 1)(4α + 1)−(1+

1
2α )L−

1
2α .

Σ T (α, L) E(A, L) Not Toeplitz and T (α, L) [5]

ψ 
C(α, L) · n2p2

− α
4α+1


2 ln(n2p2)
An2p2

1/4 
C(α, L) · n2p

− α
4α+1

b(ψ)2 C(α, L) · ψ
4α+1
α

Aψ4

2 ln


1
ψ

 C(α, L) · ψ
4α+1
α

Define also the minimax total error probability γ as γ (G(ψ)) = infχ γ (χ,G(ψ)), where the infimum is taken over all
possible tests.

Note that the two criteria are related since γ (G(ψ)) = infw∈(0,1)(w + βw(G(ψ))) (see Ingster and Suslina [23]).
A test χ is asymptotically minimax if: γ (G(ψ)) = γ (χ,G(ψ)) + o(1). We say that ψ is a (asymptotic) separation rate,

if the following lower bounds hold

γ (G(ψ)) −→ 1 as
ψψ −→ 0

together with the following upper bounds: there exists a test χ such that,

γ (χ,G(ψ)) −→ 0 as
ψψ −→ +∞.

The sharp optimality corresponds to the study of the asymptotic behavior of the maximal type II error probability
βw(G(ψ)) and the total error probability γ (G(ψ)). In our study we obtain asymptotic behavior of Gaussian type, i.e. we
show that, under some assumptions,

βw(G(ψ)) = Φ(z1−w − npb(ψ))+ o(1) and γ (G(ψ)) = 2Φ(−npb(ψ))+ o(1), (1.4)

where Φ is the cumulative distribution function of a standard Gaussian random variable, z1−w is the 1 − w quantile of the
standard Gaussian distribution for any w ∈ (0, 1), and b(ψ) has an explicit form for each ellipsoid of Toeplitz covariance
matrices.

Separation rates and sharp asymptotic results for different testing problem were studied under this formalism by [22].
We refer for precise definitions of sharp asymptotic and non asymptotic rates to [26]. Note that throughout this paper,
asymptotics and symbols o, O,∼ and≍ are considered as p tends to infinity, unless we specify that n tends to infinity. Recall
that, given sequences of real numbers u and real positive numbers v, we say that they are asymptotically equivalent, u ∼ v,
if lim u/v = 1. Moreover, we say that the sequences are asymptotically of the same order, u ≍ v, if there exist two constants
0 < c ≤ C < ∞ such that c ≤ lim inf u/v and lim sup u/v ≤ C .

1.2. Overview of the results

In this paper, we describe the separation ratesψ and sharp asymptotics for the error probabilities for testing the identity
matrix against G(T (α, L), ψ) and G(E(A, L), ψ) respectively.

We propose here a test procedure whose type II error probability tends to 0 uniformly over the set of G(ψ), that is even
for a covariance matrix that gets closer to the identity matrix at distanceψ → 0 as n and p increase. The radiusψ in Table 1
is the smallest vicinity around the identity matrix which still allows testing error probabilities to tend to 0. Our test statistic
is a weighted quadratic form and we show how to choose these weights in an optimal way over each class of alternative
hypotheses.

Under mild assumptions we obtain the sharp optimality in (1.4), where b(ψ) is described in Table 1 and compared to the
case of non Toeplitz matrices in [5].

This paper is structured as follows. In Section 2, we study the test problem with alternative hypothesis defined by the
class G(T (α, L), ψ), α > 1/4, L, ψ > 0. We define explicitly the test statistic and give its first and second moments under
the null and the alternative hypotheses. We derive its Gaussian asymptotic behavior under the null hypothesis and under
the alternative submitted to the constraints that ψ is close to the separation rate ψ and that Σ is closed to the solution of
an extremal problemΣ∗. We deduce the asymptotic separation rates. Their optimality is shown only for α > 1. Our lower
bounds are original in the literature of minimax lower bounds, as in this case we cannot reduce the proof to the vector case,
or diagonal matrices.We give the sharp rates forψ ≍ ψ . Our assumptions imply that necessarily n = o(p2α−1/2) as p → ∞.
That does not prevent n to be larger than p for sufficiently large α.

In Section 3, we derive analogous results over the class G(E(A, L), ψ), with A, L, ψ > 0. We show how to choose the
parameters in this case and study the test procedure similarly. We give asymptotic separation rates. The sharp bounds are
attained as ψ ≍ ψ . Our assumptions involve that n = o(exp(p)) which allows n to grow exponentially fast with p. That
can be explained by the fact that the elements ofΣ decay much faster over exponential ellipsoids than over the polynomial
ones. In Section 4 we implement our procedure and show the power of testing over two families of covariance matrices.

The proofs of our results are postponed to the Section 5 and to the Supplementary material (see Appendix A).
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2. Testing procedure and results for polynomially decreasing covariances

We introduce aweightedU-statistic of order 2,which is an estimator of the functional


j≥1 σ
2
j that defines the separation

between a Toeplitz covariance matrix under the alternative hypothesis from the identity matrix under the null. Indeed, in
nonparametric estimation of quadratic functionals such as


j≥1 σ

2
j weighted estimators are often considered (see e.g. [4]).

These weights have finite support of length T , where T is optimal in some sense. Intuitively, as the coefficients {σj}j belong
to an ellipsoid, they become smaller when j increases and thus the bias due to the truncation and the weights becomes as
small as the variance for estimating the weighted finite sum.

2.1. Test statistic

Let us denote by Tp({σj}j≥1) the symmetric p × p Toeplitz matrixΣ = [σlk]1≤l,k≤p such that the diagonal elements ofΣ
are equal to 1, and σlk = σkl = σ|l−k|, for all l ≠ k. Now we define the weighted test statistic in this setup

An := AT
n =

1
n(n − 1)(p − T )2


1≤k≠l≤n

T
j=1

w∗

j


T+1≤i1,i2≤p

Xk,i1Xk,i1−jXl,i2Xl,i2−j (2.5)

where the weights {w∗

j }j and the parameters T , λ, b2(ψ) are obtained by solving the following extremal problem:

b(ψ) :=


j≥1

w∗

j σ
∗2
j = sup (wj)j :wj≥0;

j≥1
w2
j =

1
2


inf Σ :Σ=Tp({σj}j≥1);

Σ∈T (α,L),

j≥1

σ2j ≥ψ2




j≥1

wjσ
2
j . (2.6)

This extremal problem appears heuristically as we want that the expected value of our test statistic for the worst parameter
Σ under the alternative hypothesis (closest to the null) to be as large as possible for the weights we use. This problem
will provide the optimal weights {w∗

j }j≥1 in order to control the worst type II error probability, but also the critical matrix
Σ∗

= Tp({σ ∗

j }) that will be used in the lower bounds. Indeed,Σ∗ is positive definite for small enough ψ (see [5]).
The solution of the extremal problem (2.6) can be found in [23]:

w∗

j =
λ

2b(ψ)


1 −


j
T

2α

, σ ∗2

j = λ


1 −


j
T

2α

, T =


(L(4α + 1))

1
2α · ψ−

1
α


λ =

2α + 1

2α(L(4α + 1))
1
2α

· ψ
2α+1
α , b2(ψ) =

1
2


j

σ ∗4
j =

2α + 1

L
1
2α (4α + 1)1+

1
2α

· ψ
4α+1
α .

(2.7)

Remark that T is a finite number but grows to infinity asψ → 0. Moreover, the test statistic will have optimality properties
under the additional condition that T/p → 0 which is equivalent to pψ1/α

→ ∞. It is obvious that in practice it might
happen that T ≥ p and then we have no solution but to use T = p − 1, with the inconvenient that the procedure does not
behave as well as the theory predicts.

Proposition 1. Under the null hypothesis, the test statistic An is centered, EI(An) = 0, with variance:

VarI(An) =
1

n(n − 1)(p − T )2
.

Moreover, under the alternative hypothesis with α > 1/4, if we assume that ψ → 0 we have:

EΣ (An) =

T
j=1

w∗

j σ
2
j ≥ b(ψ) and VarΣ (An) =

R1

n(n − 1)(p − T )4
+

R2

n(p − T )2
,

uniformly over Σ in G(T (α, L), ψ), where

R1 ≤ (p − T )2 · {1 + o(1)+ EΣ (An) · (O(
√
T )+ O(T 3/2−2α))+ E2

Σ (
An) · O(T 2)} (2.8)

R2 ≤ (p − T ) · {EΣ (An) · o(1)+ E3/2
Σ (An) · (O(T 1/4)+ O(T 3/4−α))+ E2

Σ (
An) · O(T )}. (2.9)

In the next proposition we prove asymptotic normality of the test statistic under the null and under the alternative
hypothesis with additional assumptions. More precisely, we need that ψ is of the same order as the separation rate and
that the matrixΣ is close to the optimalΣ∗. This is not a drawback, since the asymptotic constant for probability errors are
attained under the same assumptions or tend to 0 otherwise.
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Proposition 2. Suppose that n, p → +∞, α > 1/4, ψ → 0, pψ1/α
→ +∞ and moreover assume that n(p − T )b(ψ) ≍ 1,

the test statistic An defined by (2.5) with parameters given in (2.7), verifies:

n(p − T )
An − EΣ (An)


−→ N (0, 1)

for allΣ ∈ G(T (α, L), ψ), such that EΣ (An) = O(b(ψ)).
Moreover, n(p − T )An has asymptotical N (0, 1) distribution under H0, as p → ∞ for any fixed n ≥ 2.

2.2. Separation rate and sharp asymptotic optimality

Based on the test statistic An, we define the test procedure

χ∗
= χ∗(t) = 1(An > t), (2.10)

for conveniently chosen t > 0, where An is the estimator defined in (2.5) with parameters in (2.7).
The next theorem gives the separation rate under the assumption that T = o(p), or equivalently, that pψ1/α

→ ∞. The
upper bounds are attained for arbitrary α > 1/4, but the lower bounds require α > 1.

Theorem 1. Suppose that asymptotically

ψ → 0 and pψ1/α
→ +∞. (2.11)

Lower bound. If α > 1 and n2p2 b2(ψ) = C(α, L)n2p2 ψ
4α+1
α → 0 then

γ = inf
χ
γ (χ,G(T (α, L), ψ)) −→ 1,

where the infimum is taken over all test statistics χ .
Upper bound. The test procedure χ∗ defined in (2.10) with t > 0 has the following properties:

Type I error probability: if np · t → +∞ then η(χ∗) → 0.
Type II error probability: if

α > 1/4 and n2p2 b2(ψ) = C(α, L)n2p2 ψ
4α+1
α → +∞ (2.12)

then, uniformly over t such that t ≤ c · C1/2(α, L) · ψ
4α+1
2α , for some constant 0 < c < 1, we have

β(χ∗,G(T (α, L), ψ)) −→ 0.

Under the assumptions given in (2.11) and (2.12), with t verifying the assumptions of Theorem 1, we get:

γ (χ∗,G(T (α, L), ψ)) −→ 0.

As a consequence of the previous theorem,we get thatχ∗ is an asymptoticallyminimax test procedure ifψ/ψ −→ +∞.
From the lower bounds we deduce that, if ψ/ψ −→ 0, there is no test procedure to distinguish between the null and the
alternative hypotheses, with errors tending to 0. The minimax separation rate ψ is therefore:

ψ =


2α + 1

L
1
2α (4α + 1)1+

1
2α

· n2p2
−

α
4α+1

. (2.13)

It is obtained from the relation n2p2b2(ψ) = 1. Naturally the constant does not play any role here. Remark that the condition
T/p → 0 ≍ pψ1/α

→ +∞ implies that n = o(p2α−
1
2 ).

The maximal type II error probability either tends to 0, see Theorem 1, or is less than Φ(np(t − b(ψ))) + o(1) when
npt < npb(ψ) ≍ 1. The latter case is the object of the next theorem giving sharps bounds for the asymptotic errors.
The upper bounds are attained for arbitrary n ≥ 2 and for α > 1/4, while our proof of the sharp lower bounds requires
additionally that n → ∞ and α > 1.

Theorem 2. Suppose that ψ → 0 such that p/T ≍ pψ1/α
→ +∞ and, moreover, that

n2p2 b2(ψ) ≍ 1. (2.14)

Lower bound. If α > 1, then

inf
χ :η(χ)≤w

β(χ,G(T (α, L), ψ)) ≥ Φ(z1−w − npb(ψ))+ o(1),
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where the infimum is taken over all test statistics χ with type I error probability less than or equal tow. Moreover,

γ = inf
χ
γ (χ,G(T (α, L), ψ)) ≥ 2Φ


−np

b(ψ)
2


+ o(1).

Upper bound. The test procedure χ∗ defined in (2.10) with t > 0 has the following properties.
Type I error probability: η(χ∗) = 1 − Φ(np · t)+ o(1).
Type II error probability: under the assumption (2.14), and for all α > 1/4, we have that, uniformly over t:

β(χ∗,G(T (α, L), ψ)) ≤ Φ(np · (t − b(ψ)))+ o(1).

In particular, for t = tw , such that np · tw = z1−w , we have η(χ∗(tw)) ≤ w + o(1) and also,

β( χ∗(tw),G(T (α, L), ψ)) = Φ(z1−w − np · b(ψ))+ o(1).

Another important consequence of the previous theorem, is that the test procedure χ∗, with t∗ = b(ψ)/2 is such that

γ (χ∗(t∗),G(T (α, L), ψ)) = 2Φ


−np
b(ψ)
2


+ o(1).

Then we can deduce that the minimax separation rate ψ defined in (2.13) is sharp.

3. Exponentially decreasing covariances

In this section we want to test (1.1) against (1.3), where the alternative set is G(E(A, L), ψ), for some A, L, ψ > 0. It is
well known in the nonparametric minimax theory that E(A, L) is in bijection with ellipsoids of analytic spectral densities
admitting analytic continuation on the strip {z ∈ C : |Im(z)| ≤ A} of the complex plane. On this class nearly parametric
rates are attained for testing in the Gaussian noise model, see Ingster [21].

Let us define AE
n in (2.5)

AE
n =

1
n(n − 1)(p − T )2


1≤k≠l≤n

T
j=1

w∗

j


T+1≤i1,i2≤p

Xk,i1Xk,i1−jXl,i2Xl,i2−j, (3.15)

where the weights {w∗

j }j≥1, are obtained by solving the optimization problem (2.6), with the class T (α, L) replaced by
E(A, L). The solution given in [21] is as follows:

w∗

j =
λ

2b(ψ)


1 −


ej

eT

2A


+

, σ ∗

j =
√
λ


1 −


ej

eT

2A
1/2

+

, T =

1
A
ln
 1
ψ


,

λ =
Aψ2

ln


1
ψ

 , b2(ψ) =
Aψ4

2 ln


1
ψ

 . (3.16)

Note that all parameters above are free of the radius L > 0. Moreover, we have:

sup
j
w∗

j ≤
λ

2b(ψ)
≍

1
2(ln(1/ψ))1/2

−→ 0.

Under the null hypothesis, we still have EI(AE
n ) = 0,VarI(AE

n ) = 1/(n(n − 1)(p − T )2) and

n(p − T )AE
n

L
−→ N (0, 1) for fixed n ≥ 2 and p → +∞.

In the following proposition, we see how the upper bounds of the variance have changed underΣ in G(E(A, L), ψ).

Proposition 3. Under the alternative, for allΣ ∈ G(E(A, L), ψ), we have:

EΣ (AE
n ) =

T
j=1

w∗

j σ
2
j ≥ b(ψ) and VarΣ (AE

n ) =
R1

n(n − 1)(p − T )4
+

R2

n(p − T )2

where, for all A > 0, and as ψ −→ 0:

R1 ≤ (p − T )2 · {1 + o(1)+ EΣ (AE
n ) · O(

√
T )+ E2

Σ (
AE

n ) · O(T 2)} (3.17)

R2 ≤ (p − T ) · {EΣ (AE
n ) · o(1)+ E3/2

Σ (AE
n ) · O(T 1/4)+ E2

Σ (
AE

n ) · O(T )}. (3.18)

Moreover, if n(p− T )b(ψ) ≍ 1, we show that n(p− T )(AE
n − EΣ (AE

n )) → N (0, 1), for allΣ ∈ E(A, L), such that EΣ (AE
n ) =

O(b(ψ)).
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Now we define the test procedure as follows,

∆∗
= ∆∗(t) = 1(AE

n > t).

We describe next the separation rate. We stress the fact that Lemma 2 in the Supplementary material (see Appendix A)
shows that the optimal sequence {σ ∗

j }j in (3.16) provides a Toeplitz positive definite covariance matrix. The sharp results
are obtained under the additional assumption that ψ ≍ ψ and the lower bounds require that n tends also to infinity.

Theorem 3. Suppose that asymptotically ψ → 0 and p/T ≍ p/ ln(1/ψ) → ∞.
1. Separation rate. Lower bound: if n2p2b2(ψ) = n2p2 · Aψ4/(2 ln(1/ψ)) −→ 0 then

γ = inf
∆
γ (∆,G(ψ)) −→ 1,

where the infimum is taken over all test statistics∆.
Upper bound: the test procedure∆∗ defined previously with t > 0 has the following properties:

Type I error probability: if np · t → +∞ then η(∆∗) → 0.
Type II error probability: if n2p2 b2(ψ) = n2p2 · Aψ4/(2 ln(1/ψ)) −→ +∞ then, uniformly over t such that t ≤ c ·

A
1
2ψ2/(2 ln(1/ψ))

1
2 , for some constant c; 0 < c < 1,

β(∆∗,G(ψ)) −→ 0.

2. Sharp asymptotic bounds. Lower bound: suppose that n → +∞ and that

n2p2 b2(ψ) ≍ 1, (3.19)

then we get inf∆:η(∆)≤w β(∆,G(ψ)) ≥ Φ(z1−w − npb(ψ)) + o(1), where the infimum is taken over all test statistics ∆ with
type I error probability less than or equal tow for w ∈ (0, 1). Moreover,

γ = inf
∆
γ (∆,G(ψ)) ≥ 2Φ


−np

b(ψ)
2


+ o(1).

Upper bound: we have
Type I error probability: η(∆∗) = 1 − Φ(npt)+ o(1).
Type II error probability: under the condition (3.19), we get that, uniformly over t,

β(∆∗,G(ψ)) ≤ Φ(np · (t − b(ψ)))+ o(1).

In particular, the test procedure∆∗(b(ψ)/2), is such that γ (∆∗(b(ψ)/2),G(ψ)) = 2Φ(−np b(ψ)
2 )+ o(1). We get the sharp

minimax separation rate:ψ =


2 ln(n2p2)
An2p2

1/4
. Remark that, in this case the condition T/p → 0 implies that n = o(ep), which

is considerably less restrictive than the condition n = o(p2α−
1
2 ) of the previous case and allows for exponentially large n,

e.g. n = ep/2.

4. Numerical implementation and extensions

In this section we implement the test procedure χ in (2.10) with empirically chosen threshold t > 0 and study its
numerical performance over two families of covariance matrices. We estimate the type I and type II errors by Monte Carlo
sampling with 1000 repetitions. First, we choose Σ = Σ(M) = [σj]j; σj = j−2/M under the alternative hypothesis, for
various values of M ∈ {2, 2.5, 3, 4, 6, 8, 16, 30, 60, 80}. We implement the test statistic AT

n defined in (2.5) and (2.7), for

parameters α = 1, L = 1 and ψ = ψ(M) =

p−1
j=1 j−4

 1
2
/M . Our choice of the values for M provides positive definite

matrices. We denote by A(M) the random variable n(p− T )AT
n whenΣ = Σ(M), and by A(0)whenΣ = I . Note that large

values ofM giveΣ(M)with small off-diagonal entries, which is very close to the identity matrix.
Fig. 1, shows that n(p− T )AT

n is distributed as a standard normal random variable, whenΣ = I andΣ(M) close enough to
the identity. And as a non-centered normal distribution whenΣ(M) is far from the identity matrix.

To evaluate the performance of our test procedure we compute its power. For each value of n and p, we estimate the 95th
percentile t of the distribution of n(p − T )AT

n under the null hypothesis Σ = I . We use t previously defined to estimate
the type II error probability, and then plot the associated power. In Fig. 2, we plot the power function of our test procedure
χ-test as function of ψ(M), for a fixed value of n and different values of p.

The vertical lines in Fig. 2 represent the different ψ̃(n, p) associated to different values of p and n = 10. We remark that,
on the one hand the power grows with ψ(M) for all p ∈ {10, 30, 50, 70}. On the other hand the power is an increasing
function of p for a fixed covariance matrixΣ(M).
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Fig. 1. Distributions of A(M) = n(p − T )AT
n for I = Σ(0) andΣ = Σ(M), when p = 60 and n = 40.

Fig. 2. Power curves of the χ-test as function of ψ(M) for n = 10 and p ∈ {10, 30, 50, 70}.

We also compare our test procedure with the one defined in [7]. Recall that the test statistic defined by [7] is given by:

T CM
n =

2
n(n − 1)


1≤k<l≤n


(X⊤

k Xl)
2
− X⊤

k Xk − X⊤

l Xl + p

.

Note that for matricesΣ ∈ T (1, 1), we have (1/p)∥Σ − I∥2
F ∼

p−1
j=1 σ

2
j , thus we implementT CM

n /p as CM-test statistic. To
have fair comparison, we estimate the 95th percentile under the null hypothesis for both tests.
Fig. 3, shows that when n is bigger than or equal to p the powers of the χ-test and the CM-test take close values.While when
n is smaller then p, the gap between the power values of the two tests is large, and the χ-test is more powerful than the
CM-test.

Second, we consider tridiagonal matrices under the alternative. We define Σ = Σ(ρ) = [σj]j; σj = ρ · 1{j = 1}, for
ρ ∈ (0, 1). In this case the parameter ψ is ψ(ρ) = ρ, for a grid of 10 points ρ belonging to the interval (0, 0.35] and as
previously we take α = 1 and L = 1.
Fig. 4 shows that, the χ-test performs better than the U-test, in the three cases: p smaller than n, p equal n and p larger than
n. Moreover, we see that the power curves of the χ-test and the CM-test are closer, when the ratio p/n is smaller. We expect
even better results in this particular example if we use a larger value of α, or the procedure defined by (3.15) and (3.16). The
question arises of a test statistic free of parameters α, respectively A, which is beyond the scope of this paper.
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Fig. 3. Power curves of the χ-test and the CM-test as functions ofψ(M), when the alternative consists of matrices whose elements decrease polynomially
when moving away from the main diagonal.
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Fig. 4. Power curves of the χ-test and the CM-test as functions of ψ(ρ), when the alternative consists of tridiagonal matrices.

5. Proofs

Proof of Theorems 1 and 2. Recall the assumptions n, p → +∞, ψ → 0 and T/p ≍ 1/(pψ1/α) → 0.
Lower bounds: In order to show the lower bound, we first reduce the set of parameters to a convenient parametric

family. LetΣ∗
= Tp({σ ∗

k }k≥1) be the Toeplitz matrix such that,

σ ∗

k =
√
λ


1 −


k
T

2α
 1

2

+

for 1 ≤ k ≤ p − 1, (5.20)

with λ and T are given by (2.7).
Let us define G∗ a subset of G(T (α, L), ψ) as follows

G∗
= {Σ∗

U : Σ∗

U = Tp({ukσk}k≥1), U ∈ U},

where

U = {U = Tp({uk}k≥1)− Ip and uk = ±1 · I(k ≤ T − 1), for 1 ≤ k ≤ T − 1}.

The cardinality of U is 2T−1.
From Proposition 3 in [5], we can see that if α > 1/2, for all U ∈ U, the matrixΣ∗

U is positive definite, for ψ > 0 small
enough. In contrast with [5], we change the signs randomly on each diagonal of the upper triangle of Σ∗ and not of all its
elements. That allows us to stay into the model of Toeplitz covariance matrices and will actually change the rates of these
lower bounds.

Assume that X1, . . . , Xn ∼ N(0, I) under the null hypothesis and denote by PI the likelihood of these random variables.
Moreover assume that X1, . . . , Xn ∼ N(0,Σ∗

U) under the alternative, andwe denote PU the associated likelihood. In addition
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let

Pπ =
1

2T−1


U∈U

PU

be the average likelihood over G∗.
The problem can be reduced to the test H0 : X1, . . . , Xn ∼ PI against the averaged distribution H1 : X1, . . . , Xn ∼ Pπ , in

the sense that

inf
χ :η(χ)≤w

β(χ,G(T (α, L), ψ)) = inf
χ :η(χ)≤w

sup
Σ∈G(T (α,L),ψ)

EΣ (1 − χ) ≥ inf
χ :η(χ)≤w

sup
Σ∈G∗

EΣ (1 − χ)

≥ inf
χ :η(χ)≤w

1
2T−1

EΣ (1 − χ) = inf
χ :η(χ)≤w

Eπ (1 − χ) := inf
χ :η(χ)≤w

β( χ, {Pπ })

and that

inf
χ
γ (χ,G(T (α, L), ψ)) ≥ inf

χ
γ (χ, {Pπ })+ o(1)

where, with an abuse of notation, β( χ, {Pπ }) = Eπ (1 − χ) and γ (χ, {Pπ }) = EI(χ)+ Eπ (1 − χ).
It is therefore sufficient to show that, when un ≍ 1,

inf
χ :η(χ)≤w

β(χ, {Pπ }) ≥ Φ(z1−w − npb(ψ))+ o(1) (5.21)

and that

inf
χ
γ (χ, {Pπ }) ≥ 2Φ


−np

b(ψ)
2


+ o(1), (5.22)

while, for un = o(1), we need that

γ (χ, {Pπ }) → 1. (5.23)

Lemma 1. Assume that ψ → 0 such that pψ1/α
→ ∞ and let fπ be the probability density associated to the likelihood Pπ

previously defined. Then

Ln,p := log
fπ
fI
(X1, . . . , Xn) = unZn −

u2
n

2
+ oP(1), in PI probability, (5.24)

where Zn is asymptotically distributed as a standard Gaussian distribution and un = npb(ψ) is such that either un → 0 or
un ≍ 1. Moreover, Ln,p is uniformly integrable.

In order to obtain (5.21) and (5.22), we apply results in Section 4.3.1 of [23] giving the sufficient condition is (5.24).
It is known that γ (χ, {Pπ }) = 1 −

1
2∥PI − Pπ∥1 and we bound the L1 norm by the Kullback–Leibler divergence

1
2
∥PI − Pπ∥

2
1 ≤ K(PI , Pπ ).

Therefore to show (5.23), we apply Lemma 1 to see that the log likelihood log fπ/fI(X1, . . . , Xn) is an uniformly integrable
sequence. This implies that K(PI , Pπ ) = EI(log fπ/fI(X1, . . . , Xn)) → 0. �

Upper bounds: By Proposition 1, we have that under the null hypothesis n(p − T )An → N (0, 1). Then we can deduce
that the Type I error probability of χ∗ has the following form:

η(χ∗) = P(An > t) = 1 − Φ(npt)+ o(1).

For the Type II error probability ofχ∗, we shall distinguish two cases,whenn2p2b2(ψ) tends to infinity or is boundedby some
finite constant. First, assume that ψ/ψ → +∞ or, equivalently, that n2p2b2(ψ) → +∞. Then by the Markov inequality,

PΣ (An ≤ t) ≤ PΣ (|An − EΣ (An)| ≥ EΣ (An)− t) ≤
VarΣ (An)

(EΣ (An)− t)2

for allΣ ∈ G(T (α, L), ψ) and t ≤ c · b(ψ) such that 0 < c < 1. Recall that under the alternative, we have EΣ (An) ≥ b(ψ)
which gives:

EΣ (An)− t ≥ (1 − c)EΣ (An) ≥ (1 − c)b(ψ). (5.25)
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Therefore from the first part of the inequality (5.25) and the variance expression of An under H1, given in Proposition 1, we
have:

PΣ (An ≤ t) ≤
R1

n(n − 1)(p − T )4(1 − c)2E2
Σ (An)

+
R2

n(p − T )2(1 − c)2E2
Σ (An)

:= U1 + U2.

Let us bound from above U1, using (2.8) and the second part of the inequality (5.25):

U1 ≤
1 + o(1)

n(n − 1)(p − T )2(1 − c)2b2(ψ)
+

O(
√
T )+ O(T 3/2−2α)

n(n − 1)(p − T )2b(ψ)
+

O(T 2)

n(n − 1)(p − T )2
.

We have T (3/2−2α)b(ψ) ≍ T 2b2(ψ) ≍ ψ4− 1
α = o(1), for all α > 1/4, which proves that:

U1 ≤
1 + o(1)

n(n − 1)(p − T )(1 − c)2b2(ψ)
= o(1).

Indeed, n2(p − T )2b2(ψ) → +∞, since n2p2b2(ψ) → +∞ and T/p → 0.
We can check using (2.9) that the term U2 tends to zero as well:

U2 ≤
o(1)

n(p − T )b(ψ)
+

O(T 1/4)+ O(T 3/4−α)

n(p − T )b1/2(ψ)
+

O(T )
n(p − T )

= o(1) for all α > 1/4, as soon as n2p2b2(ψ) −→ +∞.

Finally, when ψ is of the same order of the separation rate, i.e. n2p2b2(ψ) ≍ 1, we may have either EΣ (An)/b(ψ) tends
to infinity, or EΣ (An) = O(b(ψ)). In the first case it is easy to see that U1 + U2 −→ 0. In the latter the Proposition 2 gives
the asymptotic normality of n(p − T )(An − EΣ (An)). Thereby,

sup
Σ∈G(T (α,L),ψ)

PΣ (An ≤ t) ≤ sup
Σ∈G(T (α,L),ψ)

Φ(np · (t − EΣ (An)))+ o(1)

≤ Φ(np · (t − inf
Σ∈G(T (α,L),ψ)

EΣ (An)))+ o(1)

= Φ(np · (t − b(ψ)))+ o(1).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2015.09.003.
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